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Three learning problems
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What are the simplest models to solve these learning tasks? 

REGRESSION

Approve or 
Reject?

Credit 
Analysis

Amount of 
Credit

Probability of 
Default

CLASSIFICATION

LOGISTIC REGRESSION

𝑦 = ±1

𝑦	𝜖	ℝ

𝑦	𝜖	[0, 1]
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Three learning problems
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What are the simplest models to solve these learning tasks? 

Linear models – baseline to any machine learning project.

𝑓𝛉(𝐱) = 𝛉,𝐱

𝑦 = ±1

𝑦	𝜖	ℝ

𝑦	𝜖	[0, 1]

sign(𝛉!𝐱)

𝛉!𝐱

sigmoid(𝛉!𝐱)

The “mother” linear 
function

Linear classification

Linear regression

Logistic regression



6

Linear models
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Hypothesis space H, i.e. the space of all solutions, of linear models :

Straight lines (2D space), planes (3D space) and hyper-planes (>3D spaces).

Parameters of linear models are the slopes and the bias.

R2 R3
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Three learning problems
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𝑓𝛉(𝐱) = 𝛉!𝐱

𝑦 = ±1

𝑦	𝜖	ℝ

𝑦	𝜖	[0, 1]

sign(𝛉!𝐱)

𝛉!𝐱

sigmoid(𝛉!𝐱)

The “mother” linear 
function

Linear classification

Linear regression

Logistic regression
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Linear model for credit approval 

Xavier Bresson 9

Goal : Design a linear model to approve or not a credit to an individual based on personal 
information or features.

Criterion Value

Age 32 years

Salary 40 K

Debt 26 K

… …

Years in Job 1 year

Years at 
Current 
Residence

3 years

𝑥"
𝑥#

𝑥$

f𝛉 𝐱 = 𝛉! 𝐱 = ∑%&"' θ%x% > 0 ⇒ Approve
            < 0 ⇒ Reject

Model parameters
Weight/importance of feature xi Decision by thresholding

(binary classification task)

bias (offset)

Slopes of hyper-plane

f𝛉 𝐱 = 𝛉! 𝐱 = θ'x' +⋯+ θ#x# + θ"x" + θ(	
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Example
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Extend credit using applicant’s age 

If age is higher than 25 years, accept credit.

Otherwise, reject.

Linear model :

Example :

f𝛉 𝐱 = 	 x" − 25 > 0	 ⇒ Approve
	 < 0 ⇒ Reject
With f𝛉 𝐱 = 𝛉! 𝐱 = θ"x" + θ(, 𝛉 = (θ", θ() = (1,-25)  and  𝐱 = (x", 1)

f𝛉 𝐱 = 32 − 25 = 7	 > 0	 ⇒ Approve
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Binary classification

Xavier Bresson 11

Binarize a linear function :

For a data input 𝐱 = x", x#, … , x) 	 (attributes of a customer)

Approve credit if:     𝛉!𝐱 = ∑%&") θ%x% > 0
Deny credit otherwise: 𝛉!𝐱 = 	∑%&") θ%x% < 0

The linear formula f	can be written as:

f* 𝐱 = sign	(𝛉!𝐱) = sign	(	∑%&") θ%x%	)	 = ± 1
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𝛉!𝐱 =D
%&"

)

θ%x% > 0

Decision boundary in 2D

Xavier Bresson 12

Decision boundary
Defined by all points 𝐱 ∈ Rd : 𝛉!𝐱 =0 

x"

x#

𝛉!𝐱 =D
%&"

)

θ%x% < 0
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Decision boundary in 3D

Xavier Bresson 13
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Three learning problems
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𝑓𝛉(𝐱) = 𝛉!𝐱

𝑦 = ±1

𝑦	𝜖	ℝ

𝑦	𝜖	[0, 1]

sign(𝛉!𝐱)

𝛉!𝐱

sigmoid(𝛉!𝐱)

The “mother” linear 
function

Linear classification

Linear regression

Logistic regression
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Linear model for credit amount 

Xavier Bresson 16

Goal : Design a linear model to estimate the credit amount given to an individual based on 
personal information or features.

f𝛉 𝐱 = 𝛉!𝐱 = ∑%&"' θ%x% ⇒ Amount (scalar)

Decision by weighted sum of 
data features

Criterion Value

Age 32 years
Salary 40 K

Debt 26 K

… …

Years in Job 1 year

Years at 
Current 
Residence

3 years

𝑥"
𝑥#

𝑥$ bias (offset)

Slopes of hyper-plane

f𝛉 𝐱 = 𝛉! 𝐱 = θ'x' +⋯+ θ#x# + θ"x" + θ(	



17

Loss function

Xavier Bresson 17

Quality of a predictive function for a training set is evaluated with a loss function.

Training set : Collected/historical data (𝐗, 𝐲) = 𝐱 " , y(") , 𝐱(#), y(#) , … , 𝐱 ) , y )  
where 𝐗 is a n x d data matrix and 𝐲 is a m-dim label vector

For classification, y(-) = ±1 and for regression y(-)	ϵ	ℝ.

Loss function computes the fit of the predictive function f𝛉 𝐱  to the label 𝐲 ∶

L(θ) =
1
n	D

-&"

)

	 (	f* 𝐱 - − y - 	)#

Prediction Target

How good is the prediction

Mean square 
error (MSE)
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Illustration
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The training set is composed of n data points, each data feature is 1-dimensional, i.e. 𝐱 = x1   
and the label is y.

Find the linear model θ that fits all the data points as best as possible.

Hypothesis function : f*(𝐱) = θ( + θ"x" 

Loss	value: 	L θgreen 	≥	L θblue

θgreen

θblue
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Illustration

Xavier Bresson 19

The best possible linear model f*(𝐱) will have the minimum loss value of L θ .

Hypothesis function :      f*(𝐱) = θ( + θ"x"                                      f*(𝐱) = θ( + θ"x" +θ#x#

minθ  L(θ) = "
)
	∑-&") 	 (	f* 𝐱 - − y - 	)#
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Parameter estimation

Xavier Bresson 21

How to compute the best parameters θ that minimizes the MSE loss function?

Two approaches

Normal equations 

Gradient descent

minθ  L(θ) = "
)
	∑-&") 	 (	f* 𝐱 - − y - 	)#
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Normal equations

Xavier Bresson 22

Write the MSE loss L with matrix-vector representation :

L =
1
n
&
"#$

%

(𝛉&𝐱 " − y(")))

=
1
n
𝐗𝛉 − 𝐲 )	

where   𝐗 =

−𝐱($)& −
−𝐱())& −
−𝐱(*)& −

⋮
−𝐱(%)& −

,  𝐲 =

y($)

y())

y(*)
⋮

y(%)

 and	 𝛉 =

θ($)
θ())
θ(*)
⋮

θ(+)
n × d d × 1n × 1
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Normal equations

Xavier Bresson 23

𝐗𝛉 =
x$
($) x)

($) x*
($)

x$
()) x)

()) x*
()) ×

θ$
θ)
θ*

=
θ$x$

$ + θ)x)
$ + θ*x*

$

θ$x$
$ + θ)x)

) + θ*x*
* = 𝛉&𝐱($)

𝛉&𝐱 )

Example of 𝐗𝛉 and 𝐲	:

𝐲 = y($)

y())
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Normal equations

Xavier Bresson 24

Expand L :

Compute gradient (with calculus) and get solution :

L =
1
n
𝐗𝛉 − 𝐲 )

= $
%
𝐗𝛉 − 𝐲 & 𝐗𝛉 − 𝐲  = $

%
( 𝐗𝛉 & − 𝒚⊤) 𝐗𝛉 − 𝐲

	=	$
%
( 𝐗𝛉 &𝐗𝛉 − 𝐗𝛉 &𝐲 − 𝐲&𝐗𝛉 + 𝐲&𝐲	)

 = $
%
(	𝛉&𝐗&𝐗𝛉 − 2𝛉&𝐗&𝐲 + 𝐲&𝐲	),   with  𝛉&𝐗&𝐲= 𝐗𝛉 &𝐲 = 𝐲&𝐗𝛉

𝜕L
𝜕𝛉

=
1
n
(	2. 𝐗&𝐗𝛉 − 2. 𝐗&𝐲	) = 𝟎

    ⇒	𝐗& 𝐗𝛉 = 𝐗&𝐲	 ⇒  𝛉 = 𝐗&𝐗 ,$𝐗& 	𝐲

Pseudo-inverse of 𝐗
Computationally expensive to 

compute if d is large. 
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Three learning problems
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𝑓𝛉(𝐱) = 𝛉!𝐱

𝑦 = ±1

𝑦	𝜖	ℝ

𝑦	𝜖	[0, 1]

sign(𝛉!𝐱)

𝛉!𝐱

sigmoid(𝛉!𝐱)

The “mother” linear 
function

Linear classification

Linear regression

Logistic regression
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Logistic regression
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Linear classification predicts “hard” classes, e.g. ±1. 

Linear regression predicts scalar target, e.g. ∈ R.

Logistic regression predicts “soft” classes, i.e. f* 𝐱  is interpreted as a probability of class ∈ [0,1].

Example 

Prediction of a heart attack

Input 𝐱 : Cholesterol level, age, diabetic, etc.

Output f* 𝐱 	: Likelihood of a heart attack ∈ [0,1]

θ!𝐱 ∈ R is the risk score.
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Logistic regression
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Training data : 𝐗 = 𝐱 " , y(") , … , 𝐱 ) , y())  with

𝐱(-) : Person’s health information, i.e. data features

y(-) : Person has a heart attack or not

Labels 𝐲 are binary, i.e. y(-) = ±1. 

We know with certainty whether a person got a heart attack, y(-) = +1, or not, y(-) = −1.

Prediction function f* 𝐱  is the probability in [0,1] that the person had a heart attack.

Hence, the probability of a person with no heart attack is 1 - f* 𝐱 .  

P𝛉 y 𝐱 = U f*(𝐱)
1 − f*(𝐱)

for	y = +1
for	y = −1

Probability of having class y given the input data x
Conditioned probability a.k.a. likelihood probability
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Logistic regression
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Prediction f* 𝐱  can be designed as :

Choice of logistic function : 

Function sigmoid(.)=g(.) is a smooth step function or soft thresholding function.

f*(𝐱) = sigmoid(𝛉!𝐱) ∈ [0,1]

g s = /01(2)
"3/01(2)	

= "
"3/01(52)	

g −s = 1 − g(s)

g s

g ∶ 	ℝ →	[0,1]
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Logistic regression

Xavier Bresson 30

Loss function for logistic regression 

Estimate how good is the predictive function f*(𝐱) = sigmoid(𝛉!𝐱) to infer correctly the 
class y of 𝐱	: 

min𝛉	L 𝛉 =
1
nD
-&"

)

log(1 + exp(−y - 𝛉!𝐱(-))) Logistic regression function 
a.k.a cross-entropy loss

Number of 
training data

Explained in the next slides
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Logistic regression
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Understanding the logistic regression loss for one data point (𝐱,y):

P𝛉 y 𝐱 	 =  Y g 𝛉!𝐱 = f*(𝐱)
g −𝛉!𝐱 = 1 − g 𝛉!𝐱 = 1 − f*(𝐱)

for	y = +1
for	y = −1 = 	g y. 𝛉!𝐱

P𝛉 y 𝐱 = g(y. 𝛉!𝐱) = "
"3/01(56.𝛉!𝐱)	

with g s = "
"3/01(52)	

log	P𝛉 y 𝐱 = − log 1 + exp −y. 𝛉!𝐱

maxθ	P𝛉 y 𝐱 	⇔	maxθ	 log	P𝛉 y 𝐱 = maxθ	−	log 1 + exp −y. 𝛉
!𝐱

 
⇔  min𝛉	 log 1 + exp −y. 𝛉

!𝐱

Sigmoid

Monotonous 
increasing function

g −s = 1 − g(s)
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Logistic regression
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Understanding the logistic regression loss for all data points 𝐗 = 𝐱 " , 𝑦(")	 , … , 𝐱 : , 𝑦 : ∶

Suppose that the data points are i.i.d. samples (independent and identically 
distributed).

P(y " , . . , y ) |𝐱 " , . . , 𝐱())) =\
-&"

)

P y(-)|𝐱(-)

log P y " , . . , y ) 𝐱 " , . . , 𝐱 ) = log	∏-&"
) P y(-)|𝐱(-) = ∑-&") log	P y(-)|𝐱(-)

min𝛉	L 𝛉 =
1
nD
-&"

)

log(1 + exp(−y - 𝛉!𝐱(-)))
log	%

!"#

$

='
!"#

$

log	
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Gradient optimization
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Gradient optimization algorithm (simplest optimization algorithm)

Work well in high-dimensional spaces (because convergence is independent of data 
dimensionality)

Two versions : Gradient descent/ascent 

Start randomly

Move in the direction of the steepest descent/ascent.

Stop when reaching the minimum/maximum.
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Gradient descent
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Predict amount of credit y with data feature x (single feature) :

Prediction function :   f* 𝐱 = θ( + θ"x

Parameters :              θ(, θ"
Loss function : 

Loss minimized by gradient descent (introduced next slides):     

L θ = (θ(, θ") =
1
n	D

-&"

)

	 (f* x - − y(-))#

min*	 L θ = (θ(, θ")

f* 𝐱 = θ( + θ"x
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Gradient descent

Xavier Bresson 36

Univariate linear regression

(Single) parameter θ ∶ slope of the line

Suppose loss function is a convex function of θ, e.g. L(θ)=(θx	 - y)2

L(θ)

θ
𝑥 (salary)

𝑦 
(c

re
di

t l
in

e)

f* 𝐱 = θ x

Direction of 
minimum
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Gradient descent
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Multivariate linear regression

Two parameters θ(, θ" ∶ bias and slope of the line

Suppose loss function is a convex function of θ = (θ(,θ"), e.g. L(θ(,θ")=(θ( + θ"x - y)2

𝑥" (salary)

𝑦 
(c

re
di

t l
in

e)

0.5

100

L(θ(, θ")

100

0

1
1000

1000

f* 𝐱 = θ( + θ"x

Direction of 
minimum
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Gradient descent
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𝛉(t) : Vector of all parameters at iteration t

Start at 𝛉(t=0) = random 

Iterative method

Update the value of parameters : 
𝛉(t+1)=𝛉(t)+𝐯 

What is the best direction 𝐯 ?

Direction 𝐯 must minimize as much as 
possible the loss function L.

𝐯 = Opposite direction of the steepest slope 
(justification given next slides)

L θ

θ(t)

slo
pe

𝐯

θ(t + 1)
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Gradient descent
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Direction 𝐯 of the steepest descent :

L(𝛉+ Δ𝛉) ≈ L(𝛉) + < ∂;
∂𝛉	, Δ𝛉	> 

ΔL = L(𝛉+ Δ𝛉) − L(𝛉) ≈ < ∂;
∂𝛉 , Δ𝛉	>

minΔ𝛉 ΔL    ⇒  Δ𝛉 = − η ∂;
∂𝛉 , η > 0	 ⇒  ΔL = - η | ∂;

∂𝛉 |
2 < 0 

 

𝛉 t + 1 = 𝛉 t + 	Δ𝛉(t) = 𝛉 t −  η ∂;
∂𝛉(𝛉 t )

First-order Taylor 
approximation

∂𝐿
∂𝛉𝐯 = − 𝜂 ∂<

∂𝛉

𝐯(t) = Δ𝛉(𝐭) = − η ∂;
∂𝛉(𝛉 t )

L θ

θ(t)

slo
pe

Δ𝛉 aligns with ∂%∂𝛉 in 
the opposite direction 

to minimize.

Update equation for 
gradient descent
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Gradient descent

Xavier Bresson 40

Step size 𝜂 controls how fast the gradient descent algorithm descends to the minimum.

Finding the right value of the step size is heuristic : 

𝐿 𝐿 𝐿

𝜂 𝑡 :

𝜃 𝜃 𝜃

variable 𝜂 𝑡 ; 10 steps

Too slow Diverges Right speed
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Gradient descent
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Termination condition / when to stop the iterative scheme ? 

Natural choice : when gradient < (arbitrary) threshold

However, lots of saddle points / flat regions in high-dimensional spaces.

L θ

θfinal

slope=0

𝐯(t) = − 𝜂 ∂<
∂𝛉(θfinal) =	𝟎
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Stochastic gradient descent
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A fast variation of gradient descent that considers only a small set of data points to update the 
value of the parameters is stochastic gradient descent (SGD):

Pick a (random) small subset of 𝑚 training data (e.g. a single/512 data points), i.e. 
(𝐱(=), y(=))

Compute the loss value for this subset, i.e.  L = "
>
∑=&"> L(f*(𝐱(=)), y(=))

Compute the gradient for this subset, i.e. 𝐯 = "
>
∑=&"> −∇L	(f*(𝐱(=)), y(=))

Update parameters, i.e.  𝛉 t + 1 	= 𝛉 t −  η	𝐯

Advantages

Faster update of parameters : Gradient computed with 𝑚=512 rather than all data points. 

Stochastic optimization : Helps escape saddle points in high-dimensional space

Simple to implement
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Stochastic gradient descent
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GD vs. SGD with by a mini-batch of 𝑚=10 samples 

GD

10 steps

SGD

  30 steps
Loss

Iteration Iteration

Loss
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Summary
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Two methods for solving the linear regression task :

Gradient Descent

Works well for very large 𝑛, #training data, with SGD (300B tokens with GPT3)

Works well for very large d, #data features (d=1M with 1,000×1,000 images)

Works well for very large |𝛉|, #parameters features (175B with GPT3)

Very slow and requires to select time step 𝜂

Normal Equations

Very fast for d = O(103) data points, do not require to choose 𝜂 

Need to compute (𝐗T𝐗)−1, O(d3) operation but faster approximations exist

Gradient Descent is a universal optimization technique as long as the considered loss is 
continuous and differentiable (as gradient is required). 

GD does not work for discrete losses like win/lose at the game of Go.
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Support Vector Machine

Xavier Bresson 46

Consider the binary classification task and linear functions as hypothesis space.

The goal is to find a linear separator that partitions the feature space into two regions.

Generally, there exist several possible linear separators.

How to select an “optimal” linear separator, and how to define “optimal”?

R-1

R+1

R-1

R+1

R-1

R+1



47

Support Vector Machine

Xavier Bresson 47

SVM technique (1964) aims at maximizing the margin between the two classes.

Maximizing the margin provides better results.

margin

R-1

R+1

R-1

R+1

R-1

R+1

margin
margin
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Support Vector Machine
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Hyper-plane equation : { 𝐱 such that f𝛉(𝐱)=𝛉!𝐱 + b = cte } 

Hyper-planes f𝛉(𝐱)= ±1 are margin planes.

Hyper-plane f𝛉(𝐱)= 0 is the class separator.

Training data points +1 lie above the hyperplane and -1 
data points below.

Parameters 𝛉 controls the orientation/slope of the plane, 
and b is the offset/bias.

The distance 𝑑 between the two margin planes is 
computed to be as large as possible.

What are the parameters 𝛉 that maximizes the distance 𝑑 
between the two margins? (response next slide)

+1

-1

+1

-1

𝛉
! 𝐱
+
b =

0
𝛉
! 𝐱
+
b =

−1

𝛉
! 𝐱
+
b =

+1

𝐝

R-1

R+1



49

Support Vector Machine
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What are the parameters 𝛉 that maximizes the margin? 

Optimal value 𝛉 is solution of a constrained quadratic 
optimization problem :

Only a subset of the data points 
have value f(𝐱)= ±1. These are 
called support vectors (SV).

𝐱+1

𝐱−1

Given f𝛉(𝐱)=𝛉1𝐱 + b 

with f𝛉(𝐱+1) = 𝛉1𝐱+1 + b = +1
      f𝛉(𝐱-1)  = 𝛉1𝐱−1 + b  = -1

We have f𝛉(𝐱+1) - f𝛉(𝐱-1) =	𝛉1(𝐱+1 − 𝐱−1) = +2

If we define the margin vector as 𝐝 = 𝐱+1 -	𝐱−1 then

	𝛉1(𝐱+1 − 𝐱−1) = +2 ⇒ 𝛉 . 𝒅  = +2 ⇒ d = 2
𝛉

maxd d= 2
𝛉

  ⇔  min𝛉	 𝛉 2  such that

  /
	f𝛉(𝐱) ≥ + 1	for	𝐱	∈ R+1
	 f𝛉(𝐱) ≤ − 1	for	𝐱	∈ R_1

SV

SV

SV
+1

-1

+1

-1

𝛉
! 𝐱
+
b =

0
𝛉
! 𝐱
+
b =

−1

R-1

R+1

𝐝

𝛉
! 𝐱
+
b =

+1

Length of the  
margin vector
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Real-world data is noisy.

In case of data non-linearly separable, i.e. with outliers, there is no mathematical solution 
to standard/hard-margin SVM. 

In other words, there exists no linear separator that can split the two classes perfectly,     
i.e. without errors.

R-1

R+1 ?
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SVM can be improved to deal with outliers.

Soft-margin SVM technique, 1995

Idea is to introduce a slack variable e(-) for each data point that represents the prediction 
error. 

These errors e(-) will be minimized while simultaneously maximizing the margin : 

min𝛉	 𝛉 2 such that  Y
	f𝛉(𝐱) ≥ + 1	for	𝐱 ∈	R+1

	f𝛉(𝐱) ≤ − 1	for	𝐱 ∈ R_1

min𝛉,𝐞 𝛉 2 + C. ∑-&") e(-) such that  
	f𝛉(𝐱(j)) ≥ + 1 − e - for	𝐱 ∈ R+1

	f𝛉(𝐱(j)) ≤ − 1 + e - 	for	𝐱 ∈ R_1
e(-)≥0, C≥0

+

Standard SVM 

Soft-margin SVM 

e !

e !

𝐱(j)

𝐱(j)

𝐱(j), e ! =0
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Effect of varying C, the regularization parameter.

Goal is to find the largest margin. 
When C is small, more 

misclassification errors are 
allowed.

Note that the margin is large 
then. 

When C is large, less 
misclassification error are 
allowed, possibly none.

Note that the margin is small 
then.
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Soft-margin SVM penalizes 

Misclassifications,

Correct classifications that fall inside the margin. 

Loss of soft-margin : Hinge loss (popular loss function)

,
<latexit sha1_base64="jlSS2Q+jSNVYymThqn4ESI/jvU8=">AAAB/XicbVDLSgNBEJyNrxhf6+PmZTAInsKuiHoMePHgIYJ5QLKE2clsMmR2ZpnpVeIS/BUvHhTx6n9482+cTXLQxIKGoqqb7q4wEdyA5307haXlldW14nppY3Nre8fd3WsYlWrK6lQJpVshMUxwyerAQbBWohmJQ8Ga4fAq95v3TBuu5B2MEhbEpC95xCkBK3Xdg84Ni0Dz/gCI1uqhlKPrlr2KNwFeJP6MlNEMta771ekpmsZMAhXEmLbvJRBkRAOngo1LndSwhNAh6bO2pZLEzATZ5PoxPrZKD0dK25KAJ+rviYzExozi0HbGBAZm3svF/7x2CtFlkHGZpMAknS6KUoFB4TwK3OOaURAjSwjV3N6K6YBoQsEGlofgz7+8SBqnFd+r+Ldn5er5LI4iOkRH6AT56AJV0TWqoTqi6BE9o1f05jw5L8678zFtLTizmX30B87nD1l0k8k=</latexit><latexit sha1_base64="jlSS2Q+jSNVYymThqn4ESI/jvU8=">AAAB/XicbVDLSgNBEJyNrxhf6+PmZTAInsKuiHoMePHgIYJ5QLKE2clsMmR2ZpnpVeIS/BUvHhTx6n9482+cTXLQxIKGoqqb7q4wEdyA5307haXlldW14nppY3Nre8fd3WsYlWrK6lQJpVshMUxwyerAQbBWohmJQ8Ga4fAq95v3TBuu5B2MEhbEpC95xCkBK3Xdg84Ni0Dz/gCI1uqhlKPrlr2KNwFeJP6MlNEMta771ekpmsZMAhXEmLbvJRBkRAOngo1LndSwhNAh6bO2pZLEzATZ5PoxPrZKD0dK25KAJ+rviYzExozi0HbGBAZm3svF/7x2CtFlkHGZpMAknS6KUoFB4TwK3OOaURAjSwjV3N6K6YBoQsEGlofgz7+8SBqnFd+r+Ldn5er5LI4iOkRH6AT56AJV0TWqoTqi6BE9o1f05jw5L8678zFtLTizmX30B87nD1l0k8k=</latexit><latexit sha1_base64="jlSS2Q+jSNVYymThqn4ESI/jvU8=">AAAB/XicbVDLSgNBEJyNrxhf6+PmZTAInsKuiHoMePHgIYJ5QLKE2clsMmR2ZpnpVeIS/BUvHhTx6n9482+cTXLQxIKGoqqb7q4wEdyA5307haXlldW14nppY3Nre8fd3WsYlWrK6lQJpVshMUxwyerAQbBWohmJQ8Ga4fAq95v3TBuu5B2MEhbEpC95xCkBK3Xdg84Ni0Dz/gCI1uqhlKPrlr2KNwFeJP6MlNEMta771ekpmsZMAhXEmLbvJRBkRAOngo1LndSwhNAh6bO2pZLEzATZ5PoxPrZKD0dK25KAJ+rviYzExozi0HbGBAZm3svF/7x2CtFlkHGZpMAknS6KUoFB4TwK3OOaURAjSwjV3N6K6YBoQsEGlofgz7+8SBqnFd+r+Ldn5er5LI4iOkRH6AT56AJV0TWqoTqi6BE9o1f05jw5L8678zFtLTizmX30B87nD1l0k8k=</latexit><latexit sha1_base64="jlSS2Q+jSNVYymThqn4ESI/jvU8=">AAAB/XicbVDLSgNBEJyNrxhf6+PmZTAInsKuiHoMePHgIYJ5QLKE2clsMmR2ZpnpVeIS/BUvHhTx6n9482+cTXLQxIKGoqqb7q4wEdyA5307haXlldW14nppY3Nre8fd3WsYlWrK6lQJpVshMUxwyerAQbBWohmJQ8Ga4fAq95v3TBuu5B2MEhbEpC95xCkBK3Xdg84Ni0Dz/gCI1uqhlKPrlr2KNwFeJP6MlNEMta771ekpmsZMAhXEmLbvJRBkRAOngo1LndSwhNAh6bO2pZLEzATZ5PoxPrZKD0dK25KAJ+rviYzExozi0HbGBAZm3svF/7x2CtFlkHGZpMAknS6KUoFB4TwK3OOaURAjSwjV3N6K6YBoQsEGlofgz7+8SBqnFd+r+Ldn5er5LI4iOkRH6AT56AJV0TWqoTqi6BE9o1f05jw5L8678zFtLTizmX30B87nD1l0k8k=</latexit>

min𝛉	 𝛉 2 + C. ∑-&") max 0, 1 − y(-). f𝛉(𝐱(j))

min𝛉,𝐞 𝛉 2 + C. ∑-&") e(-) such that  
	f𝛉(𝐱(j)) ≥ + 1 − e - for	𝐱(j) ∈ R+1

	f𝛉(𝐱(j)) ≤ − 1 + e - 	for	𝐱(j) ∈ R_1
e(-)≥0, C≥0

LHin (d(5) = y(5).f𝛉(𝐱(j))) 
(Hinge loss)

[proof not included -- it will not be assessed]

[Optional] Proof given in http://image.diku.dk/imagecanon/material/cortes_vapnik95.pdf  

d	≥ 1 (correctly classified)  if  

              1
	f𝛉(𝐱(j))≥ + 1	and	y(!) = +1	
f𝛉(𝐱(j))≤ − 1	and	y ! = −1

 

1
d

LHin

d	≥ 1
LHin=0 

d	≤ 1
Lhin>0 

http://image.diku.dk/imagecanon/material/cortes_vapnik95.pdf
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Linear models are limited to linearly separable data points.

How to classify complex/non-linear datasets with linear 
separators?

Idea is to map the data from their original space Rd, where classes 
can only be separated with non-linear functions, to a new higher-
dimensional space Rb, b ≫ d, where classes can be distinguished 
with linear functions :

𝐱 = x", x#, … , x) →
?
𝐳 = (z" , z# , … , z) )

𝐱(-)

𝐳(-)
Rd Rb, b ≫ d
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1. Original data
𝐱(-) ∈ Rd

2. Transform the data
𝐳(-) = Φ 𝐱(-) ∈ Rb, b ≫ d

4. Classify in Rd	space
𝐱(-) = Φ−1 𝐳(-) ∈ Rd

3. Separate the data in 
Rb	space

f@𝛉 𝐳 	= sign u𝛉!𝐳
                      =	sign(u𝛉!Φ 𝐱 )
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Kernel trick 

Processing data points Φ 𝐱  in the higher-dimensional space Rb is time and memory consuming. 
Kernel trick avoids computing Φ 𝐱 ∈ Rb. 

Instead, we will compute kernel value K(x,y) in Rd with d≪b.

Different kernels exist such as polynomial/Gaussian kernels : K(x,y)=(1+ 𝐱𝐓𝐲)p , K(x,y)=exp(−𝐱𝐓𝐲/σ)

Kernel SVM solutions are computed by solving a quadratic optimization problem : 

f𝛉(𝐱) = 𝛉!𝐱  → f𝛉(𝐱) = 𝛉!Φ(𝐱)

𝛉	= ∑-&") α(-)y(-)𝐱(j)	 → 𝛉	= ∑-&") α(-)y(-)Φ(𝐱(j))

f𝛉(𝐱) = 𝛉!Φ(𝐱) = ∑-&") α - y - Φ(𝐱(j))𝐓Φ 𝐱

with min0≤α≤C	α
!𝐐α	 − α!𝟏 such that α!𝐲 = 0,  Q = YKY,  Y=diag(𝐲),  K(x,y)= Φ 𝐱 𝐓Φ 𝐲  

Φ

Dual variable

Φ

Primal variable

[proof not included -- it will not be assessed]
[Optional] Proof given in http://image.diku.dk/imagecanon/material/cortes_vapnik95.pdf  

http://image.diku.dk/imagecanon/material/cortes_vapnik95.pdf
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In machine learning, linear models are linear functions w.r.t. data features x, not the 
parameters 𝛉.

Remark 1: Mathematically, a linear function is a function that satisfies the additivity 
property, i.e. f(x+y) = f(x)+f(y). For example, f𝛉(x)=θ1x1+θ2x2 is a linear function w.r.t. x 
=(x1,x2).

However, the affine function f𝛉(x)=θ1x1+θ2x2+θ0 is not a linear function, but we make an 
abuse of notation and we still refer to the affine function as a “linear” model, but it is *not* 
true mathematically.

Remark 2: Another abuse of notation is to disguise the affine function as a linear function 
as follows: f𝛉(x)=θ1x1+θ0= 𝛉Tx with 𝛉=(θ1	,	θ0) and x=(x1,1). So it seems like a linear 
function w.r.t. x but it is not because it does not satisfy the additivity property, i.e. f(x+y) 
= f(x)+f(y).

The same abuse can be used to pretend to represent quadratic function as “linear” function, 
i.e. f𝛉(x)= θ1x+θ2x2+θ0= 𝛉Tx , where 𝛉=(θ2	,θ1	,θ0) and x=(x2, x, 1). Again, the 
representation seems linear w.r.t. x but mathematically it is not.
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Linear models can be used for classification and regression tasks.

Very well-established techniques, which fit optimally CPU/GPU acceleration hardware.

BLAS/LAPACK for CPU and CUDA for GPU

But very limited expressivity, only perform well for linearly separable data points.

Kernel SVM enhances their expressivity with non-linear separators but requires to hand-
craft a kernel operator.

Deep learning has significantly surpassed SVM techniques.
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