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Course lectures

@ Introduction to Graph Machine Learning

@ Part 1: GML without feature learning
(before 2014)

@ Introduction to Graph Science

@ Graph Analysis Techniques without
Feature Learning

@ Graph clustering

@ Graph SVM

@ Recommendation

@ Dimensionality reduction

@ Part 2 : GML with shallow feature learning
(2014-2016)

@ Shallow graph feature learning
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@ Part 3 : GML with deep feature learning,
a.k.a. GNNs (after 2016)

Graph Convolutional Networks
(spectral and spatial)

Weisfeiler-Lehman GNNs

Graph Transformer & Graph
ViT /MLP-Mixer

Benchmarking GNNs

Molecular science and generative GNNs
GNNSs for combinatorial optimization
GNNs for recommendation

GNNs for knowledge graphs
Integrating GNNs and LLMs



Xavier Bresson

Supervised classification
Linear SVM
Soft-margin SVM
Kernel techniques
Non-linear /kernel SVM

Graph SVM

Conclusion

Outline
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Supervised classification
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Learning techniques

@ As of Feb 2023, there are five main classes of learning algorithms :
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Supervised learning (SL) : Algorithms that use labeled data, i.e. data annotated by
humans.

Unsupervised learning : Algorithms that learn the underlying data distribution without
relying on label information, e.g. data generation.

Semi-supervised learning : Algorithms that use both labeled and unlabeled data.

Reinforcement learning (RL) : Algorithms that learn sequence of actions to maximize a
future reward over time, e.g. winning games.

Self-supervised learning (SSL) : Algorithms that learn data representation by self-
labeling, without requiring human annotations.
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Support vector machine

In this lecture, we will focus on two specific topics :
@ Supervised classification using Support Vector Machine (SVM).

@ Semi-supervised learning that leverage graph structure to improve learning from
partially labeled data.

SVM stands as a theoretically robust and widely successful technique deployed across
various applications.

It was the prevailing machine learning model prior to the advent of deep learning.

Its decline in popularity can be attributed primarily to the absence of a feature learning
mechanism. SVM relies on features engineered by humans, which were surpassed with
features learned by neural network architectures.



Support vector machine

@ SVM elegantly connects important topics in machine learning :
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Geometric interpretation of classification tasks.

Ability to handle non-linear class boundaries using higher-dimensional feature maps.

Efficient use of the kernel trick to maintain the complexity of input data.
High-dimensional interpolation with the representer theorem.
Use of graph representations to capture data distribution regardless of labels.

Incorporation of graph regularization to propagate label information throughout the
graph domain.

Primal and dual optimization methods for solving quadratic programming problems.

-J
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Linear SVM

Outline



SVM formulation

@ Goal : Given a set I/ of labeled data with two classes, the goal is to construct a
classification function f that assigns the class for new, previously unseen data
point by maximizing the margin between the two classeslll.

frrxeRY = {-1,1}
with V = {x;, l;}] 1, z; € RY (data features)
¢; € {—1,1} (data label)

Positive label : 4+
Ti, b; = +1

Negative label : @
Ti b = —1

Classification function :

flx)=—-1, x € C_

Classification function :
flx) =41, z € Cy4

[1] Vapnik, Chervonenkis, On a perceptron class, 1964
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Linear SVM

@ Assumptionl!l : Training and test datasets are linearly separable, i.e. data can be separated
with a straight line in 2D, a plane in 3D and a hyper-plane in higher dimensions.

@ A hyper-plane is parameterized with two variables (w, b), where w is the normal vector of the
hyper-plane, i.e. determining its slope, and b is the offset or bias term :

Hyper-plane equation : {z: wlz +b=cte}, z,w € R%, be R

Hyperplane
separator between
— the two classes /

wlx + b= cte

[1] Vapnik, Chervonenkis, On a perceptron class, 1964

Xavier Bresson



SVM classifier

@ C(lassification function :

fw,b(x) = sign(wTa; T b) _ {

+1
—1

for x € C'y
for x € C_

_ {z:wlz+b=0}
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Maximizing class margin

@ Hyper-plane w'x 4+ b = 0 is the class separator.
@ Hyper-planes w’x + b = +1 are the class margins.
@ Why do we want to maximize the margin?
@ Note that multiple hyper-plane solutions exist to separate the two classes.

@ Let us select the solution that generalizes the best, i.e. the solution with the largest
margin between the classes.
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Maximizing class margin

@ What are the parameters (w, b) that maximize the margin d between the training points?
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Margin is defined with the vector d = x4 — z_ € R?
Given that w'2z, +b=+1 and w'2_ + b= —1 and

substracting these two lines : w' (z4 —2_) =2 = wld=2
2
Then taking the norm : ||wl2.||d|2 =2 = ||d||2 = Tl
wi|2
. 2 . 9 szv@+b2+1 if x; € Cy
Finally, max |d||2 = Twls < min |w]|5 s.t. { wTe 4 b> -1 ifa O

Maximizing the class margin is equivalent to minimize the norm of w

while satisfying the label constraints.

wl —!—\h\: __]|




@ Optimal value w* is the solution of a constrained quadratic programming (QP) problem :
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Primal optimization problem

min ||w||3 s.t. fi.s; > 1, VieV
w

>+1 forxzeCy )+ itz eCy
< -1 forzeC_ and gz_{—l if v € C_

which can be compactly expressed as ¢;.s;, > 1, Vi € V

with s; = wlz; +b= {

Si:’szCi—l—bZ—l—l/




Primal optimization problem

@ There exists a unique solution to the QPI1.23] optimization problem, if the assumption of
linearly separable data points is satisfied.

@ Variable w is called the primal variable.

w* = argmin ||w|3 st. f.s; > 1, Vi€V = foym(z) = sign((w*)!z 4 b*)

Quadratic Convex set SVM
function (polytope) classifier

0
E
6

555555555

George Dantzig
1914-2005

[1] Dantzig, Orden, Wolfe, The generalized simplex method for minimizing a linear form under linear inequality restraints, 1955
[2] Wolfe, The Simplex Method for Quadratic Programming, 1959
[3] Boyd, Vandenberghe, Convex Optimization, 2004
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Support vectors

@ Support vectors are the data points exactly localized on the margin hyper-planes :

l;.s; =1, Vai¥ (support vectors)
O (wH) TS +b%) =1 Margin planes
which gives

b =l — (w) Y

and on expectation

1
b* = P Z l; — (W) x5y
Ti | o

Support vectors
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Dual variable

@ We can represent the weight vector w as a linear combination & of the training data points x;.
@ The coefficient vector « is referred to as the dual variable of w.

@ The dual problem naturally introduces the linear kernel matrix K(x,y) = xTy :
Given w = Z ol x; € Rd, a;, € R
we have wTa:Z — Z aiﬁix;fpx eR
= zz: il K (x5, x) with K(x;,2) = 2l

=o' LK(2), o, K(z) € R", L € R™*"

Classification function : fgvm(z) = sign(w’z 4 b) € 1 (with primal variable)
= sign(a’ LK (x) 4+ b) € 1 (with dual variable)

N |
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Dual optimization problem

@ The primal optimization problem can be solved with the dual probleml!2:3] :

min ||w||3 s.t. f.s; > 1, Vi€V  (primal QP problem)

is equivalent to

1
min —a’ Qo —a’l, st. a’f=0 (dual QP problem)

a>0 2
with Q = LKL € R™*"

L = diag(f) € R™*"
(= (ly,....0,) €ER"
K e R"" K;; = x]x; € R (linear kernel)

Leonid Kantorovich
1912-1986

[1] Kantorovich, The Mathematical Method of Production Planning and Organization, 1939
[2] Dantzig, Orden, Wolfe, The generalized simplex method for minimizing a linear form under linear inequality restraints, 1955

[3] Boyd, Vandenberghe, Convex Optimization, 2004
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@ Solution a* can be computed with a simple primal-dualll,2l iterative scheme :

Narendra Karmarkar

Optimization algorithm

Initialization : o*=Y = g*=Y% = 0,, ¢ R"
1

1
Time steps satisty 7,75 < TAT T8 =
} Q| I L]

S.a. Ty =

1
QL]
Iterate :

oFtH =Poo((1.Q + 1) (o + 7,Q — T, LB")) € R”
BRFL = Bk 4 r3Lak T € R™

At convergence, we have : o*

Classification function : fevm(z) = sign(a*’ LK (z) + b*) € +1

[1] Karmarkar, A new polynomial-time algorithm for linear programming, 1984
[2] Boyd, Vandenberghe, Convex Optimization, 2004
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Lab 1 : Linear SVM

@ Run codeOl.ipynb and analyze linear SVM result
@ Linearly separable data points

@ Non-linear data points

# Run Linear SVM

# Compute linear kernel, L, Q
Ker = Xtrain.dot(Xtrain.T)

on

Score function s(x) = wix+b
iter=200, diff_alpha=0.02983
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1 = l_train

L = np.diag(l)

Q = L.dot(Ker.dot(L))
# Time steps

tau_alpha = 1./ np.linalg.norm(Q,2)
tau_beta = 1./ np.linalg.norm(L,2)

# For conjuguate gradient
Acg = tau_alphax Q + np.eye(n)

# Pre-compute J.K(Xtest) for test data
LKXtest = L.dot(Xtrain.dot(Xtest.T))

# Initialization
alpha = np.zeros([n])
beta = 0.0

alpha_old = alpha

# Loop

k=0

diff_alpha = 1le6

num_iter = 101

while (diff_alpha>le-3) & (k<num_iter):

# Update iteration
k +=1

# Update alpha

# Approximate solution with conjuguate gradient

b@ = alpha + tau_alpha - tau_alphax 1% beta

alpha, _ = scipy.sparse.linalg.cg(Acg, b@, x@=alpha, tol=le-3, maxiter=50)
alphalalpha<0.0] = @ # Projection on [0,+infty]

# Update beta
beta = beta + tau_beta* 1.T.dot(alpha)

# Stopping condition
diff_alpha = np.linalg.norm(alpha-alpha_old)
alpha_old = alpha

Classification function f(x) = sign(w”x + b)
iter=200, acc=100.0
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Soft-margin SVM

Outline
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Noise

@ Real-world data often contains noise and outliers, which do not satisfy the assumption of
linearly separable data points.

@ When dealing with non-linearly separable data, there is no mathematical solution for
standard or hard-margin SVM because there does not exist a linear separator that can split
the two classes perfectly, i.e. without errors.

@ A new technique is necessary, refered as soft-margin SVMI1I,

Negative label : @
xiagi = —1

Positive label : <+
Ti, b = +1

Classification function :

flx)=—1, z e C_

Classification function :
flx)=+1, z € Cy

Errors or
outliers

[1] Cortes, Vapnik, Support-vector networks, 1995

[\
[\
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Soft-margin SVM

@ Slack variables e; quantifies the error for each data x; to be an outlier.

@ These errors e¢; will be minimized while simultaneously maximizing the margin :

Xavier Bresson

wlz; +b>+1  for x; € Cy

r%n |wl]|5 s.t. { Tz 1 b< -1 fora eC (Standard SVM)

4
n wTZUZ+bZ+1—6Z fOI'CUZ'EC_|_
min ||w||3 4+ A Z e; s.t. wlz; +b< —1+e¢; foraz; € C_ (Soft-margin SVM)
e N i=1 e; >0 forx; e V
>

Trade-off between large
margin and small errors

[\]

w



Regularization

® What is the effect of varying A, the regularization parameter?
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@ For small A values, more misclassification errors are allowed, the margin is larger.

@ For large A values, misclassification errors are penalized, leading to either no errors or very
few, resulting in a smaller margin.

Small A value Intermediate A value Large A value



Hinge loss

@ The soft-margin SVM technique penalizes :

@ Misclassifications of training data points.

@ Correct classifications of training points that fall inside the margin area.

@ The constrained optimization problem can be reformulated as an unconstrained problem :

n wlz; +b>4+1—¢; forx; € Cp
min ||Jw]|3 + )\Zei s.t. wlz;, +b< —1+¢; foraz; €C_
e 1=1 e; >0 forx; €V

0

min ||w]|3 + )\Zmax (0,1 —¢;s;),
© i=1

where s; = w’ z; + b (score function)
Lyin(d;) = max (O, 1 — di), d; = £;s; (Hinge loss)
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Lin(d)
I = max(0,1 — d)
1
d<1 d>1
Lyin(d) >0 Lyin(d) =0
Misclassified Correctly classified



LLoss functions

@ There exist multiple loss functions!! :

La(di) = { 0 otherwise
v O=d)*+B11—d;| ifdi<1
Len(ds) = { 0 otherwise
%—@ ifd;, <0
LHub<di) = 5(1 — dz)Q if0<d; <1
0 otherwise

LHin(dz’) = maX(O, 1— dz>

[1] Rosasco, De Vito, Caponnetto, Are loss functions all the same? 2004
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(L2 loss)
(Elastic net loss)
(Huber loss)

(Logistic loss)
(Hinge loss)

LHub

Len,\  Liog

L2 A
LHin
< > : d
1

d<1 d>1
Misclassified Correctly classified
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Dual optimization problem

@ As previously, the primal optimization problem can be solved with the dual problem :

min ||wl||3 + )\Zei st. l;.si>1—e;, ¢,6>0VieV (primal QP problem)
w,e

i=1
is equivalent to

1 . -
Ogloflél)\ 504 Qa—a 1, st. a =0 (dual QP problem)
/ ] — nxn
Modification with @ = LKL € R
= (ly,...0,) €R"

K € R"™" K;; = x] x; € R (linear kernel)

Xavier Bresson
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Optimization algorithm

@ Solution o* can be computed with the following iterative scheme :
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Initialization : of=% = g*=Y = 0,, € R”
1 1 1

Time steps satisty 7,73 < =7 S.a. T = —=,78 = 70
) QUL o] 1L ]

Iterate :
/

O/H_l — PO§-§>\((TQQ + In)_l(ak + Ton _ TaLBk»
Bk—l—l _ Bk + TﬁLOék+1
At convergence, we have : o

Classification function : feym(z) = sign(a*’ LK (z) + b*) € +1



@ Run code02.ipynb and analyze SVM result on

Lab 2 : Soft-margin SVM

@ Noisy linearly separable data points

@ Noisy non-linear data points
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Kernel techniques
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High-dimensional interpolation

@ How can we perform function interpolation in high-dimensional spaces?

@ Reproducing Kernel Hilbert Spacelll (RKHS) : A space associated to bounded, symmetric,
positive semidefinite (PSD) operator called a kernel K(x,x) : R*XR? — R, that can reproduce
any smooth function h(x) : R — R.

@ Representer theoreml!2l : Any continuous smooth function h in a RKHS can be represented as
a linear combination of the kernel function K evaluated at the training data points x; :

ZO‘@ (x,z;) + b, mx@ERdbERd»l

[1] Beurling, On two problems concerning linear transformations in Hilbert space, 1948
[2] Scholkopf, Herbrich, Smola, A generalized representer theorem, 2001

David Hilbert Bernhard
1862-1943 Scholkopf
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Representer Theorem

@ Illustration of the Representer theorem to interpolate functions in high-dimensional spaces :

h(z)

R, d > 1 /

K (z,2;) = exp(—|lz — zi]l2/0%)

N
>

ZO‘@ (x,z;) +beR

with the most common kernels are defined as
K(z,y) =2y (linear kernel)
K(z,y) = exp(—||lz — y||5/0%) (Gaussian kernel)
K(z,y) = (ax’y + b)° (polynomial kernel)

Xavier Bresson
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Feature map, kernel trick and interpolation

@ Any feature map ¢ defines a reproducing kernel K, and inversely.

@ Any kernel K can be used to design a smooth high-dim function h.

Reproducing
kernel K

Representer theorem Kernel trlck
n T
h(z) = Z%K(fﬁ,xz Norm of h ()" (y)
= B3, = BTER

Bounded
continuous
function h

Feature map

1

Xavier Bresson
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Non-linear /kernel SVM
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Feature engineering for non-linear data

@ Linear models, s.a. original and soft-margin SVM, assume linearly separable data points.

@ But in many real-world scenarios, datasets are not linearly separable, i.e. a hyper-plane
cannot distinguish between distinct classes.

® How to address this challenge and classify complex/non-linear datasets with linear separators?

@ Feature engineering approachl!l : Project the data into a higher-dimensional space using a
feature map ¢ where the data becomes linearly separable.

+ + g

Feature map ¢(-)

L
>

zeR? = ¢(z) e RY
d" > d (possibly d' > d)

O
Non-linear dataset Linear dataset
and separator and separator

[1] Aizerman et-al, Theoretical foundations of the potential function method in pattern recognition learning, 1964
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Kernel trick

@ Non-linear mapping ¢ enables the separation of non-linear data points.

@ However, this approach entails operating in a larger feature space compared to the original
one, resulting in increased complexity of O(d") where d’ > d.

@ To address this issue, the kernel trick was devised!}2?l, offering a solution without the
explicit use of the mapping ¢.

o With this approach, computing the kernel operator/matrix is defined as K = ¢7 ¢,
rather than ¢ individually, making the exact expression of ¢ irrelevant.

@ Some standard kernel operators include :

Time consuming

K(z,1;) = x] x; / (linear kernel for linear k-means)
K(zi, ;) = ¢(z;) ¢(x;) = exp(—||w; — z;]|5/0°) (Gaussian kernel)
K(zs,z;) = (ax} z; + b)° ~ \ (Polynomial kernel)
Efficient kernel
computation

[1] Aizerman et-al, Theoretical foundations of the potential function method in pattern recognition learning, 1964
[2] Guyon, Boser, Vapnik, Automatic capacity tuning of very large VC-dimension classifiers, 1993

Xavier Bresson
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Non-linear /kernel SVM

@ Primal optimization problem!! w.r.t. w :

/

n whé(z;)) +b>4+1—¢; forx; € Cy
min [|w||3 4+ A Z e; s.t. wl¢(x;)) +b< —~1+4+e; forax; € C_  (Kernel SVM)
e i=1 e; >0 forxz; €V

@ Dual optimization problem w.r.t. o :

1
min -alQa—all, st. ol =0
0<a<i 2

with Q = LKL € R™*"
L = diag(¢) € R™"
0= (ly,....0,) €ER" /
K e R"™"™ K;; = ¢(x;)  ¢(x;) € R (generalized kernel)

Function ¢ is never used explicitly.

[1] Boser, Guyon, Vapnik, A training algorithm for optimal margin classifiers, 1992
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Non-linear /kernel SVM

@ Decision function f(x) :
Given w = Z ailip(x;) € RY
we have wT:I: = Z ailid(x) o(z) € R
= zz: il K (x5, x) with K(z;,z) = ¢(x;)" o(x)

=o' LK(x), o, K(x) € R", L € R™*"

Classification function : fgywm(z) = sign(w’ ¢(x) 4+ b) (with primal variable)
= sign(a’ LK (x) +b) (with dual variable)

Xavier Bresson
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Optimization algorithm

@ Solution o* can be computed with the following iterative scheme :

Xavier Bresson

Initialization : o*=% = g*=% = 0,, € R"

1 1 1
———— 8.a. Ty =
QL

Time steps satisty 7,75 < T T8
} Q" (7|

Iterate :
ot = PO§-§)\<<7_04Q + In>_1(ak + Ta@ — TaLBk))
Bk—l—l _ 61{: 4+ TBLCkk+1

At convergence, we have : o

Classification function : feym(z) = sign(a*’ LK (z) + b*) € +1

\

Generalized
kernel
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Supervised learning for classification

@ SVM belongs to the class of supervised classification algorithms.

@ In general, algorithms of this class can be described as follows:

mln HfHHK—I—)\ZLdata fis 4i)

fen =1

with

Representer theorem : f(x) = sign Za@ x, xz € +1

Norm of f in RKHS : HfHHK Zfzfj ;i = fTKf (smoothness/regularity of f)

HfH?HK = HwHQ for f(z)= wlz (linear SVM)

Misclassification error : Lqata(Si, ¢;) = Luin(d; = s;¢;) = max(0,1 — d;) (Hinge loss)

Hyper-parameter A > 0 controls the trade-off between regularization and data fidelity.
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Lab 3 : Kernel /non-linear SVM

@ Run code03.ipynb and analyze kernel SVM result on

. . . Score function s(x) =w'x+b Classification function f(x) = sign(w’x + b)
@ Noisy non-linear data points ter—44, iff aipha=0.00096 ter—44, acc=83.0
°® . .
0.3 1 ® 2 0.3 1
@ Real-world text documents o ool
0.2 - ® 0.2 - 0.50
D 4 1
0.1+ ‘ 0.1+ 0.25
Real-world graph of articles
0.0 1 Py 0 0.0 0.00
# Dataset -0.1 A -0.1 A -0.25
mat = scipy.io.loadmat('datasets/data_2@news_50labels.mat")
Xtrain = mat['Xtrain'] -1
. 1 - 4 -0.50
1_train = mat['l'].squeeze() 0.2 0.2
n = Xtrain.shape[0] -0.75
d = Xtrain.shape[1] -0.37 2 —0.37 .
nc = len(np.unique(Cgt_train))
print(n,d,nc) T T T T T T T T T T -1.00
e -0.4 -0.2 0.0 0.2 0.4 -0.4 -0.2 0.0 0.2 0.4
Xtest = mat['Xtest']
Cgt_test = mat['Cgt_test'] - 1; Cgt_test = Cgt_test.squeeze() L'
inear SVM
50 3684 2
Score function s(x) =w'x+ b Classification function f(x) = sign(w’x + b)
Run kernel SVM iter=154, diff_alpha=0.00097 iter=154, acc=95.39 Lo
# Run kernel SVM 4 4
0.3 15 0.3 0.75
# Compute Gaussian kernel, L, Q 0.2 4 0.2 4
sigma = 0.5; sigma2 = sigmakx2 : 1.0 . 0.50
Ddist = sklearn.metrics.pairwise.pairwise_distances(Xtrain, Xtrain, metric='euclidean', n_jobs=1)
Ker = np.exp(- Ddist#*2 / sigma2) 0.14 0.5 0.1+ 0.25
Ddist = sklearn.metrics.pairwise.pairwise_distances(Xtrain, Xtest, metric='euclidean', n_jobs=1) :
KXtest = np.exp(- Ddistxx2 / sigma2) 0.0 0.0 0.00
1 = _train 0.0
L = np.diag(l) —0.14 -0.14 —
Q = L.dot(Ker.dot(L)) 0.1 —0.5 . 0.25
# Time steps -0.2 4 -0.2 4 -0.50
tau_alpha = 10/ np.linalg.norm(Q,2) =10
tau_beta = 0.1/ np.linalg.norm(L,2) —0.3 A —0.3 A -0.75
=15
# For conjuguate gradient T T T -1.00

Acg = tau_alphax Q + np.eye(n) -0.4 -0.2 0.0 0.2 0.4

# Pre-compute J.K(Xtest) for test data Kernel SVM

LKXtest = L.dot(KXtest)

# Error parameter
lamb = 3 # acc: 87.5
. Kernel SVM iter, diff_alpha : 100 0.00099
Xavier Bresson acc : 87.5
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Semi-supervised classification

@ Semi-supervised classification (SSC) leverages both labeled and unlabeled data to boost the
classification process.

@ Labeled data, annotated by humans, provide precise insights into class membership, offering a
rich information for learning.

@ However, human annotation is time-consuming, costly, susceptible to human biases and errors.
@ In contrast, unlabeled data depict the underlying structure of the data distribution.

@ Collecting unlabeled data is efficient, cheap, but inherently noisy.

@ SSC proves particularly beneficial when labeled data are scarce.

@ The situation where n < m, where the number n of labeled instances is significantly smaller
than the number m of unlabeled instances.

@ An extreme scenario is when each class has only one labeled instance, n = 1.

Xavier Bresson



(zeometric structure

@ Unlabeled data encapsulate valuable statistical information, particularly the geometric
structure of the data distribution.

@ How to leverage this information within the supervised SVM classification framework?

R¢ c. | c R? C,

® 4+
+@ @ \@D_/GT

+
+ O PY
® C.
Labeled data +,® Labeled data =+, ® Labeled data =, ®
Supervised classification Supervised classification Unlabeled data A

Semi-supervised classification
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Manifold and graph

The data distribution remains unchanged regardless of whether labels are present or absent.

Both labeled and unlabeled data points are assumed to belong to a manifold within the
d-dimensional feature space.

This manifold is estimated using a k-nearest neighbor graph constructed from the data points,
serving as an approximation of the underlying manifold structure.

C

o

-

Labeled data-+, ®
Unlabeled data A
Semi-supervised classification

on manifold

Xavier Bresson

Manifold M embedded
in Rd. Data points are
sampled from M.

Manifold M is
represented by a k-NN

graph of the data points.

Graph G=(V,E,A)
k-NN graph



Manifold regularization

@ We aim to ensure that the classification function f(x) exhibits smoothness across the
manifold, which is approximated by the k-NN graph.

@ This smoothness constraint will propagate the label information throughout the graph, i.e.
neighboring data points will tend to share the same label.

flzi) =+1 Labeled data +, ® fo — 4k o | o
Ti) =+ x; n :
Unlabeled data A ~ N\
f((l?l) ~+1 = f(x@) ] —|—1<\ xz(// f(wz) =—1
/
/ 7 f(xz) ~ -1
A 4
Manifold M is represented by a Graph G=(V,E,A)
k-NN graph of the data points. k-NN graph
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Graph regularization

@ Graph regularization is usually implemented through loss minimization techniques.

@ A widely used regularization loss is the Dirichlet energylll, which is defined as:

/ IV fI? (continuous Dirichlet energy)
M

~ Z Aij|f(z;) — f(z;)]? (discrete Dirichlet energy)
ijev
~fTLfeR, feR",L=1—D"Y2AD~1/2 ¢ R"*" (Laplacian matrix)
D = diag(d) € R"*™ d = Al,, € R" (degree vector)

@ Minimizing the Dirichlet energy enforces the smoothness of the function on the graph domain,
ie f(x))=f (x]) for j € IV;, ensuring that the function values at neighboring data points are
similar.

[1] Belkin, Niyogi, Laplacian Eigenmaps and Spectral Techniques for Embedding and Clustering, 2001
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Semi-supervised classification with graphs

@ SSC optimization problem with graph smoothness :

. 2 2
—i‘)\ L ata i)g’i + / V
Jin |3, Z datalfis () + | V]
@ Graph SVMLII .
- T (. f. T
frél’}l-tnK f Kf+)\§_:LH1n(f27€z)+7f Lf

with

Representer theorem : f(x) = sign Zaz T, x;) + b) e +1

[1] Belkin, Niyogi, Sindhwani,Manifold regularization: A geometric framework for learning from labeled and unlabeled examples, 2006

Xavier Bresson
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Optimization algorithm

@ Dual optimization problem :
min fTKf+ XY Luin(fi, i) +7fTLf
feEHK =1
with
Representer theorem : f(x) = Sign( ZﬁfK(m, x;) + b) € +1

1=1

1
Optimization problem : o = argoglig)\ iozTQoz —al1, st.att=0

with Q = LHK(1+~LK) 'HL € R"*"
Solution : &* = (I+ LK) *HLa*

Xavier Bresson
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Lab 4 : Graph

@ Run codeO4.ipynb and analyze Graph SVM result on
@ Noisy non-linear data points

@ Real-world text documents

Real-world graph of articles

Dataset has 10 labeled data and 40 unlabeled data

# Dataset

mat = scipy.io.loadmat('datasets/data_2@news_10labels_40unlabels.mat")
Xtrain = mat['Xtrain']

n = Xtrain.shape[0]

1_train = mat['l'].squeeze()

d = Xtrain.shape[1]

Xtest = mat['Xtest']

Cgt_test = mat['Cgt_test'] - 1; Cgt_test = Cgt_test.squeeze()
nc = len(np.unique(Cgt_test))

print(n,d,nc)

num_labels = np.sum(np.abs(1_train)>0.0)
print('1_train:',1_train)

print('number of labeled data per class:',num_labels//2)
print('number of unlabeled data:',n-num_labels)

50 3684 2
1_train: [-1
2 0 0 0
1 0]
number of labeled data per class: 5
number of unlabeled data: 40

0-1-1-1 06 6 6 06 06 1 06 @ 0 0 @ 0 @ 0 0 0 @0 0 0
106 0 0 0 0 0 1 0 0 0 0-1 06 0 0 0 0 0 1

Run Graph SVM

# Run Graph SVM

# Compute Gaussian kernel

sigma = 0.5; sigma2 = sigma¥¥2

Ddist = sklearn.metrics.pairwise.pairwise_distances(Xtrain, Xtrain, metric='euclidean', n_jobs=1)
Ker = np.exp(- Ddist**2 / sigma2)

Ddist = sklearn.metrics.pairwise.pairwise_distances(Xtrain, Xtest, metric='euclidean', n_jobs=1)
KXtest = np.exp(- Ddist#*2 / sigma2)

# Compute kNN graph

kNN = 8

gamma = 100

A = construct_knn_graph(Xtrain, kNN, 'cosine')
Lap = graph_laplacian(A).todense()

# Compute Indicator function of labels
H = np.zeros([n])
Hinp.abs(1_train)>0.0] = 1

H = np.diag(H)

k-NN graph with cosine distance
Graph SVM iter, diff_alpha : 2 0.0

Xavier Bresson ace & 78.5

Training Data: Labeled Data in red (first class)

and blue (second class),

and unlabeled Data in green (data geometry) Loo Test Data
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History of SVM techniques

C.
@
©
Linear SVMI1 Soft-Margin SVMI2l Non-Linear /Kernel SVME
Supervised learning Supervised learning Supervised learning

[1] Vapnik, Chervonenkis, On a perceptron class, 1964

[2] Cortes, Vapnik, Support-vector networks, 1995

[3] Boser, Guyon, Vapnik, A training algorithm for optimal margin classifiers, 1992

[4] Belkin, Niyogi, Sindhwani,Manifold regularization: A geometric framework for learning from labeled and unlabeled examples, 2006
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Summary

@ General class of semi-supervised optimization techniques :

: 2
)\ L ata i7€7j L ra
Join | £1, + ; aata(fir i) + Y Larapn (f)

where

Norm of f in RKHS : ||f||7,. = f'Kf (smoothness/regularity of f)

Misclassification error : Lygata(fi, £:) (training prediction)
Graph regularization : Lgrapn(f) (smoothness of f on graph domain)
with
/ .
Hinge [ Dirichlet : Ak
Ly
Laata = & Ly and  Lgapn = ¢ Total variation!! : ||V - ||
Hub.er. Wavelets : | Vway - |2
| Logistic \

[1] Bresson, Zhang, TV-SVM: Total variation support vector machine for semi-supervised data classification, 2012
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(Questions
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