CS5242 : Neural Networks and Deep Learning

Lecture 7 : Attention Neural Networks

Semester 2 2024 /25

Xavier Bresson

https://twitter.com/xbresson

Department of Computer Science
National University of Singapore (NUS)

NUS

National University
of Singapore

Xavier Bresson

https://twitter.com/xbresson

Outline

@ Language Models

@ Memory Networks

@ Transformers

@ Language Model Transformers

@ Sequence-To-Sequence Transformers
@ Transfer Learning

@ Conclusion

Xavier Bresson

Outline

@ Language Models

Xavier Bresson

Language models

@ Language model predicts the next word given a context window.

problem in NLP.

“Yesterday I went to the
beach and I saw a ...”

Input:
Sequence of words

Xavier Bresson

o~

4)

Neural network

- J

elephant
tiger
dolphin
car

boat

cooking
with
wave
the

is

Output:

Probability distribution over
the dictionary/vocabulary

25%

Recurrent neural networks

® Data structure
@ Input is an ordered sequence.
@ Input length and output length can be variable.

@ RNNSs are designed for sequences.
@ They learn a representation of sequence independently of its length.
@ Recurrence formula summarizes the sequence with a vector h :
h « fw(h,x)
@ Weight sharing across time (translation invariance)

@ They learn to keep or ignore information in the sequence for the downstream task.

@ Gating mechanism to forget /remember the past or the new input :
o®h

Xavier Bresson

Recurrent neural networks

@ Performance

@ Significant but not a breakthrough.

@ Dominant in NLP for Machine Translation (MT), Q&A, summarization up to 2018.

@ Limitation
@ RNNs cannot learn long-term dependencies (no more than 50 steps).
@ Hard to train because they are non-linear dynamical systems
@ Any small perturbation can amplify or vanish.

@ Slow to train because of their sequential nature (due to recurrence mechanism).

@ Important limitation when training on large-scale datasets.

Xavier Bresson

6

Xavier Bresson

Memory Networks

Outline

Memory networks

@ How do these models ?
@ Let us consider a simple example from the bAbI dataset (Meta 2015).
@ This dataset is used to evaluate simple reasoning property of models.
e Example :

@ Joe went to the kitchen

@ Joe picked up milk

@ Joe went to the bathroom

@ Joe put down the milk

@ Joe went to the bedroom

@ Question : Where is the milk?

@ Answer : ---

Xavier Bresson

Memory networks

® Memory networks (Weston-Chopra-Bordes, Meta, 2014 and Sukhbaatar-Szlam-Weston-Fergus,
Meta, 2015) are designed to response to the questions with word matching :

@ Joe went to the kitchen

@ Joe picked up milk
o J

3
Q El ut down thgl) j

@ Answer : bathroom

room

Time

€€ e e e e e e e e

@ This matching process is also called multi-hop attention.

@ Multi-hop attention is a mechanism that performs multi-step reasoning.

Xavier Bresson

Multi-hop attention steps

) memory layers :

Joe went to the kitchen

Joe went to the kitchen

Joe went to the kitchen

Joe went to the kitchen

Joe went to the kitchen

Xavier Bresson

Answer

!

. Joe picked up milk. Joe went to the bathroom. Joe put down the milk. Joe went to the bedroom

(4)

. Joe picked up milk. Joe went to the bathroom. Joe put down the milk. Joe went to the bedroom

3)

. Joe picked up milk. Joe went to the bathroom. Joe put down the milk. Joe went to the bedroom

(2)

. Joe picked up milk. Joe went to the bathroom. Joe put down the milk. Joe went to the bedroom

. Joe picked up milk. Joe went to the bathroom. Joe put down the milk. Joe went to the bedroom

. Query

. Query

. Query

. Query

(1)

. Query

: Where is the milk?

: Where is the milk?

: Where is the milk?

: Where is the milk?

: Where is the milk?

Layer 4

Layer 3

Layer 2

Layer 1

Layer 0

Xavier Bresson Value vectors

Implementation

Attention Mechanism

Write (q changes at each memory write)

Task
response

—

Input sequence
of words

Weighted memory Ve
| e Y o) — | e
i After
multiple
I {a(), e an_l}, a; € R, layers/hops
n—1
Attention 1 Loop process/
weights w/ Z i = Multi-hop attention
Softmax 1=0 layers
T T
[{afu o)™ afic (o))
T v Memory/Query
K\x; eR
‘ q4fr (i) A i
Read .
Learnable memory H1d(?en state .
; T controlling/learning
paraine ers attention mechanism
d
{F&(@0), s K (Tn-1)}, fKc(3;) € R'™
Key vectors \
1xd
Learnable parameters {x()’ Y l’n—l}, T = fE <w1) R — {w(), Y wn_l}
o 1xd Word Learnable
o {fV (x0)7 e fV (xn—l)}v fV (332) c R~ embeddings parameters

Xavier Bresson

Input sequence of words :

Continuous representation/
word embedding :

Hidden features :

K =
Key

fr (o)

fK(a;n—l) _

Repeat K times :

Output :

c Rnxd

Formalization

q c Rl X d
Query

s = MLP(q) € RV

{’wo, ...,wn_l},wi < {O, Vo= 1}

{20,y Tn—1}, i = fr(w;) € R

V =
Value

a <+ Softmax(¢K') € R**"
q + aV = Softmax(¢K*)V

fv(xo)

(@) |

c Rlxd

c Rnxd

Properties

@ This model is seen as differentiable memory computers, i.e. memory operations read and write
can be differentiable and thus be used with backpropagation.

@ This network can update its memory by stacking multiple-hop attention layers to perform
multi-step reasoning.

@ This model is based on the principle that intelligence requires an adaptive long-term memory,
unlike RNNs which is limited to short-term memory.

@ This technique is a precursor of Transformers.

Xavier Bresson 13

Xavier Bresson

Transformers

Outline

Limitations of memory networks

o were promising, but not ground-breaking.
@ Transformers designed the first efficient version of attention networks !
@ Transformer improvements over memory networks :

@ Multiple queries (one per word)

@ Multi-head attention mechanism (more learning capacity)

® Residual blocks (better backpropagation)

Xavier Bresson

Self-attention mechanism

@ Input set (continuous representation) :

T
{xo,...,a}n_l}, X = ERnXd
@ Initiate hidden state :
H =X e R4

@ Repeat K layers :
P Y H « Softmax(QKT)V e R™

Self-attention layer

Differentiable dictionary =~ ——vw HWE c rnxd : c Raxd
Dict is a standard structure in CS v d I d
Dict=(Key,Value) HW" e R""%, R
HW® e R c R4
Query the dictionary — 7

for a key and its value. \ Learnable parameters
Xavier Bresson 16

Xavier Bresson

Context-to-word representation

From to context-to-word representation :

H + Softmax(QK™)V ¢ R"*¢

The new data representation is a sum of all input data weighted by the
pairwise matching (or attention) scores.

The subset of data with non-zero attention scores forms the context.

The attention mechanism allows to dynamically change the word
representation according to its context.

Context-to-word is a powerful idea in NLP because a word may have
different meanings, that can only be clarified in a particular context :

@ The vase broke. The news broke. Sandy broke the world record. Sandy
broke the law. We broke even. The burglar broke into the house. Etc.

T

Attention/

Transformer layer

T

Q

T

K

T

\Y%

Softmax(QKT)V

-J

Computational cost

M
emoty RNN cell
vector /
— — | ¥ — — —_—
he drives the car ConvNet cell
< > Convolution/Sliding pattern

AR T/T r

he drives the car
/ < > v

Sequence length L

Patten 7~ 7
centered at Same pattern
word “drives” centered at

word “the” ..
Kernel size k Pairwise /

CNNs matching

scores

Xavier Bresson

he

Self-Attention cell

Sum of inputs weighted

drives

by matching scores

AR
¥

ANNs

the

f

car

Xavier Bresson

Computational cost

RNN layer :
ConvNet layer : O(L.d2.k) Seems bad !
Transformer layer : O(LZT(
with L : sequence length, d : hidden feature size, k : kernel size
Attention networks have actually less parameters to learn as long as L <d !
@ Example1:L=100,d=1000,k=3
RNN: O(108), ConvNet: O(3.108), Transformer: O(107)
¢ Example 2 : L=1000, d=1000, k=3

RNN: O(109), ConvNet: O(3.109), Transformer: O(109)

19

Xavier Bresson

Language Model Transformers

Outline

20

Xavier Bresson

Language model transformers

Given a sequence of words, .

This task to be successful requires a word
representation that can be changed with different
contexts.

Transformers offer expressive word representation
with its word-in-context property.

A LM transformer is composed of three layers :
@ Word embedding layer
@ Attention layer

@ C(lassification layer

Positional
Encoding

Output

elephant

tiger

probability

for next word

cooking
with
wave
the

is
Softmax

%

MLP

t

® B

Masked
Multi-Head
Attention

E |
LayerNor:

=)

o4

§0

Word
Embedding

Word
Embedding

t

Sequence of context words

“Yesterday I went to the

beach and I saw a”

t

x L

Transformer

locks

Positional
Encoding

Current word “a”
(that queries the
next word)

Word embedding layer

elephant
tiger

Output boat
probability

° (dictionary of 10,000 words) are for next word g

@ embedded into a linear space. , %

@ represented by one-hot vectors and then

@ This is the same input embedding as in RNNs :

MLP

@ PyTorch nn.Embedding|()
@ ot

Masked

Multi-Head
Attention

l |
l |
1 I T
I g 1 g 2 g 3 g4 cee g9 @ I LayerNorm_]
| N | W
I U ’ U T U T U T U T U T I Positional Positional
I d I Encoding Encoding
| Yesterday I went to saw a I o T oot gl
l w wo w3 wy Wi—1 Wy I I = — I
N % / I I t f I N World
I Sequence of context words Query I I Sequence of Query I Embedding
I I | context words word I Layer
e o oo oo Doe Dee DEE DEE DEE DEE DEE DS DEE NN NN NS SN NN I SN N NN BN DS DEE DEE D B D D Das s B By 0009090909090 020 0uE -a -a =a = = =S = = = = -
{w17) ’UJt} Wt

Xavier Bresson 929

Interpretation

@ Word embeddings convert discrete words into vector representations, where similar
vectors indicate similar meanings.

@ In other words, this process groups semantically related words into clusters — such as countries,
sports, or professions.

@ Moreover, word embeddings capture relationships between words, enabling analogies like
country — capital or male — female, to be represented through consistent vectors.

Cluster of
countries

Cluster of d .
capitals Rd 1 R

spain @ - -
-

Italy ._ -

> @ Madrid
~=> @ Rome
——————— o . Berlin

Germany @-- walked

Turkey . Ss=

. A" C)' swam
——————— > king FaE
S walking ;7.

queen \”*
i - = ol o .
apan . \ / O

/ = e > . Hanoi

swimming

country — capital male — female present participle —

. st tense o
Xavier Bresson ba 23

Multi-head attention

elephant
tiger

Output boat
probability
° for one MHA layer : for next word n,
@ PyTorch nn.MultiheadAttention())
Query Key Value i _,?
h=MHA(q, K,V) e RY ¢ e R K € REX YV ¢ REXD 1
We consider [LayerNorm |
= HH: HAh(q K V) WO WO c RdXd sequence of L words x L
h, 1))) / 6 Transformer
= Blocks
Concatenation . d Lxd —_——t o L = L L - -
operation with q=g; €< R) K=V= {gt7 Bt—1y- gt—(L—l)} c R l g I Multi-Head
I Attention I A tt t .
| X | (Nf; :)m
T
hK — o e] e =
HA,(q, K, V) = Softmax(q—h) vV, € RYH Do)
Jd/H | |
with gn = gW7 € RYH We ¢ Rx/H i Q0 = f
Kh — KW}{(c IRnXd/I‘I7 W}{(c RdXd/H Embe;ding Embe;dmg
Vi, = VW}‘L/ c RnXd/H, W}‘L/ c RdXd/H Sequence of Query
context words word

Xavier Bresson 24

Head attention layer

@ Equation of a single head attention layer :

K
HA(q, K, V) = softmax(q—)v eR¥? g e R K e REX V7 ¢ REXd

T

Vd

Attention to the
context words

Prediction of
the next

Xavier Bresson

Jan\ Jan\ Jan\ Jan\ yamn\ Jan\ Y\ Jan\ Jan\ Jan\ yan\ JaR 5
Ny -/ Ny Ny -/ Ny / Ny -/ Ny / N »
Yesterday I saw dolphin Words in
document

bt 11t

8t—(L-1) 8t—(L—2) 8t—1

v

pd
~

Sequence length L

[N}
ot

Transformer block

elephant
tiger

dolphin

Output boat
probability
@ Transformer or attention block layer (2017) : for next word eing |

the

iL = LN (q + MHA(g, K, V)) < Rd [Linear |
h = LN(h + MLP(h)) € R? _@
\ . . 1
Layer normalization Residual connection
z-scoring with learnable parameters @
nn.LayerNorm/() i % Transformer
Attentio‘nr B]_OCk
@ In 2019, LayerNorm (LN) was applied before non-]
linear operations : Positional% ?@Posiﬁonal
h = q+ MHA(LN(q),LN(K),LN(V)) € R? Babesding Babeiding
- =]]
h=h + MLP(LN(h)) Rd Sequence of Query
context words word

Xavier Bresson 26

LayerNorm and residual

Z-scoring

IN(g) =a® (1=F) 1 b e R

o

with 1 = Mean(q) € R,o = Std(q) € R, a,b € R?

® Residual/skip connection :

r — |+ fw() | —
Forward pass

oL OLOy
or Oy Ox) fw()

Y Backward pass

= —(Id zJw

7 (Id + Va fu)

OL OL

a_y a_vxfw

\ No vanishing gradient
for residual connection

Xavier Bresson

y=2x+ fw(x)

oL

connection

elephant
tiger
dolphin

Output boat

probability
for next word

Toof e o
t

—LayerNorm

Masked
Multi-Head
Attention

E |
LayerNorm l
[y ey

Positional
Encoding

cooking
with

wave
the
is

1
1N Residual
Connection

x L
Transformer
Blocks

Layer
1 &7 Normalization
J

Positional
Encoding

Sequence of

context words word

Query

27

Positional encoding

elephant
tiger

Output boat
probability
for next word

cooking
with

@ Transformers are designed to process but
items in a set are not ordered. e

@ This is an issue for NLP tasks.
@ An additional ordering feature is required to inject ' —»%9
causal ordering in the attention mechanism. —
@ Two classes of Positional Encoding (PE) : 1
@ Learnable vs non-learnable PE

x L
Transformer
9 Blocks

Masked
Multi-Head
Attention

E |
LayerNorm l

® Learnable PE :

® Embedding of discrete ordering index 0,1,2,3,...,L-1,
with L is the sequence length.

\

/

® 'T'wo issues :

. o I Positional Positional
@ Requires to know the maximum L value among EcongTé? |7 Bncoding |
all training sequences. Brbeiding s
® Some test sequences may have lengths not f f
. . Sequence of Query
present in the train set. context words word

Xavier Bresson

Positional encoding

® Non-learnable PE :
@ Continuous ordering with sin and cos functions.
@ Advantages :
@ No training necessary
@ No need to know the maximum length in the train set.

@ Test sequences may have lengths not present in the train set.

PE,; € R? is defined as

d
- AR 10, 000 27
sin(27 f;t) if 7 is even, with f; = — § .
7T 0.00

1.00

0.75

P = { cos(27 f;t) if i is odd,

with |[PE, — PEy||y o« Dist(t,#') = [t — '] € Ry B

-1.00

because these PEs are the eigenvectors of the line.

Xavier Bresson 29

@ The

Xavier Bresson

Classification layer

is a standard linear layer to
compute the scores of the next word in the
sequence, followed by a Softmax function to
produce the probability vector.

/
s=LL(h) € RY

p = Softmax(s) € RV

Linear layer

elephant
tiger

Output boat

probability
for next word

is

Classification
Layer

Masked
Multi-Head
Attention

E |
LayerNorm l

1

Positional
Encoding

cooking
with
wave
- s s thees

x L
Transformer
Blocks

Positional
Encoding

‘Word ‘Word
Embedding Embedding
Sequence of Query
context words word

Efficient training

@ It is possible to train in parallel the prediction of the next words in a sequence.

@ For this, we need to hide the future words with a masked attention matrix.

@ Here is the process :
@ Step 1 : Compute the attention matrix.
@ Step 2 : Mask next word to predict.
@ Step 3 : Softmax calculation.
@ Step 4 : Calculate weighted linear combination.

T

Mask-HA(Q, K, V) = Softmax(Qj%

with Q, K,V € RF¥*4 Mask € RI*E,

1 if attention between ¢ and j
—o0 if no attention

® Mask) V,

and Mask;; =

Xavier Bresson

Attention matrix

@ Step 1: Compute the attention matrix A, i.e. A;; is the dot product between word vector g;

and word vector kj.

@ Two similar vectors will receive a high value and inversely, two dissimilar ones a low value.

Xavier Bresson

Yesterday

Saw

Yesterday 1 . saw a
t t i i —> .
— = J
+ | ¢k qk qk qk qk
T | gk qk qk qk qk
A=QKT e REXD
+ | ¢k qk gk qk qk g
Aij = q; kj eR
+ | ¢k qk qk qk qk
+ | ¢k qk qk qk gk

o
[\

@ Step 2 : Mask next word to predict

Yesterday

Saw

Xavier Bresson

Yesterday I

Saw

Masked attention

A=QK" e R"*F

. a
i t t t : >j
+ |gk qk qk qk qk
T |dk gk qk qk qk
T |¢k qk qk qk qk
+ |gk qk qk qk qk
- gk qk qk qk qk
, —

Hide these words during
next word prediction

Yesterday I sav/ a

. | 7 7z
Yesterday | 1 —00 —0 /oo —00
I 111 -0 —00 —0
© I
Pointwise
ltiplicati
multiplication saw 41]
a T|1 1 1 1 1
v -

Maskij =

1 if attention between ¢ and j
| —oo if no attention

w
w

Masked attention

@ Step 3 : Softmax calculation

Yesterday 1 saw a Yesterday 1 saw a
Yeste% day = o0 \ Yesterday - 0
I 1 I A
Softmax 4 = 1
saw + saw T
\ a T / a +10.3 0.1 0.1 0.2 0.3
.\/ \/ — —
i .
! Attention probability
between “saw” and
KT “yesterday”, “I”,...”saw”.

combination

Softmax,qw (

Updated

Step 4 : Calculate weighted linear Yesterday
T I
— ® Mask)V c RE*d
Vd
sSaw
a
Yesterday I saw a
Yesterday < 0
I -
saw
a +/03 01 01 02 03

word vectors

d; do

[Yesterday

0.3*Yesterday + 0.7*1

0.4*Yesterday + 0.2*T + 0.2*went |

[0.2*Yesterday + 0.1*I + 0.1*went - ... 4

The new vector
representation of “saw” is
given by a weighted linear
combination of the vector

representations of
“yesterday”, “I”,...”saw”.
And the weights are the

attention probabilities

between the pair of words.

[[0.3*Yesterday + 0.1*I + 0.1*went + ... 4 0.3*a |

Xavier Bresson

Masked transtormer blocks

multiple masked transformer blocks :

For /=0,1,2,..,.L — 1
H*' = H® + Mask-MHA (LN(H*),LN(H*),LN(H")) € RL>4
gl — e+l —|—MLP(LN(H€+1)) c RLxd

with H*=Y = LL({ws, wi—1, ..., w;_(z_1)}) + PE € R**¢

Positional
Encoding

Output
probability
for next word

elephant
tiger

cooking
with
wave
the

is

' _>$H“1
MLP

t

Hf-i-l

Masked
Multi-Head
Attention

|
24
LN(H
LayerNorm
12

1

x L
Transformer
Blocks

H =0 Positional
Encoding

Word Word
Embedding

Embedding

f t

Sequence of Query
context words word
{wt>wt—1a~'-7wt—(L—1)} Wy

36

Training with mini-batch

@ Training is done with a batch size of B sequences and batch length of L.

Sequence of L words

< > |
Y\ N\ | N N\ N N\ N\ N N\ N N\ N\ X N\ o
-/ / / / / Ay Ay Ny A\ Ny / Ay / / >
Next word

/E/\E/ Document
Current word S
Context window /:7 %~ N

&~ &
7~ &

|
|
|
| %~ &
|
|
|

\ J

<«——— (Labels: 174, 564, 13, ... , 876

L number of words
£8 —0.01 to predict

Xavier Bresson

w
-J

(Generation

@ The transformer network is trained in parallel (using the mask to hide the predicted words).
@ After training, the mask is not required anymore (there are no future words to hide).

@ And the sequence is generated auto-regressively, i.e. one word at a time.

e B
. Output
Generate the next word w41 as follows: prebabilty Wi ~ py € RY
Compute output of Transformer net: "
fOI‘g:O7...,L—1 Linear

¢! = ¢ + MHA(LN(¢"), LN(K*), LN(V?)) € R?
¢ = ¢ + MLP(LN(¢"*")) e R?
with ¢*=° = LL(w;) + PE, € R?
K= =v*=0 = LL({wy, ...,w;}) + PE € R?*¢
Get output probability p; = Softmax(LL(¢*=%)) € RV

Sample next word probability w11 ~ ps.

Positional
Encoding

Embedding Embedding
t t

Sequence of Query word
context words

{wy, ...,ws} wy
Xavier Bresson 38

Lab 01

@ PyTorch implementation of Language Model Transformers

Xavier Bresson

:v' Jupyter transformer_language_modeling Last Checkpoint: 3 hours ago (autosaved)
File Edit View Insert Cell Kernel Widgets Help Trusted

+ %< @A B A ¥ PR B C W Markdown VvV B

Lab 01: Language Modeling with Transformers - Demo

In [2]: # For Google Colaboratory

import sys, os

if 'google.colab' in sys.modules:
mount google drive
from google.colab import drive
drive.mount('/content/gdrive’)
find automatically the path of the folder containing "file name” :
file name = 'transformer_language modeling.ipynb'
import subprocess

A | Logou

| Python 3 (ipykernel) O

path_to_file = subprocess.check output('find . -type f -name ' + str(file_name), shell=True).decode("utf-8")

path_to_file = path_to_file.replace(file name,"").replace('\n’,"")

if previous search failed or too long, comment the previous line and simply write down manually the path below :

path_to_file = '/content/gdrive/My Drive/CS5242_notebooks/labs_lecturel2/lab01_language model/'
print(path_to_file)

change current path to the folder containing "file_name"

os.chdir (path_to_file)

tpwd

Drive already mounted at /content/gdrive; to attempt to forcibly remount, call drive.mount("/content/gdrive", force r

emount=True) .
/content/gdrive/My Drive/CS5242_notebooks/labs_lecturel2/1ab01_language_model/
/content/gdrive/My Drive/CS5242_notebooks/labs_lecturel2/lab01_language_model

In [3]: import torch
import torch.nn.functional as F
import torch.nn as nn
i h

import utils

GPU
It is recommended to run this code on GPU:

= Time for 1 epoch on GPU : 48 sec w/ Google Colab Tesla P100-PCIE-16GB

In [4]: device= torch.device('cuda")
device= torch.device("cpu”)

print(device)

if torch.cuda.is_available():
print('cuda available with GPU:',torch.cuda.get_device_name(0))

elephant
tiger
dolphin
E?);t 25%
Output
probability
cooking
for next word
wave
the
Is
MLP
x L
Transformer
0 Blocks
Masked
Multi-Head
Attention
[LayerNorm]
Positional Positional
Encoding Encoding
Word ‘Word
Embedding Embedding

context words

] i}

Query
word

Sequence of

39

Xavier Bresson

Lab 01

Vanilla RNN: exp(train_loss) = 111 exp(test loss) = 155 3 million parameters
LSTM: exp(train_loss) = 59 exp(test loss) = 106 7 million parameters
LSTM state-of-the-art: exp(test loss) = 50 50 million parameters
Vanilla LM Transformer:

exp(train loss) = 54 exp(test loss) = 174 3 million parameters
LM Transformer state-of-the-art (with pre-training):

exp(test loss) = 20.5 175 billion parameters

Attention mechanism

@ It is a breakthrough idea in NLP !

@ It is as revolutionary as CNNs in Computer Vision.

Transformers

RNNs
: -— (degrades quickly
2 after 30 words)
-
S : : D N :
E 10HH — RNNsearch-50 f................ SN L \\\
----- RNNsearch-30) ~ _E\ Sl o
5H — - RNNenc-50 oo e PR TP
--- RNNenc-30 | | i
% 10 20 30 40 50 60

Sentence length

(Bahdanau-Cho-Bengio 2014)

Xavier Bresson

Xavier Bresson

Why attention nets are better?

Why ?

With RNNs, the very long sequence requires to be memorized and represented by a single
vector.

RNN architectures with a single memory vector cannot simply deal with long sequences (limit
of non-linear dynamic systems).

We ask too much to memorize everything with one vector!
With attention, we distribute the memorization load over each pair of words.

Each word in the target sequence only needs to find its match with the word (or a few words)
in the source target.

It solves the limitation of long-term dependencies in RNNs (a word in the target sequence
communicates with all words in the source sequence).

The matching is made easy by transforming the words with hidden representations.

Attention is a key mathematical structure for NLP and several other domains.
SOTA for all NLP tasks since 2019.

Xavier Bresson

Outline

Sequence-To-Sequence Transformers

43

@ A Seq2Sep Transformer is composed of

Xavier Bresson

Given a sequence of words, convert it into a

Seq2Seq Transformers

different sequence.
Basic tasks in NLP

Translation
Question & Answer

Summarization

World embedding layer
Self-attention encoding layer
Self-attention decoding layer
Cross-attention layer

Classification layer

Output
Probabilities

| Linear |

(. 2
Add & Norm
Feed

Forward

(1)
Add & Norm

Multi-Head

(CAdd & Norm ;

Feed Attention
Forward J) [, Dec
—]
[Enc Add & Norm
~>{_Add & Norm } i
Multi-Head Multi-Head
Attention Attention
Qo | J —)
Positional D @ Positional
Encoding Encoding
Input Output
Embedding Embedding
Inputs Outputs
Lin Lout

Input(EN): He drives

the red car.

Output(ES): El conduce

el coche rojoe.

Seq2Seq Transformer Architecture
(Vaswani-et-al Google Brain 2017)

44

Self-attention encoder

@ Encode the complete input sequence with a self-attention layer :
H = MHA(H) € RF=*4, [€ RE»*d
= (I, HALE)) WO, WO e RO
with H = PL({wilnj s wil?in), c RLinxd

Y

Word embeddings

QnK}

NI

with Qp = HWS e REwxd/H Q@ ¢ gaxd/H
K, = HWE ¢ RLinxd/H’Wf c Rixd/H
Vi, = HWY € RLwxd/H yyV ¢ Rdxd/H

P Y Y e Y

he drives the red car

Self-attention
encoding layer

HA,(H) = Softmax(~ -
I

>Vh c RLinXd/H

Xavier Bresson

-_tu—-

D

Multi-Head

Self-Attention

H

_,%3' ‘
MLP

Output
probability

for next word

B

MLP

Multi-Head
Cross-Attention

LayerNorm

::

e?«—

Masked
Multi-Head
Self-Attention

L

+I
‘Word

Embedding

Produce a representation of
words that depends on the
context of surrounding words.

x LDee
Decoder
Transformer
Blocks

@ The

Full encoder layer

is composed of multiple attention blocks.

@ Each attention block has MHA, MLP, Residual

Xavier Bresson

Connection, Layer Normalization, PE.
Encoder

N\
for ¢ =0,..., LF —1

H*' = H* + MHA(LN(H®),LN(H*),LN(H")) € RLnxd

x T,Enc

H ' = A MLP(LN(H ') € REmxd e
with initialization H*=% = LL({w'", ..., w? 1) 4+ PE € RFnxd
7 \
Linear layer Positional
(word embedding) Encoding
__ 17 Enc .
and encoder output H**¢ = =1 ¢ Rlnxd

Output

probability
for next word

Linear

ﬁ?

MLP

Multi-Head
Cross-Attention

HZ+1

| LayerNorm l

Multi-Head
Self-Attention

e?«—

Masked
Multi-Head

Self-Attention

b

(]

H 0
+I

‘Word
Embedding

in in
{w®, ..., W,

O

‘Word
Embedding

1

x LDee
Decoder
Transformer
Blocks

16

Masked self-attention decoder otabiies

for next word

.
@ Compute the to the next word to predict
with a masked self-attention layer to speed up ;
training. o
@ The mask hides future words in the output
. .] S
sequence, i.e. the words we want to predict. %':
Multi-Head
Cross-Attention x Lbee
. . Decoder
@ Update equation for the masked self-attention ML % %N 1 Transformer
ayerNorm
decoder layer : o
_ Encoder
H = Mask-MHA (H, H, H) € REou*d e 11 1__8=3L
. out out Lous Xd oy I Mol tond I
with H = LL({wi", ..., w?" }) + PE € R¥eut S Atenion 1| Lsasasention]| |
] t-tEF 1T \
@ Self-attention layer produces a representation of (o] e Mo ed sclf
’ asked selt-
the sequence of output words that depend on the @-»e{) (;)«-@ :
]) attention
context of their surrounding words. poort ood decoding layer
self-attention) ") "
{w?™, . wi™)

El conduce el coche rojoe

Query word Future word hidden at
Xavier Bresson (index t) time t with a mask 47

Output

Cross-attention layer probability

for next word

. .
@ Compute between pairs of words coming
from the encoded input sequence and the query from
the output sequence.
@ Update equation for a single query : HPre
P q gle query — | |
h=MHA(q,K,V) eR?, ¢ e R K,V € RV»x¢ — | |
MLP L il A4 -
H O O d>< d ayerNorm \
= (IIf2, HAW(g, K, V))WO, WO € R 1 C) |
i Cross-attention
. . Encoder
with q= h?ec c Rd, K=V = HEnc c Rmed Totomr @) — (';9‘_ layer
ti-He Masked
sl Ainin
1t it
. q = Query word ’
Cross-attention / (index t) @.,QP (P(.@
Il conduit la voiture rouge El conduce el coche rojoe abeding Prbedding
0 fuls ol fug™,)
Input sequence Output word
encoded by self-attention encoded by self-attention
HEnc htDec

Xavier Bresson

Cross-attention layer

@ To speed up training, we compute multiple queries at

the same time, i.e.

@ Update equation for all queries :

Xavier Bresson

— MHA(Q,K, V) c RLouth, Q c RLouth,K,V c RLinXd
= (If2) HAW(Q K, V)) WO, WO & Rix
Wlth Q f— HDeC = RLouth’ K — V — HEDC c RLinXd

x LEnc
Encoder

Transformer
Blocks

HEnc

_,gP' |
MLP

D

Multi-Head
Self-Attention

13

Output
probability
for next word

Multi-Head I

Cross-Attention I
L KAV -
LayerNorm

Cross-attention
@?ﬂl_ layer
Masked

Multi-Head
Self-Attention

tet
I LayerNorm I

©-9

‘Word
Embedding

in in
{wi®, ..., wr,

Fasy

‘Word
Embedding

{w™, ..., wOL‘C‘)tut}

19

Interpretation

d, dy - dr.1 dp
. . . He <+ |
@ Cross-attention highlights the between a
word in the output sequence and its corresponding word or words drives 4
in the input sequence.
. 0 . 0 the T |
@ Unlike the self-attention mechanism in the decoder layer, the
cross-attention layer . 1
re T
@ In fact, applying a mask would be counter-productive, as the
query maximizes the prediction of the next word “r 1L — |
in the output sequence by attending to all He drives the —red —car
tOkenS 11 the l:nplrt Sequence' El 4 1(0.80) 0.02 0.15 0.02 00T ’ |_0.80*He+0‘02*drives+0.15*the+0.02*red+0.01*car|
conduce + 0.02 0.02 0.20 0.01 [0.02*He + 0.75*drives + 0.02*the + 0.20%red + 0.01*car |
The new vector representation of “coche” is given by a
weighted linear combination of the vector representations o 41020 0.05 004 001 [520 00 ives L 070 e 004 red L 00 eat]
of “He”, “drives”,... “car”, where the weights are the
attention probabilities between the pair of words.
h +10.02 0.03 0.20 0.03 ‘ [0.02*He + 0.03*drives + 0.20*the + 0.03*red + 0.90*car |
Here, we have “coche” =~ “car” as the two words match the eoche @
same meaning in EN and ES.
I'Ojoe +10.01 0.05 0.05 0.04 [0.01*He + 0.05*drives + 0.05*the + 0.85*red + 0.04*car |
v . - T -
z Cross-attention

Xavier Bresson score matrix

Interpretation

The cross-attention score matrix provides the between words (or tokens) between
two sequences (input and output sequences) :

Output sequence
A

< c v
= 8 £ ko] 7 A
8 % 8 o o S5 N ©
25258985 _9% T
F e oS Luwag =B EIA v
s 1
L'E
accord
sur T
L;n XL
la Softmaxrow(\/a) e R~in out
zone
économique
Input européenne where
< a
sequence été

Q= H,W? e RFnxd
K = HouWH € RFouxd

signé
en
ao(t
1992

L <end>

Cross-attention score matrix

Full decoder layer

o of the decoder

for ¢ =0,...,LP —1
A"t = H® + Mask-MHA(LN(H®),LN(H"), LN(H")) € Rboux

Self-attention
o = A + MHA(LN(H ™), LN(HP), LN(H")) € RFeuxd

Cross-attention
H*' = g + MLP(LN(HH)) € REewxd
with H*=Y = LL({w{"™, ...,w"* }) + PE € Rfou>d

Decoder output H/=L""" € RLowxd

Probability output P = Softmax(LL(H LDeC)) e RLoutxV

Xavier Bresson

Decoder

N

Output

probability
for next word

HL

?HZJrl

HEnc
? Multi-Head
Cross-Attention
MLP
1 LayerNorm
x [,Enc 1
Encoder "
Transformer (_ s
Blocks
q Masked
Multi-Head <
Selfl-lAil:tex(:tion Multi-Head
Self-Attention
LN(H?
| LayerNorm I LayerNorm I
I _H L JL
HO
¥ ¥
‘Word ‘Word
Embedding Embedding
{ in in { out out }
'l,Ul 7"‘7er. wl ’”'7wLout

x LDec
Decoder
Transformer
Blocks

(Generation

o At , the input sequence is first encoded HExc,

@ Then, the output sequence is generated auto-regressively,
i.e. one word at a time (no mask is used).

Generate the next word w11 as follows:.

elephant
tiger
dolphin
Output ot
probability
fOI‘ neXt WOI‘d cooking z/n

Multi-Head Do
Cross- Attention x L

Masked
Multi-Head
Self-Attention

tt ™S No mask

Compute output of Transformer model: HEne
for ¢ =0,..., LP* -1 —»619
g = ¢' + MHA(LN(¢%), LN(KY), LN(VY)) € R? £
i = ¢ + MHA(LN(q)', LN(H™*), IN(H™)) e R ik
gt =gt MLP(LN(qu+1)) c R plocks e
with ¢"=° = LL(w{"*) 4+ PE, € R (]
K0 = V=0 = LL({w?™, ..., w?"}) + PE € Rt g —
Get output probability p; = Softmax(LL(qezLDec)) c RV %&?ﬁ
Sample next word probability w1 ~ ps. 1’ N

Xavier Bresson

Embedding

{wg™, .., wi"t}

w

Understanding attention layers

@ There are two types of attention layers.

-attention layer

@ Used to represent a word in (learned) context.

@ Cross-attention layer

Xavier Bresson

@ Used to query with (learned) matching mechanism.

x [, Enc
Encoder

Transformer
Blocks

_,g;)'
MLP

t

Linear

ﬁ%)

MLP

Multi-Head
Cross-Attention

| LayerNorm l

D

Multi-Head
Self-Attention

‘Word
Embedding

t

< —

Masked
Multi-Head

Self-Attention

te1

l LayerNorm I

GP(_@

‘Word
Embedding

1

x LDee
Decoder
Transformer
Blocks

@ Illustration of

Classification
layer

Self-attention
layer

Word
embedding layer

Xavier Bresson

Understanding self-attention

-attention :
@ Language model during training

@ Language model at inference

French

!
y

NN R e LA U A RN
(NI R R R

I live in Paris. My citizenship is MASK. I eat cheese.

During training, the network learns to give
attention to the words (the context) that
make sense to predict the masked word.

These two representations of
the word “broke” are different.

| S I (I I

Sandy broke the world record. Sandy broke the law.

At inference, the network computes the
word representation depending on the
context.

Understanding cross-attention

@ Illustration of cross-attention :

@ Machine translation

Matching the same
word in two languages.]

Input(EN): He drives the car Output(FR): Il conduit la voiture

Xavier Bresson 56

Reception field

@ Multiple layers increase the reception field.

Xavier Bresson

This word depends on the context
of 3 words in Layer 1 and the
context of 8 words in Layer 0.

The size of the original reception field /context of attention
increases at each layer. For each word, the context size in the
previous layer is variable (but small due to sparse softmax).

Hierarchical representation

@ Multiple layers capture hierarchical

representation. .)
ayer
@ A simple illustration
@ Given the distribution of data (Layer 0). T
@ Suppose that the attention context is
defined by the closest data points.
@ At each layer, the self-attention Layer 1
mechanism smooths out the distribution
with the context.
@ Successive layers provide a multi- T
scale/hierarchical representation of the
data. Layer 0

A

Xavier Bresson 58

Lab 02
@ PyTorch implementation of Seq2Seq Transformers

Soft;

Linear
" Jupyter transformer_translation Last Checkpoint: 3 hours ago (autosaved)

A oo
Kenel Widgets Help

Not Trusted | Python 3 (ipykernel) O
4+ @ B[4 & PRn B C B Makdown V¥

File Edit View Inset Cell

MLP

Lab 02: Sequence-To-Sequence with Transformers - Demo

LayerNorm
The task is to learn to memorize an input sequence of length 100 and output the same sequence of length 100 but
shifted by one word in the future.

For example, the input sequence is “some analysts expect oil prices to remain relatively*)
and the output sequence is "analysts expect oil prices to remain relatively high".
4 .
In [50]: # For Google Colaboratory Multi-Head De
import sys, os Cross-Attention x L/
if 'google.colab' im sys.modules: Decoder
mount google drive
from google.colab import drive MLP
drive.mount('/content/gdrive')
find automatically the path of the folder containing "file name"

Transformer
file_name = 'transformer_translation.ipynb'
import subprocess

Blocks
LayerNorm
path_to_file = subprocess.check_output('find . -type f -name ' + str(file_name), shell=True).decode('utf-8") LayerNorm
path_to_file = path_to_file.replace(file name,"").replace('\n',"")
if previous search failed or too long, comment the previous line and simply write down manually the path below :
path_to_file = '/content/gdrive/My Drive/CS5242_notebooks/labs_lecturel2/lab02_translation/'

e

x LEne
print (path_to_file) '
change current path to the folder containing "file name" Transformer
os.chdir(path_to_file) Blocks
1pud
. . . . N . . Masked
Drive already mounted at /content/gdrive; to attempt to forcibly remount, call drive.mount("/content/gdrive", force r Multi-Head Multi-Head
emount=True) . B i
/content/gdrive/My Drive/CS5242_notebooks/labs_lecturel2/lab02_translation/ Self-Attention Self-Attention
/content/gdrive/My Drive/CS5242_notebooks/labs_lecturel2/1ab02_translation
In [51]: import torch

import math

import torch.nn.functional as F
import torch.nn as nn

import time

| 1
LayerNorm l | LayerNorm '
import utils

GPU

Itis recommended to run this code on GPU:

« Time for 1 epoch on GPU : xxx sec w/ Google Colab Tesla P100-PCIE-16GB

Word
Embedding Embedding
In [52]: devic torch.device("cuda")
#device= torch.device("cpu”)
print (device)

cuda

Xavier Bresson

Transformers in 2017

@ WMT-2014 dataset
@ BLEU score

LSTM -+ Attention

Google Brain’s neural machine\

translation system in 2016

EN-DE EN-FR
* GNMT 24.6 39.9
v ConvSeq2Seq 25.2 40.5

/ Transformer " 28.4 41.8

@ Transformer is 3x faster to train than LSTM and CNN.

@ Transformer has 24 layers vs LSTM w/ 3 layers and
CNN w/ 40 layers.

CNN

Facebook Research’s
Convolutional sequence to
sequence learning

Xavier Bresson

Xavier Bresson

Transfer Learning

Outline

61

Transfer learning with language models

@ A major theme in NLP since 2019 is
@ Pre-trained language models on large-scale corpus (for capturing language prior) and

@ Post-trained to new tasks s.a. document classification, Q& A, named-entity recognition,
etc by fine-tuning some layers on top of the pre-trained network.

@ Best performance for NLP tasks.

) Language)
Corpus: Pre-trainin Post-trainin Tasks:
blablablabl & Models: & QA
ablablablab > \(;\r/iord2Vec > Sentence
lablablabla ove : labeling
blablablabl ELMO A(}lftptat;on/
ablablablab BERT ransfer
GPT
Large dataset Sequential Transfer Small dataset
Learning

Xavier Bresson 62

Language modeling

@ Language modeling is a self-supervised task.

@ It is unsupervised in the sense that there is no need for human labeled data.

@ Additionally, large-scale unlabeled datasets are available for training.

@ Train with billions or trillions of words from public datasets s.a. Wikipedia, Reddit, etc.

7 “n ;f%/\
e

WIKIPEDIA

The Free Encyclopedia

English Wikipedia alone has
3.9 billion words (2021)

Xavier Bresson

@ reddit

Words Posted to Reddit:
72 billion (2015)

63

1

BERT

(Devlin-et-al Google Brain 2019)
@ Use positional encoding, class index and sentence index.

@ Trained with two levels of hierarchical context :

o) dependencies with word prediction.

@ Global dependencies with sequence prediction.

t t t t
-
Self-attention transformer layers x L
t A A t
X X3 X X3
Encoder _mN _mN N I\
Wo Po So W1 D1 So W2 P2 S0 W3 b3 S0
oo [P11 | R O N
index '\“
" CLS, ‘0 SEyo the 1 SEN, cat 2 SEN, sleeps 3 SEN,
/ N

Positional

Sentence
Feature

index

Xavier Bresson

Training with hidden words

® Randomly replace x% of words by token MASK.

@ Randomly replace y% of words by random — Learn context-to-word
words. s.a. “car’. id representation
’ . / $ Lincar for transfer learning
@ Randomly replace z% of word index by same Layer
words, here “cat”. hy
t t t t
Self-attention tralbsformer layers x L
A t t t
X X1 X2 X3
e I NG I D NP
Wo Po So W1 P1 So »’2 P2 S0 W3 b3 So
Discrete
Class EmbeddingT T T T T T V T T T T T
index \“ v
CLS, 0 SEN, the 1 SEN, MASK 2 SEN, sleeps 3 SEN,
Positional Sentence
Feature index

Xavier Bresson 65

Xavier Bresson

Training with sentence prediction

0
@ Use CLS token : CLS = IsNext / NotNext
@ Positive example/consecutive pair of sentences :
Labd @ [CLS] the cat sleeps [SEP] it wakes up
4 @ Negative example/random pair of sentences :
b @ [CLS] the cat sleeps [SEP] John drives fast
?
/ Self-attention transformer layers x L
t t t t
et /a4 i N1 P+ I
Wo Po 8o w1 P1 So W2 P2 S0 W3 b3 So
st /1 rt+ ottt
CLS, 0 | |SEN, the 1 | [SEN, cat 2 | [SEN, sleeps| | 3 | [SEN,

66

Xavier Bresson

Training

BERT
@ 12 Transformers layers
@ 768 hidden features
@ 12 Attention heads
@ 110M parameters
BERT large
@ 340M parameters
Special tokenization of words with only 30K tokens.
Dataset of 3B words
Training took 256 TPU days (Oct 2018)

Fine-tune on sentence classification, named-entity recognition (word classification), Q&A, etc.

67

GPT-2

@ Improving Language Understanding by Generative

Xavier Bresson

Pre-Training (GPT) (Radford-et-al OpenAlI 2018)
o) on 8M webpages, WebText 40GB.

@ SOTA on 7 NLP tasks without fine-tuning,
simply by zero-shot learning !

@ 1.5B parameters
@ 2048 GPUs

To wit: when GPT-2 was tasked with writing a response to the prompt,
“Recycling is good for the world, no, you could not be more wrong,” the

machine spat back:

“Recycling is NOT good for the world. It is bad for the environment, it is bad for
our health, and it is bad for our economy. I’'m not kidding. Recycling is not good
for the environment. It is destructive to the earth and it is a major contributor to
global warming. Recycling is not good for our health. It contributes to obesity
and diseases like heart disease and cancer. Recycling is bad for our economy. It
increases the cost of a product, and in turn, the price of everything that is made
with that product. Recycling is not good for our nation. We pay a tremendous
price for the privilege of having the world’s most advanced and efficient

recycling system. Recycling is a huge, colossal waste of time, energy, money,

and resources.”

SYSTEM
PROMPT

(HUMAN-
WRITTEN)

MODEL
COMPLETION
(MACHINE-
WRITTEN,

10 TRIES)

In a shocking finding, scientist discovered a herd of unicorns living
in a remote, previously unexplored valley, in the Andes Mountains.
Even more surprising to the researchers was the fact that the
unicorns spoke perfect English.

The scientist named the population, after their distinctive horn,
Ovid’s Unicorn. These four-horned, silver-white unicorns were
previously unknown to science.

Now, after almost two centuries, the mystery of what sparked
this odd phenomenon is finally solved.

Dr. Jorge Pérez, an evolutionary biologist from the University of
La Paz, and several companions, were exploring the Andes
Mountains when they found a small valley, with no other animals
or humans. Pérez noticed that the valley had what appeared to
be a natural fountain, surrounded by two peaks of rock and silver
Snow.

Pérez and the others then ventured further into the valley. ...

68

Xavier Bresson

GPT-3

Introduced in Brown-et-al OpenAlI 2020
Pre-trained on multiple datasets.
175B parameters

“The supercomputer developed for OpenAl is a single
system with more than 285,000 CPU cores, 10,000 GPUs

and 400 gigabits per second of network connectivity for
each GPU server”

US$12 Million to train

ti
Dataset Quantity

(tokens)

|

Common Crawl | 415 billion
(filtered)
WebText2 19 billion
Books1 12 billion
Books2 55 billion
Wikipedia 3 billion

GPT-3 Powers the Next
Generation of Apps

Over 300 applications are delivering GPT-3—powered search,
conversation, text completion, and other advanced AT features through
our API.

JOIN THE WAITLIST 7

Nine months since the launch of our first commercial product, the OpenAl
API, more than 300 applications are now using GPT-3, and tens of thousands
of developers around the globe are building on our platform. We currently
generate an average of 4.5 billion words per day, and continue to scale
production traffic.

Given any text prompt like a phrase or a sentence, GPT-3 returns a text
completion in natural language. Developers can “program” GPT-3 by showing
it just a few examples or “prompts.” We’ve designed the API to be both simple
for anyone to use but also flexible enough to make machine learning teams
more productive.

69

Xavier Bresson

GPT-4

Introduced in Achiam-et-al Openl 2023

Pre-trained on dataset ?

? parameters

Training time ?

GPT-4 Technical Report

PlchatGy
GPTchat

IGPTohC
AUCPTohat
G Tch
ChatGPTct,,
TchonGPTcha

Tchat (P bl
pe——— PTChatGPT chon
IGPTChnGRTChaGP TN

OpenAI*

Abstract

‘We report the development of GPT-4, a large-scale, multimodal model which can
accept image and text inputs and produce text outputs. While less capable than
humans in many real-world scenarios, GPT-4 exhibits human-level performance
on various p ional and academic benct ks, including passing a si
bar exam with a score around the top 10% of test takers. GPT-4 is a Transformer-
based model pre-trained to predict the next token in a document. The post-training
alignment process results in improved performance on measures of factuality and
adherence to desired behavior. A core component of this project was developing
infrastructure and optimization methods that behave predictably across a wide
range of scales. This allowed us to accurately predict some aspects of GPT-4’s
performance based on models trained with no more than 1/1,000th the compute of
GPT-4.

GPT-4 Technical Report

140 Authors OpenAl*

Abstract

98 pages: it’s better but we can’t tell you why because safety.

GP

70

Xavier Bresson

Conclusion

Outline

71

Conclusion

¢ Human allows to focus biological resources on a small set of important
things (visual, sound, cognitive signals) to make decisions.

@ ANNSs are a generic/universal architecture to process any unstructured datasets, a.k.a. sets.
@ Attention is “eating” deep learning.

@ Transformers for Computer Vision with Visual Transformers (Dosovitskiy-et-al Google Brain
2021).

@ Transformers for Graphs with Graph Transformers.

@ Issue with long sequences because complexity is (L2d).

-
[\

Xavier Bresson

Reducing complexity

® Long sequence issue with O(L?d), n being sequence length and d hidden dimension.

@ Sparse transformers s.a. BigBird (Zaheer-et-al Google Brain 2021).

L]
o om -
|] [
|]]
O [[]
] 0 " |
L] L []
]]]
[[[1]
(a) Random attention (b) Window attention (c) Global Attention (d) BIGBIRD
Original Structured
Transformers Transformers

Xavier Bresson

Xavier Bresson

Interpretability

What does BERT look at? (Clark-et-al, 2019) An Analysis of Transformer’s attention heads.

Head 1-1 Head 3-1 Head 8-7 Head 11-6
Attends broadly Attends to next token Attends to [SEP] Attends to periods
found ,found found found found found
in. Jin insin in in
taiwan, ,taiwan taiwan \taiwan taiwan taiwan
[SEP]. '~ ./ [SEP] [SEP]>[SEP] [SEP] [SEP]
the - /o the the the 7/ the ! the
wingspan - / »wingspan wingspan swingspan wingspan wingspan
is &2 : -is is\is is is
240/ L 324 24\24 24 24
28/ .28 zssza \ 28 28
mm/ ‘mm mm\ mm 4 mm mm
[SEP] [SEP] [SEP]>[SEP] [SEP] ' [SEP]

Q T
Softmaxrow<) e REXE

74

@ Training large-scale models is

Open-source

costly in terms of time, money, CO, :

Consumption CO2e (Ibs) Model Hardware Power (W) Hours kWh-PUE COse Cloud compute cost
Alr "’““’_‘- I passenger, NY &3SF 1984 Transformery,se P100x8 1415.78 12 27 26 $41-$140
Hum;l.u“hfa". A:i\"g. | year , I{'-”? Transformer;;, ~ P100x8 1515.43 84 201 192 $289-$981
American life, avg, | year 26,156 ELMo P100x3 517.66 336 275 262 $433-$1472
Car, avg incl. fuel. 1 lifetime 126,000
BERT 5 V100x64 12,041.51 79 1507 1438 $3751-$12,571

Training one model (GPU) BERT};5e TPUv2x16 — 96 — — 3 G2
NLP pipeline (parsing, SRL.) 39 NAS P100x8 1515.43 274,120 656,347 626,153

w/ tuning & experimentation 78,468 NAS TPUV2x1 o 32,623 i e - e
Transformer (big) GPT-2 TPUV3x32 = 168 — — $12,902-$43,008

Y
w/ neural architecture search ‘@D
Table 1: Estimated CO, emissions from training com
mon NLP models, compared 1o familiar consumption.'

@ Available pre-trained /post-trained models :

Xavier Bresson

@ PyTorch (Llama), TensorFlow (Gemma)

@ Hugging Face, https://huggingface.co

Table 3: Estimated cost of training a model in terms of CO2 emissions (Ibs) and cloud compute cost (USD).7 Power
and carbon footprint are omitted for TPUs due to lack of public information on power draw for this hardware.

ULMFIT

|

MultFiT

SpanBERT
RoBERTa

Uni
LXMBERT
VL-BERT
UNITER

R

Grover

=
ERNIE (Baidu)
BERT-wwm

By N W & Zhngyn Zing QTHUNLD

https://huggingface.co/

7

(Questions

76

Xavier Bresson

