
1

CS3244 : Machine Learning

Xavier Bresson 1

Department of Computer Science
National University of Singapore (NUS)

Lecture 4 : Linear Models and
Support Vector Machine

Semester 2 2023/24

Xavier Bresson
https://twitter.com/xbresson

https://twitter.com/xbresson

2

Outline

Xavier Bresson 2

Admin

Three applications of linear models

Classification

Regression

Normal equations

Logistic regression

Gradient descent

Support Vector Machine

Soft-margin SVM

Kernel SVM

Conclusion

3

Outline

Xavier Bresson 3

Admin

Three applications of linear models

Classification

Regression

Normal equations

Logistic regression

Gradient descent

Support Vector Machine

Soft-margin SVM

Kernel SVM

Conclusion

4

Three learning problems

Xavier Bresson 4

What are the simplest models to solve these learning tasks?

REGRESSION

Approve or
Reject?

Credit
Analysis

Amount of
Credit

Probability of
Default

CLASSIFICATION

LOGISTIC REGRESSION

𝑦 = ±1

𝑦	𝜖	ℝ

𝑦	𝜖	[0, 1]

5

Three learning problems

Xavier Bresson 5

What are the simplest models to solve these learning tasks?

Linear models – baseline to any machine learning project.

𝑓𝛉(𝐱) = 𝛉,𝐱

𝑦 = ±1

𝑦	𝜖	ℝ

𝑦	𝜖	[0, 1]

sign(𝛉!𝐱)

𝛉!𝐱

sigmoid(𝛉!𝐱)

The “mother” linear
function

Linear classification

Linear regression

Logistic regression

6

Linear models

Xavier Bresson 6

Hypothesis space H, i.e. the space of all solutions, of linear models :

Straight lines (2D space), planes (3D space) and hyper-planes (>3D spaces).

Parameters of linear models are the slopes and the bias.

R2 R3

7

Outline

Xavier Bresson 7

Admin

Three applications of linear models

Classification

Regression

Normal equations

Logistic regression

Gradient descent

Support Vector Machine

Soft-margin SVM

Kernel SVM

Conclusion

8

Three learning problems

Xavier Bresson 8

𝑓𝛉(𝐱) = 𝛉!𝐱

𝑦 = ±1

𝑦	𝜖	ℝ

𝑦	𝜖	[0, 1]

sign(𝛉!𝐱)

𝛉!𝐱

sigmoid(𝛉!𝐱)

The “mother” linear
function

Linear classification

Linear regression

Logistic regression

9

Linear model for credit approval

Xavier Bresson 9

Goal : Design a linear model to approve or not a credit to an individual based on personal
information or features.

Criterion Value

Age 32 years

Salary 40 K

Debt 26 K

… …

Years in Job 1 year

Years at
Current
Residence

3 years

𝑥"
𝑥#

𝑥$

f𝛉 𝐱 = 𝛉! 𝐱 = ∑%&"' θ%x% > 0 ⇒ Approve
 < 0 ⇒ Reject

Model parameters
Weight/importance of feature xi Decision by thresholding

(binary classification task)

bias (offset)

Slopes of hyper-plane

f𝛉 𝐱 = 𝛉! 𝐱 = θ'x' +⋯+ θ#x# + θ"x" + θ(

10

Example

Xavier Bresson 10

Extend credit using applicant’s age

If age is higher than 25 years, accept credit.

Otherwise, reject.

Linear model :

Example :

f𝛉 𝐱 = 	 x" − 25 > 0	 ⇒ Approve
	 < 0 ⇒ Reject
With f𝛉 𝐱 = 𝛉! 𝐱 = θ"x" + θ(, 𝛉 = (θ", θ() = (1,-25) and 𝐱 = (x", 1)

f𝛉 𝐱 = 32 − 25 = 7	 > 0	 ⇒ Approve

11

Binary classification

Xavier Bresson 11

Binarize a linear function :

For a data input 𝐱 = x", x#, … , x) 	 (attributes of a customer)

Approve credit if: 𝛉!𝐱 = ∑%&") θ%x% > 0
Deny credit otherwise: 𝛉!𝐱 = 	∑%&") θ%x% < 0

The linear formula f	can be written as:

f* 𝐱 = sign	(𝛉!𝐱) = sign	(∑%&") θ%x%)	 = ± 1

12

𝛉!𝐱 =D
%&"

)

θ%x% > 0

Decision boundary in 2D

Xavier Bresson 12

Decision boundary
Defined by all points 𝐱 ∈ Rd : 𝛉!𝐱 =0

x"

x#

𝛉!𝐱 =D
%&"

)

θ%x% < 0

13

Decision boundary in 3D

Xavier Bresson 13

14

Outline

Xavier Bresson 14

Admin

Three applications of linear models

Classification

Regression

Normal equations

Logistic regression

Gradient descent

Support Vector Machine

Soft-margin SVM

Kernel SVM

Conclusion

15

Three learning problems

Xavier Bresson 15

𝑓𝛉(𝐱) = 𝛉!𝐱

𝑦 = ±1

𝑦	𝜖	ℝ

𝑦	𝜖	[0, 1]

sign(𝛉!𝐱)

𝛉!𝐱

sigmoid(𝛉!𝐱)

The “mother” linear
function

Linear classification

Linear regression

Logistic regression

16

Linear model for credit amount

Xavier Bresson 16

Goal : Design a linear model to estimate the credit amount given to an individual based on
personal information or features.

f𝛉 𝐱 = 𝛉!𝐱 = ∑%&"' θ%x% ⇒ Amount (scalar)

Decision by weighted sum of
data features

Criterion Value

Age 32 years
Salary 40 K

Debt 26 K

… …

Years in Job 1 year

Years at
Current
Residence

3 years

𝑥"
𝑥#

𝑥$ bias (offset)

Slopes of hyper-plane

f𝛉 𝐱 = 𝛉! 𝐱 = θ'x' +⋯+ θ#x# + θ"x" + θ(

17

Loss function

Xavier Bresson 17

Quality of a predictive function for a training set is evaluated with a loss function.

Training set : Collected/historical data (𝐗, 𝐲) = 𝐱 " , y(") , 𝐱(#), y(#) , … , 𝐱) , y)
where 𝐗 is a n x d data matrix and 𝐲 is a m-dim label vector

For classification, y(-) = ±1 and for regression y(-)	ϵ	ℝ.

Loss function computes the fit of the predictive function f𝛉 𝐱 to the label 𝐲 ∶

L(θ) =
1
n	D

-&"

)

	 (f* 𝐱 - − y -)#

Prediction Target

How good is the prediction

Mean square
error (MSE)

18

Illustration

Xavier Bresson 18

The training set is composed of n data points, each data feature is 1-dimensional, i.e. 𝐱 = x1
and the label is y.

Find the linear model θ that fits all the data points as best as possible.

Hypothesis function : f*(𝐱) = θ(+ θ"x"

Loss	value: 	L θgreen 	≥	L θblue

θgreen

θblue

19

Illustration

Xavier Bresson 19

The best possible linear model f*(𝐱) will have the minimum loss value of L θ .

Hypothesis function : f*(𝐱) = θ(+ θ"x" f*(𝐱) = θ(+ θ"x" +θ#x#

minθ L(θ) = "
)
	∑-&") 	 (f* 𝐱 - − y -)#

20

Outline

Xavier Bresson 20

Admin

Three applications of linear models

Classification

Regression

Normal equations

Logistic regression

Gradient descent

Support Vector Machine

Soft-margin SVM

Kernel SVM

Conclusion

21

Parameter estimation

Xavier Bresson 21

How to compute the best parameters θ that minimizes the MSE loss function?

Two approaches

Normal equations

Gradient descent

minθ L(θ) = "
)
	∑-&") 	 (f* 𝐱 - − y -)#

22

Normal equations

Xavier Bresson 22

Write the MSE loss L with matrix-vector representation :

L =
1
n
&
"#$

%

(𝛉&𝐱 " − y(")))

=
1
n
𝐗𝛉 − 𝐲)	

where 𝐗 =

−𝐱($)& −
−𝐱())& −
−𝐱(*)& −

⋮
−𝐱(%)& −

, 𝐲 =

y($)

y())

y(*)
⋮

y(%)

 and	 𝛉 =

θ($)
θ())
θ(*)
⋮

θ(+)
n × d d × 1n × 1

23

Normal equations

Xavier Bresson 23

𝐗𝛉 =
x$
($) x)

($) x*
($)

x$
()) x)

()) x*
()) ×

θ$
θ)
θ*

=
θx

$ + θ)x)
$ + θ*x*

$

θx
$ + θ)x)

) + θ*x*
* = 𝛉&𝐱($)

𝛉&𝐱)

Example of 𝐗𝛉 and 𝐲	:

𝐲 = y($)

y())

24

Normal equations

Xavier Bresson 24

Expand L :

Compute gradient (with calculus) and get solution :

L =
1
n
𝐗𝛉 − 𝐲)

= $
%
𝐗𝛉 − 𝐲 & 𝐗𝛉 − 𝐲 = $

%
(𝐗𝛉 & − 𝒚⊤) 𝐗𝛉 − 𝐲

	=	$
%
(𝐗𝛉 &𝐗𝛉 − 𝐗𝛉 &𝐲 − 𝐲&𝐗𝛉 + 𝐲&𝐲)

 = $
%
(𝛉&𝐗&𝐗𝛉 − 2𝛉&𝐗&𝐲 + 𝐲&𝐲), with 𝛉&𝐗&𝐲= 𝐗𝛉 &𝐲 = 𝐲&𝐗𝛉

𝜕L
𝜕𝛉

=
1
n
(2. 𝐗&𝐗𝛉 − 2. 𝐗&𝐲) = 𝟎

 ⇒	𝐗& 𝐗𝛉 = 𝐗&𝐲	 ⇒ 𝛉 = 𝐗&𝐗 ,$𝐗& 	𝐲

Pseudo-inverse of 𝐗
Computationally expensive to

compute if d is large.

25

Outline

Xavier Bresson 25

Admin

Three applications of linear models

Classification

Regression

Normal equations

Logistic regression

Gradient descent

Support Vector Machine

Soft-margin SVM

Kernel SVM

Conclusion

26

Three learning problems

Xavier Bresson 26

𝑓𝛉(𝐱) = 𝛉!𝐱

𝑦 = ±1

𝑦	𝜖	ℝ

𝑦	𝜖	[0, 1]

sign(𝛉!𝐱)

𝛉!𝐱

sigmoid(𝛉!𝐱)

The “mother” linear
function

Linear classification

Linear regression

Logistic regression

27

Logistic regression

Xavier Bresson 27

Linear classification predicts “hard” classes, e.g. ±1.

Linear regression predicts scalar target, e.g. ∈ R.

Logistic regression predicts “soft” classes, i.e. f* 𝐱 is interpreted as a probability of class ∈ [0,1].

Example

Prediction of a heart attack

Input 𝐱 : Cholesterol level, age, diabetic, etc.

Output f* 𝐱 	: Likelihood of a heart attack ∈ [0,1]

θ!𝐱 ∈ R is the risk score.

28

Logistic regression

Xavier Bresson 28

Training data : 𝐗 = 𝐱 " , y(") , … , 𝐱) , y()) with

𝐱(-) : Person’s health information, i.e. data features

y(-) : Person has a heart attack or not

Labels 𝐲 are binary, i.e. y(-) = ±1.

We know with certainty whether a person got a heart attack, y(-) = +1, or not, y(-) = −1.

Prediction function f* 𝐱 is the probability in [0,1] that the person had a heart attack.

Hence, the probability of a person with no heart attack is 1 - f* 𝐱 .

P𝛉 y 𝐱 = U f*(𝐱)
1 − f*(𝐱)

for	y = +1
for	y = −1

Probability of having class y given the input data x
Conditioned probability a.k.a. likelihood probability

29

Logistic regression

Xavier Bresson 29

Prediction f* 𝐱 can be designed as :

Choice of logistic function :

Function sigmoid(.)=g(.) is a smooth step function or soft thresholding function.

f*(𝐱) = sigmoid(𝛉!𝐱) ∈ [0,1]

g s = /01(2)
"3/01(2)	

= "
"3/01(52)	

g −s = 1 − g(s)

g s

g ∶ 	ℝ →	[0,1]

30

Logistic regression

Xavier Bresson 30

Loss function for logistic regression

Estimate how good is the predictive function f*(𝐱) = sigmoid(𝛉!𝐱) to infer correctly the
class y of 𝐱	:

min𝛉	L 𝛉 =
1
nD
-&"

)

log(1 + exp(−y - 𝛉!𝐱(-))) Logistic regression function
a.k.a cross-entropy loss

Number of
training data

Explained in the next slides

31

Logistic regression

Xavier Bresson 31

Understanding the logistic regression loss for one data point (𝐱,y):

P𝛉 y 𝐱 	 = Y g 𝛉!𝐱 = f*(𝐱)
g −𝛉!𝐱 = 1 − g 𝛉!𝐱 = 1 − f*(𝐱)

for	y = +1
for	y = −1 = 	g y. 𝛉!𝐱

P𝛉 y 𝐱 = g(y. 𝛉!𝐱) = "
"3/01(56.𝛉!𝐱)	

with g s = "
"3/01(52)	

log	P𝛉 y 𝐱 = − log 1 + exp −y. 𝛉!𝐱

maxθ	P𝛉 y 𝐱 	⇔	maxθ	 log	P𝛉 y 𝐱 = maxθ	−	log 1 + exp −y. 𝛉
!𝐱

⇔ min𝛉	 log 1 + exp −y. 𝛉

!𝐱

Sigmoid

Monotonous
increasing function

g −s = 1 − g(s)

32

Logistic regression

Xavier Bresson 32

Understanding the logistic regression loss for all data points 𝐗 = 𝐱 " , 𝑦(")	 , … , 𝐱 : , 𝑦 : ∶

Suppose that the data points are i.i.d. samples (independent and identically
distributed).

P(y " , . . , y) |𝐱 " , . . , 𝐱())) =\
-&"

)

P y(-)|𝐱(-)

log P y " , . . , y) 𝐱 " , . . , 𝐱) = log	∏-&"
) P y(-)|𝐱(-) = ∑-&") log	P y(-)|𝐱(-)

min𝛉	L 𝛉 =
1
nD
-&"

)

log(1 + exp(−y - 𝛉!𝐱(-)))
log	%

!"#

$

='
!"#

$

log	

33

Outline

Xavier Bresson 33

Admin

Three applications of linear models

Classification

Regression

Normal equations

Logistic regression

Gradient descent

Support Vector Machine

Soft-margin SVM

Kernel SVM

Conclusion

34

Gradient optimization

Xavier Bresson 34

Gradient optimization algorithm (simplest optimization algorithm)

Work well in high-dimensional spaces (because convergence is independent of data
dimensionality)

Two versions : Gradient descent/ascent

Start randomly

Move in the direction of the steepest descent/ascent.

Stop when reaching the minimum/maximum.

35

Gradient descent

Xavier Bresson 35

Predict amount of credit y with data feature x (single feature) :

Prediction function : f* 𝐱 = θ(+ θ"x

Parameters : θ(, θ"
Loss function :

Loss minimized by gradient descent (introduced next slides):

L θ = (θ(, θ") =
1
n	D

-&"

)

	 (f* x - − y(-))#

min*	 L θ = (θ(, θ")

f* 𝐱 = θ(+ θ"x

36

Gradient descent

Xavier Bresson 36

Univariate linear regression

(Single) parameter θ ∶ slope of the line

Suppose loss function is a convex function of θ, e.g. L(θ)=(θx	 - y)2

L(θ)

θ
𝑥 (salary)

𝑦
(c

re
di

t l
in

e)

f* 𝐱 = θ x

Direction of
minimum

37

Gradient descent

Xavier Bresson 37

Multivariate linear regression

Two parameters θ(, θ" ∶ bias and slope of the line

Suppose loss function is a convex function of θ = (θ(,θ"), e.g. L(θ(,θ")=(θ(+ θ"x - y)2

𝑥" (salary)

𝑦
(c

re
di

t l
in

e)

0.5

100

L(θ(, θ")

100

0

1
1000

1000

f* 𝐱 = θ(+ θ"x

Direction of
minimum

38

Gradient descent

Xavier Bresson 38

𝛉(t) : Vector of all parameters at iteration t

Start at 𝛉(t=0) = random

Iterative method

Update the value of parameters :
𝛉(t+1)=𝛉(t)+𝐯

What is the best direction 𝐯 ?

Direction 𝐯 must minimize as much as
possible the loss function L.

𝐯 = Opposite direction of the steepest slope
(justification given next slides)

L θ

θ(t)

slo
pe

𝐯

θ(t + 1)

39

Gradient descent

Xavier Bresson 39

Direction 𝐯 of the steepest descent :

L(𝛉+ Δ𝛉) ≈ L(𝛉) + < ∂;
∂𝛉	, Δ𝛉	>

ΔL = L(𝛉+ Δ𝛉) − L(𝛉) ≈ < ∂;
∂𝛉 , Δ𝛉	>

minΔ𝛉 ΔL ⇒ Δ𝛉 = − η ∂;
∂𝛉 , η > 0	 ⇒ ΔL = - η | ∂;

∂𝛉 |
2 < 0

𝛉 t + 1 = 𝛉 t + 	Δ𝛉(t) = 𝛉 t − η ∂;
∂𝛉(𝛉 t)

First-order Taylor
approximation

∂𝐿
∂𝛉𝐯 = − 𝜂 ∂<

∂𝛉

𝐯(t) = Δ𝛉(𝐭) = − η ∂;
∂𝛉(𝛉 t)

L θ

θ(t)

slo
pe

Δ𝛉 aligns with ∂%∂𝛉 in
the opposite direction

to minimize.

Update equation for
gradient descent

40

Gradient descent

Xavier Bresson 40

Step size 𝜂 controls how fast the gradient descent algorithm descends to the minimum.

Finding the right value of the step size is heuristic :

𝐿 𝐿 𝐿

𝜂 𝑡 :

𝜃 𝜃 𝜃

variable 𝜂 𝑡 ; 10 steps

Too slow Diverges Right speed

41

Gradient descent

Xavier Bresson 41

Termination condition / when to stop the iterative scheme ?

Natural choice : when gradient < (arbitrary) threshold

However, lots of saddle points / flat regions in high-dimensional spaces.

L θ

θfinal

slope=0

𝐯(t) = − 𝜂 ∂<
∂𝛉(θfinal) =	𝟎

42

Stochastic gradient descent

Xavier Bresson 42

A fast variation of gradient descent that considers only a small set of data points to update the
value of the parameters is stochastic gradient descent (SGD):

Pick a (random) small subset of 𝑚 training data (e.g. a single/512 data points), i.e.
(𝐱(=), y(=))

Compute the loss value for this subset, i.e. L = "
>
∑=&"> L(f*(𝐱(=)), y(=))

Compute the gradient for this subset, i.e. 𝐯 = "
>
∑=&"> −∇L	(f*(𝐱(=)), y(=))

Update parameters, i.e. 𝛉 t + 1 	= 𝛉 t − η	𝐯

Advantages

Faster update of parameters : Gradient computed with 𝑚=512 rather than all data points.

Stochastic optimization : Helps escape saddle points in high-dimensional space

Simple to implement

43

Stochastic gradient descent

Xavier Bresson 43

GD vs. SGD with by a mini-batch of 𝑚=10 samples

GD

10 steps

SGD

 30 steps
Loss

Iteration Iteration

Loss

44

Summary

Xavier Bresson 44

Two methods for solving the linear regression task :

Gradient Descent

Works well for very large 𝑛, #training data, with SGD (300B tokens with GPT3)

Works well for very large d, #data features (d=1M with 1,000×1,000 images)

Works well for very large |𝛉|, #parameters features (175B with GPT3)

Very slow and requires to select time step 𝜂

Normal Equations

Very fast for d = O(103) data points, do not require to choose 𝜂

Need to compute (𝐗T𝐗)−1, O(d3) operation but faster approximations exist

Gradient Descent is a universal optimization technique as long as the considered loss is
continuous and differentiable (as gradient is required).

GD does not work for discrete losses like win/lose at the game of Go.

45

Outline

Xavier Bresson 45

Admin

Three applications of linear models

Classification

Regression

Normal equations

Logistic regression

Gradient descent

Support Vector Machine

Soft-margin SVM

Kernel SVM

Conclusion

46

Support Vector Machine

Xavier Bresson 46

Consider the binary classification task and linear functions as hypothesis space.

The goal is to find a linear separator that partitions the feature space into two regions.

Generally, there exist several possible linear separators.

How to select an “optimal” linear separator, and how to define “optimal”?

R-1

R+1

R-1

R+1

R-1

R+1

47

Support Vector Machine

Xavier Bresson 47

SVM technique (1964) aims at maximizing the margin between the two classes.

Maximizing the margin provides better results.

margin

R-1

R+1

R-1

R+1

R-1

R+1

margin
margin

48

Support Vector Machine

Xavier Bresson 48

Hyper-plane equation : { 𝐱 such that f𝛉(𝐱)=𝛉!𝐱 + b = cte }

Hyper-planes f𝛉(𝐱)= ±1 are margin planes.

Hyper-plane f𝛉(𝐱)= 0 is the class separator.

Training data points +1 lie above the hyperplane and -1
data points below.

Parameters 𝛉 controls the orientation/slope of the plane,
and b is the offset/bias.

The distance 𝑑 between the two margin planes is
computed to be as large as possible.

What are the parameters 𝛉 that maximizes the distance 𝑑
between the two margins? (response next slide)

+1

-1

+1

-1

𝛉
! 𝐱
+
b =

0
𝛉
! 𝐱
+
b =

−1

𝛉
! 𝐱
+
b =

+1

𝐝

R-1

R+1

49

Support Vector Machine

Xavier Bresson 49

What are the parameters 𝛉 that maximizes the margin?

Optimal value 𝛉 is solution of a constrained quadratic
optimization problem :

Only a subset of the data points
have value f(𝐱)= ±1. These are
called support vectors (SV).

𝐱+1

𝐱−1

Given f𝛉(𝐱)=𝛉1𝐱 + b

with f𝛉(𝐱+1) = 𝛉1𝐱+1 + b = +1
 f𝛉(𝐱-1) = 𝛉1𝐱−1 + b = -1

We have f𝛉(𝐱+1) - f𝛉(𝐱-1) =	𝛉1(𝐱+1 − 𝐱−1) = +2

If we define the margin vector as 𝐝 = 𝐱+1 -	𝐱−1 then

	𝛉1(𝐱+1 − 𝐱−1) = +2 ⇒ 𝛉 . 𝒅 = +2 ⇒ d = 2
𝛉

maxd d= 2
𝛉

 ⇔ min𝛉	 𝛉 2 such that

 /
	f𝛉(𝐱) ≥ + 1	for	𝐱	∈ R+1
	 f𝛉(𝐱) ≤ − 1	for	𝐱	∈ R_1

SV

SV

SV
+1

-1

+1

-1

𝛉
! 𝐱
+
b =

0
𝛉
! 𝐱
+
b =

−1

R-1

R+1

𝐝

𝛉
! 𝐱
+
b =

+1

Length of the
margin vector

50

Outline

Xavier Bresson 50

Admin

Three applications of linear models

Classification

Regression

Normal equations

Logistic regression

Gradient descent

Support Vector Machine

Soft-margin SVM

Kernel SVM

Conclusion

51

Soft-margin SVM

Xavier Bresson 51

Real-world data is noisy.

In case of data non-linearly separable, i.e. with outliers, there is no mathematical solution
to standard/hard-margin SVM.

In other words, there exists no linear separator that can split the two classes perfectly,
i.e. without errors.

R-1

R+1 ?

52

Soft-margin SVM

Xavier Bresson 52

SVM can be improved to deal with outliers.

Soft-margin SVM technique, 1995

Idea is to introduce a slack variable e(-) for each data point that represents the prediction
error.

These errors e(-) will be minimized while simultaneously maximizing the margin :

min𝛉	 𝛉 2 such that Y
	f𝛉(𝐱) ≥ + 1	for	𝐱 ∈	R+1

	f𝛉(𝐱) ≤ − 1	for	𝐱 ∈ R_1

min𝛉,𝐞 𝛉 2 + C. ∑-&") e(-) such that
	f𝛉(𝐱(j)) ≥ + 1 − e - for	𝐱 ∈ R+1

	f𝛉(𝐱(j)) ≤ − 1 + e - 	for	𝐱 ∈ R_1
e(-)≥0, C≥0

+

Standard SVM

Soft-margin SVM

e !

e !

𝐱(j)

𝐱(j)

𝐱(j), e ! =0

53

Soft-margin SVM

Xavier Bresson 53

Effect of varying C, the regularization parameter.

Goal is to find the largest margin.
When C is small, more

misclassification errors are
allowed.

Note that the margin is large
then.

When C is large, less
misclassification error are
allowed, possibly none.

Note that the margin is small
then.

54

Soft-margin SVM

Xavier Bresson 54

Soft-margin SVM penalizes

Misclassifications,

Correct classifications that fall inside the margin.

Loss of soft-margin : Hinge loss (popular loss function)

,
<latexit sha1_base64="jlSS2Q+jSNVYymThqn4ESI/jvU8=">AAAB/XicbVDLSgNBEJyNrxhf6+PmZTAInsKuiHoMePHgIYJ5QLKE2clsMmR2ZpnpVeIS/BUvHhTx6n9482+cTXLQxIKGoqqb7q4wEdyA5307haXlldW14nppY3Nre8fd3WsYlWrK6lQJpVshMUxwyerAQbBWohmJQ8Ga4fAq95v3TBuu5B2MEhbEpC95xCkBK3Xdg84Ni0Dz/gCI1uqhlKPrlr2KNwFeJP6MlNEMta771ekpmsZMAhXEmLbvJRBkRAOngo1LndSwhNAh6bO2pZLEzATZ5PoxPrZKD0dK25KAJ+rviYzExozi0HbGBAZm3svF/7x2CtFlkHGZpMAknS6KUoFB4TwK3OOaURAjSwjV3N6K6YBoQsEGlofgz7+8SBqnFd+r+Ldn5er5LI4iOkRH6AT56AJV0TWqoTqi6BE9o1f05jw5L8678zFtLTizmX30B87nD1l0k8k=</latexit><latexit sha1_base64="jlSS2Q+jSNVYymThqn4ESI/jvU8=">AAAB/XicbVDLSgNBEJyNrxhf6+PmZTAInsKuiHoMePHgIYJ5QLKE2clsMmR2ZpnpVeIS/BUvHhTx6n9482+cTXLQxIKGoqqb7q4wEdyA5307haXlldW14nppY3Nre8fd3WsYlWrK6lQJpVshMUxwyerAQbBWohmJQ8Ga4fAq95v3TBuu5B2MEhbEpC95xCkBK3Xdg84Ni0Dz/gCI1uqhlKPrlr2KNwFeJP6MlNEMta771ekpmsZMAhXEmLbvJRBkRAOngo1LndSwhNAh6bO2pZLEzATZ5PoxPrZKD0dK25KAJ+rviYzExozi0HbGBAZm3svF/7x2CtFlkHGZpMAknS6KUoFB4TwK3OOaURAjSwjV3N6K6YBoQsEGlofgz7+8SBqnFd+r+Ldn5er5LI4iOkRH6AT56AJV0TWqoTqi6BE9o1f05jw5L8678zFtLTizmX30B87nD1l0k8k=</latexit><latexit sha1_base64="jlSS2Q+jSNVYymThqn4ESI/jvU8=">AAAB/XicbVDLSgNBEJyNrxhf6+PmZTAInsKuiHoMePHgIYJ5QLKE2clsMmR2ZpnpVeIS/BUvHhTx6n9482+cTXLQxIKGoqqb7q4wEdyA5307haXlldW14nppY3Nre8fd3WsYlWrK6lQJpVshMUxwyerAQbBWohmJQ8Ga4fAq95v3TBuu5B2MEhbEpC95xCkBK3Xdg84Ni0Dz/gCI1uqhlKPrlr2KNwFeJP6MlNEMta771ekpmsZMAhXEmLbvJRBkRAOngo1LndSwhNAh6bO2pZLEzATZ5PoxPrZKD0dK25KAJ+rviYzExozi0HbGBAZm3svF/7x2CtFlkHGZpMAknS6KUoFB4TwK3OOaURAjSwjV3N6K6YBoQsEGlofgz7+8SBqnFd+r+Ldn5er5LI4iOkRH6AT56AJV0TWqoTqi6BE9o1f05jw5L8678zFtLTizmX30B87nD1l0k8k=</latexit><latexit sha1_base64="jlSS2Q+jSNVYymThqn4ESI/jvU8=">AAAB/XicbVDLSgNBEJyNrxhf6+PmZTAInsKuiHoMePHgIYJ5QLKE2clsMmR2ZpnpVeIS/BUvHhTx6n9482+cTXLQxIKGoqqb7q4wEdyA5307haXlldW14nppY3Nre8fd3WsYlWrK6lQJpVshMUxwyerAQbBWohmJQ8Ga4fAq95v3TBuu5B2MEhbEpC95xCkBK3Xdg84Ni0Dz/gCI1uqhlKPrlr2KNwFeJP6MlNEMta771ekpmsZMAhXEmLbvJRBkRAOngo1LndSwhNAh6bO2pZLEzATZ5PoxPrZKD0dK25KAJ+rviYzExozi0HbGBAZm3svF/7x2CtFlkHGZpMAknS6KUoFB4TwK3OOaURAjSwjV3N6K6YBoQsEGlofgz7+8SBqnFd+r+Ldn5er5LI4iOkRH6AT56AJV0TWqoTqi6BE9o1f05jw5L8678zFtLTizmX30B87nD1l0k8k=</latexit>

min𝛉	 𝛉 2 + C. ∑-&") max 0, 1 − y(-). f𝛉(𝐱(j))

min𝛉,𝐞 𝛉 2 + C. ∑-&") e(-) such that
	f𝛉(𝐱(j)) ≥ + 1 − e - for	𝐱(j) ∈ R+1

	f𝛉(𝐱(j)) ≤ − 1 + e - 	for	𝐱(j) ∈ R_1
e(-)≥0, C≥0

LHin (d(5) = y(5).f𝛉(𝐱(j)))
(Hinge loss)

[proof not included -- it will not be assessed]

[Optional] Proof given in http://image.diku.dk/imagecanon/material/cortes_vapnik95.pdf

d	≥ 1 (correctly classified) if

 1
	f𝛉(𝐱(j))≥ + 1	and	y(!) = +1	
f𝛉(𝐱(j))≤ − 1	and	y ! = −1

1
d

LHin

d	≥ 1
LHin=0

d	≤ 1
Lhin>0

http://image.diku.dk/imagecanon/material/cortes_vapnik95.pdf

55

Outline

Xavier Bresson 55

Admin

Three applications of linear models

Classification

Regression

Normal equations

Logistic regression

Gradient descent

Support Vector Machine

Soft-margin SVM

Kernel SVM

Conclusion

56

Kernel SVM

Xavier Bresson 56

Linear models are limited to linearly separable data points.

How to classify complex/non-linear datasets with linear
separators?

Idea is to map the data from their original space Rd, where classes
can only be separated with non-linear functions, to a new higher-
dimensional space Rb, b ≫ d, where classes can be distinguished
with linear functions :

𝐱 = x", x#, … , x) →
?
𝐳 = (z" , z# , … , z))

𝐱(-)

𝐳(-)
Rd Rb, b ≫ d

57

Kernel SVM

Xavier Bresson 57

1. Original data
𝐱(-) ∈ Rd

2. Transform the data
𝐳(-) = Φ 𝐱(-) ∈ Rb, b ≫ d

4. Classify in Rd	space
𝐱(-) = Φ−1 𝐳(-) ∈ Rd

3. Separate the data in
Rb	space

f@𝛉 𝐳 	= sign u𝛉!𝐳
 =	sign(u𝛉!Φ 𝐱)

58

Kernel SVM

Xavier Bresson 58

Kernel trick

Processing data points Φ 𝐱 in the higher-dimensional space Rb is time and memory consuming.
Kernel trick avoids computing Φ 𝐱 ∈ Rb.

Instead, we will compute kernel value K(x,y) in Rd with d≪b.

Different kernels exist such as polynomial/Gaussian kernels : K(x,y)=(1+ 𝐱𝐓𝐲)p , K(x,y)=exp(−𝐱𝐓𝐲/σ)

Kernel SVM solutions are computed by solving a quadratic optimization problem :

f𝛉(𝐱) = 𝛉!𝐱 → f𝛉(𝐱) = 𝛉!Φ(𝐱)

𝛉	= ∑-&") α(-)y(-)𝐱(j)	 → 𝛉	= ∑-&") α(-)y(-)Φ(𝐱(j))

f𝛉(𝐱) = 𝛉!Φ(𝐱) = ∑-&") α - y - Φ(𝐱(j))𝐓Φ 𝐱

with min0≤α≤C	α
!𝐐α	 − α!𝟏 such that α!𝐲 = 0, Q = YKY, Y=diag(𝐲), K(x,y)= Φ 𝐱 𝐓Φ 𝐲

Φ

Dual variable

Φ

Primal variable

[proof not included -- it will not be assessed]
[Optional] Proof given in http://image.diku.dk/imagecanon/material/cortes_vapnik95.pdf

http://image.diku.dk/imagecanon/material/cortes_vapnik95.pdf

59

Outline

Xavier Bresson 59

Admin

Three applications of linear models

Classification

Regression

Normal equations

Logistic regression

Gradient descent

Support Vector Machine

Soft-margin SVM

Kernel SVM

Conclusion

60

Convention

Xavier Bresson 60

In machine learning, linear models are linear functions w.r.t. data features x, not the
parameters 𝛉.

Remark 1: Mathematically, a linear function is a function that satisfies the additivity
property, i.e. f(x+y) = f(x)+f(y). For example, f𝛉(x)=θ1x1+θ2x2 is a linear function w.r.t. x
=(x1,x2).

However, the affine function f𝛉(x)=θ1x1+θ2x2+θ0 is not a linear function, but we make an
abuse of notation and we still refer to the affine function as a “linear” model, but it is *not*
true mathematically.

Remark 2: Another abuse of notation is to disguise the affine function as a linear function
as follows: f𝛉(x)=θ1x1+θ0= 𝛉Tx with 𝛉=(θ1	,	θ0) and x=(x1,1). So it seems like a linear
function w.r.t. x but it is not because it does not satisfy the additivity property, i.e. f(x+y)
= f(x)+f(y).

The same abuse can be used to pretend to represent quadratic function as “linear” function,
i.e. f𝛉(x)= θ1x+θ2x2+θ0= 𝛉Tx , where 𝛉=(θ2	,θ1	,θ0) and x=(x2, x, 1). Again, the
representation seems linear w.r.t. x but mathematically it is not.

61

Conclusion

Xavier Bresson 61

Linear models can be used for classification and regression tasks.

Very well-established techniques, which fit optimally CPU/GPU acceleration hardware.

BLAS/LAPACK for CPU and CUDA for GPU

But very limited expressivity, only perform well for linearly separable data points.

Kernel SVM enhances their expressivity with non-linear separators but requires to hand-
craft a kernel operator.

Deep learning has significantly surpassed SVM techniques.

62

References

Xavier Bresson 62

Prof Min-Yen Kan, CS3244 NUS, Machine Learning, 2022

https://knmnyn.github.io/cs3244-2210

Prof Xavier Bresson, CS6208 NUS, Advanced Topics in Artificial Intelligence, 2023

https://knmnyn.github.io/cs3244-2210

63

Questions?

Xavier Bresson 63

