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@ Three applications of linear models
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Three learning problems

@ What are the simplest models to solve these learning tasks?

Approve or

Reject?

CLASSIFICATION

Credit
Analysis

Amount of
Credit

— I

Probability of

Default

LOGISTIC REGRESSION

y€[0,1]




@ What are the simplest models to solve these learning tasks?

Three learning problems

@ Linear models — baseline to any machine learning project.

fo(x) =0'x

The “mother” linear
function

Xavier Bresson

sign(07x)

E— 0'x

_/_ sigmoid(07x)

y=*1

y€[0,1]

Linear classification

Linear regression

Logistic regression



Linear models

@ Hypothesis space H, i.e. the space of all solutions, of linear models :
@ Straight lines (2D space), planes (3D space) and hyper-planes (>3D spaces).

@ Parameters of linear models are the slopes and the bias.

R2
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@ C(lassification
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Three learning problems

sign(07x) y=+1 Linear classification

/ 0'x y € R Linear regression

/_ sigmoid(0'x) vy e[0,1] Logistic regression

fo(x) = 0'x

The “mother” linear
function
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Linear model for credit approval

@ Goal : Design a linear model to approve or not a credit to an individual based on personal
information or features.

fo(x) =0T x = Zid=1 0;x; > 0 = Approve

/ < 0 = Reject

Model parameters

Weight /importance of feature x; Decision by thresholding

(binary classification task)

Criterion

Age 32 years X1 Slopes of hyper-plane
Salary 40 K Xy / l \
Debt 26 K
fo(x) =07 x = 04xq + -+ + 0,%, + 0%, + 0,

YearsinJob  1year

Years at 3 years bias (offset)
Current Xd

Residence

Xavier Bresson
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- |
Example

@ Extend credit using applicant’s age

@ If age is higher than 25 years, accept credit.

@ Otherwise, reject.

@ Linear model :

e Example :

fo(x) = x; — 25 > 0 = Approve
< 0 = Reject
With fg(X) = OT X = 91X1 + 90, 0= (91, 60) = (1,'25) and x = (Xll 1)

Age 32 years

fo(x) =32—-25=7 >0 = Approve

10
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Binary classification
@ Binarize a linear function :

For a data input X = (X4,X5, ...,X,) (attributes of a customer)

Approve creditif: ~ 0'x =Y, 0;x; >0
Deny credit otherwise: 0'x = YL, 0;x; < 0

The linear formula f can be written as:

fg(x) = sign (8'x) = sign (XL 6ix;) =+1

11
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Decision boundary in 2D

Decision boundary
Defined by all pointsx € R4 : 8'x =0

12



Xavier Bresson

Decision boundary in 3D

13
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Regression

Outline
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fo(x) = 0'x

The “mother” linear
function
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Three learning problems

S — / 0Tx yeR

/ sigmoid(0'x) vy e[0,1]

Linear classification

Linear regression

Logistic regression
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Linear model for credit amount

@ Goal : Design a linear model to estimate the credit amount given to an individual based on
personal information or features.

fo(x) = 07x = Y&, 0,;x; = Amount (scalar)

\

Decision by weighted sum of
data features

Criterion

Age 32 years X1 Slopes of hyper-plane
Salary 40 K Xy / l \
Debt 26 K
fo(x) =07 x =04%g + -+ + 0,%, + 0;%; + 0,
YearsinJob  1year

Years at 3 years bias (offset)
Current Xd

Residence
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LLoss function

@ Quality of a predictive function for a training set is evaluated with a loss function.

o Training set : Collected /historical data (X,y) = (x(,y®), (x@,y@®), ..., (x®, y()
where X is a n x d data matrix and y is a m-dim label vector

e For classification, y0) = +1 and for regression y{) € R.

@ Loss function computes the fit of the predictive function fy(x) to the label y :

Prediction Target
1% \ ’/
_ MY _ () \2 Mean square
L(®) n z (\fe (X ) y ,) error (MSE)
j=1 v

How good is the prediction

17



[l1lustration

@ The training set is composed of n data points, each data feature is 1-dimensional, i.e. X = x;
and the label is y.

@ Find the linear model 6 that fits all the data points as best as possible.

\ O O
O
y O egreen
y o ©
2 O
O

Hypothesis function : fg(x) = 65 + 0:x;

Loss value: L(Bgeen) 2 L(Bpjye)

Xavier Bresson 18



[l1lustration

@ The best possible linear model fg(x) will have the minimum loss value of L(6).

T i
2 > T ¢
x 42
Hypothesis function: fg(x) = 64 + 0:x; fg(x) = 0y + 0:x1 +65%,

ming L(6) = = I, (fo(x®P) —y®)?

n <=

Xavier Bresson
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Normal equations

Outline
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Parameter estimation

@ How to compute the best parameters 0 that minimizes the MSE loss function?

ming L(6) = ﬁz,-“:l (fo(xD) —y® )2

@ Two approaches
@ Normal equations

@ Gradient descent

21



Normal equations

@ Write the MSE loss L with matrix-vector representation :

n
L= EZ(GTXG) _ )2
n
=1

~2x0 - yiI2
__X(l)T T —y(l)‘ _6(1)_
_X(Z)T — y(z) 6(2)
where n)x(d= x®T _|, n¥1= y® andd(;) 1= g(3)
__X(I;)T B @ g(d).

Xavier Bresson
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o Example of X0 and y :

@
@

, [yu)]
y@

X0 =

Normal

o -l

equations

0;x{" + 8,x5" + 03x5"
0;x{" + 0,57 + 05x5)

-

0 x()
0Tx(®)

23
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Normal equations

Expand L :
L= 1X6 — y|*

1 1
= (X0 —y)T(X6 —y) =~ ((X0)T — y") (X6 —y)
=~ ((X6)"X0 — (X0)Ty —y"X0 +yTy)
_ ﬁ(eTxTxe —-20'X"y+y'y), with 8'X"y=(X0)"y =y'X0

Compute gradient (with calculus) and get solution :

oL _1 2.X™X0-2.X"y)=0
aﬂ_n( ' X'y) =
>XTX0=X"y =2 0=(X"X)"1XT)y

Y

Pseudo-inverse of X
Computationally expensive to
compute if d is large.

24
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Logistic regression

Outline
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fo(x) = 0'x

The “mother” linear
function

Xavier Bresson

Three learning problems

/_ sigmoid(0'x) vy e[0,1]

Linear classification

Linear regression

Logistic regression
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Logistic regression

Linear classification predicts “hard” classes, e.g. £1.
Linear regression predicts scalar target, e.g. € R.
Logistic regression predicts “soft” classes, i.e. fg(x) is interpreted as a probability of class € [0,1].
Example
@ Prediction of a heart attack

@ Input x : Cholesterol level, age, diabetic, etc.
@ Output fy(x) : Likelihood of a heart attack € [0,1]

@ 0Tx € R is the risk score.

27
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Logistic regression

o Training data : X = (x(,y®), .., (x™,y®™) with
o xU : Person’s health information, i.e. data features
o yU) : Person has a heart attack or not

o Labelsy are binary, i.e. y0) = +1.

® We know with certainty whether a person got a heart attack, y0) = +1, or not, y0) = -1.

@ Prediction function fy(x) is the probability in [0,1] that the person had a heart attack.
@ Hence, the probability of a person with no heart attack is 1 - f5(x).

Po(y[x) =

/

Probability of having class y given the input data x

fo(xX) fory = +1
1—-fg(x) fory=-1

Conditioned probability a.k.a. likelihood probability

28
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Logistic regression

@ Prediction fg(x) can be designed as :

fg(X) = sigmoid(8'x) € [0,1]

@ Choice of logistic function :

@ Function sigmoid(.)=g(.) is a smooth step function or soft thresholding function.

__exp(s) 1
g(s) - 1+exp(s) B 1+exp(-s)

g(=s) =1—g(s)

29



Xavier Bresson

Logistic regression

@ Loss function for logistic regression

o Estimate how good is the predictive function fy(x) = sigmoid(0'x) to infer correctly the
class y of x:

n
ming L(0) = %z log(1 + exp(_y(j)GTX(j))) Logistic regression function

a.k.a cross-entropy loss
s

Number of
training data

Explained in the next slides

30



Logistic regression

@ Understanding the logistic regression loss for one data point (x,y):

Sigmoid
™S T
g(0'x) = fu(x) fory = +1 -
P = == . 9
OB = o070 = 1 - g(0T0) = 1 —fox) fory=-1 ~ 8OO
~
g(=s) =1-g(s)
_ Ty) = 1 : —
Po(ylx) = g(y.0'x) = 1+exp(-y.0Tx) with g(s) = 1+exp(-s)

log Pg(y|x) = —log(1 + exp(—y.0"x))

maxy Pe(y|X) © maxg log Pe(y|x)= maxy — log(1 + exp(—y.07x))

| /’ Ane log(1 + exp(—y.0"x))

L Monotonous
increasing function

Xavier Bresson
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Logistic regression

@ Understanding the logistic regression loss for all data points X = (x(l), y@® ), ) (x("), y(")) :

@ Suppose that the data points are i.i.d. samples (independent and identically
distributed).

n

Py, .., y™x®, . xM) = 1_[ P(y®|x)
j=1

log P(y®,..,y®|x®, .., x®) = log [T%, P(y®[xD) = ¥1, log Py |xD)

1 n _ _ log 1_[ = ZIOg
ming L(0) = HZ log(1 + exp(_y(l)gTX(J))) j=1 =1
j=1

32
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Gradient descent

Outline
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Gradient optimization

@ Gradient optimization algorithm (simplest optimization algorithm)

@ Work well in high-dimensional spaces (because convergence is independent of data
dimensionality)

@ Two versions : Gradient descent/ascent
@ Start randomly
@ Move in the direction of the steepest descent/ascent.

® Stop when reaching the minimum /maximum.

34
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Gradient descent

@ Predict amount of credit y with data feature x (single feature) :

Prediction function : fg(x) = 0, + 6;x
Parameters : 0o, 04

Loss function :

n

1 : .
L©® = (8, 0.) = = > (fo(x) —yP?

=1
Loss minimized by gradient descent (intro%luced next slides):

ming L(0 = (8, 61))

{ Loss : 370.77

15

0o=-8.00 01=-8.00

15

2.0

fe(X) = 60 + 91X

35
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Gradient descent

@ Univariate linear regression

® (Single) parameter 0 : slope of the line

@ Suppose loss function is a convex function of 6, e.g. L(0)=(0x - y)2

O .
T O
S| . 0O e
= 'c;“‘::*’- ---------
© -7
N I o
L
~ O

x (salary)

fe(X) =0x

L(6)

/

Direction of
minimum




Gradient descent

@ Multivariate linear regression

@ Two parameters 0,, 0, : bias and slope of the line

® Suppose loss function is a convex function of 6 = (0,,0;), e.g. L(0y,0,)=(0y + 0:x - y)?

0
1000 |— T 1
_0O"0 L
F) O
£ Q--- 0s |-
= /6
o
Q O ° Direction of
O | ====-eo____ . .
=~ O TTTTTmeee--o_L minlmuin
100 —
|
x (salary) 100 1000 90
fo(x) = 0y + 0,x L(6o,6,)

Xavier Bresson
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Gradient descent

@ O(t) : Vector of all parameters at iteration t

@ Start at 8(t=0) = random
@ Iterative method

@ Update the value of parameters :
0(t+1)=0(t)+v

@ What is the best direction v ?

@ Direction v must minimize as much as
possible the loss function L.

@ v = Opposite direction of the steepest slope
(justification given next slides)

L(B)

N
® — o - o - -
~ _%A
~+ e
—

(t+ 1)

38



Gradient descent

@ Direction v of the steepest descent :

First-order Taylor

approximation
/ oL
L(6+ AB) = L(0) + < 30’ AO >
dL
AL = L(0+ AG) - L(O) = <30 , AO >
minag AL = AO = —n% n>0=AL=-1 |g—](;|2<0
A0 aligns with % in /

the opposite direction oL
to minimize. 0(t+1) =0(t) + AB(t) =0(t) — n O_G(B(t))
N J

Y

Update equation for
gradient descent

Xavier Bresson

L(8)

= " 130

<

|

|
Q|
3| &

8(t)

v(t) = A8(8) = — 1 (B (D)

39



Xavier Bresson

Gradient descent

Step size 71 controls how fast the gradient descent algorithm descends to the minimum.

Finding the right value of the step size is heuristic :

n too small n too large variable 7(t): ust right

large 1

small n

LA R oy
AL 0000 &
RRRIRLA AL SR REE %
oy

1000y, 0 24
AR AL
R RLRLARLTL

n = 0.1; 75 steps n = 2; 10 steps variable n(t); 10 steps

Too slow Diverges Right speed

40
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Gradient descent

@ Termination condition / when to stop the iterative scheme ?
@ Natural choice : when gradient < (arbitrary) threshold

@ However, lots of saddle points / flat regions in high-dimensional spaces.

L(B)

slope=0

0
V(t) = — 1 55(0ana) = 0

efinaI

41



Stochastic gradient descent

@ A fast variation of gradient descent that considers only a small set of data points to update the
value of the parameters is stochastic gradient descent (SGD):

@ Pick a (random) small subset of m training data (e.g. a single/512 data points), i.e.
(x10, y )

o Compute the loss value for this subset, i.e. L = izkmzl L(fg(x(X)), y®)

@ Compute the gradient for this subset, i.e. v = iZf?zl —VL (fg (x®), y)
@ Update parameters, i.e. 0(t+1)=0(t) — nv
@ Advantages
@ Faster update of parameters : Gradient computed with m=512 rather than all data points.
@ Stochastic optimization : Helps escape saddle points in high-dimensional space

@ Simple to implement

Xavier Bresson
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Stochastic gradient descent

@ GD vs. SGD with by a mini-batch of m=10 samples

GD SGD

99,
%0500 %, i
Onl,“"",‘v

Loss

10 steps 30 steps -

3 ry ® ®
Epoch

Ilteration Ilteration

Xavier Bresson 43



Summary

@ Two methods for solving the linear regression task :

@ Gradient Descent
@ Works well for very large n, #training data, with SGD (300B tokens with GPT3)
® Works well for very large d, #data features (d=1M with 1,000x1,000 images)
@ Works well for very large |0|, #parameters features (175B with GPT3)
@ Very slow and requires to select time step 7

@ Normal Equations
@ Very fast for d = O(102%) data points, do not require to choose 1
@ Need to compute (XTX)~1, O(d?3) operation but faster approximations exist

@ Gradient Descent is a universal optimization technique as long as the considered loss is
continuous and differentiable (as gradient is required).

@ GD does not work for discrete losses like win/lose at the game of Go.

Xavier Bresson 44
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Support Vector Machine

Outline

45



Xavier Bresson

Support Vector Machine

Consider the binary classification task and linear functions as hypothesis space.

The goal is to find a linear separator that partitions the feature space into two regions.

Generally, there exist several possible linear separators.

How to select an “optimal” linear separator, and how to define “optimal”?

/4 7/
/ /
/ /
® ® &
/ y
U /
R / R—+—1 /
1 / /
+ ! R %
+1 b /
/ ¥ /
/
¢ R 2 Ky R
-1 *
® ® e ./
1 s ’
U (] - ® Vi (]
/ /,/ R_l 7
/ /
-,
/ ® e ® ®
/ s
l 4/
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Support Vector Machine

@ SVM technique (1964) aims at maximizing the margin between the two classes.

@ Maximizing the margin provides better results.

47
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Support Vector Machine

Hyper-plane equation : { X such that fo(X)=0"x + b = cte }
Hyper-planes fg(X)= +1 are margin planes.
Hyper-plane fg(X)= 0is the class separator.

Training data points +1 lie above the hyperplane and -1
data points below.

Parameters @ controls the orientation/slope of the plane,
and b is the offset /bias.

The distance d between the two margin planes is
computed to be as large as possible.

What are the parameters 0 that maximizes the distance d
between the two margins? (response next slide)

48



Support Vector Machine

@ What are the parameters 0 that maximizes the margin?

@ Optimal value 0 is solution of a constrained quadratic
optimization problem :

Given f3(x)=0"x+b

with fg(Xx,;) = 0'x,; +b=+1
ff:éxti — 0T +b =-1

We have fg(X+1) - fg(x_l) = OT(X+1 - X_l) =+2

If we define the margin vector as d = x,; -X ; then

07 (x, —x ) =+2 > [|0]LIld| =+2= d ==
2 | 2
maxgy dzm S ming ||0]]2 such that Length of the
fo(x) >+ 1 forx € Ry, margin vector
fo(x) <—1forx€ R,

Xavier Bresson

Only a subset of the data points
have value f(x)= t1. These are

called support vectors (SV).
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Soft-margin SVM

Outline
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Soft-margin SVM

@ Real-world data is noisy.

@ In case of data non-linearly separable, i.e. with outliers, there is no mathematical solution
to standard /hard-margin SVM.

@ In other words, there exists no linear separator that can split the two classes perfectly,
i.e. without errors.

Xavier Bresson



Soft-margin SVM

@ SVM can be improved to deal with outliers.

@ Soft-margin SVM technique, 1995

e Idea is to introduce a slack variable e() for each data point that represents the prediction
error.

@ These errors el) will be minimized while simultaneously maximizing the margin :

fo(x) 2+ 1 forx € Ry;
fo(x) <—1forx € R4

fo(x0)) 2+ 1 — eWforx € Ryy
ming,e [|0]]2+ C. X524 e0) such that fo(x()) < — 1+ e forx € R,
e®20, C20

Soft-margin SVM

ming ||0]|% such that { Standard SVM

Xavier Bresson
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Soft-margin SVM

o Effect of varying C, the regularization parameter.

Goal is to find the largest margin.
When C is small, more
misclassification errors are
allowed.

Note that the margin is large
then.

o H N W & UV OO N OO W
o H N W & U OO N OO v

When C is large, less
misclassification error are
allowed, possibly none.
Note that the margin is small
then.

o H N W & U O N OO W
o H N W & U O N OO W

Xavier Bresson 53



Soft-margin SVM

@ Soft-margin SVM penalizes
@ Misclassifications,
@ Correct classifications that fall inside the margin.

@ Loss of soft-margin : Hinge loss (popular loss function) L

penalty (loss) size

fo(x) 2+ 1 — eWDfor x0) € R4
minge 1012+ C. XL; e®) such that { fo(x0) < — 1 + e® forx() € R_,
e®>0, C20

dx1
| L Lu>0 | \(; Lim=0
[proof not included -- it will not be assessed|] 1]: hin 1 Hin q
| . p—
incorrectly classified ’ : correctly classified
. ) n (]) ()) distance from boundary
mine ”9” +C Zj:l inaX(O, 1- y .fe(xj )/ d > 1 (correctly classified) if
AP £.(x0)>+1and v = +1
Ly (dO = y0) £5(x0)) o) y.
Hw Ao =Y 70 fo(x0)< —1andy® = —1
(Hinge loss) o\R)= y

[Optional] Proof given in http://image.diku.dk /imagecanon/material/cortes vapnik95.pdf
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Kernel SVM

Outline
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Kernel SVM

@ Linear models are limited to linearly separable data points.

@ How to classify complex/non-linear datasets with linear

separators?

@ Idea is to map the data from their original space RY, where classes
can only be separated with non-linear functions, to a new higher-
dimensional space RP, b >> d, where classes can be distinguished
with linear functions :

X = (Xq1,X2, 0, Xp) 2 Z= (21 ,Z , e, Z )
1 . 1
x i "
x (o ¥ * X
x e M x
(0] % . % X
___________________ © 0.5/0% x  x
O ¢ ©)
cEDC) O \ x Z
} i \
x X(]) : x " % \\\
-1 0 1 0 0.5

L= >
) "% ("
| X1 (o) . ”‘4
1 / Tz
X v (o)
(o) 0}
o
(o) o i
oO_---°
-
—”
””
-~ % X
X o X
X
Rb, b > d
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1. Original data

X(]) € Rd

4. Classify in Rd space
x0) = &-1(z0)) € R

Xavier Bresson

% %
x o x
X (o]
°© %
0 (@)
© o
(@)
: * x
_1"x
-1 0 1
lx -
x x
(o)
o O
o (o}
© o
(o]
ko x
_1""
—1 0 1

Kernel SVM

0.5

2. Transform the data
z0) = d(x) eR>, b>d

3. Separate the data in

Rb space
f5(z) = sign(07z)
= sign(0T ®(x))

57



Kernel SVM

@ Kernel trick

@ Processing data points ®(x) in the higher-dimensional space RP is time and memory consuming.
Kernel trick avoids computing ®(x) € Rb.

@ Instead, we will compute kernel value K(x,y) in R4 with d<«<b.
o Different kernels exist such as polynomial /Gaussian kernels : K(x,y)=(1+ xTy)? , K(x,y)=exp(—xTy/o)

@ Kernel SVM solutions are computed by solving a quadratic optimization problem :
£(X) = 07X D £o(x) = 0TD(X)

0=y, a0y0x0 & 0=31, a0y o)
Primal variablé Dual variable

fo(x) = 0TOX) = XL, aPy PO xD)TOX)

with ming-q<ca' Qa — a'1 such that a'y =0, Q = YKY, Y=diag(y), K(x,y)= O(x)TD(y)
[proof not included -- it will not be assessed]

[Optional] Proof given in http://image.diku.dk /imagecanon/material /cortes vapnik95.pdf cg

Xavier Bresson



http://image.diku.dk/imagecanon/material/cortes_vapnik95.pdf

Xavier Bresson

Conclusion

Outline
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Convention

In machine learning, linear models are linear functions w.r.t. data features x, not the
parameters 0.

Remark 1: Mathematically, a linear function is a function that satisfies the additivity
property, i.e. f(x+y) = f(x)+£f(y). For example, f3(x)=0,x,+6,x, is a linear function w.r.t. x
=(x1,X2).

However, the affine function fg(x)=0:x,+0,x,+0 is not a linear function, but we make an
abuse of notation and we still refer to the affine function as a “linear” model, but it is *not*
true mathematically.

Remark 2: Another abuse of notation is to disguise the affine function as a linear function
as follows: fo(x)=01x;+00= 0Tx with 6=(0,, 6¢) and x=(x1,1). So it seems like a linear
function w.r.t. x but it is not because it does not satisfy the additivity property, i.e. f(x+y)
= f(x)+1(y).

The same abuse can be used to pretend to represent quadratic function as “linear” function,
i.e. fo(x)= 01x+0,x24+0y= 0Tx , where 0=(0,,0,0,) and x=(x?, x, 1). Again, the
representation seems linear w.r.t. x but mathematically it is not.
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Conclusion

Linear models can be used for classification and regression tasks.

Very well-established techniques, which fit optimally CPU/GPU acceleration hardware.
¢ BLAS/LAPACK for CPU and CUDA for GPU

But very limited expressivity, only perform well for linearly separable data points.

Kernel SVM enhances their expressivity with non-linear separators but requires to hand-
craft a kernel operator.

@ Deep learning has significantly surpassed SVM techniques.
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