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Fitting the training set

Xavier Bresson 4

Goal : Fitting perfectly the training set 

Example : Regression task

Training set : 5 data points sampled from data distribution (blue curve) + small noise

Model : 4th order polynomial function, i.e. f𝛉(x) = θ! + θ"x + θ#x# + θ$x$ + θ%x%

Data
Target
Fit

Loss( f(x ∈ Strain ) ) = 0 / J 

Loss( f(x ∈ Stest ) ) = large / L 

/ train set
/ test set

/ f𝛉
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Another example

2nd Order 10th Order

L!"#$% 0.029 0.0001

L!&'! 0.120 7680.0

L(f(Strain)) = 0

L(f(Stest)) = large 

L(f(Strain)) = large

L(f(Stest)) = small 

Data
ℋ( Fit 
ℋ)* Fit        
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Under-fitting and over-fitting

Two problems encounter when training with a dataset. 

These problems are related to the degree to which the training set is extrapolated to 
apply to unknown data.

Under-fitting : The learner is not expressive enough. It will make error on the provided 
training set, i.e. unable to benefit from all information present in the training data. In 
this case, both the training error and the test error will be high.

Over-fitting : The learner is too expressive and will become over-specialized of the 
training data, unable to extrapolate to unseen data because of high variance. In this 
situation, the training error will be small and the test error high.
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Under-fitting, over-fitting and right-fitting

Right model
Right complexity

Right-fitting

Test error

Train error

Simple models 
Low complexity
Under-fitting

Over-fitting
Complex models 
High complexity

Close-fitting

Min over-fitting

Model complexity

U-shape 
curve
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Reducing over-fitting
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How to avoid under-fitting? (easy)

Increase expressivity of the learner.

How to avoid over-fitting? (difficult) 

Use regularization loss with cross-validation to estimate the regularization               
parameter

Early stopping with a validation set

Regularization with stochastic gradient descent (SGD)

SGD not only speeds up gradient descent technique by computing an approximate 
gradient with a mini-batch of data points, it also regularizes the predictive function 
w.r.t. its parameters 𝛉, allowing better generalization performance.

Theoretically, we should use mini-batch of a single data point for best 
generalization but it would be too slow. Using mini-batch of size e.g. 512 data 
points is the best trade-off speed and accuracy. 
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Can we reduce the hypothesis space ℋ"! to ℋ#?

We have  ℋ"! = 	f𝛉 x = 	θ! + θ"x + θ#x# + θ$x$ +⋯+ θ"!x"!	

and ℋ# = 	f𝛉 x = θ! + θ"x + θ#x#

Then ℋ"! = ℋ#	when θ$ = θ% = ⋯ = θ"! = 0

Data
ℋ( Fit 
ℋ)* Fit
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Let us recall the MSE optimization problem for the regression task :

min𝛉	Lℋ(𝛉) =
"
&
∑'("& (fℋ(𝐱 ' ) − y('))#  unconstrained optimization

Equivalent optimization problems :

min𝛉	Lℋ"
(𝛉) ⇔ min𝛉	Lℋ#$

(𝛉) such that θ$ = θ% = ⋯ = θ"! = 0

constrained optimization with hard constraints
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Let us relax the hard constraints, θj≥3 = 0 to let the optimization select the best value of	θj≥3 ∶

min𝛉	Lℋ#$
(𝛉) such that ∑'≥$

+ θ'# ≤ C	, C > 0

   constrained optimization with soft constraints

Hyper-parameter C	controls the amount of non-zero for the parameters θj≥3. 

Small value C implies most θj≥3 close to zero, i.e. ℋ"! = ℋ#. 

Large value C provides non-zero θj≥3, i.e. ℋ"!	≫	ℋ#.
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Relationship between hypothesis spaces :

ℋ"! = 	f𝛉 x = 	θ! + θ"x + ⋯+ θ"!x"!	

 
ℋ, = 	f𝛉 x = 	θ! + θ"x + ⋯+ θ"!x"! such that ∑'($"! θ'# ≤ C

ℋ# = 	f𝛉 x = 	θ! + θ"x + θ#x#	
						

= 	f𝛉 x = 	θ! + θ"x + ⋯+ θ"!x"!	 such that θ$ = θ% = ⋯ = θ"! = 0

ℋ is 
larger

ℋ is 
smaller

C > 0

C = 0

C	=	∞
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Let us consider the general constrained regularized problem : 

min𝛉	L	(𝛉) such that ∑'(!+ θ'#= 𝛉-𝛉 ≤ C	, C > 0  (1)

There exists an equivalent unconstrained optimization problem (easier to solve) :

min𝛉	L	(𝛉) + λ 𝛉-𝛉 , λ > 0  (2)

For each value C, there exists a value λ such that (1) is equivalent to (2) (Lagrange 
multiplier).

Additionally, C ∝ 1/ λ



16

λ	= 0
C = ∞

Over-fitting

λ	= 1,000
C = 0.001

Under-fitting

λ	= 10
C = 0.1

Right-fitting

λ	= 100
C = 0.01

Under-fitting

Loss regularization
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Study the influence of the regularization parameter λ on the solution of 

min𝛉	L	(𝛉) + λ 𝛉-𝛉   ⇔  min𝛉	L	(𝛉) s.t.	𝛉
-𝛉 ≤ C	

Example : Regression task with 4th order polynomial function
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Normal equations for linear regression with loss regularization : 

Original MSE loss :

min𝛉	L(𝛉) =
1
nB
'("

&

(𝛉-𝐱 ' − y('))#

	 =
1
n 𝐗𝛉 − 𝐲 #

Set gradient of loss to zero :

∇L	 = ./
.𝛉
= 𝟎 ⇒ 𝐗- 𝐗𝛉 − 𝐲 = 𝟎

⇒	𝛉 = 𝐗-𝐗 1"𝐗-𝐲

Regularized MSE loss :

min𝛉	L(𝛉) =
"
&
𝐗𝛉 − 𝐲 # s.t.	𝛉-𝛉 ≤ C	

⇔ min𝛉	L(𝛉) =
"
&
𝐗𝛉 − 𝐲 # + λ 𝛉-𝛉 

Set gradient of loss to zero :

															∇L	 = ./
.𝛉
= 𝟎 ⇒ "

&
𝐗- 𝐗𝛉 − 𝐲 + λ𝛉 = 𝟎

⇒	𝛉 = 𝐗-𝐗 + λn𝐈 1"𝐗-𝐲
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Understanding the solution of normal equations :

min𝛉	L(𝛉) = LMSE(𝛉)	 s.t. LREG(𝛉) ≤ C 

  with LMSE(𝛉)= "
&
𝐗𝛉 − 𝐲 #	and LREG(𝛉)= 𝛉-𝛉	= 𝛉 #

Let us plot the landscape of the LMSE  loss and the LREG  loss.
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Landscape of LMSE  loss : LMSE(𝛉)= "
&
𝐗𝛉 − 𝐲 #

Quadratic and convex function.

Let us suppose we have two parameters, i.e. 𝛉=(θ1, θ2), for visualization.

𝛉&'(

θ)

θ*

{	𝛉 s.t. LMSE(𝛉)= constant }
a.k.a. level set

∇LMSE(𝛉
#)

𝛉#
𝛉&'( =	argmin𝛉 LMSE(𝛉)= )

+
𝐗𝛉 − 𝐲 *

θ)θ*

LMSE(𝛉)
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Landscape of LREG  loss : LREG(𝛉)= 𝛉-𝛉 = 𝛉 #

Quadratic and convex function.

θ)

θ*

{ 𝛉	s.t. LREG(𝛉)= 𝛉,𝛉 = C }

L2-sphere

C

{ 𝛉	s.t. LREG(𝛉)= 𝛉,𝛉 ≤ C }

L2-ball

∇LREG(𝛉
#)=2𝛉#

𝛉#
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Minimizer of the total  loss : 𝛉∗ = argmin𝛉	 LMSE(𝛉)	 s.t. LREG(𝛉) ≤ C

     ⇔  𝛉∗= argmin𝛉	 LMSE(𝛉) + λ LREG(𝛉)

θ)

θ*

𝛉&'(

Gradient of loss at 𝛉∗ :
∇	(LMSE(𝛉∗) + λ LREG(𝛉∗)) = 0 
⇒ ∇LMSE(𝛉∗) = -λ∇LREG(𝛉∗)

Gradients of LMSE and LREG	are aligned 
(in the opposite direction) at the 

solution.

𝛉∗ ∇LREG(𝛉∗)
∇LMSE(𝛉∗) 

-λ∇LREG(𝛉∗)

Solution 𝛉∗ is as close as the MSE 
solution 𝛉345	as allowed by the L2-

ball constraint 𝛉 # 	≤ C.

C
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The L2-ball regularization can be generalized to Lp-ball, p ∈ [0, +∞].

min𝛉	 LMSE(𝛉)	 s.t. 𝛉 6
6 ≤ C   ⇔  min𝛉	 LMSE(𝛉) + 𝛉 6

6 where 𝛉 6 = ∑7("+ θ7 6
#
$

L2-ball/L2 regularization, a.k.a. weight decay

Advantages : Strictly convex, differentiable, fast optimization, robust w.r.t. 
perturbation.

Limitations : Although θ7	values are minimized, solutions are dense, i.e. θ7	> 0.             
This means no feature selection in e.g. f𝛉 x = 	θ! + θ"x + θ#x# + θ$x$ +⋯+ θ"!x"!,                      
as all data features are used for prediction. 

L1 regularization

Advantages : Convex (but not strictly), fast optimization algorithms exist, robust w.r.t. 
perturbation, solutions are guaranteed to be sparse meaning feature selection, as only a 
few data features are used for prediction.

Limitations : Not differentiable at the origin.
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The probability to have a 
solution on diagonal edges is 

almost zero, most solutions lie 
on a tip of the L1 ball.

The probability to have a 
solution on the axes is almost 
zero, most solutions lie on the 

quadrants of the L2 ball.

Loss regularization

Xavier Bresson 23

MSE + L2 regularization vs. L1 regularization 
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Lp regularization, 0<p≤1

Advantages : Very sparse solutions, better than L1 regularization.

Limitations : Non-convex, non-differentiable, solution depends on initial condition.

Lp regularization, p = ∞

Never used in practice (not stable)
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Lp regularized loss for any predictive task :

min𝛉	 LTask(𝛉)	 s.t. 𝛉 6
6 ≤ C   ⇔  min𝛉	 LTask(𝛉) + λ 𝛉 6

6

where LTask(𝛉) =
"
&
∑'("& ℓTask(f𝛉(𝐱 ' ), y('))

and 𝛉 6
6 =∑7("+ θ7 6
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Summary

Adding a regularization loss, a.k.a. regularizer, can reduce over-fitting.

With the right amount of regularization, controlled by the hyper-parameters λ (or C), 
the regularizer can decrease the complexity of the predictive model, i.e. its variance, 
without affecting the bias. 

With no regularization, the model over-specializes to the training data, i.e. high 
variance.

With too much regularization, the model becomes too simple, i.e. high bias.
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How to choose λ, i.e. the right amount of regularization? 

Regularization 
parameter C ∝ 1/ λ

Right model
Right complexity

Right-fitting

Test error

Train error

Simple models 
Low complexity
Under-fitting

Over-fitting
Complex models 
High complexity

Close-fitting

Min over-fitting

U-shape 
curve
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Cross-validation
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We need a surrogate of the test set to estimate the regularization parameter λ which 
identifies the right model complexity that minimizes the test error. 

The simplest operation is to split the training set into two datasets; a smaller training set 
and a validation set. 

Train

Test

Train

Test

Validation

+
Never use the 
test set during 

training!
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Cross-validation
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Give a training set S of 𝑛 data points, S is split into

A smaller training set Strain of 𝑛 − 𝑚 data points.

A validation set Sval of 𝑚 data points. 

How to use Sval to estimate the regularization value λ?  

Train
S 

𝑛 data

Train
Strain

𝑛 − 𝑚 data

Validation Sval
𝑚 data

+
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Use p	hypothesis/values to estimate λ :   

We consider p values λ", … , λ6.

Use Strain to learn f8%
1 for each λ	value.

Evaluate f8%
1 using Sval	∶ L9:; f8%

1 	for	 j = 1, … , p

Select value	λ∗ = λ' with smallest	L9:;

S
(size 𝑛)

Strain
(size 𝑛 − 𝑚)

Sval
(size 𝑚)

f8#
1 L9:;(f8#

1 )

f8∗

ℋ" / λ"

ℋ6 / λ6

ℋ# / λ# f8'
1

f8(
1

L9:;(f8'
1 )

L9:;(f8(
1 )

After selecting λ∗, 
learn f using all 
training points. 

Choose 
λ∗	that

	min	 L'()(f*!
+)
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How robust is the estimation of the validation loss L9:;	?

Suppose that

ℓ(f𝛉(x), y) is the loss value for the data point (x,y)

𝔼(x,y)∼U ℓ(f𝛉(x), y) = L<=><(f?), which is the mean error of the predictive function f? 
applied to U, the set of all unseen points by f?	during training, i.e. Stest and Sval.

Var(x,y)∼U ℓ(f𝛉(x), y) = σ2, which corresponds to the variance of the prediction error.

L9:; f? = "
@
∑A("@ ℓ(f𝛉(x A ), y A ) is the validation loss. 
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Then, we have

𝔼(x,y)∼U [	L9:; f?  ] = "
@
∑A("@ 𝔼(x,y)∼U [ ℓ(f𝛉(x A ), y A )	] = L<=><(f?)

Var(x,y)∼U [	L9:; f?  ] = "
@'∑A("

@ Var(x,y)∼U [ ℓ(f𝛉(x A ), y A )	] = "
@' . m σ2 = σ2

@
 ⇒ Std = O "

@

L9:; = L<=>< ±	O
"
@

 

Consequence : A small validation set does not provide a good estimate of the test error
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In practice, we have two situations

Big datasets 

Modern situation, training sets are large, e.g. millions of data points. 

We can use a small fraction, e.g. m =	100,000 data points as validation set. 

The validation set will approximate well the test set distribution.

Small datasets 

Situation before 2012 or today for highly expensive or challenging datasets to collect 
(e.g. nuclear fusion) or for protected datasets (e.g. medical data). 

For limited datasets, e.g. 𝑛 =	1,000 data points, it is not possible to get 
simultaneously good estimates of the predictive function and the validation set. 
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For small datasets, we have 2 opposite cases

Recall : Model f is trained on the full training set of 𝑛 data, and f1 is 
trained on the 𝑛 − 𝑚 training set

Case #1 : Small number 𝑚 of validation data / large number 𝑛 − 𝑚 of 
training data 

Advantage : L<=><(f) ≈ L<=><(f1) as f1 is well estimated. 

Limitation : L<=><(f1) ≠ L9:;(f1) as the validation set is too small.

Case #2 : Large number 𝑚 of validation data / small number 𝑛 − 𝑚 of 
training data 

Advantage : L<=><(f1) ≈ L9:;(f1) as the validation set is large 
enough.

Limitation : L<=><(f) ≠ L<=><(f1) as f1 is badly estimated.

How to reconcile the two cases?

Train
𝑛=90

Test

Validation, 𝑚=10

Train, 𝑛=10

Test

Validation
𝑚=90
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k-fold cross-validation technique :

Split the original training set into k parts, i.e. each fold has 𝑛/k 
data points.

Repeat for all folds : Train on k-1 parts and leave one part out as 
validation set.

Advantages

Each data in the original training set will be used as a validation 
data. 

For each fold, we have a large training set to train a good learner,   
i.e. L<=><(f) ≈ L<=><(f1).

We also have a good estimate of the validation error by averaging  
the validation error over all folds, i.e. L<=>< ≈ meanfolds	L9:;(	f

1).

Strain

Sval

10%

10%

10%

10%10%

10%

10%

10%

10%
Strain

Strain

StrainStrain

Strain

Strain

Strain

Strain

Train
S

+
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Example : Model selection using cross-validation

Models : Linear and constant models

Original training set S : 𝑛	= 3 data points 

Cross-validation value : 𝑚	= 1 (validation set Sval), 𝑛 − 𝑚 = 2 (training set Strain)

Cross-validation shows that the 
constant model is a better fit than 
the linear model for this dataset.

L,B =
1
3 (ℓ" + ℓ# + ℓ$)

ℓ1

ℓ2 ℓ3

ℓ1

ℓ2

ℓ3
Constant 

model
L,B = 4.3

Linear 
model

L,B = 8.2



38

Cross-validation

Xavier Bresson 38

In practice

Hypotheses are an arbitrary set of choices, e.g. choices of predictive models {f𝛉}, choices 
of parameter values {λ}, etc.

Note that parameters s.a. the number of layers in neural networks is not differentiable, 
i.e. gradient descent cannot be used to select their optimal value.

For very small datasets, we cannot afford to leave out more than a single training data 
for validation, so we use 𝑘	= 𝑛 folds (i.e. 𝑚 = 1 validation point), a.k.a. Leave One Out 
Cross Validation (LOOCV).

Telescopic search is a standard two-step approach to determine parameter values.

First step : Find the best order of magnitude for λ, e.g. λ = 0.01,0.1,1,10,100.

Second step : Do a fine-grained search around the best λ found in first step. For 
example, if 10 is the best performing value from first step, then try out 
λ=3,6,10,30,60,90.
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Summary

Cross-validation is a sound technique, which works well in practice for different 
hypotheses and different sizes of training set.

The validation set is a surrogate of the test set but its capacity to represent well the 
test distribution depends on its size. 

Best-case scenario : Training and validation sets are large enough.

Worst-case scenario : Either training or validation set is small.

Then k-fold cross-validation is required.

Even in the best-case scenario, it is still required to fully train the learner for each 
hypothesis, which can be time consuming, e.g. deep learning.

Can we develop a faster regularization technique to avoid over-fitting?
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The fastest regularization technique to avoid over-fitting.

Stop optimization after T number of gradient steps, when the validation error starts 
increasing, even if optimization has not converged yet.

Not really satisfying from an optimization theory perspective but it works well in practice.

One of the most common regularization techniques in deep learning to control over-fitting.

Right-fitting

Test error

Train error

Under-fitting Over-fittingClose-fitting

Min over-fitting

U-shape 
curve

Number of 
gradient steps 
(iterations)

Validation error

T
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Test error

Train error

Right-fitting
(early stopping)

Under-fitting Over-fittingClose-fitting

Min over-fitting
(interpolation point)

Model 
complexity

U-shape 
curve

Test error

Right-fitting
(early stopping)

Under-fitting Over-fittingClose-fitting

Min over-fitting
(interpolation point)

Variance

Bias2

Classical machine learning (ML) 

Bias-variance trade-off curve w.r.t. model complexity

U-shape curve for test/generalization error

U-shape 
curve

Model 
complexity
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How to interpret the U-shape bias-variance trade-off curve? 

In classical ML theory, when model complexity increases, variance and generalization 
error also increase. 

However, (deep learning) practitioners have observed an opposite phenomenon !

When model complexity increases, generalization error decreases 🙃

This empirical result contradicts the conventional theory and shows a significant gap 
between theory and practice.

To reconcile this inconsistency and better understand the properties of modern large ML 
models, a new learning mechanism known as “double descent” was introduced in 2018.
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Test error

Train error

Right-fitting
(early stopping)

Under-fitting Over-fittingClose-fitting

Under-parametrized function Over-parametrized function

Min over-fitting
(interpolation point)

Classical ML Modern ML

Double descent 
(min test error)

1 10210110-110-2 Model complexity
Dataset size =

# parameters 
# data 

Double descent curve w.r.t. the ratio between the model complexity and the dataset size  
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Test error

Right-fitting
(early stopping)

Under-fitting Over-fittingClose-fitting

Under-parametrized function Over-parametrized function

Min over-fitting
(interpolation point)

Classical ML Modern ML

Double descent 
(min test error)

1 10210110-110-2 Model complexity
Dataset size =

# parameters 
# data 

Double descent curve for bias and variance

Variance

Bias2
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New learning curves 

Let p be the number of parameters of the learner and n the number of training data 
points.

Under-parametrized functions are defined by p ≪ n (classical ML)

Over-parametrized functions are defined by p ≫ n (modern ML)

We also introduce the interpolation point, i.e. p = n, the minimal capacity needed to 
overfit the training set.

In the classical ML paradigm, the optimal test error is at the minimum of the bias-variance 
trade-off and is captured in practice with early stopping using a validation set. 

Classical ML establishes the existence of a right balance between under-fitting and over-
fitting. Beyond this balance point i.e. over-fitting, generalization fails.

In the modern ML regime, over-fitting is actually considered beneficial, and over-
parametrized functions with high model complexity lead to successful generalization.
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Understanding the second descent (new learning mechanism)

When p=n, the model possesses just enough parameters to over-fit all the training data. 
However, it also exhibits a significant variance, making it unable to generalize 
(standard result).

When p≫n, the model has much greater parameters than the number of training data. 
In this regime, the learner f𝛉(x) continues to over-fit but critically, the L2 norm of its 
parameters 𝛉 # is significantly minimized by SGD, effectively reducing the model 
capacity (regularization effect).

Space of functions that overfit              
and possess high capacity 

(larger space ⇒ more functions ⇒ 
lower 𝛉 *	value than at interpolation 

point)

Space of functions 
that just overfit 
(interpolation 

point)

Function with the 
smallest norm

𝛉 *	= 8.7

Function with the 
smallest norm

𝛉 *	= 0.3
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SGD is critical in deep learning for several reasons 

It helps to leave saddle points in the loss landscape during optimization.

It finds better local (or even global) minima, allowing successful generalization.

It speeds up computational time (by updating the parameters more often).

It is necessary for the double descent phenomenon to emerge. 
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Illustration

1

Test error

Right-fitting
(early stopping)

Under-fitting Over-fittingClose-fitting

Under-parametrized function Over-parametrized function

Min over-fitting
(interpolation point)

Classical ML Modern ML

Double descent 
(min test error)

10210110-110-2 Model complexity
Dataset size

Variance
Bias2
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Farewell to early stopping?

Do we “simply” need over-parametrized functions, train them, and achieve minimal error?

Unfortunately, the double descent regularization only emerges with exceedingly large networks.

The critical threshold to enable double descent is p* = O(n.k), where k is the number of 
classes. 

Computer Vision

ImageNet : n = 106 (1.3M images), k = 103 (1k classes) ⇒ p* = 109                             
ResNet-152 has p = 60.2M (107) parameters ≪ 109

ViT : n = 109 (4B images), k = 104 (30k classes) ⇒ p* = 1013                                          
ViT-22B has p = 22B (1010) parameters ≪ 1013

NLP : n=1011 (300B token data), k=104 (35k unique tokens) ⇒ p* = 1015                                        

GPT-3 has p = 175B (1011) parameters ≪ 1015

At present, practitioners use early stopping as their primary regularization technique. 

By design, early stopping does not lead to the double descent phenomenon.
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Some key observations

The double descent learning mechanism is applicable to both non-linear and linear ML 
models. 

This includes techniques such as decision trees, kernel methods, and deep learning. 

The phenomenon is independent of the nature of the datasets involved.

One important ML principle is that more data provides better results. 

Both theory and empirical experiments align on this principle 🙂

However, this trend continually increases the critical threshold p* of required network 
parameters for the double descent phenomenon to manifest.
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Admin 

Fitting the training set

Reducing over-fitting

Loss regularization

Cross-validation

Early stopping

Double descent

Conclusion
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Over-fitting and high variance are among the most common issues in machine learning.

Regularization techniques

Stochastic gradient descent, the smaller the batch, the better but also slower.

Loss regularization and cross-validation to estimate the right amount of regularization.

Early stopping to terminate optimization before over-fitting. 

Double descent with over-parametrized functions.
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