CS6208 : Advanced Topics in Artificial Intelligence
Graph Machine Learning

Lecture 2 : Introduction to Graph Science

Semester 2 2022/23

Xavier Bresson

https://twitter.com/xbresson

Department of Computer Science

National University of Singapore (NUS) BH &

NUS
%5

National University
of Singapore

Xavier Bresson


https://twitter.com/xbresson

Course lectures

@ Introduction to Graph Machine Learning

@ Part 1: GML without feature learning
(before 2014)

—> @ Introduction to Graph Science

@ Graph Analysis Techniques without
Feature Learning

@ Graph clustering

@ Classification

@ Recommendation

@ Dimensionality reduction

@ Part 2 : GML with shallow feature learning
(2014-2016)

@ Shallow graph feature learning
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@ Part 3 : GML with deep feature learning,
a.k.a. GNNs (after 2016)

Graph Convolutional Networks
(spectral and spatial)

Weisfeiler-Lehman GNNs

Graph Transformer & Graph
ViT /MLP-Mixer

Benchmarking GNNs

Molecular science and generative GNNs
GNNSs for combinatorial optimization
GNNs for recommendation

GNNs for knowledge graphs
Integrating GNNs and LLMs
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@ Graph theory

@ Graph categories

@ Basic definitions

@ Curse of dimensionality and structure
@ Manifolds and graphs

@ Spectral graph theory

@ Graph construction

@ Conclusion
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Outline

@ Graph theory
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@ Graphs encode complex data structures.

@ “Graphs are the most important discrete models in the world.”
- Gil Strang (MIT)
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Graphs

@ They are everywhere! Internet, social networks,

customer-product relationships, etc o
. MNIST Image

Network

¢

Social Network

Internet Network of
California

GTZAN Music
Network

Network of Text Documents
20newsgroups

ot



Graphs

@ Definition : (Simple) mathematical model representing pairwise relationships between data.

All pairwise
relationships

O—0O — Graph

datal data2 data3

datal data2

@ Why are graphs useful?
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Graphs offer a global view and analysis of data structures.
@ They possess meaningful patterns, i.e. insights about data properties.
Some tasks are exclusively designed for graphs, e.g. Google PageRank recommendation.

They can boost performance with additional priors, a.k.a. inductive bias.

They can benefit from GPUs as graphs are (sparse) matrices.

CuSPARSE

Basic Linear Algebra for Sparse Matrices
on NVIDIA GPUs




Graph theory

@ When did it start?

@ History of graph theory : Graphs have been formally studied since 1736, starting with
Mathematician Leonhard Euler and the famous problem of “Seven Bridges of Konigsberg” :

Q: Can we find a path through the city (starting from any place) that crosses each bridge
once and only once? Euler proved that it is not possible (it is only feasible if the graph has
even degree that allows cycles).

Graph
representation

Source: Wikipedia.

City

@ Graph theory have since developed tools to analyze and process networks for all sort of
applications : clustering, classification, visualization, recommendation, etc.
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Graph categories
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Graph categories

@ Natural Graphs

@ Social networks : Meta, LinkedIn, Twitter

@ Biological networks : Brain connectivity & functionality, gene regulatory networks
@ Communication networks : Internet, networking devices

@ Transportation networks : Trains, cars, airplanes, pedestrians

@ Power networks : Electricity, water

@ Natural graphs mean graphs that are not artificially hand-crafted /constructed.
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Graph categories

@ Graphs constructed from data :
@ MNIST image network
GTZAN music network

o
" ZONEWS teXt dOCllmeIlt network Graph of ;I‘ext Documents
o

GTZAN Musi:: Graph

20newsgroups

3D mesh points

3D mesh points

@ Optimal graph construction : Unfortunately, no theoretical approach is available — it is
empiricial and depends mostly on domain expertise knowledge and good common practice

(later discussed).

@ What is the computational time needed to construct a graph from data features ?

e Exact construction : O(n2.d), n =num data, d = num features.
ford=1K, n=1K = time < 1sec
n=100K = time =1 min
n=1M = time > 1 hour

® Approximate technique : kd-trees O(nlogn.d) with e.g. FLANNLI a library for fast
approximate nearest neighbor search in high-dimensional spaces.

Xavier Bresson [1] https://github.com/flann-lib/flann 10
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Graph categories

@ Mathematical/simulated graphs - - _*

° ErdOS_Renyi gra’phs[l] Erdos-Renyi Network
@ Stochastic block models (SBM)[2] ouree: Wikdpedia 1915 - 190

@ Lancichinetti-Fortunato-Radicchi (LFR) graphs!s!

@ Why using artificial networks? SBM
LFR Source: Abbe, JMLR'17

@ Mathematical Modeling Source: Kojakn, 2018

@ Advantage : Precise control of your data model (estimate best performance given some
data assumptions). No need to perform extensive experiments.

@ Limitation : Most data assumptions are often too restrictive, and it is not guaranteed
that real-world data follow the given model assumptions.

[1] Erdos, Renyi, On random graph, 1959
[2] Anderson, Wasserman, Faust, Building stochastic blockmodels, 1992
[3] Lancichinetti, Fortunato, Filippo, Benchmark graphs for testing community detection algorithms, 2008
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Basic definitions
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Basic definitions

@ Graphs are defined as G = (V,E,A) where
@ YV is the set of vertices (or nodes) w/ |V|=n.
@ E is the set of edges.

@ A is the adjacency similarity matrix.

O

@ Directed or undirected graphs : O// \
O
O/
O
Directed graph Undirected graph
! f 1 0'1730.2
@ Node degree : L 4—0° 02 4—0
e For binary graphs, A;;={0,1} = degree = num of edges connected to a node / %1 / 50'6
® For weighted graphs, A;; in [0,1] = degree is defined as d; = X ¢y Alj degree - 4 dogroo = 1.3

Binary graph Weighted graph

Xavier Bresson 13



Algorithms

@ Standard graph algorithms (a.k.a. software engineering, no learning) :
@ Breadth-first search, depth-first search, minimum spanning tree, topological sorting, strongly
connected components, graph colouring, maximum flow/minimum cut, graph matching, etc.
@ Shortest path algorithm : Find a path on a graph with the smallest possible length.
@ Fast Algorithm : Dijkstra's algorithml!

@ Popular application is the road navigator product, e.g. from New York to Los Angeles.

Vancouer

Shortest path

,,,,,,,,

MMMMM

Longest path N\

...........

[1] Dijkstra, A note on two problems in connexion with graphs, 1959
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Dense vs. sparse graphs

@ Dense/complete/full graphs : Each vertex is connected to all other vertices.

g =" _ow) @

Dense graphs
@ Sparse graphs : Each vertex is connected to a few other k<«n vertices.

[E| = O(kn) = O(n)

@ Which graph is better -- dense or sparse? Sparse graph

2y “L,) »

@ Sparse networks are highly desirable for memory and computational efficiency.
For instance, Internet has n = 4.73 billion pages (as of August 2016)
@ |E| =n? =108 if Internet was full.

@ |E| = k.n =101! as it is sparse with k = 100 (mean degree).

Internet

@ Good news : Most real-world networks (e.g. social, brain, communication, etc) are sparse !

@ Because sparsity induces structure (a fully connected graph has no structure).

Xavier Bresson 15



Adjacency matrix

@ Definition : Matrix A in G = (V,E,A) represents structural /topological information about the
network. We have two classes of A :

® Binary matrix : A;; € {0,1}

0 1 2 3 4
| 'f(' ) E . 1 110 1 0 O
L I (2,7) € 4 211 0 11
A”_{Ootherwise G= ¢ | T AT5l0 100
410 1 1 0
3
® Weighted matrix : A;; € [0,1] (commonly normalized to 1)
A _ [ €DiGs)eEE
771 0 otherwise
2 3 4
1[0 04 0 0
2004 0 07 03
G= = A=310 or 0 1 ]
4 0 03 1 0
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@ Run codeOl.ipynb and synthesize LFR social networks.
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Lab 1 : LFR social networks

@ Play with the mixing parameter y :

@ u small : Communities are well separated.

@ u large : Communities are mixed.

In [15]: # Plot same W but according to communities
# Any structure?
plt.figure(2)
plt.spy(W,precision=0.01, markersize=1)
plt.show()

In [19]: # Visualize the social network in 3D
fig = pylab.figure(4)
ax = Axes3D(fig)
ax.scatter(X, ¥, Z, c=C)
pyplot.show()

_ PTout
PTin

Prin

Community #1

Prout

Community #2

N |
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Outline

Curse of dimensionality and structure
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Curse of dimensionality

R?, d is large
@ What is the curse of dimensionality ?

@ In high dimensions, Euclidean distance between data becomes meaningless.

@ Theoremlll : Suppose data are uniformly distributed in R4,

pick any data x; € V, we have :

£2 . N_alz (. .
lim Exi <dmax($z, Ve\ ZEz> dmm(iEz, V \ [L‘Z)) _0
A0 drr211n (xia V \ xz)

Interpretation : All data are far away to each other with the same distance value !

@ Besides, loss of intuition in high dimensions, e.g. with the Normal distribution :
@ In low-dim, most data are concentrated at the center.

@ In high-dim, most data are concentrated on the surface.

O FaYaVi: \VaVal

Ak
v

A | A
v
Most data AN
Most data
[1] Beyer, Goldstein, Ramakrishnan, Shaft, When is “nearest neighbor” meaningful? 1999 . .
1-D Gaussian 1,000,000-D Gaussian
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Blessing of structure

@ What is the blessing of structure 7

@ Previously, the assumption “data are uniformly” distributed is actually not true for real-
world data. Data have always properties, i.e. structures or invariances, such that they
belong to a low-dimensional space called manifold where (geodesic) distances are
meaningful.

RY d>1 RY d>1

N N

O O
O G
> >
o O
o Low-dim space/
o Manifold
Uniform distribution of data Non-Uniform distribution of data
No structure/randomness Structure/inductive bias
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Manifolds and graphs

Outline
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Manifold learning

@ It can be challenging to identify structures hidden in data because of
@ The curse of dimensionality (i.e. high-dimensional data).
@ Some data have easy structures, but most have complex ones.

@ A class of algorithms that extracts low-dimensional patterns is manifold learning (later discussed).

MNIST Image Graph of Text Documents
Graph 20newsgroups

Xavier Bresson
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From manifolds to graphs

@ Manifold assumption : High-dimensional data are sampled from ) ©
a low-dimensional manifold. RY, d>1 o

@ Example : Let x be a movie, each movie is defined by d
features/attributes like genre, actors, release year, origin
country, etc such that x in R4. We can decide to make the N
assumption that all movies form a manifold M in Rd. / ©

@ Assumption validity : The manifold is a good working
hypothesis for /

@ Several types of data, including images, text documents,
music, etc. RY, d>1

@ Most machine learning tasks e.g. classification,
visualization, recommendation.

@ However, it can also be limited as it can be a too crude

N Manifold M of
approximation of the (true) data distribution. /

all movies
dim M« d

Xavier Bresson
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From manifolds to graphs

@ Graphs can be regarded as a manifold sampling process.

@ The manifold information is represented by a neighborhood graph (observe that the
manifold is never directly observed or constructed).

Graph
Sampling construction
Q — —>
Manifold Data points Graph
G=(V,E,A)
@ Neighborhood graphs :
@ Most populars are k-NN graphs defined as :
_dis‘c(:ci,a:j)2 ) ] L
A =4 ¢ o2 if j € N}
0 otherwise
i
where dist(x;,x;) is a distance (to be decided) between x; and x;, N
o is the scale parameter (value depends on the dataset), and
N is the neighborhood of data x;. v
N=

. )
Xavier Bresson
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Spectral graph theory

Outline
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Spectral graph theory _CBMS

Ser Mathematics

Spectral Graph Theory

@ Given a graph G =(V,E,A), spectral graph theory (SGT) can e |
. . . Fan Chung
@ Find meaningful patterns that reveal multi-scale graph structures. SGT book

- & 1997

® Process data defined on the graph domain (a.k.a. graph signal processing).

@ Boost performance of learning tasks s.a. clustering, classification, recommendation, etc.

@ The most fundamental tool in SGT is the graph Laplacian operator L.
@ Why is the Laplacian useful?

@ It is the central operator of diffusion processes (on graphs).

@ Basis functions of this operator are the well-known Fourier modes
(later discussed).

Pierre-Simon Laplace
(1749-1827)

Fourier —~_

Heat propagation using Transform\/ \/" \/"
Laplacian operator : VWV
gttl — [t T WA

s’ = Heat source W

(Dirac function)
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Graph Laplacian

Un-normalized /combinatorial graph Laplacian :
Lyn=D—A with D is the degree matrix : D = diag(dy,...,d,),
nXxXn
n=|V| d; = Z Aij
j

Normalized Laplacian (most popular) :

. Graph sampling of M
@ Robust w.r.t. unbalanced sampling is unbalanced

L=D'Y2L,.D"Y2=1,— D724 D~1/2

Random Walk Laplacian (for Google PageRank, later discussed) :
L=D"'Ly,=1,-D"A

Manifold M

All Laplacians are diffusion operators.



Graph spectrum

@ Spectral graph theory can extract the modes of variation of the graph system.

® How? With the eigenvalue decomposition (EVD) of the Laplacian operator L :

L =UAUT € R™" with
U=[uy,..u,| € R"*"™

1 k=F
0 otherwise

Y

UTU:In, le <’U,]€,uk/> :{

A = diag(Aq, ..., A\p) € R
O=Anin=A1 < A< ..< A <2
@ Interpretation:

@ u,: Laplacian eigenvectors a.k.a. Fourier functions, i.e. vibration modes of the graph.

@ ) : Laplacian eigenvalues a.k.a. frequencies of the Fourier functions, i.e. how fast u, vibrate.

@ EVD answers the famous question ‘Can One Hear the Shape of a Drum’?[!] (ﬂ N
‘,

i

y.

% -

[1] Kaec, Can One Hear the Shape of a Drum, 1966
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Lab 2 : Spectrum of point cloud and grid

@ Run code02.ipynb and visualize the Fourier functions of a human body graph and a regular grid.

@ What is the main property of the smallest and largest eigenvectors?

@ Smallest eigenvectors = Smoothest modes of vibration, i.e. low-frequency information.

@ Largest eigenvectors = Highest frequencies of the graph, i.e. details or noise.

# Compute graph Laplacian
L = graph_laplacian(W)

# Compute modes of variations of graph system = Fourier functions
lamb, U = scipy.sparse.linalg.eigsh(L, k=9, which='SM"')

Xavier Bresson
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Fourier mode from a Graph =
Set of points or meshes in graphics
(e.g. 2D/3D shape recognition)
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Spectrum of human brain

@ Goal : Find brain activation patterns from structural MRI,
a.k.a. brain resting states (brain structure implies brain
function).

@ Methodology : Given G (brain connectivity graph) = design
a temporal graph = compute Laplacian L = compute
eigenvectors u, = visualize brain temporal activation
patterns.

@ Result : uy represent the dynamic patterns related to basic
functional brain tasks s.a. vision, body motor, language, etc.

@ How to construct the brain temporal graph?

Temporal edges

Brain temporal
graph

Static graph of
brain connectivity

Xavier Bresson

Brain connectivity
(white matter tracts
connecting brain regions)

Brain connectivity
graph

Time series
at this location KR

Time (sec.)

Dynamic activity
of the brain

Laplacian eigenvectors u,
a.k.a. brain resting states

(video)
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Graph construction

Outline
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How to construct graphs from data?

@ Three basic questions
@ Which type of graphs?
@ Which data distance?
@ Which data features?

@ Optimal graph construction
@ No universal recipe is available (no theory).
@ It depends on data and analysis task (empirical).

@ Domain expertise and good practice are essential.

Xavier Bresson
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@ e-graphs : Fully connected graphs, not practical.

@ Neighborhood graphs

@ k-NN graphs, i.e. sparse graphs by design.

@ Parameters

Type of constructed graphs

@ k : number of nearest neighbors, a common value is between {5,50}.

@ o : positive scale parameter

@ Two options to compute scale o

@ Global scale : 0 = mean distance of all ktt neighbors.

@ Local scalelll : o; = distance of the kth neighbor for node i.

Aij —

_dist(a:i,:):j)2
e o2 if j € N}
0 otherwise

Adjacency matrix
with global scale

[1] Zelnik-Manor, Perona, Self-tuning spectral clustering, 2004

Xavier Bresson

: 2
dist(x; ,xj)

_ e 9193

if j € N
0 otherwise

Adjacency matrix
with local scale

w
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Distance definition

. . ] Tie | dy
@ Euclidean/L2 distance : N e

@ Good distance for low-dim data, e.g. d <10.

@ Good distance for high-dim data with linearly separable data (e.g. MNIST).

do, (5, 75) = [lzs — 25l = | D [Tiom — Zj.m?
@ Cosine/dot product distance : r o 10i] = deos
(]
@ Good distance for high-dim sparse data (e.g. text documents) /
T
deos (i, ‘cosl( (i, 2 )‘:9.. N
o000 23) = [ oy )|~ 1% !
&>
L2-normalization J% T
— Projection on
‘331”2 L, unit sphere _ n X; ”sz2 —1

X —
v&/ nxd Ln

@ Other analytical distances : Kullback-Leibler distance (information theory), Wasserstein
distance (optimal transport), etc.
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Data features

@ Types of data features
@ Raw features (e.g. movie features such as genre, actors, year, etc)
e Hand-crafted features (e.g. SIFT in computer vision, etc)
@ Learned features (PCA, NMF, sparse coding, deep learning, etc)
@ It is generally unsuccessful to directly use the raw features for graph construction.
@ Issues are noise, unbalanced scaling, lack of expressiveness, curse of dimentionality, etc

@ For successful graph construction, raw data should be transformed into meaningful data
representation by designing new features, s.a. handcrafted or learned features.

Feature
d Extraction e
r; € R —  z; €R
Raw data New features
Ex: Image pixels Ex: Car features U
Flower features

RPAN S
Histogram —

of features ~— N

w
ot
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Standard pre-processing

@ Center data (along feature dimension) : zero-mean property

r; + r; — mean({z;}) € R

@ Normalize data variance (along feature dimension) : z-scoring property

z; — z; / std({z;}) € R?

with std({z;})? = mean({(z; — mean({z:}))’

9,

@ Project data on L2-sphere (along feature dimension or data dimension) : N -

s Al f
vi ¢ i [ |zl € RY v o > Along feniure

@ Normalize max and min of feature value : v L _

v

L : . Al dat
DR ek 1 30 Y Along data

max({z;}) — min({z;})
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@ Run code03.ipynb and study data pre-processing, construction of k-NN graphs, visualization of

Lab 3 : Graph construction for two-moon

distances, adjacency matrix, and graph quality with clustering accuracy.

Xavier Bresson

# Visualize in 2D

plt.figure(30)

size vertex plot = 20.

plt.scatter(X[:,0], X[:,1], s=size vertex plot*np.ones(n), c=C)

plt.title('Visualization of two-moon datase (with ground truth), DIMENTIONALITY= ' + str(dim))
plt.show()

(2000, 2) (2000,)

Vistéagization of two-moon datase (with ground truth), DIMENTIONALITY= 2

In [9]: # Visualize distances
fig, (axl, ax2) = plt.subplots(1l,2)
#fig.suptitle('Title of figure 2', fontsize=15)

axl.set_title('Euclidean distances for all data points')
iml = axl.imshow(Dnot_sorted, interpolation='nearest')
dividerl = make_axes_locatable(axl)

caxl = dividerl.append_axes("right", size="10%", pad=0.1)

10

05 axl.get_figure().colorbar(iml, cax=caxl)
0.0
—05 Eucli%ean distances for all data points o Sorted distances
S = 3.6
-1.0
500 |- 500
=15

-1.5 -1.0 -0.5 0.0 0.5 10 15 2.0 25 3.0

1000 fg 1000

1500 1500

2000 L

2000
0

500 1000 1500 2000 500 1000 1500
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Lab 4 : Graph construction for text documents

@ Run code04.ipynb and construct graph text documents.

In [9]: # Compute the k-NN graph with Cosine distance
W_cosine = construct_knn graph(X,10, ‘cosine’)

k-NN graph with cosine distance

Adjacency Matrix W indexed according to NCUT communities
1500 2000

. 7

500 [

1000 |

1500 [

2000 =

Xavier Bresson
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Conclusion

Outline
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Summary

Graphs can represent complex and heterogenous relationships between data.

@ They help to go beyond the standard assumption that data are i.i.d. (independent and

identically distributed) as they explicitly leverage the connections between pairs of data.

@ Any dataset and task that use explicit relations between data is a graph-based task.
@ When we begin looking for graphs, we discover they are ubiquitous! ©

Graphs offer an augmented representation of data.

@ With data feature X and data relationship depicted by G = (V,E,A).



Summary

@ First fundamental tool of graph science :

@ Adjacency matrix A

It reveals global structures in data relationship (graph spectrum).
It can visualize graphs in 2D or 3D Euclidean spaces (later discussed).

It can boost performance of machine learning techniques (later discussed).

@ Second fundamental tool of graph science :

Xavier Bresson

@ Graph Laplacian matrix L

It is a diffusion operator -- It propagates information on graphs (parabolic PDEs).

It is used to reveal modes of variation of the graph system.

It is used for image compression (jpeg), neuroscience (brain activity), positional
encoding (later discussed), etc.



Pipeline

Feature Graph
o :
Step #1 Data = Graph Extraction Construction
Skip this step if graph is given, High-dim S Data s
raw data Features
e.g. molecule, social network, etc Human-
engineered/
Learned .
Good Domain
Practice Expertise

@ Step #2: Graph = Analysis

Graph

. Unsupervised
Analysis

Spectral _
Learning

Graph Theory/

othV

Identify
Patterns

Supervised
Learning

\ Recommen
N )
Make use of dation
graphs \\

Feature
Extraction

Visualization
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