CS6208: Advanced Topics in Artificial Intelligence Graph Machine Learning

Lecture 4 : Graph SVM

Semester 2 2022/23

Xavier Bresson

https://twitter.com/xbresson

Department of Computer Science National University of Singapore (NUS)

Course lectures

- Introduction to Graph Machine Learning
- Part 1: GML without feature learning (before 2014)
 - Introduction to Graph Science
 - Graph Analysis Techniques without Feature Learning
 - Graph clustering
- → Graph SVM
 - Recommendation
 - Dimensionality reduction
- Part 2 : GML with shallow feature learning (2014-2016)
 - Shallow graph feature learning

- Part 3 : GML with deep feature learning, a.k.a. GNNs (after 2016)
 - Graph Convolutional Networks (spectral and spatial)
 - Weisfeiler-Lehman GNNs
 - Graph Transformer & Graph ViT/MLP-Mixer
 - Benchmarking GNNs
 - Molecular science and generative GNNs
 - GNNs for combinatorial optimization
 - GNNs for recommendation
 - GNNs for knowledge graphs
 - Integrating GNNs and LLMs

Outline

- Supervised classification
- Linear SVM
- Soft-margin SVM
- Kernel techniques
- Non-linear/kernel SVM
- Graph SVM
- Conclusion

Outline

- Supervised classification
- Linear SVM
- Soft-margin SVM
- Kernel techniques
- Non-linear/kernel SVM
- Graph SVM
- Conclusion

Learning techniques

- As of Feb 2023, there are five main classes of learning algorithms:
 - Supervised learning (SL): Algorithms that use labeled data, i.e. data annotated by humans.
 - Unsupervised learning: Algorithms that learn the underlying data distribution without relying on label information, e.g. data generation.
 - Semi-supervised learning: Algorithms that use both labeled and unlabeled data.
 - Reinforcement learning (RL): Algorithms that learn sequence of actions to maximize a future reward over time, e.g. winning games.
 - Self-supervised learning (SSL): Algorithms that learn data representation by self-labeling, without requiring human annotations.

Support vector machine

- In this lecture, we will focus on two specific topics:
 - Supervised classification using Support Vector Machine (SVM).
 - Semi-supervised learning that leverage graph structure to improve learning from partially labeled data.
- SVM stands as a theoretically robust and widely successful technique deployed across various applications.
- It was the prevailing machine learning model prior to the advent of deep learning.
- Its decline in popularity can be attributed primarily to the absence of a feature learning mechanism. SVM relies on features engineered by humans, which were surpassed with features learned by neural network architectures.

Support vector machine

- SVM elegantly connects important topics in machine learning:
 - Geometric interpretation of classification tasks.
 - Ability to handle non-linear class boundaries using higher-dimensional feature maps.
 - Efficient use of the kernel trick to maintain the complexity of input data.
 - High-dimensional interpolation with the representer theorem.
 - Use of graph representations to capture data distribution regardless of labels.
 - Incorporation of graph regularization to propagate label information throughout the graph domain.
 - Primal and dual optimization methods for solving quadratic programming problems.

Outline

- Supervised classification
- Linear SVM
- Soft-margin SVM
- Kernel techniques
- Non-linear/kernel SVM
- Graph SVM
- Conclusion

SVM formulation

• Goal: Given a set V of labeled data with two classes, the goal is to construct a classification function f that assigns the class for new, previously unseen data point by maximizing the margin between the two classes^[1].

$$f: x \in \mathbb{R}^d \to \{-1, 1\}$$
with $V = \{x_i, \ell_i\}_{i=1}^n, x_i \in \mathbb{R}^d$ (data features)
$$\ell_i \in \{-1, 1\} \text{ (data label)}$$

Negative label: $x_i, \ell_i = -1$

Classification function:

$$f(x) = -1, \ x \in C_-$$

Vladimir Vapnik

Positive label: +

 $x_i, \ell_i = +1$

Classification function:

 $f(x) = +1, x \in C_{+}$

Linear SVM

- Assumption^[1]: Training and test datasets are linearly separable, i.e. data can be separated with a straight line in 2D, a plane in 3D and a hyper-plane in higher dimensions.
- A hyper-plane is parameterized with two variables (w, b), where w is the normal vector of the hyper-plane, i.e. determining its slope, and b is the offset or bias term:

Hyper-plane equation:
$$\{x: w^T x + b = \text{cte}\}, x, w \in \mathbb{R}^d, b \in \mathbb{R}$$

[1] Vapnik, Chervonenkis, On a perceptron class, 1964

SVM classifier

• Classification function:

$$f_{w,b}(x) = \operatorname{sign}(w^T x + b) = \begin{cases} +1 & \text{for } x \in C_+ \\ -1 & \text{for } x \in C_- \end{cases}$$

Maximizing class margin

- Hyper-plane $w^Tx + b = 0$ is the class separator.
- Hyper-planes $w^Tx + b = \pm 1$ are the class margins.
- Why do we want to maximize the margin?
 - Note that multiple hyper-plane solutions exist to separate the two classes.
 - Let us select the solution that generalizes the best, i.e. the solution with the largest margin between the classes.

Maximizing class margin

• What are the parameters (w, b) that maximize the margin d between the training points?

Margin is defined with the vector $d = x_+ - x_- \in \mathbb{R}^d$

Given that $w^T x_+ + b = +1$ and $w^T x_- + b = -1$ and

substracting these two lines: $w^T(x_+ - x_-) = 2 \implies w^T d = 2$

Then taking the norm: $||w||_2 . ||d||_2 = 2 \implies ||d||_2 = \frac{2}{||w||_2}$

Finally, $\max_{d} \|d\|_2 = \frac{2}{\|w\|_2} \Leftrightarrow \min_{w} \|w\|_2^2 \text{ s.t. } \begin{cases} w^T x_i + b \ge +1 & \text{if } x_i \in C_+ \\ w^T x_i + b \ge -1 & \text{if } x_i \in C_- \end{cases}$

Maximizing the class margin is equivalent to minimize the norm of w

while satisfying the label constraints.

Primal optimization problem

• Optimal value w^* is the solution of a constrained quadratic programming (QP) problem :

$$\min_{w} \|w\|_{2}^{2} \text{ s.t. } \ell_{i}.s_{i} \geq 1, \ \forall i \in V$$

$$\text{with } s_{i} = w^{T}x_{i} + b = \begin{cases} \geq +1 & \text{for } x \in C_{+} \\ \leq -1 & \text{for } x \in C_{-} \end{cases} \text{ and } \ell_{i} = \begin{cases} +1 & \text{if } x \in C_{+} \\ -1 & \text{if } x \in C_{-} \end{cases}$$

$$\text{which can be compactly expressed as } \ell_{i}.s_{i} \geq 1, \ \forall i \in V$$

Primal optimization problem

- There exists a unique solution to the $QP^{[1,2,3]}$ optimization problem, if the assumption of linearly separable data points is satisfied.
- Variable *w* is called the primal variable.

George Dantzig 1914-2005

tope) cla

15

^[1] Dantzig, Orden, Wolfe, The generalized simplex method for minimizing a linear form under linear inequality restraints, 1955

^[2] Wolfe, The Simplex Method for Quadratic Programming, 1959

^[3] Boyd, Vandenberghe, Convex Optimization, 2004

Support vectors

• Support vectors are the data points exactly localized on the margin hyper-planes:

$$\ell_i.s_i = 1, \ \forall x_i^{\text{sv}} \ (\text{support vectors})$$
 $\ell_i.((w^{\star})^T x_i^{\text{sv}} + b^{\star}) = 1$
which gives
$$b^{\star} = \ell_i - (w^{\star})^T x_i^{\text{sv}}$$
and on expectation
$$b^{\star} = \frac{1}{|x_i^{\text{sv}}|} \sum_{x_i^{\text{sv}}} \ell_i - (w^{\star})^T x_i^{\text{sv}}$$

Support vectors

Dual variable

- We can represent the weight vector w as a linear combination \propto of the training data points x_i .
- The coefficient vector \propto is referred to as the dual variable of w.
- The dual problem naturally introduces the linear kernel matrix $K(x,y) = x^T y$:

Given
$$w = \sum_{i} \alpha_{i} \ell_{i} x_{i} \in \mathbb{R}^{d}$$
, $\alpha_{i} \in \mathbb{R}$
we have $w^{T} x = \sum_{i} \alpha_{i} \ell_{i} x_{i}^{T} x \in \mathbb{R}$

$$= \sum_{i} \alpha_{i} \ell_{i} K(x_{i}, x) \text{ with } K(x_{i}, x) = x_{i}^{T} x$$

$$= \alpha^{T} L K(x), \ \alpha, K(x) \in \mathbb{R}^{n}, L \in \mathbb{R}^{n \times n}$$
Classification function : $f_{\text{SVM}}(x) = \text{sign}(w^{T} x + b) \in \pm 1$ (with primal variable)
$$= \text{sign}(\alpha^{T} L K(x) + b) \in \pm 1 \text{ (with dual variable)}$$

Dual optimization problem

• The primal optimization problem can be solved with the dual problem $^{[1,2,3]}$:

Leonid Kantorovich 1912-1986

$$\min_{w} \|w\|_{2}^{2} \text{ s.t. } \ell_{i}.s_{i} \geq 1, \ \forall i \in V \quad \text{(primal QP problem)}$$
is equivalent to
$$\min_{\alpha \geq 0} \frac{1}{2} \alpha^{T} Q \alpha - \alpha^{T} 1_{n} \quad \text{s.t. } \alpha^{T} \ell = 0 \quad \text{(dual QP problem)}$$
with $Q = LKL \in \mathbb{R}^{n \times n}$

$$L = \operatorname{diag}(\ell) \in \mathbb{R}^{n \times n}$$

$$\ell = (\ell_{1}, ..., \ell_{n}) \in \mathbb{R}^{n}$$

$$K \in \mathbb{R}^{n \times n}, K_{ij} = x_{i}^{T} x_{j} \in \mathbb{R} \quad \text{(linear kernel)}$$

[3] Boyd, Vandenberghe, Convex Optimization, 2004

^[1] Kantorovich, The Mathematical Method of Production Planning and Organization, 1939

^[2] Dantzig, Orden, Wolfe, The generalized simplex method for minimizing a linear form under linear inequality restraints, 1955

Optimization algorithm

• Solution α^* can be computed with a simple primal-dual^[1,2] iterative scheme :

Narendra Karmarkar

Initialization :
$$\alpha^{k=0} = \beta^{k=0} = 0_n \in \mathbb{R}^n$$

Time steps satisfy
$$\tau_{\alpha}\tau_{\beta} \leq \frac{1}{\|Q\|\|L\|}$$
 s.a. $\tau_{\alpha} = \frac{1}{\|Q\|}, \tau_{\beta} = \frac{1}{\|L\|}$

Iterate:

$$\alpha^{k+1} = P_{\cdot \geq 0} ((\tau_{\alpha} Q + I_n)^{-1} (\alpha^k + \tau_{\alpha} Q - \tau_{\alpha} L \beta^k)) \in \mathbb{R}^n$$
$$\beta^{k+1} = \beta^k + \tau_{\beta} L \alpha^{k+1} \in \mathbb{R}^n$$

At convergence, we have : α^*

Classification function: $f_{SVM}(x) = sign(\alpha^{\star T} LK(x) + b^{\star}) \in \pm 1$

^[1] Karmarkar, A new polynomial-time algorithm for linear programming, 1984

^[2] Boyd, Vandenberghe, Convex Optimization, 2004

Lab 1 : Linear SVM

- Run code01.ipynb and analyze linear SVM result on
 - Linearly separable data points
 - Non-linear data points

```
•[5]: # Run Linear SVM
      # Compute linear kernel, L, Q
      Ker = Xtrain.dot(Xtrain.T)
     l = l train
     L = np.diag(l)
     Q = L.dot(Ker.dot(L))
      tau_alpha = 1./ np.linalg.norm(Q,2)
      tau_beta = 1./ np.linalg.norm(L,2)
      # For conjuguate gradient
      Acg = tau_alpha* Q + np.eye(n)
      # Pre-compute J.K(Xtest) for test data
      LKXtest = L.dot(Xtrain.dot(Xtest.T))
      # Initialization
     alpha = np.zeros([n])
      beta = 0.0
     alpha_old = alpha
     # Loop
      k = 0
     diff_alpha = 1e6
      num_iter = 101
      while (diff_alpha>1e-3) & (k<num_iter):</pre>
         # Update iteration
         k += 1
         # Update alpha
         # Approximate solution with conjuguate gradient
         b0 = alpha + tau_alpha - tau_alpha* l* beta
         alpha, _ = scipy.sparse.linalg.cg(Acg, b0, x0=alpha, tol=1e-3, maxiter=50)
         alpha[alpha<0.0] = 0 # Projection on [0,+infty]
         # Update beta
         beta = beta + tau_beta* l.T.dot(alpha)
         # Stopping condition
         diff_alpha = np.linalg.norm(alpha-alpha_old)
         alpha_old = alpha
```


Linearly separable data points

Non-linear data points

Outline

- Supervised classification
- Linear SVM
- Soft-margin SVM
- Kernel techniques
- Non-linear/kernel SVM
- Graph SVM
- Conclusion

Noise

- Real-world data often contains noise and outliers, which do not satisfy the assumption of linearly separable data points.
- When dealing with non-linearly separable data, there is no mathematical solution for standard or hard-margin SVM because there does not exist a linear separator that can split the two classes perfectly, i.e. without errors.
- A new technique is necessary, referred as soft-margin SVM^[1].

Positive label:
$$+$$
 $x_i, \ell_i = +1$

$$f(x) = +1, \ x \in C_+$$

Negative label: •

$$x_i, \ell_i = -1$$

Classification function:

$$f(x) = -1, \ x \in C_-$$

Soft-margin SVM

- Slack variables e_i quantifies the error for each data x_i to be an outlier.
- These errors e_i will be minimized while simultaneously maximizing the margin:

$$\min_{w} \|w\|_{2}^{2} \text{ s.t. } \begin{cases}
w^{T} x_{i} + b \ge +1 & \text{for } x_{i} \in C_{+} \\
w^{T} x_{i} + b \le -1 & \text{for } x_{i} \in C_{-}
\end{cases}$$
(Standard SVM)

$$\min_{w,e} ||w||_2^2 + \lambda \sum_{i=1}^n e_i \text{ s.t. } \begin{cases}
w^T x_i + b \ge +1 - e_i & \text{for } x_i \in C_+ \\
w^T x_i + b \le -1 + e_i & \text{for } x_i \in C_- \\
e_i \ge 0 & \text{for } x_i \in V
\end{cases}$$
(Soft-margin SVM)

Trade-off between large margin and small errors

Regularization

- What is the effect of varying λ , the regularization parameter?
 - For small λ values, more misclassification errors are allowed, the margin is larger.
 - For large λ values, misclassification errors are penalized, leading to either no errors or very few, resulting in a smaller margin.

Small λ value

Intermediate λ value

Large λ value

Hinge loss

- The soft-margin SVM technique penalizes:
 - Misclassifications of training data points.
 - Correct classifications of training points that fall inside the margin area.
- The constrained optimization problem can be reformulated as an unconstrained problem:

$$\min_{w,e} \|w\|_{2}^{2} + \lambda \sum_{i=1}^{n} e_{i} \text{ s.t. } \begin{cases} w^{T}x_{i} + b \geq +1 - e_{i} & \text{for } x_{i} \in C_{+} \\ w^{T}x_{i} + b \leq -1 + e_{i} & \text{for } x_{i} \in C_{-} \\ e_{i} \geq 0 & \text{for } x_{i} \in V \end{cases}$$

$$\lim_{w,e} \|w\|_{2}^{2} + \lambda \sum_{i=1}^{n} \max \left(0, 1 - \ell_{i}s_{i}\right),$$
where $s_{i} = w^{T}x_{i} + b$ (score function)

 $L_{\text{Hin}}(d_i) = \max(0, 1 - d_i), \ d_i = \ell_i s_i \ \text{(Hinge loss)}$

Loss functions

There exist multiple loss functions^[1]:

$$L_{2}(d_{i}) = \begin{cases} (1-d_{i})^{2} & \text{if } d_{i} < 1\\ 0 & \text{otherwise} \end{cases}$$
 (L2 loss)
$$L_{\text{EN}}(d_{i}) = \begin{cases} (1-d_{i})^{2} + \beta|1-d_{i}| & \text{if } d_{i} < 1\\ 0 & \text{otherwise} \end{cases}$$
 (Elastic net loss)
$$L_{\text{Hin}}(d_{i}) = \begin{cases} \frac{1}{2} - d_{i} & \text{if } d_{i} \leq 0\\ \frac{1}{2}(1-d_{i})^{2} & \text{if } 0 < d_{i} < 1\\ 0 & \text{otherwise} \end{cases}$$
 (Huber loss)
$$L_{\text{Log}}(d_{i}) = \exp(1-d_{i})$$
 (Logistic loss)
$$d < 1$$

 $L_{\rm Hin}(d_i) = \max(0, 1 - d_i)$

Xavier Bresson

(Hinge loss)

Dual optimization problem

• As previously, the primal optimization problem can be solved with the dual problem:

$$\min_{w,e} ||w||_2^2 + \lambda \sum_{i=1}^n e_i \text{ s.t. } \ell_i.s_i \ge 1 - e_i, \ e_i \ge 0 \ \forall i \in V \text{ (primal QP problem)}$$

is equivalent to

$$\min_{0 \leq \alpha \leq \lambda} \frac{1}{2} \alpha^T Q \alpha - \alpha^T 1_n \quad \text{s.t. } \alpha^T \ell = 0 \quad (\text{dual QP problem})$$

$$\text{with } Q = LKL \in \mathbb{R}^{n \times n}$$

$$L = \text{diag}(\ell) \in \mathbb{R}^{n \times n}$$

$$\ell = (\ell_1, ..., \ell_n) \in \mathbb{R}^n$$

$$K \in \mathbb{R}^{n \times n}, K_{ij} = x_i^T x_j \in \mathbb{R} \quad (\text{linear kernel})$$

Optimization algorithm

Solution α^* can be computed with the following iterative scheme:

Initialization :
$$\alpha^{k=0} = \beta^{k=0} = 0_n \in \mathbb{R}^n$$

Time steps satisfy
$$\tau_{\alpha}\tau_{\beta} \leq \frac{1}{\|Q\|\|L\|}$$
 s.a. $\tau_{\alpha} = \frac{1}{\|Q\|}, \tau_{\beta} = \frac{1}{\|L\|}$

Iterate:

$$\alpha^{k+1} = P_{0 \le \cdot \le \lambda} \left((\tau_{\alpha} Q + I_n)^{-1} (\alpha^k + \tau_{\alpha} Q - \tau_{\alpha} L \beta^k) \right)$$

$$\beta^{k+1} = \beta^k + \tau_{\beta} L \alpha^{k+1}$$

At convergence, we have : α^*

Classification function: $f_{SVM}(x) = sign(\alpha^{\star T} LK(x) + b^{\star}) \in \pm 1$

Lab 2 : Soft-margin SVM

- Run code02.ipynb and analyze SVM result on
 - Noisy linearly separable data points
 - Noisy non-linear data points

Training Data with 25% ERRORS Test Data -0.5 -0.5-1.0-1.0-1.5 -1.0 -0.5 0.0 0.5 1.0 1.5 -1.5 -1.0 -0.5 0.0 0.5 1.0 1.5 Score function $s(x) = w^T x + b$ Classification function $f(x) = sign(w^Tx + b)$ iter=92, diff alpha=0.00086 iter=92, acc=81.6 1.00 0.75 0.50 0.25 -0.25 -0.5 -0.50-1.0 -0.75 -1.5 -1.0 -0.5 0.0 0.5 1.0 1.5 -1.5 -1.0 -0.5 0.0 0.5 1.0 1.5 Noisy non-linear data points

Outline

- Supervised classification
- Linear SVM
- Soft-margin SVM
- Kernel techniques
- Non-linear/kernel SVM
- Graph SVM
- Conclusion

High-dimensional interpolation

- How can we perform function interpolation in high-dimensional spaces?
- Reproducing Kernel Hilbert Space^[1] (RKHS): A space associated to bounded, symmetric, positive semidefinite (PSD) operator called a kernel $K(x,x): \mathbb{R}^d \times \mathbb{R}^d \to \mathbb{R}_+$ that can reproduce any smooth function $h(x): \mathbb{R}^d \to \mathbb{R}$.
- Representer theorem^[1,2]: Any continuous smooth function h in a RKHS can be represented as a linear combination of the kernel function K evaluated at the training data points x_i :

$$h(x) = \sum_{i=1}^{n} \alpha_i K(x, x_i) + b, \ x, x_i \in \mathbb{R}^d, b \in \mathbb{R} \ d \gg 1$$

David Hilbert 1862-1943

Bernhard Schölkopf

^[1] Beurling, On two problems concerning linear transformations in Hilbert space, 1948

^[2] Scholkopf, Herbrich, Smola, A generalized representer theorem, 2001

Representer Theorem

• Illustration of the Representer theorem to interpolate functions in high-dimensional spaces:

$$h(x) = \sum_{i=1}^{n} \alpha_i K(x, x_i) + b \in \mathbb{R}$$

with the most common kernels are defined as

$$K(x,y) = x^T y$$
 (linear kernel)
 $K(x,y) = \exp(-\|x - y\|_2^2/\sigma^2)$ (Gaussian kernel)
 $K(x,y) = (ax^T y + b)^c$ (polynomial kernel)

Feature map, kernel trick and interpolation

- Any feature map ϕ defines a reproducing kernel K, and inversely.
- Any kernel K can be used to design a smooth high-dim function h.

Outline

- Supervised classification
- Linear SVM
- Soft-margin SVM
- Kernel techniques
- Non-linear/kernel SVM
- Graph SVM
- Conclusion

Feature engineering for non-linear data

- Linear models, s.a. original and soft-margin SVM, assume linearly separable data points.
- But in many real-world scenarios, datasets are not linearly separable, i.e. a hyper-plane cannot distinguish between distinct classes.
- How to address this challenge and classify complex/non-linear datasets with linear separators?
- Feature engineering approach^[1]: Project the data into a higher-dimensional space using a feature map ϕ where the data becomes linearly separable.

Non-linear dataset and separator

Linear dataset and separator

^[1] Aizerman et-al, Theoretical foundations of the potential function method in pattern recognition learning, 1964

Kernel trick

- Non-linear mapping ϕ enables the separation of non-linear data points.
- However, this approach entails operating in a larger feature space compared to the original one, resulting in increased complexity of O(d') where $d' \gg d$.
- To address this issue, the kernel trick was devised^[1,2], offering a solution without the explicit use of the mapping ϕ .
 - With this approach, computing the kernel operator/matrix is defined as $K = \phi^T \phi$, rather than ϕ individually, making the exact expression of ϕ irrelevant.
 - Some standard kernel operators include:

Time consuming
$$K(x_i, x_j) = x_i^T x_j \qquad \text{(linear kernel for linear k-means)}$$

$$K(x_i, x_j) = \phi(x_i)^T \phi(x_j) = \exp(-\|x_i - x_j\|_2^2/\sigma^2) \qquad \text{(Gaussian kernel)}$$

$$K(x_i, x_j) = (ax_i^T x_j + b)^c \qquad \qquad \text{(Polynomial kernel)}$$
Efficient kernel computation

^[1] Aizerman et-al, Theoretical foundations of the potential function method in pattern recognition learning, 1964

^[2] Guyon, Boser, Vapnik, Automatic capacity tuning of very large VC-dimension classifiers, 1993

Non-linear/kernel SVM

• Primal optimization problem^[1] w.r.t. w:

$$\min_{w,e} ||w||_{2}^{2} + \lambda \sum_{i=1}^{n} e_{i} \text{ s.t. } \begin{cases}
w^{T} \phi(x_{i}) + b \ge +1 - e_{i} & \text{for } x_{i} \in C_{+} \\
w^{T} \phi(x_{i}) + b \le -1 + e_{i} & \text{for } x_{i} \in C_{-} \\
e_{i} \ge 0 & \text{for } x_{i} \in V
\end{cases}$$
(Kernel SVM)

• Dual optimization problem w.r.t. α :

$$\min_{0 \le \alpha \le \lambda} \frac{1}{2} \alpha^T Q \alpha - \alpha^T \mathbf{1}_n \quad \text{s.t. } \alpha^T \ell = 0$$
with $Q = LKL \in \mathbb{R}^{n \times n}$

$$L = \operatorname{diag}(\ell) \in \mathbb{R}^{n \times n}$$

$$\ell = (\ell_1, ..., \ell_n) \in \mathbb{R}^n$$

$$K \in \mathbb{R}^{n \times n}, K_{ij} = \phi(x_i)^T \phi(x_j) \in \mathbb{R} \quad \text{(generalized kernel)}$$
Function ϕ is never used explicitly.

^[1] Boser, Guyon, Vapnik, A training algorithm for optimal margin classifiers, 1992

Non-linear/kernel SVM

• Decision function f(x):

Given
$$w = \sum_{i} \alpha_{i} \ell_{i} \phi(x_{i}) \in \mathbb{R}^{d}$$

we have $w^{T}x = \sum_{i} \alpha_{i} \ell_{i} \phi(x_{i})^{T} \phi(x) \in \mathbb{R}$

$$= \sum_{i} \alpha_{i} \ell_{i} K(x_{i}, x) \text{ with } K(x_{i}, x) = \phi(x_{i})^{T} \phi(x)$$

$$= \alpha^{T} L K(x), \ \alpha, K(x) \in \mathbb{R}^{n}, L \in \mathbb{R}^{n \times n}$$
Classification function : $f_{\text{SVM}}(x) = \text{sign}(w^{T} \phi(x) + b)$ (with primal variable)
$$= \text{sign}(\alpha^{T} L K(x) + b) \text{ (with dual variable)}$$

Optimization algorithm

• Solution α^* can be computed with the following iterative scheme :

Initialization :
$$\alpha^{k=0} = \beta^{k=0} = 0_n \in \mathbb{R}^n$$

Time steps satisfy $\tau_{\alpha}\tau_{\beta} \leq \frac{1}{\|Q\|\|L\|}$ s.a. $\tau_{\alpha} = \frac{1}{\|Q\|}, \tau_{\beta} = \frac{1}{\|L\|}$

Iterate:

$$\alpha^{k+1} = P_{0 \le \cdot \le \lambda} ((\tau_{\alpha} Q + I_n)^{-1} (\alpha^k + \tau_{\alpha} Q - \tau_{\alpha} L \beta^k))$$
$$\beta^{k+1} = \beta^k + \tau_{\beta} L \alpha^{k+1}$$

At convergence, we have : α^*

Classification function:
$$f_{SVM}(x) = sign(\alpha^{\star T} LK(x) + b^{\star}) \in \pm 1$$

Generalized kernel

Supervised learning for classification

- SVM belongs to the class of supervised classification algorithms.
- In general, algorithms of this class can be described as follows:

$$\min_{f \in \mathcal{H}_K} \|f\|_{\mathcal{H}_K}^2 + \lambda \sum_{i=1}^n L_{\text{data}}(f_i, \ell_i)$$

with

Representer theorem :
$$f(x) = \text{sign}(\sum_{i=1}^{n} \alpha_i K(x, x_i)) \in \pm 1$$

Norm of f in RKHS: $||f||_{\mathcal{H}_K}^2 = \langle f, f \rangle_{\mathcal{H}_K} = \sum_{ij} f_i f_j K_{ij} = f^T K f$ (smoothness/regularity of f)

$$||f||_{\mathcal{H}_K}^2 = ||w||_2^2 \text{ for } f(x) = w^T x \text{ (linear SVM)}$$

Misclassification error : $L_{\text{data}}(s_i, \ell_i) = L_{\text{Hin}}(d_i = s_i \ell_i) = \max(0, 1 - d_i)$ (Hinge loss)

Hyper-parameter $\lambda > 0$ controls the trade-off between regularization and data fidelity.

Lab 3 : Kernel/non-linear SVM

- Run code03.ipynb and analyze kernel SVM result on
 - Noisy non-linear data points
 - Real-world text documents

Real-world graph of articles

```
# Dataset
mat = scipy.io.loadmat('datasets/data_20news_50labels.mat')
Xtrain = mat['Xtrain']
l_train = mat['l'].squeeze()
n = Xtrain.shape[0]
d = Xtrain.shape[1]
nc = len(np.unique(Cgt_train))
print(n,d,nc)
Xtest = mat['Xtest']
Cgt_test = mat['Cgt_test'] - 1; Cgt_test = Cgt_test.squeeze()
```

Run kernel SVM

```
# Run kernel SVM
# Compute Gaussian kernel, L, Q
sigma = 0.5; sigma2 = sigma**2
Ddist = sklearn.metrics.pairwise.pairwise_distances(Xtrain, Xtrain, metric='euclidean', n_jobs=1)
Ker = np.exp(- Ddist**2 / sigma2)
Ddist = sklearn.metrics.pairwise.pairwise_distances(Xtrain, Xtest, metric='euclidean', n_jobs=1)
KXtest = np.exp(- Ddist**2 / sigma2)
l = l_train
L = np.diag(l)
0 = L.dot(Ker.dot(L))
# Time steps
tau_alpha = 10/ np.linalg.norm(Q,2)
tau_beta = 0.1/ np.linalg.norm(L,2)
# For conjuguate gradient
Acg = tau_alpha* Q + np.eye(n)
# Pre-compute J.K(Xtest) for test data
LKXtest = L.dot(KXtest)
# Error parameter
lamb = 3 # acc: 87.5
Kernel SVM iter, diff_alpha: 100 0.00099
          acc : 87.5
```


Kernel SVM

Outline

- Supervised classification
- Linear SVM
- Soft-margin SVM
- Kernel techniques
- Non-linear/kernel SVM
- Graph SVM
- Conclusion

Semi-supervised classification

- Semi-supervised classification (SSC) leverages both labeled and unlabeled data to boost the classification process.
- Labeled data, annotated by humans, provide precise insights into class membership, offering a rich information for learning.
- However, human annotation is time-consuming, costly, susceptible to human biases and errors.
- In contrast, unlabeled data depict the underlying structure of the data distribution.
- Collecting unlabeled data is efficient, cheap, but inherently noisy.
- SSC proves particularly beneficial when labeled data are scarce.
 - The situation where $n \ll m$, where the number n of labeled instances is significantly smaller than the number m of unlabeled instances.
 - An extreme scenario is when each class has only one labeled instance, n = 1.

Geometric structure

- Unlabeled data encapsulate valuable statistical information, particularly the geometric structure of the data distribution.
- How to leverage this information within the supervised SVM classification framework?

Labeled data +, •
Supervised classification

Labeled data →, •
Unlabeled data ▲
Semi-supervised classification

Manifold and graph

- The data distribution remains unchanged regardless of whether labels are present or absent.
- Both labeled and unlabeled data points are assumed to belong to a manifold within the d-dimensional feature space.
- This manifold is estimated using a k-nearest neighbor graph constructed from the data points, serving as an approximation of the underlying manifold structure.

Labeled data +,
Unlabeled data ▲
Semi-supervised classification
on manifold

Manifold M embedded in R^d. Data points are sampled from M.

Manifold M is represented by a k-NN graph of the data points.

Graph G=(V,E,A) k-NN graph

Manifold regularization

- We aim to ensure that the classification function f(x) exhibits smoothness across the manifold, which is approximated by the k-NN graph.
- This smoothness constraint will propagate the label information throughout the graph, i.e. neighboring data points will tend to share the same label.

Manifold M is represented by a k-NN graph of the data points.

 $\begin{array}{c} Graph \ G=(V,E,A) \\ k-NN \ graph \end{array}$

Graph regularization

- Graph regularization is usually implemented through loss minimization techniques.
- A widely used regularization loss is the Dirichlet energy^[1], which is defined as:

$$\int_{\mathcal{M}} |\nabla f|^{2} \qquad \text{(continuous Dirichlet energy)}$$

$$\approx \sum_{ij \in V} A_{ij} |f(x_{i}) - f(x_{j})|^{2} \quad \text{(discrete Dirichlet energy)}$$

$$\approx f^{T} L f \in \mathbb{R}, \ f \in \mathbb{R}^{n}, L = I - D^{-1/2} A D^{-1/2} \in \mathbb{R}^{n \times n} \quad \text{(Laplacian matrix)}$$

$$D = \text{diag}(d) \in \mathbb{R}^{n \times n}, d = A 1_{n} \in \mathbb{R}^{n} \quad \text{(degree vector)}$$

• Minimizing the Dirichlet energy enforces the smoothness of the function on the graph domain, i.e. $f(x_i) \approx f(x_j)$ for $j \in \mathcal{N}_i$, ensuring that the function values at neighboring data points are similar.

^[1] Belkin, Niyogi, Laplacian Eigenmaps and Spectral Techniques for Embedding and Clustering, 2001

Semi-supervised classification with graphs

• SSC optimization problem with graph smoothness:

$$\min_{f \in \mathcal{H}_K} \|f\|_{\mathcal{H}_K}^2 + \lambda \sum_{i=1}^n L_{\text{data}}(f_i, \ell_i) + \gamma \int_{\mathcal{M}} |\nabla f|^2$$

• Graph $SVM^{[1]}$:

$$\min_{f \in \mathcal{H}_K} f^T K f + \lambda \sum_{i=1}^n L_{\text{Hin}}(f_i, \ell_i) + \gamma f^T L f$$

with

Representer theorem :
$$f(x) = \text{sign}(\sum_{i=1}^{n} \alpha_i K(x, x_i) + b) \in \pm 1$$

Misha Belkin

^[1] Belkin, Niyogi, Sindhwani, Manifold regularization: A geometric framework for learning from labeled and unlabeled examples, 2006

Optimization algorithm

• Dual optimization problem:

$$\min_{f \in \mathcal{H}_K} f^T K f + \lambda \sum_{i=1}^n L_{\mathrm{Hin}}(f_i, \ell_i) + \gamma f^T L f$$
 with
$$\operatorname{Representer\ theorem}: \ f(x) = \operatorname{sign} \Big(\sum_{i=1}^n \xi_i^\star K(x, x_i) + b \Big) \in \pm 1$$
 Optimization problem:
$$\alpha^\star = \arg\min_{0 \le \alpha \le \lambda} \ \frac{1}{2} \alpha^T Q \alpha - \alpha^T \mathbf{1}_n \ \text{ s.t. } \alpha^T \ell = 0$$
 with
$$Q = L H K (\mathbf{I} + \gamma L K)^{-1} H L \in \mathbb{R}^{n \times n}$$
 Solution:
$$\xi^\star = (\mathbf{I} + \gamma L K)^{-1} H L \alpha^\star$$

Lab 4 : Graph SVM

- Run code04.ipynb and analyze Graph SVM result on
 - Noisy non-linear data points

Real-world text documents

Real-world graph of articles

Dataset has 10 labeled data and 40 unlabeled data

```
# Dataset
mat = scipy.io.loadmat('datasets/data_20news_10labels_40unlabels.mat')
Xtrain = mat['Xtrain']
n = Xtrain.shape[0]
l_train = mat['l'].squeeze()
d = Xtrain.shape[1]
Xtest = mat['Xtest']
Cgt_test = mat['Cgt_test'] - 1; Cgt_test = Cgt_test.squeeze()
nc = len(np.unique(Cgt_test))
print(n,d,nc)
num_labels = np.sum(np.abs(l_train)>0.0)
print('l_train:',l_train)
print('number of labeled data per class:',num_labels//2)
print('number of unlabeled data:',n-num_labels)
50 3684 2
number of labeled data per class: 5
number of unlabeled data: 40
```

Run Graph SVM

```
# Run Graph SVM
# Compute Gaussian kernel
sigma = 0.5; sigma2 = sigma**2
Ddist = sklearn.metrics.pairwise.pairwise_distances(Xtrain, Xtrain, metric='euclidean', n_jobs=1)
Ker = np.exp(- Ddist**2 / sigma2)
Ddist = sklearn.metrics.pairwise_pairwise_distances(Xtrain, Xtest, metric='euclidean', n_jobs=1)
KXtest = np.exp(- Ddist**2 / sigma2)
# Compute kNN graph
A = construct_knn_graph(Xtrain, kNN, 'cosine')
Lap = graph_laplacian(A).todense()
# Compute Indicator function of labels
H = np.zeros([n])
H[np.abs(l_train)>0.0] = 1
H = np.diag(H)
k-NN graph with cosine distance
Graph SVM iter, diff_alpha: 2 0.0
```


Outline

- Supervised classification
- Linear SVM
- Soft-margin SVM
- Kernel techniques
- Non-linear/kernel SVM
- Graph SVM
- Conclusion

History of SVM techniques

Linear SVM^[1] Supervised learning

Soft-Margin SVM^[2] Supervised learning

Non-Linear/Kernel SVM^[3] Supervised learning

Graph SVM^[4] Semi-supervised learning

- [1] Vapnik, Chervonenkis, On a perceptron class, 1964
- [2] Cortes, Vapnik, Support-vector networks, 1995
- [3] Boser, Guyon, Vapnik, A training algorithm for optimal margin classifiers, 1992
- [4] Belkin, Niyogi, Sindhwani, Manifold regularization: A geometric framework for learning from labeled and unlabeled examples, 2006

Summary

• General class of semi-supervised optimization techniques:

$$\min_{f \in \mathcal{H}_K} \|f\|_{\mathcal{H}_K}^2 + \lambda \sum_{i=1}^n L_{\text{data}}(f_i, \ell_i) + \gamma L_{\text{graph}}(f)$$

where

Norm of f in RKHS: $||f||_{\mathcal{H}_K}^2 = f^T K f$ (smoothness/regularity of f)

Misclassification error : $L_{\text{data}}(f_i, \ell_i)$ (training prediction)

Graph regularization: $L_{graph}(f)$ (smoothness of f on graph domain)

with

$$L_{\text{data}} = \begin{cases} \text{Hinge} \\ L_2 \\ L_1 \\ \text{Huber} \\ \text{Logistic} \end{cases} \text{ and } L_{\text{graph}} = \begin{cases} \text{Dirichlet} : \|\nabla \cdot \|^2 \\ \text{Total variation}^{[1]} : \|\nabla \cdot \|_1 \\ \text{Wavelets} : \|\nabla_{\text{wav}} \cdot \|^2 \end{cases}$$

^[1] Bresson, Zhang, TV-SVM: Total variation support vector machine for semi-supervised data classification, 2012

