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Course lectures

@ Introduction to Graph Machine Learning

@ Part 1: GML without feature learning
(before 2014)

@ Introduction to Graph Science

@ Graph Analysis Techniques without
Feature Learning

— @ Graph clustering
@ Classification
@ Recommendation
@ Dimensionality reduction

@ Part 2 : GML with shallow feature learning
(2014-2016)

@ Shallow graph feature learning
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@ Part 3 : GML with deep feature learning,
a.k.a. GNNs (after 2016)

Graph Convolutional Networks
(spectral and spatial)

Weisfeiler-Lehman GNNs

Graph Transformer & Graph
ViT /MLP-Mixer

Benchmarking GNNs

Molecular science and generative GNNs
GNNSs for combinatorial optimization
GNNs for recommendation

GNNs for knowledge graphs
Integrating GNNs and LLMs



@ Data clustering
@ Standard k-means
@ Kernel k-means
@ EM approach
@ Spectral approach
@ Graph clustering
@ Balanced cuts
@ Metis
@ Normalized cut
@ Product cut
@ Louvain algorithm

@ Conclusion
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@ Data clustering

@ Standard k-means
0
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Unsupervised data clustering

Unsupervised learning aims at designing predictive algorithms without data labels, i.e. no
prior information about data classes or data properties to regress.

Instead, these algorithms rely on general assumptions on the data distribution s.a. linearly
separable data, or the task at hand e.g. identifying well-separated clusters.

This lecture exclusively focuses on unsupervised algorithms for data clustering and graph
partitioning.

k-meansl!l is the most popular unsupervised data clustering algorithm.
Ncutl?l and Metisl®l are the most prominent techniques for unsupervised graph partitioning.

We will reveal their underlying relationship and similarities.

[1] Lloyd, Least square quantization in PCM, 1957
[2] Shi, Malik, Normalized cuts and image segmentation, 2000
[3] Karypis, Kumar, A fast and high quality multilevel scheme for partitioning irregular graphs, 1998
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Standard k-means

@ Given n data points V = {x;};_; € Rd, k-means technique partitions the dataset into k clusters
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{Sy,...,S¢} with their means {mj,...,m; } € R4 that minimize the least-squares objective,
where the number k of clusters is arbitrary selected, i.e. not estimated :

Distance between data x;

/ and its mean m,

Lic-means({mqtg=1, {Sq}q= Z > i~ quQ

q 1:e8,
N\ q mean
gt cluster




EM algorithm

o Expectation-maximization (EM) techniquell2
@ Initialization
@ Randomly select initial means {m;,...,m;} € Rd to be a data point in V (efficient).
@ Good initialization with k-means++3! (with some guarantee w.r.t. optimal solution).

@ Iterate until convergence : 1=0,1,2,...

i = mgll3 Nl —mg |13

@ Cluster update (expectation step) \

Sf]“ ={z; €V s.t. ||x; — méH% <||z; — mé’“%a Vg # q}

l
Sy St

@ Mean update (maximization step)

I+1 _ Z$i€Sé+1 Li
N

c R¢

[1] Lloyd, Least square quantization in PCM, 1957
[2] Forgy, Cluster analysis of multivariate data: efficiency versus interpretability of classifications, 1965
[3] Bradley, Fayyad, Refining Initial Points for k-Means Clustering, 1998 Voronoi’s cells
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Lab 1 : Standard k-means

@ Run codeOl.ipynb and analyze k-means result on

@ Linearly separable data points

@ Non-linear data points

# Visualize k-means iterations

fig, ax = plt.subplots()

for k,C in enumerate(Clusters_iters):
plt.scatter(X[:,0], X[:,1], s=1@*np.ones(n), c=C, cmap='jet')
plt.title('k-means clusters at iteration = ' + str(k+l) )
display(fig)
clear_output(wait=True)

k-means clusters at iteration = 11

Linearly separable data points
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# Visualize k-means iterations

fig, ax = plt.subplots()

for k,C in enumerate(Clusters_iters):
plt.scatter(X[:,0], X[:,1], s=1@xnp.ones(n), c=C, cmap='jet')
plt.title('k-means clusters at iteration = ' + str(k+l) )
display(fig)
clear_output(wait=True)

k-means clusters at iteration = 11

Non-linear data points

# Visualize loss vs iteration

plt.figure(3)
plt.plot(En_iters)

plt.title('loss vs iteration')

plt.show()

loss vs iteration
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Algorithm properties

l
@ Advantages of the EM algorithm By
@ Monotonic : L1 < L! for all iterations.

@ Convergence (to local minimizer) is guaranteed.

v
o~

® Speed complexity is O(n.d.k.n;),

@ where n is the number of data points, d is the data dimension, k is the number
of clusters and n; is the number of iterations to convergence.

@ Easy to implement and GPU friendly. + +
@ Several extensions exist : k-medianslll, k-planes!?l, other distances + N
me 1anq
@ k-means shares interesting connections with other important algorithms s.a. + T
Gaussian Mixture Model (GMM)Bl; PCAM.
T 1
_I_
A

[1] Jain, Dubes, Algorithms for Clustering Data. Prentice-Hall, 1988
[2] Bradley, Mangasarian, k-plane Clustering, 2000 p]ane
[3] Murphy, Machine learning : a probabilistic perspective, 2012

[4] Pearson, On Lines and Planes of Closest Fit to Systems of Points in Space, 1901
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Algorithm properties

@ Limitations of the EM algorithm
@ k-means problem is NP-hard combinatorial (as all clustering problems!).
@ Initialization is thus critical for good performance :
@ Requires a good initial guessl!]

@ Alternatively, restart several times with different initializations, and pick the
solution with the lowest loss value.

@ Assumption: Standard k-means assume that data points are linearly separable, s.a.
dataset follows a GMM, i.e. clusters are linearly separable and spherical.

@ Standard k-means does not work for non-linear separable

@ Solution : Non-linear k-means, a.k.a. kernel k-means.

[1] Bradley, Fayyad, Refining Initial Points for k-Means Clustering, 1998 Llnearly Separa‘ble Non-linear
data points data points

Xavier Bresson 10



@ Data clustering
°
@ Kernel k-means
°
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Higher dimensional projection

@ To separate non-linear data points, a common technique involves lifting the original data
features to higher-dimensional spaces where the data points become linearly separablel!-2,

@ This process is achieved using a so-called non-linear feature function, denoted as ¢(.) :

v

[1] Aizerman et-al, Theoretical foundations of the potential function method in pattern recognition learning, 1964
[2] Guyon, Boser, Vapnik, Automatic capacity tuning of very large VC-dimension classifiers, 1993
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Non-linear k-means

@ We update the original loss function of linear k-means by incorporating :
® The non-linear mapping : x € RY - ¢(x) € R, with d’ » d
@ Weights 6; € R, which control the importance of each data sample.

Weight contribution
/ for data x;

Lnl k—means({mq}q 1> {Sq}](; Z Z 6) H¢ x% mQHQ
q 1:e8, \

@ We will introduce two approaches to minimize the non-linear k-means loss

@ EM approach
@ Spectral approach

Xavier Bresson
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@ Data clustering

@ Kernel k-means

@ EM approach
)
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Indicator function of clusters

@ We introduce an indicator matrix F representing the clusters S :
@ F makes easy to use GPU for representing clusters.

@ Later, F will simplify the transition from combinatorial optimization to continuous

optimization
k
(1 0 0]
S1 1 0 O
1 0 0 k
F = e {0,1}"~ n
52{ 0 1 0
0 1 0
S3{ | 0 0 1

Eq, = Indicator
function of the set S,
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Non-linear k-means loss

@ Matrix formulation of the non-linear k-means lossl!l w.r.t. the indicator matrix F :

1 k
L. k—meaHS({mq}q 1 {Sq}g I Z Z Oill () — myll3

qg=1:i€S,

k
1 :
- — Z S 0:Dyq, with Dyg = [|é(;) — myll3

qg=11i€S,

1
= —t FT D n —meansF
o (I OD) = Lux (£)

with F € {0, 1}"**
© = diag(64,...,0,) € R**"
D e R™**

[1] Scholkopf, Smola, Muller, Nonlinear component analysis as a kernel eigenvalue problem, 1998 (10,000 citations as of 2023)
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Distance metric

@ Distance D;, between data x; and its mean m, :

Xavier Bresson

Dig = [|p(zi) = mqll5 = (¢(x:) —mg)" (¢(zi) —my)
= d(ai)T (as) — 26(2s)Tmy +mTm,
= K;; —2A;,+ By, €R
with
Ky = ¢(xi)" ()
Aijg = ¢(%’)qu

By, = mgmq
and
aLn -k-means i (91¢(33%) /
Lk =0 = my= 2 €5 c R
omy Ziesq 0,

N |



Distance metric

@ Matrix formulation of metric distance D :

e Point-wise distance metric : D;; = K;; — 24, + Byg € R
o First term : Kj; = (¢(2)p(x))is, ¢(x) € R = K = ¢(2)p(x)T € R™™

Second term :

Zjesq 0j¢($j) B Zjesq 9j¢(xi)T¢(xj) . Zjesq 0Ky

Aig = d(xi) ' mg = ¢(z)" = =
! ! Zjesq 0; Zjesq 0 Zjesq 0

= A= ¢(x)MT € R"** = ¢(2)p(2)TOFZ = KOFZ € R"**,
with M = ZFTO¢(z) € R**? and Z~' = diag(17OF) € RF*¥
Third term : By, = (MM?"),, = B = ZF"0¢(z)(ZFT 0¢(z))"
= Z7F10¢(x)p(z)'OFZ = ZFTOKOFZ
Finally, matrix-based distance metric :

D = diag(K)1} —2KOFZ + 1,diag(ZFTOKOFZ) € R"**

Xavier Bresson



EM algorithm

@ Initialization
@ Random initial indicator F=0 of clusters.
@ Iterate until convergence : 1=0,1,2,...

@ Cluster update (expectation step)

Sé“ = {x; € V s.t. Df;q < Dﬁq,, Vq' # q}, Df;q = dist(x;, mq) = ||z — meH%
()

eyl l
L _ 1 it Dy, = ming Dy,
q 0 otherwise

Equivalently, Sé“ = {x; € V s.t. Filjl =1}

@ Mean update (maximization step)

@ No explicit mean update required! It is implicitly done when computing D.

Xavier Bresson
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Kernel trick

@ Non-linear mapping ¢(:) enables the separation of non-linear data points.

@ However, it comes with the price to apply k-means in a larger feature space than the
original one. This leads to an increased complexity of O(nkd'n.) with d’ > d.

@ To address this issue, the kernel trick was developed, which avoids the explicit use of the
mapping o¢.

@ Observe that computing the distance D uses the quadratic matrix ¢¢d?* rather than ¢
individually, thus the precise expression of ¢ becomes irrelevant.

@ We define the kernel operator/matrix K = ¢dT with standard definitions as follows :

Time consuming

K(z;,1;) = o] x; / (linear kernel for linear k-means)
K(zi,75) = ¢(z:) ¢(z;) = exp(—|lz; — z;]|5/0%) (Gaussian kernel)
K(zs,2;) = (ax} z; + b)° \ (Polynomial kernel)
Efficient kernel
computation

[1] Aizerman et-al, Theoretical foundations of the potential function method in pattern recognition learning, 1964
[2] Guyon, Boser, Vapnik, Automatic capacity tuning of very large VC-dimension classifiers, 1993
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Algorithm properties

@ Advantages
@ Similar to standard k-means, algorithm is monotonous and guaranteed to converge.

@ Distance computation relies on linear algebra, i.e. matrix-matrix multiplication.

@ Fast libraries such as LAPACK/BLAS for Intel and AMD, as well as CUDA for GPU,
provide efficient computation.

@ Limitations
@ The kernel matrix K is full : Memory complexity is O(n?) and speed is O(n3).
@ Solutions are typically local minimizers.

@ Can we obtain global minimizers?

Xavier Bresson 2
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@ Data clustering

@ Kernel k-means

@ Spectral approach
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Non-linear k-means loss

® We reformulate the non-linear k-means lossl!l with the mean m, w.r.t. each data point x; :

@ For EM means, we have the means w.r.t. the clusters : m,> M € Rkxd’

@ For spectral means, we will consider the alternative representation : m; = M € R**¢
k
1
Lnl—k-meaHS({mq}];:la {Sq}l;:l) = I Z Z 0:l|¢(xi) — qug
g=14€S,
|k
1/2 1/2 /
= DD 16,7 6(wi) — 6;"myl3, o), my € R?
g=1i€e8s,
1 1/2 1/2 /
= D16 6(wi) — 6, mall3, mi € R
i€V
1 1/2 1/2 nxd'
= > 167 0() — 6,2 (M) |15, M e R
iV
1
= [0"20(x) — 02 M,

with M = FZFT0¢(z) € R™*?

[1] Dhillon, Guan, Kulis, Kernel k-means: spectral clustering and normalized cuts, 2004
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New indicator matrix of clusters

@ We introduce a new indicator matrix of clusters that forms an orthonormal basis :

Y =0Y2FZY2 e R st YTY =1, e R¥**  (matrix-based representation)

Z if i € S,

Yik = { 2jesy (point-wise representation)
0

otherwise
which implies
F— @ 12y z-1/2 c gnxk
and
M =FZFTO¢(z) =0~ YV2yz=1277-12yTO~1/20¢(x)
=0 12yYyTe2¢(z) e R™?

Xavier Bresson
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Non-linear k-means loss
@ We rewrite the non-linear k-means loss function with the new indicator Y :

1
Lnl—k—means(Y) — E ||61/2¢($) T 91/2MH%’7
with M = ©712yYTel2¢(x)
1
= - 0Y20(x) — YY" 20()

st. YTY =1, Y € binary™**

Xavier Bresson



Relaxation

Let us consider the combinatorial optimization problem :

&H@m —YYT0'2¢(x)[l7 st YTV =14

Observe that the binary constraint is what makes the optimization challenging, actually
rendering the problem as NP-hard.

By relaxing the non-convex binary constraint, i.e. binary™*X, to a convex one, i.e. R"*X, the
optimization becomes continuous :

iy [6'726(0) =YY O 0 st YTV =14

This transition allows for a mathematically well-posed solution, as defined by the spectral
theoreml!:2l,

[1] Helmberg, Introduction to Spectral Theory in Hilbert Space, 1969
[2] Hawkins, Cauchy and the spectral theory of matrices, 1975
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Spectral loss

We simplify the new optimization problem :

_min_ 1012¢(x) —YYTOY2p(x)||% st. YTY =1,
E n X

with
1©'2¢(x) — YYT O 2¢(2)| %
= tr((0'?¢(x) — YYTO2¢(x))" (0"2¢(x) — YYT O ?¢(x)))
= tr(0'2¢(x)  ¢(x)0"? — ©'2¢(2) ¢(2)Y YT -
YYTOY2¢(x) ¢p(x) + YYTOV2p(2)  p(x)YYT)
and using K = ¢(2) ¢(z), tr(AB) = tr(BA),tr(A + B) = tr(A) 4+ tr(B), Y'Y =1
= tr(0Y2K0Y?) —tr(YTO2K01/%Y)
Finally, we have

min —tr(YZOY2K0Y2Y) st. YTY =1,
YeRnXk

max tr(YTOY2KOY?Y) st. YTY =1,
YeRnXk

-J



Spectral theorem

@ Spectral solutionlll of the new continuous optimization problem is given by the k largest
eigenvectors of matrix A obtained by eigenvalue decomposition (EVD) :

max tr(YTAY) st. YIY =1,
YGRnXk

with A = 0Y2KeY UAUT ¢ R™*™

and solution Y* =U. ;. € R™ ¥ (L largest eigenvectors)

9 EVD

[1] Helmberg, Introduction to Spectral Theory in Hilbert Space, 1969
[2] Hawkins, Cauchy and the spectral theory of matrices, 1975
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Understand the spectral theorem

® Suppose a matrix A is symmetric and positive semi-definite (PSD).
@ All kernel matrices, denoted as K, possess these properties by construction.

@ Then, the eigenvalue decomposition of A can be expressed as :

Ay, = Nyq, A€ Ry, € R"
with
Amax = A1 > A9 > ... > A\ > ... > \,, Where \q, ..., \; are the largest eigenvalues
1 ifg=¢q
T _ q—4dq Ty __
Yq Ya' = { 0 otherwise = Y =h
We have

k k k
tr(YTAY) = Z ququ Z yZAqu = Z )\qyépyq = Z Mg (k largest values)
—1 =1

q=1

= max tr(YTAY) st. YTY =1,

[1] Meyer, Matrix Analysis and Applied Linear Algebra, 2000

Xavier Bresson
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Spectral clustering

@ No initialization needed

® No iterative scheme needed

@ Compute clusters as follows :

Compute matrix A : A = 01/2K 91/2

Perform eigenvalue decomposition of A : Au, = Aquy, uy € R**K, 1 <q <k

Form spectral solution : Y* = (uy,..,u,) € R"XK

Binarize spectral solution Y™ :
@ Generally, solution Y™ is not binary, i.e. no cluster can be directly identified.
@ Consider Y* as embedding coordinates of X and

@ Apply the standard k-means on Y~ to identify k clusters.

@ This algorithm is known as spectral clusteringlll.

[1] Von Luxburg, A tutorial on spectral clustering, 2007 (w/ 10k citations as of 2023)

Xavier Bresson

w



Algorithm properties

@ Advantages

@ Provides a global solution, i.e. independent of any initialization.

@ Offers solutions that perform well in practice.

@ Limitations

@ Computes an approximate solution to the original NP-hard combinatorial optimization
problem (by relaxing the indicator constraint).

@ Complexity is O(n2k), which does not scale w.r.t. the number n of data points.

® Spectral techniques with EVD/SVD (singular value decomposition generalized EVD to
non-square and non-positive semi-definite matrices) are commonly used in data analysis
due to their well-understood theory.

@ However, these techniques suffer from scalability issues w.r.t. the number n of data
points as EVD complexity is O(n%k), although stochastic versions of EVD/SVD have
been developed with linear complexityl!l.

[1] Mahoney, Drineas, Randomized Algorithms for the Low-Rank Approximation of Matrices, 2010

Xavier Bresson



Lab 2 : Kerne

@ Run code02.ipynb and test kernel k-means with

Xavier Bresson

@ EM approach

@ Spectral approach

# Run kernel/non-linear k-means with EM approach

# Compute linear Kernel for standard k-means
Ker = construct_kernel(X, 'kNN_gaussian', 100)

print(Ker.shape)

# Kernel k-means with
C_kmeans, En_kmeans =

# Plot

plt.figure(3)
size_vertex_plot = 10
plt.scatter(X[:,0], X[

EM approach
compute_kernel_kmeans_EM(nc, Ker, Theta, 10)

1,11, s=size_vertex_plot*np.ones(n), c=C_kmeans, cmap='jet"')

plt.title('Kernel k-means solution with EM approach. Accuracy= ' + str(compute_purity(C_kmeans,Cgt,nc))[:5] +
', Energy= ' + str(En_kmeans) [:5])

plt.show()

Construct kNN Gaussian Kernel

(2000, 2000)

Kernel k-means solution with EM approach. Accuracy= 61.5, Energy= 0.935

Kernel k-means
EM approach

| k-means

# Run kernel/non-linear k-means with spectral approach

# Compute linear kernel for standard k-means
Ker = construct_kernel(X, 'kNN_gaussian', 100)
print(Ker.shape)

# Kernel k-means with spectral approach
C_kmeans, En_kmeans = compute_kernel_kmeans_spectral(nc, Ker, Theta, 10)

# Plot

plt.figure(4)

size_vertex_plot = 10

plt.scatter(X[:,0], X[:,1], s=size_vertex_plot*np.ones(n), c=C_kmeans, cmap='jet')

plt.title('Kernel k-means solution with spectral approach. Accuracy= ' +
str(compute_purity(C_kmeans,Cgt,nc))[:5] + ' Energy= ' + str(En_kmeans)[:5]

plt.show()

Construct kNN Gaussian Kernel
(2000, 2000)
Construct Linear Kernel

Kernel k-means solution with spectral approach. Accuracy= 99.6 Energy= 0.371

Kernel k-means
Spectral approach
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@ Graph clustering
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Data clustering

Lloyd’s EM k-means has O(ndkn;) complexity but is constrained to linear data distribution.

Kernel’s EM algorithm is O(n2d+n2kn;) suitable for non-linear data but with critical
initialization.

Spectral kernel k-means is O(n?d+n2?k) providing a global solution, but without guarantee of
being the original combinatorial solution.

Non-linear techniques cannot scale to millions of data points due to the full kernel matrix.

Addressing large-scale datasets, s.a. clustering 2.8 billion monthly active Facebook users
(2023) or 61 million Wikipedia articles (2023), requires a new approach.

While the kernel operator K is full, most pairs of data points are actually not correlated.

Graphs can offer a promising solution as it can represent sparse relationships between data.

Interestingly, we will see that the task of data clustering is equivalent to graph partitioning.



Graph partitioning

@ Partitioning graphs is a cornerstone problem, not only for

@ Identifying connected groups, e.g. users on social networks (exploration tool to find
patterns), but also plays a crucial role in

@ Balanced graph partitioning for efficient distributed processing of large-scale graphs,
s.a. computing Google PageRank w/ billions of nodes.

@ A notable class of unsupervised graph clustering techniques is balanced cut algorithms.
@ Balanced graph cuts are instrumental in both
@ Graph theory : Define classes of networks and their properties.

@ Applications : State-of-the-art methods for unsupervised clustering e.g. Metisl!l,

[1] Karypis, Kumar, A fast and high quality multilevel scheme for partitioning irregular graphs, 1998

Source: Abbe, JMLR'17
Xavier Bresson 35



Data clustering as graph partitioning

@ Graph construction : Build a (sparse) k-nearest neighbors (k-NN) graph G=(V,E,A) from a dataset
V={x1,...,xn} € R4

@ The graph representation of the dataset avoids working with d-dim features directly.

@ Essentially, this process transforms the n x d data features into a set of E edges, resulting in a
significant compression of the dataset.

o Exact graph construction complexity is O(n2d), but faster approximate techniques existlil.

@ Memory complexity for graphs is O(E), w/ E«n? for real-world graphs s.a. E = O(n) for Internet.

CHZE 7R N (BIBCHSH<N5|
FEERERC@EN k-NN graph
o= construction
DaENnNBDQdddBE —_—
BN BAEAEA2A
REREAENBNHAHAHA
V=A{x1,...,x,} € RY G={V,E A}, AecR""

[1] Muja, Lowe, Fast Approximate Nearest Neighbors with Automatic Algorithm Configuration, 2009

(%)
(o)
Qo
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Data clustering as graph partitioning

@ Observe on a graph that close data are similar and thus form consistent clusters.

@ Finding clusters within the graph can be achieved by cutting the graph at strategic
locations.

@ The key is to make cuts in the graph where the number of edges is minimized, clearly
separating distinct clusters.

Graph
partitioning

Appropriate cuts
provide good clusters

Xavier Bresson
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o
o
@ Graph clustering

@ Balanced cuts
0
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Cut partitioning
@ Cut operatorl!l : Given a graph G, a cut partitions G into two sets S and S¢ with value :

Cut(S,8°) = > Ay

1€5,5€85°¢

Value of Cut, : Cut(S,S¢) =0.3 + 0.2 + 0.3 =0.8
Value of Cut, : Cut(S,S¢) =0.5 + 0.5+ 0.5+ 0.5 =2.0
Value of Cut, : Cut(S,S¢) = 0.5 €<—

@ It is obvious that min cut partitioning favors small sets containing isolated points.

@ A better approach is to seek clusters of similar sizes while simultaneously minimizing the cut

operator :
Cut

min Cut and max Vol < min Vol a.k.a. Balanced cuts
0

[1] Wu, Leahy, An optimal graph theoretic approach to data clustering: Theory and its application to image segmentation, 1993
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Balanced cut partitioning

@ Cheeger Cutl!l (most popular in graph theory) :
, Cut(S, S¢)
min :
Scv, suse=v min(Vol(5), Vol(5¢))

S Se

Partitioning by minimizing edge cuts

@ Normalized Cutl?l (most popular in application) :

- Cut(S, S¢) N Cut(S¢, S)
scv, suse=v  Vol(S) Vol(5¢)

® Normalized AssociationB! (equivalent to Normalized Cuts) :

Assoc(S, S€) N Assoc(S5¢, S)

max

scv, suse=v  Vol(S) Vol(S5¢)
S Se
with Cut(S, S¢) = A;; (num of connections between S and S° L. L. .
(5, 5°) i 5; o ( ) Partitioning by maximizing edge matching
Vol(S) = Zdi’ with d; = Z A;; (volume and degree resp.)
€S jeEV
Assoc(S,S8¢) = Z A;; (num of connections inside S)
i€S,jeS

[1] Cheeger, Pinching theorems for a certain class of Riemannian manifolds, 1969
[2] Shi, Malik, Normalized cuts and image segmentation, 2000
[3] Karypis, Kumar, A fast and high quality multilevel scheme for partitioning irregular graphs, 1998

Xavier Bresson 10



Discrete optimization

@ Balanced cut problems are NP-hard combinatorial problems.
@ Normalized Association for k clusters S :

u Assoc(S,,S5)  Assoc(S¢,Sy)

+
(Sy}E_, s.t. UgSqmV, NySy=0 2@; Vol(S,) Vol(Se)

@ We can rewrite the discrete optimization problem with a binary indicator matrix F of the sets S, :

k
FT AF.,

max E P ——
n T
FE{O,l} Xk =1 F.,qDF.,q

max tr(YTBY) st. Yy = I, B= D12 4p—1/2

Y € binary™*F¥

k
st. Y Fig=1VieV

q=1

D'/?F.
with Y. , = 9 (vectorial representation)
T IDVEE gl
.
D . .
L fieS : : :
Yig =13 V Vol(Sq) e E 2 (point-wise representation)
0 otherwise

\

Xavier Bresson



Spectral relaxation

@ Directly solving discrete balanced cut problems is intractable.
@ Similarly to kernel k-means, we derive an approximate solution through spectral relaxation.

@ We relax the binary constraint Y in binary™*X to its nearest convex set, i.e. R**¥, which
renders the optimization continuous.

@ Subsequently, the spectral theorem!!2l provides the solution:
@ The k largest eigenvectors of matrix A obtained through EVD.
max tr(YTBY) st. YTY =1,, B=D"1/2AD~1/?
YeRnXk
with B = 01/2401/2 UAUT € R "

and solution Y* =U. 1. € R™X¥F (k largest eigenvectors)

EVD

[1] Helmberg, Introduction to Spectral Theory in Hilbert Space, 1969
[2] Hawkins, Cauchy and the spectral theory of matrices, 1975
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Insightful relationship

The equivalence between kernel k-means and balanced cuts has been established!!-2l.

@ Kernel K-Means : max | tr(YTBY) st. YTY =1, B=0Y2KQ/?
Y eRn X

o Balanced Cuts : max tr(Y'BY) st. Y'Y =1, B=D""?AD™!/?
YGRnX

which are equivalent for © = D' K = A

This equivalence underscores the similarity of K and A : both matrices encode relationships
between data points.

The critical difference is that A is sparse, by considering only close data points, whereas K
is a full matrix, assigning large values to close points and small values to distant ones.

o a | el —ayl3/0?)  forj €N
" * 0 otherwise

[1] Bach, Jordan, Learning Spectral Clustering, 2003
[2] Dhillon, Guan, Kulis, Kernel k-means: spectral clustering and normalized cuts, 2004
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[1] Karypis, Kumar, A fast and high quality multilevel scheme for partitioning irregular graphs, 1998 (w/ 7k citations as of 2023)

Metis technique

Leveraging the interplay between graph partitioning and data

clustering, Metislll or Graclus/? offer methods for partitioning
graphs using kernel k-means.

In Metis, a hierarchical graph representation is also used to
suboptimal solutions.

Notably, these approaches do not require EVD, enabling
scalability to large graphs with O(E) complexity.

As of 2023, Metis is one of the best graph partitioning
techniques, striking a balance between speed and accuracy.

An optimized multi-core CPU-version is available by Amazon in
DGLBI,

[2] Dhillon, Guan, Kulis, Weighted Graph Cuts without Eigenvectors: A Multilevel Approach, 2007
[3] Wang et-al, Deep Graph Library: A Graph-Centric, Highly-Performant Package for Graph Neural Networks, 2019
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Coarsening Phase

Initial Partitioning Phase
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Lab 3 : Metis

@ Run code03.ipynb and test Metis on
@ Artificial balanced graph
@ Real-world USPS image graph

# Run Metis with DGL
# https://docs.dgl.ai/en/0.8.x/generated/dgl.dataloading.ClusterGCNSampler.html

try: os.remove('cluster_gcn.pkl") # remove any existing partition

except: pass

num_parts = nc

G_dgl = dgl.from_scipy(W)

sampler = dgl.dataloading.ClusterGCNSampler(G_dgl, num_parts)

C_metis_dgl = torch.zeros(G_dgl.num_nodes()).long()

for idx, (idx_start, idx_end) in enumerate(zip(sampler.partition_offset[:num_parts],
C_metis_dgl[sampler.partition_node_ids[idx_start: idx_end]] = idx

print('C_metis_dgl',C_metis_dgl)

C_metis_dgl = np.array(C_metis_dgl, dtype='int32')

acc = compute_purity(C_metis_dgl, Cgt, nc)

print('\nAccuracy Metis DGL :',acc)

Convert a graph into a bidirected graph: 0.004 seconds, peak memory: 0.000 GB
Construct multi-constraint weights: 0.000 seconds, peak memory: 0.000 GB

Metis partitioning: 0.031 seconds, peak memory: 0.000 GB

C_metis_dgl tensor([1, @, @, ..., 9, 9, 9])

[23:27:38] /tmp/dgl_src/src/graph/transform/metis_partition_hetero.cc:89: Partition
d get 6607 edge cuts

Accuracy Metis DGL : 81.10346311034631

# Run Metis with PyG
# https://github.com/inducer/pymetis/blob/master/pymetis/__init__.py

num_parts = nc

G_nx = nx.from_scipy_sparse_array (W)

_, part_vert = pymetis.part_graph(num_parts, adjacency=G_nx)
C_metis_pyg = np.array(part_vert,dtype='int32"')

acc = compute_purity(C_metis_pyg, Cgt, nc)

print('\nAccuracy Metis PyG :',acc)

Accuracy Metis PyG : 77.16713271671327
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# Run Metis with DGL
# https://docs.dgl.ai/en/0.8.x/generated/dgl.dataloading.ClusterGCNSampler.html

try: os.remove("cluster_gcn.pkl") # remove any existing partition

except: pass

num_parts = 3

sampler = dgl.dataloading.ClusterGCNSampler(G_dgl, num_parts)

C_metis_dgl = torch.zeros(G_dgl.num_nodes()).long()

for idx, (idx_start, idx_end) in enumerate(zip(sampler.partition_offset[:num_parts],
C_metis_dgl[sampler.partition_node_ids[idx_start: idx_end]] = idx

print('C_metis_dgl',C_metis_dgl)

G_nx = dgl.to_networkx(G_dgl)

plt.figure(figsize=[7,71)

nx.draw_networkx(G_nx, with_labels=True, node_color=C_metis_dgl, cmap='jet')

Convert a graph into a bidirected graph: 0.000 seconds, peak memory: 0.000 GB
Construct multi-constraint weights: 0.001 seconds, peak memory: 0.000 GB

Metis partitioning: 0.000 seconds, peak memory: 0.000 GB

C_metis_dgl tensor([0, @, 0, 2, 2, 2, 1, 1, 1])

[23:27:35] /tmp/dgl_src/src/graph/transform/metis_partition_hetero.cc:89: Partition
edge cuts
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Normalized cut

® Normalized Cutl}?l for k clusters S, :
Cut( Sq, SC)

o

{Sq}E_y sit. UgSq=V, NgSy=0

@ We can rewrite the discrete optimization problem with a binary indicator matrix F of the sets S,

k
min ZM withL=D—A and Y Fa=1VieV
Fe{0.1}nxk £ F1 DF., o

tr(YTBY) st. YIY =1,, B=1—D"Y24D71/?

min
Y € binary” Xk
D'/2F
with Y. , = Sk vectorial representation
S T g )
D. . . .
\/ ey f . . .
Yig = vol(sy) Y € (point-wise representation)
0 otherwise

[1] Shi, Malik, Normalized cuts and image segmentation, 2000
[2] Yu, Shi, Multiclass spectral clustering, 2003
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Normalized cut

As before, relaxing the binary constraint Y from binary™*¥ to the nearest convex set
R"*K makes the optimization continuous and tractable.

This relaxation provides an approximate solution given by the spectral theorem, specifically, the
k smallest eigenvectors of the graph Laplacian.

Typically, spectral solutions do not satisfy the binary constraint, resulting in a loose relaxation.

However, an improvment can be made to the spectral solution by enforcing the binary
constraint, leading to the development of the normalized cut techniquell:2l, a.k.a. as NCut.

NCut stands out as the most popular spectral graph clustering algorithm, with 19k citations as
of 2023.

[1] Shi, Malik, Normalized cuts and image segmentation, 2000
[2] Yu, Shi, Multiclass spectral clustering, 2003

Xavier Bresson
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A two-step technique

@ Step 1: Compute the spectral solution :

Y*=arg min tr(Y'BY) st. Y'Y =1, B=1-D""/2AD"'/?
YeRnX

Solved by EVD.

@ Step 2: Spectral solutions are defined up to rotations.

Identifying the rotation that aligns best with the binary constraint.
Z* = argmin ||Z - Y*R||% st. RTR=1,, Z e {0,1}"**
Solved by SVD and binarization.

Binary solution

(0,1) )
Rotation

“a s
ARV ARy
N S S

Xavier Bresson Stepl:Y" Step 2 : Z* (rotate Y™)




Lab 4 : NCut

@ Run code04.ipynb and test Ncut on non-linear datasets with 4 classes

# Run standard/linear k-means with EM approach

Theta = np.ones(n) # Same weight for each data

# Compute linear Kernel for standard K-Means

Ker = construct_kernel(X, 'linear')

# Standard K-Means

C_kmeans, En_kmeans = compute_kernel_kmeans_EM(nc, Ker, Theta, 10)

# Plot

plt.figure(2)

size_vertex_plot = 10

plt.scatter(X[:,0], X[:,1], s=size_vertex_plot*np.ones(n), c=C_kmeans)

plt.title('Standard K-Means solution.\nAccuracy= ' + str(compute_purity(C_kmeans,Cgt,nc))
', Energy= ' + str(En_kmeans))

plt.show()

Construct Linear Kernel

Standard K-Means solution.
Accuracy= 25.224999999999998, Energy= 2.4325874768667397

4

-2

-4

Linear k-means
EM approach
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# Run kernel/non-linear k-means with spectral approach

Ker = construct_kernel(X, 'kNN_gaussian', 100)

# Kernel K-Means with Spectral approach

C_kmeans, En_kmeans = compute_kernel_kmeans_spectral(nc, Ker, Theta, 10)

# Plot

plt.figure(3)

size_vertex_plot = 10

plt.scatter(X[:,0], X[:,1], s=size_vertex_plotxnp.ones(n), c=C_kmeans, color=pyplot.jet())

plt.title('Kernel K-Means solution with Spectral.\nAccuracy= ' +
str(compute_purity(C_kmeans,Cgt,nc)) + ', Energy= ' + str(En_kmeans))

plt.show()

Construct kNN Gaussian Kernel
Construct Linear Kernel

Kernel K-Means solution with Spectral.
Accuracy= 50.0, Energy= 0.08999733425043341

Kernel k-means
EM approach

# Run NCut
W = construct_knn_graph(X, 50, 'euclidean_zelnik_perona')
C_ncut, acc = compute_ncut(W, Cgt, nc)

# Plot
plt.figure(4)
size_vertex_plot = 10
plt.scatter(X[:,0], X[:,1], s=size_vertex_plot*np.ones(n), c=C_ncut, color=pyplot.jet())
plt.title('NCut solution. Accuracy= ' +
str(compute_purity(C_ncut,Cgt,nc)) )
plt.show()

k-NN graph with Zelnik-Perona technique
NCut solution. Accuracy= 100.0
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NCut
Spectral approach
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Product cut

@ Limitations
@ Standard cutslll are biased towards data outliers.
@ Balanced Cutsl?l s.a. NCut are biased towards cluster outliers.

@ Product Cutl®l are specifically designed and guaranteed to maintain robustness in the
presence of cluster outliers.

Two clusters with a NCut solution PCut solution
small outlier cluster

[1] Wu, Leahy, An optimal graph theoretic approach to data clustering: Theory and its application to image segmentation, 1993
[2] Shi, Malik, Normalized cuts and image segmentation, 2000
[3] Laurent, von Brecht, Bresson, Szlam, The Product Cut, 2016
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Product cut

@ Combinatorial optimization problem :

@ Real-world datasets are noisy and

min

H];:l Connec(Sg, S7)

{Sq}];:l s.t. UgSq=V, NgSq=0 eXp(H({S }))

where  Connec(Sy, S;) H 1+

composed of outliers of small clusters, H({S,}) =

which bias the graph clustering
algorithms to bad solutions.

Partition P of Partition P of
WEBKB4 found by WEBKB4 found by
by the Pcut algo. by the Ncut algo.

Partition P of Partition P of
CITESEER found by CITESEER found by
by the Pcut algo. by the Ncut algo.

e H(P) 2506 7946 1722 7494
Pcut(P) 5335 8697 4312 8309
Ncut (P) 5257 .5004 5972 5217

Xavier Bresson
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Lab 5 : PCut

@ Run code05.ipynb and test Pcut on

@ The two-moon dataset

@ USPS and MIREX datasets

# Run NCut
W = construct_knn_graph(X, 10, 'euclidean')

C_ncut, _

# Plot

= compute_ncut(W, Cgt, nc)

plt.figure(2)

size_vertex_plot = 10

plt.scatter(X[:,0], X[:,1], s=size_vertex_plot*np.ones(n), c=C_ncut, cmap='jet')
plt.title('NCut solution. Accuracy= ' +

str(compute_purity(C_ncut, Cgt, nc))[:6] )

plt.show()

k-NN graph with euclidean distance

NCut solution. Accuracy= 83.15

0.00 -

—-0.25

—0.50

—-0.75

NCut solution
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# Run PCut

W = construct_knn_graph(X, 10, 'euclidean')
C_pcut, _ = compute_pcut(W, Cgt, nc, 2, 200)
# Plot

plt.figure(3)
size_vertex_plot = 10
plt.scatter(X[:,0], X[:,1], s=size_vertex_plot*np.ones(n), c=C_pcut, cmap='jet')
plt.title('PCut solution. Accuracy= ' +
str(compute_purity(C_pcut, Cgt, nc))[:6] )
plt.show()

k-NN graph with euclidean distance
PCut solution. Accuracy= 97.7

PCut solution

USPS image graph

# Load USPS dataset

mat = scipy.io.loadmat('datasets/USPS.mat")
W =mat['W'] # 'scipy.sparse._csc.csc_matrix'
n = W.shape|[0]

Cgt = mat['Cgt']-1; Cgt=Cgt.squeeze()

nc = len(np.unique(Cgt))

print(n,nc)

9298 10

Cncut, acc = compute_ncut(W,Cgt,nc)
print('Ncut accuracy =',acc)

Ncut accuracy = 73.52118735211873

Cpcut, acc = compute_pcut(W,Cgt,nc,5,10)
print('Pcut accuracy =',acc)

Pcut accuracy = 81.24327812432782

MIREX music graph

# Load USPS dataset

mat = scipy.io.loadmat('datasets/MIREX.mat")
W =mat['W'] # 'scipy.sparse._csc.csc_matrix'
n = W.shape[0]

Cgt = mat['Cgt']-1; Cgt=Cgt.squeeze()

nc = len(np.unique(Cgt))

print(n,nc)

3090 10

Cncut, acc = compute_ncut(W,Cgt,nc)
print('Ncut accuracy =',acc)

Ncut accuracy = 39.25566343042071

Cpcut, acc = compute_pcut(W,Cgt,nc,0.5,400)
print('Pcut accuracy =',acc)

Pcut accuracy = 45.6957928802589

ot
ot
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Number of clusters

@ Previous techniques assume that the number k of clusters is predefined.
@ In scenarios where k is unknown, two approaches are commonly used :
@ Domain expertise
@ Define a quality measure of clustering.
@ Apply previously introduced techniques with various k values.
@ Pick the k value with the highest quality.
@ Simultaneous optimization of the clusters and their number
@ Treat k as a variable of the clustering problem

@ Use Louvain algorithmlll to dynamically determine the optimal number of clusters
during the clustering process.

[1] Blondel, Guillaume, Lambiotte, Lefebvre, Fast unfolding of communities in large networks, 2008
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Louvain algorithm

@ Louvain techniquelll
@ Popular technique in social science w/ 20k citations as of 2023.
@ It is basically a greedy algorithm that optimizes the modularity objective :
d;d;
Ai T i )5 Ci, C
k,czvgl?ffz..,k} Z ( J Vzi,j, Ay ( i)

g

1 if C; =C; (¢ and j belong to the same cluster)
0 otherwise

with 5(CZ,CJ) = {

[1] Blondel, Guillaume, Lambiotte, Lefebvre, Fast unfolding of communities in large networks, 2008

Xavier Bresson
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Number of clusters

@ Observe that

d;d;
Ai' — v ) i, C
k,czvr—r:?fz..,k} ;( J VZM, Ai’j/) (Ci, C)

is equivalent to

k
' Cut(S,, S;) — vVol(S,)Vol(S¢
11111 v, ﬂquZQ q_z:l U.( q q) Y O( Q) O( q)

{Sq}E_y st UgSy=

which is a relaxation of the balanced cut we call LCut:

k
CUt(SQ7SqC)
| here 7 = min LCut({S
(S}, st UyS,=V, 1y5,=0 Zvol(sq)vol(55)’ where 7 = min LCut({5,})

q=1

@ The parameter y provides a loose, i.e. not exact, control over the number of clusters.

@ When A represents the minimum value of LCut, then modularity is equivalent to LCut.
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Greedy algorithm

@ Step 1 : Energy minimization step
@ Find communities by locally maximizing the modularity.

@ Each node is first assigned to its own community. Iteratively,
each node i is reassigned to the community of its neighbor that
maximizes modularity. The process is repeated until no changes
occur.

@ Step 2 : Graph coarsening step

@ Create a new graph by merging communities into super-vertices.

@ Construct a new adjacency matrix based on the communities
identified in Step 1.

@ Properties

@ Fast and parallelizable algorithm, e.g. used for Twitter
community detection in 2009 w/ 2.4M nodes, 38M edges.

@ No theoretical guarantee to find the global modularity solution.

Xavier Bresson
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Lab 6 : Louvain algorithm

@ Run code06.ipynb and test Louvain algorithm on

@ The two-moon dataset

@ USPS dataset

@ Observe that Louvain tends to over-cluster the datasets.

Xavier Bresson

# Run Louvain

Wnx = nx.from_numpy_array(W.toarray())

partition = community.best_partition(Wnx)

nc_louvain = len(np.unique( [partition[nodes] for nodes in partition.keys()] ))
n = len(Wnx.nodes())

print('nb_data:', n , ', nb_clusters=', nc_louvain)

# Extract clusters
Clouv = np.zeros([n])
clusters = []

k=0

for com in set(partition.values()):
list_nodes = [nodes for nodes in partition.keys() if partition[nodes] == com]
Clouv[list_nodes] = k
k += 1

clusters.append(list_nodes)

# Accuracy
acc = compute_purity(Clouv,Cgt,nc_louvain)
print('Louvain solution ',str(acc)[:5],"' with nb_clusters=',6nc_louvain)

nb_data: 9298 , nb_clusters= 14
Louvain solution 95.71 with nb_clusters= 14
# Run NCut with the number of clusters found by Louvain

Cncut, acc = compute_ncut(W,Cgt,nc_louvain)
print('NCut solution:',str(acc)[:5],"' with nb_clusters=',nc_louvain)

NCut solution: 86.68 with nb_clusters= 14

# Run Louvain algorithm

W = construct_knn_graph(X, 50, 'euclidean_zelnik_perona')

Wnx = nx.from_numpy_array (W)

partition = community.best_partition(Wnx)

nc_louvain = len(np.unique( [partition[nodes] for nodes in partition.keys()] ))
n = len(Wnx.nodes())

print('nb_data:', n , ', nb_clusters=', nc_louvain)

# Extract clusters
Clouv = np.zeros([n])

clusters = []

k=20

for com in set(partition.values()):
list_nodes = [nodes for nodes in partition.keys() if partition[nodes] == com]
Clouv[list_nodes] = k
k+=1

clusters.append(list_nodes)

# Accuracy
acc = compute_purity(Clouv,Cgt,nc_louvain)
print('accuracy_louvain="',acc,' with nb_clusters=',nc_louvain)

plt.figure(2)

size_vertex_plot = 10

plt.scatter(X[:,0], X[:,1], s=size_vertex_plot*np.ones(n), c=Clouv, cmap='jet')
plt.title('Louvain')

plt.show()

k-NN graph with Zelnik-Perona technique
nb_data: 2000 , nb_clusters= 14
accuracy_louvain= 99.8 with nb_clusters= 14

Distribution of two circle distributions -- Non-linear data points
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Overview of data and graph clustering

Unsupervised Clustering

— i

k is unknown k is known
Full Matrix Sparse Matrix
Graph construction
may be needed
Data Graph
(no graph)
Louvain Algorithm \l/
Greedy technique
Balanced Cuts
k-means Cheeger Cut, Normalized Cut,
Normalized Associationst
Kernel NP-hard
trick Spectral rel

Spectral Graph Clustering
Kernel k-means w/ EM*

Kernel k-means w/ Metist

t Equivalence

* Equivalence

axation

Linear Non-linear
- *
Kernel k-means w/ Spectral Relaxation Relaxation
Ncut* PCut

Loose relaxation
of balanced cuts
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Tight relaxation
of balanced cuts
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Conclusion

Clustering, both for data and graphs, is a cornerstone topic that beautifully connnects
combinatorial and discrete optimization, continuous optimization, graph theory, and spectral
solutions.

Linear and kernel k-means is the most basic unsupervised data clustering algorithms. They
are solvable with EM /greedy optimization, as well as spectral techniques.

Unsupervised graph clustering algorithms, like NCut and Metis, focus on balanced cuts. Like
k-means, they can be tackled through fast greedy algorithms or spectral optimization.

We show the equivalence between data clustering and graph partitioning tasks, both aiming
to identify communities of similar data points or nodes in graphs.

Data clustering complexity is O(n2dk) for greedy methods, O(n2d+n2k) for spectral techniques.

Graph clustering has complexity O(n2d) for graph construction, O(E) for Metis and O(E3/%k)
for spectral approaches.
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