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An example of bias and variance
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An example of bias and variance

@ We consider a simple example to compute the bias and the
variance.

fx)

@ Example : Predict the sine function
@ Regression task v / o |

@ Training set : 2 data points, (X, y) =
(x@,yD), (x@,y@),i.e. n=2 and x®e R, d=1 \ /;Cm

@ Two hypothesis spaces :
o }[0 . fe(x) = 90 A 08 06 w04 w02 0 02 04 08 08 1
(] :7'[1 . fe(x) == 60 + elxl

X

f(x) =sin(mx):[-1,1] » R
@ (Q: Which predictive class of functions is better, H, or H; ?

@ Hypothesis H; seems better because the model is more
expressive than H,.
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An example of bias and variance

@ How to define a good hypothesis?
@ It is a hypothesis with low bias and low variance (lecture 3).
@ Variance : The variability of the prediction model.

@ Bias : The difference between the average prediction model and the true regression value.

Variance

o

{fs}
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An example of bias and variance

@ Example of predictive function for each hypothesis given a training set :
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An example of bias and variance

@ Variance(H) = meangy (f — meansy f)?

o Formally, the mean is replaced by E (expectation operator)
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An example of bias and variance

@ Bias(H) = Liest ( meangey )

1 fo = meangcq f | " f; = meangcqq f

1t 1 T

_2 L L ] L L L L L L _2 1 L L 1 1 L 1 1 1
-1 -0.8 -0.6 -04 \—0.2 0 0.2 04 0.6 08 1 -1 -0.8 -0.6 -04 ~\2 0 02 04 0.6 0.8 1

Bias(H,) = 0.50 Bias(H;) = 0.20
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An example of bias and variance

@ How to define a good hypothesis?
@ It is a hypothesis with low bias and low variance.
o H,: fg(x) =06, = Bias+ Var =0.50+0.25 =0.75 vV
@ Hj:feg(x)=0y+0;x; = Bias+Var=0.20+1.69 =1.89

@ In the case of low-data, it is not the model with the most expressivity that performs the best.
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}[0 . fe(x) = 90 :7'[1 . fe(x) == 90 + 91x1
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Random variable
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Random variable

® A random variable (X,Q,P) is a variable X that can have different values x € Q controlled by a
probability distribution, P(X = x).

@ For example, a coin can be represented by a random variable X.
@ The set Q of all outcomes of the coin is Q ={ Head , Tail }.

@ The probabilities of the outcomes are P(X =H) =1/2 and P(X =T) = 1/2 if the coin is fair,
i.e. not biased to any particular side.

@ Expected value of X : Average value over all possible outcomes of a random variable X weighted
by the probability of the outcome, i.e. E(X) = Y. exx Pr(X = x).

@ Example: Let X be the outcome of a fair dice roll. Then, the expected value is
E(X)=1/6.(14+2+3+44+5+6)=3.5.

@ Variance of X : Variation of a random variable from the expected value, i.e.
Var(X) = E[(X — E(X))?] = Xxex(x — E(X))?2 Pr(X = x).

@ Example: Let X be the outcome of a fair dice roll. Then, the variance is
Var(X)=1/6.( (1—3.5)%+...4(6—3.5)2 )=35/12.

Xavier Bresson
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Bias-variance-noise decomposition

We consider a training dataset D = {(X(l),y(l)), ) (X(n),y(“))} of n data points sampled i.i.d.

from a data-label distribution P(X,Y), where X and Y are random variables.

Our goal is to decompose the generalization error of a learner (classifier or regressor) into
three fundamental terms, i.e. bias, variance and data noise.

Let us assume the regression task, i.e. y € R, with the MSE loss, i.e. L = (f(x)-y)?
(decomposition is easier to prove for regression than classification).

Let us first define the following quantities :
@ Expected label y given x
@ Expected test error given fp
@ Expected learner given algorithm A

@ Expected test error given algorithm A

13
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Expected label y given x

For any given input x € R4, there may not exist a unique label y, but multiple labels y.

For example, if your input x describes house features, e.g. #bedrooms, square footage, etc,
and label y its price, it is likely that 2 houses with identical features can be sold with

different prices. Hence, for any given feature vector x, there is a distribution P(y|x) over
possible labels y.

We therefore define the following expected label given x € R4 :

5(2) = Eyjppiyio[Y] = / y Py|z)dy

The expected label is the label we would expect to obtain given a feature vector x.
y A

y(x)

\ 4

K {--0-0000--0
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Expected test error given a learner

Given a training set D of n inputs i.i.d. sampled from the data-label distribution D ~ P»,

we aim at learning a function (classifier or regressor) that solves a machine learning task.

@ This is known as the training process.

Formally, for a given training set D and an algorithm A, we can compute the learner

- A(D).

Given the trained learner fp = A(D), we define the expected test error or generalization
error as follows :

Ex,wa(w,y) [(fD / / fD (.%‘, y)d.ib'dy

where (x,y) are all data points and D consists of training data points.

Note that any other supervised loss function can be used, e.g. regression and
classification losses.
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Expected learner given an algorithm

The expected test error is defined for a specific training set D.

This implies that the trained learner fp= A(D) will be different when it is computed with a,
different training set D’ # D.

We can compute the expected learner given an algorithm A as :

f=Eppfo] = /D fp P(D)dD

P(x,y)
where P(D) is the probability of drawing D from P=. /

X,y ~ P(x,y)

fp,®), p(D1)
fp,(®), p(D2)

F(X) = IE:D»VPn()('y) (fD (x))
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Expected test error given algorithm

@ Function f is a weighted average over all trained functions, i.e. the mean predictor.

It is independent of D as it was integrated over all possible training sets D.

Function f can be approximated as f(x) ~ % P fp, (x) but collecting multiple Dy is

usually never done (time consuming). New data points are generally added to the
original D.
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Bias-variance-noise decomposition

@ Finally, we can also compute the expected test error for an algorithm A w.r.t. all training sets D
sampled from P as :

Bz y~P(z,y), DNPn[(fD /// (fp(x) —y)? P(x,y)P(D)dxdydD

where (x,y) are all data points and D consisting of training data points.
@ This error evaluates the quality of a machine learning algorithm A given a data distribution P.

®@ We will decompose this generalization error into quantities called bias, variance and data noise.

Xavier Bresson 18
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Bias-variance-noise decomposition

@ Decomposition of expected test error :

Ee,0 [(F0(2) = )] = Bay,n[(((fp () = F()) + (F@) — )]

Y
Do not change anything

=E,,p[(fp(z) = f(2))*] + Eoy[(f(z) = 9)*] + 2 Eupy.p[(fp(z) = f(2))(f(2) = y)]

= Eop[(fp() — f(2)%] + Euy [(F(z) — 1)?]
Let us de\x{/elop this
term in the next
slide.
Evy,n[(fp(2) = F@)(F(2) = 9)] = Bay [En[(fo(2) — F@)(F(z) - y)]
—E.,[(Ep[fo(@)] — F@)(Fx) — y)
= E., [(f(z) - f(@))(F(z) — )]

=0
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Bias-variance-noise decomposition

@ Decomposition of second term :

Exy [(F(@) = )] = oy [((f(2) - 9(2)) + (5(x) = 9))]
Do not char\lfge anything

= E, [(f(z) — 5(2))?] + Euy [(5(2) — 1)?] + 2 Buy [(F(z) — 5(2)) (5(z) — y)]

oy [(F(z) — 5(2)(5(z) — v)] = Eu[Bya [(F(z) — 5(2) (5(z) — v)]]
= E. [(f(2) — 5(2))Eyo [(5(x) — y)]]
E.[(f(z) — 9(2))(5(z) — By [y])]

=E. [(f(z) - ﬂ(m))(\g(ﬂf) — ﬂ(xj)}

Xavier Bresson 20



Bias-variance-noise decomposition

@ Decomposition of expected test error :

Es.y.p[(fp(2) = 9)*] = Ee,p[(fp(2) = f(2))*] + Ex[(f(2) — 5(2))*] + Eay [(#(2) — y)°]

L J L J
. Y 7N Y / Y %
Expected test Variance Bias? Data noise
error

@ This is the most fundamental equation of supervised machine learning.

@ This is also called the bias-variance-error trade-off.

Xavier Bresson

21



Xavier Bresson

Outline

Fundamental equation of supervised machine learning
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Fundamental equation of supervised learning

@ Decomposition of expected test error :

Es.y.p[(fp(2) = 9)*] = Ee,p[(fp(2) = f(2))*] + Ex[(f(2) — 5(2))*] + Eay [(#(2) — y)°]

L J L J
\ v ) N v / Y Y
Expected test Variance Bias? Data noise
error
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Fundamental equation of supervised learning

Variance : Var(f) =E, p [(fD(5U> - f@))z}

Given an algorithm A, the variance captures how much the learner changes when it is
computed on different training sets.

The variance indicates the expressivity of algorithm A.
@ Complex algorithms have high variance and simple algorithms have low variance.
Over-fitting : A learner fp(x) which has zero prediction error on a training set D.

@ A learner fp(x) that is capable of overfitting various training sets must exhibit
significant variability, indicating a complex algorithm.

Under-fitting : A learner fp(x) which is not able to predict correctly a training set D.

® A learner fp(x) that exhibits underfitting has limited variability, signifying a simple
algorithm.

24



Fundamental equation of supervised learning

® Variance : Var(f) =E, p|(fp(z) — f(x)ﬂ

A N

Under-fitting Right-fitting Over-fitting
Simple model (circles) Right model (ellipsoids) Complex model (polynomials)
Small variance Right variance Large variance

Xavier Bresson 25



Xavier Bresson

Fundamental equation of supervised learning

Bias : Bias(f,y) = E,[(f(z) — §(2))?]

Given an algorithm A, the bias is the intrinsic error of a learner with infinite training data.

Any learner has some bias toward a particular class of solutions, e.g. linear models with
hyper-plans or decision trees with piece-constant functions.

Bias is inherent to the model and independent of data.

Bias is a.k.a. the model error, i.e. the lack of capacity of the model to perfectly capture the
data distribution.

f(x) = mean,, f;/(x)

Bias(H) = 0.50
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Fundamental equation of supervised learning

o Data-intrinsic noise : Noise(y) = E, ,[(y(z) — y)z}

@ This error measures the ambiguity inherent to the data distribution and feature
representation.

@ It is impossible to get rid of the noise, it is a part of data.

@ Noise is often modeled as a stochastic process, that is added to the “clean” data, i.e. y =y + «.
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Understanding bias-variance trade-off
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Bias-variance trade-off

@ Quality of predictive models are evaluated by the bias-variance trade-off.

@ For example, consider a model that can predict the red center of the target below.

Low variance and low bias
The perfect models

Low variance and high bias
The model favors some solutions,
far from the true ones.

Boosting helps
reducing bias
(lecture 3)

Xavier Bresson

Low Bias

High Bias

Low Variance

High Variance

Bagging helps
reducing variance
(lecture 3)

High variance and low bias
The model is able to find the
correct solution on average.

For examples, decision tree with
large depth and deep learning.

High variance and high bias
The worst models

The model has not only bad
bias but also large variance.

For examples, decision tree with
small depth and linear model.
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Bias-variance trade-off

@ Test error vs. model complexity

Low complexity

Simple models e.g. linear ones
have low variance but high
bias, making test error high.

Under-fitting

Xavier Bresson

Optimum Model Complexity

——
—— -———

-

Variance

Model Complexity
Right complexity

Models that minimizes both variance
and bias, making test error low.

Right-fitting

\
\
\
|
|
|
|

I

I
I
1

High complexity
Complex models e.g. deep

learning have low bias but high
variance, making test error high.

Over-fitting
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Bias-variance trade-off

@ How to reduce high variance?
@ Reduce model complexity : Lower model expressivity or use regularizers (lecture 6)

@ Remove non-informative/bad data features : E.g. house features such house color, back
door, etc but challenging to decide bad features (not done in practice).

o Bagging (lecture 3) : Averaging weak high-variance learners produces strong learner
with low variance (requires fast computation of weak learners in practice).

@ How to reduce high bias?
@ Increase model complexity : More expressive models (deep learning)

@ Add more informative data features : E.g. house features such as storage space, garden,
security system, etc (effective but time and money consuming).

® Boosting (lecture 3) : Adding weak high-bias learners produces strong learner with low
bias (requires fast computation of weak learners in practice s.a. small-depth decision
trees).

@ Add more training data or use data augmentation to reduce both bias and variance.

Xavier Bresson
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Best-case scenario
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Best-case scenario

@ Test/train errors vs. number of training data points

Loss 4

\ .
Ltraln

Number of training data points

Large #data
Loss(train) = Loss(test)
but high error for simple
model (high bias)

Small #data
Low train error and

high test error
(high variance)

Xavier Bresson

Loss | .

Complex model

trai

Small #data

Low train error and

high test error
(high variance)

Number of training data points

Large #data
Loss(train) = Loss(test)
and small error for
complex model (low bias)

Best case !
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Best-case scenario

@ The scenario in which supervised learning provides the best results
@ Highly expressive learner fp(x), such as deep learning models (e.g. Transformers)
@ Infinite number of training data — In practice, the more, the better
® A good example is ChatGPT/GPT3.5-4
@ Number of parameters features |0| = 175B (GPT-3)
@ Number of training data n = 300B tokens (GPT-3)

@ (Self-)supervised learning delivers excellent results.
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Best-case scenario

@ From a theoretical perspective, what does it mean when the training set D is infinite or very
large?

@ When D = { x ~ P(X) }, it implies that the learner fp(x) can successfully predict any data
point sampled from the probability distribution P(X).

o This means that fp(x) has captured the underlying patterns of the data distribution.

@ For ChatGPT, which has been trained on a large corpus of (almost) all English texts, the
question is whether it represents the best of what can be achieved with supervised learning?

@ In my opinion, yes.

@ Then, does it mean that ChatGPT has successfully passed the Turing test, i.e. designing an Al
capable of conversation on any topic while remaining indistinguishable from humans?

@ No, learning all linguistic patterns and knowledge is not sufficient to achieve human-level
intelligence. Although ChatGPT can address first-order logic tasks, it lacks the capability
for real-world complex reasoning, long-term hierarchical planning and it also produces
“hallucinations”, i.e. making things up.
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Conclusion
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Conclusion

Main goal of machine learning is to minimize test/generalization error.

Test error can be decomposed into three fundamental parts; bias, variance and data noise.
@ Bias reveals the limit of the learner to predict correctly with infinite training data.
@ Variance captures how much the learner can change.
@ Noise is the inherent uncertainty present in data.

Best case : Expressive model and large training set

Under-fitting is not an issue in practice : Easy to increase the model expressivity, e.g. from
linear to polynomial functions.

Over-fitting is one of the most important practical problems : Models s.a. deep learning are
usually too expressive and overfit easily, which prevents generalization.

@ How to reduce over-fitting for successful generalization? (lecture 6)
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