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Course lectures

@ Introduction to Graph Machine Learning

@ Part 1: GML without feature learning
(before 2014)

@ Introduction to Graph Science

@ Graph Analysis Techniques without
Feature Learning

@ Graph clustering
Graph SVM

Recommendation on graphs

|

Dimensionality reduction

@ Part 2 : GML with shallow feature learning
(2014-2016)

@ Shallow graph feature learning
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@ Part 3 : GML with deep feature learning,
a.k.a. GNNs (after 2016)

Graph Convolutional Networks
(spectral and spatial)

Weisfeiler-Lehman GNNs

Graph Transformer & Graph
ViT /MLP-Mixer

Benchmarking GNNs

Molecular science and generative GNNs
GNNSs for combinatorial optimization
GNNs for recommendation

GNNs for knowledge graphs
Integrating GNNs and LLMs
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Recommendation systems
Google PageRank
Collaborative recommendation
Content recommendation
Hybrid systems

Conclusion
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@ Recommendation systems
o
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Recommender systems

@ Recommendation is the task of providing the most relevant items to a user.

@ It is one of the most common tasks in machine learning.

@ Arguably, the most essential task generating revenues for IT companies :

Google Ads
® Meta/Facebook : Recommends products to users (Facebook Ads). nfacebook Ads

® Google : Recommends webpages (e.g. PageRank) and products (Google Ads).

@ Amazon : Product recommendation to customers.

adMazZon advertisinc
T,

@ Netflix : Movie recommendations to encourage subscription renewals.

Alphabet Q1|FY23 Income Statement MetalQ1 FY23 Income Statement
Operating profit
"_-~~ Gross Profit $17.48 Net pvoﬁl -—— m Metq 51'\ ZB B'
~ ( Ad Revenue \, $39.28 2 . S8 18 Vg \ S
4.5 - 2 erating profi
a I B ety — . — Ad,zgtm e 'F mllyjotapes Gross Profit :
. s Sy Other (FoA) $22.58 25% margin
Search N\ 1088 328 35 7777 o pp) VY
advertising - " = ,28 68 ‘oppy; ~
£ .. . 118
uYouTllbe =3 atis ‘ A N o I -
- i ) - (511.58)
$7.58 - = 1 D) -
€} Google AdMob g . - 1\ §
S e O £ g~ Kt \ % sam so za Reality Labs | ] Dp:m .
Gooale Plav™ > (86.58) e e (RL) £ 15.3B)
P gl oy — : T e 2
O Google Cloud e — park AR, H
Source: Quarterly mults ' EconomyApp & APP ECONOMY INSIGHTS Source: Quarterly results , @EconomyApp
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Recommender systems

@ Recommender systems make use of the following elements :

Product features

User features
Historical and possibly dynamic ratings

Relationships (i.e. graphs) between products, users and pairs of product-user

@ In this lecture, we will cover recommendation techniques that are defined by :

Xavier Bresson

Graphs exclusively : PageRank and content recommendation

@ Features exclusively : Low-rank recommendation, a.k.a. collaborative recommendation

L3 L3
@ Both features and graphs simultaneously : Hybrid systems Building the Next New York Times
Recommendation Eng1ne
By ALEXANDER SPANGHER ~ AUGUST 11,2015 11:27 AV ® Commen t
) The New York Times publishes over 300 articles, blog posts and
Email . N .
interactive stories a day.
K share Refining the path our readers take through this content —
personalizing the placement of articles on our apps and website —
¥ Tweet can help readers find information relevant to them, such as the
right news at the right times, personalized supplements to major
@ Save events and stories in their preferred multimedia format.
i In this post, I'll discuss our recent work revamping The New York
ore

Times’s article recommendation algorithm, which currently serves
behind the Recommended for You section of NYTimes.com.
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@ Google PageRank
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PageRank

Google PageRanklll is a ranking algorithm that scores the nodes of an arbitrary graph depending
on their popularity, which is determined by the number of incoming edges.

PageRank was applied to Internet in 1998, where the nodes represent webpages.
This algorithm revolutionized webpage recommendations on the Internet.

Previously, recommendations were made by humans using arbitrary and often biased criteria.

Additionally, human-based recommendations are not scalable for large-scale graphs, s.a. Internet :

@ In 1998, the Internet had approximately 2.4 million webpages.

@ In 2023, the number of webpages is estimated to be around 30 billion !

Google:

Sexch G web ming Googe!

Googe Saweh | [T feing hecky
Rererese T GmOee

Special Sexcher 3
Soadind Soaih Congas s

Source: Wikipedia Source: Google

Larry Page and Sergey Brin, 1998
age, Brin, Motwani, Winograd, The PageRank citation ranking: Bringing order to the web, 1999



PageRank

@ The popularity of a node is simply defined by the number of incoming edges.

@ There is no need to define complex and arbitrary features explicitly. If a page is popular for
some reasons, several other pages will link to it.

@ It turns out that ranking the nodes of a graph based on the number of incoming edges is a
mathematically well-defined task.

@ The solution is given by the stationary state of a directed graph G, which encodes the
importance of the nodes in terms of their connectivity influence.

n35

n32

n24
o n25

n27

n29 n28 n33

Directed graph and PageRank
solution in bleu with the ball
Xavier Bresson size related to the PR value.

Directed graph and the ball size
related to the PageRank value.



Stationary state

@ The stationary state and the modes of vibration of a graph G are determined by the eigenvectors
of its adjacency matrix A, which are computed through eigenvalue decomposition (EVD) :

A=UAU" € R"*" with
U= [uy,...,u,] € R"™™ (n eigenvectors in R™)

1 k=K
0 otherwise

Y

UTU = In, 1e <’U,]€7’U,kl> = {

A = diag(Aq, ..., Ap) € R™™™  (eigenvalues)
Amax = A1 > A2 2> ... > A,

Aup = Mpup, € R, 1<k <n

We are interested into the largest eigenvalue :

n
Aumax — )\maxumax cR
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Perron-Frobenius theorem

@ PF theoreml!2?l :

@ For a real square matrix A with positive entries, the largest eigenvector exists, is unique
(up to multiplicity), and has strictly positive elements.

@ PF theorem when applied to stochastic matrices :

@ Given a real square matrix A that is row stochastic (each row sums to 1), the PF theorem
asserts that the largest eigenvector is unique, has an eigenvalue of 1, and contains strictly
positive elements.

Oskar Perron Georg Frobenius
1880-1975 1849-1917

[1] Perron, Zur Theorie der Matrices, 1907
[2] Frobenius, Ueber Matrizen aus nicht negativen Elementen, 1912

Xavier Bresson

11



Stationary equation

@ PF theorem when applied to stochastic and irreducible matrices (defined in next slide) :

@ For a directed graph G = (V,E,A) defined by a stochastic and irreducible adjacency matrix
A, the PF theorem states that the largest left eigenvector is unique, has an eigenvalue of 1,
and contains strictly positive elements :

ul A =ul Apa =ul e RIX?

max max max

@ Since the largest left eigenvector is unique, it can also be computed by the stationary
equation :

ul' A=yl e R1X"
or using the right eigenvector equation :
ATy =uecR" (with (u'A)" = (™))

@ The solution to the stationary state equation is the PageRank function.

Xavier Bresson 12



Stochastic matrix

@ A stochastic matrix is a matrix where each row is normalized to form a
probability density function :

Y Ajj=1Vi & Al, =1, €R"
jev

@ We can interpret A;; as the probability of moving from vertex i to
vertex j on the graph :

@ To convert an adjacency matrix A into a stochastic matrix, we can
normalize A using the degree matrix D :

o —1 . .
A+ D 'A with Dz'_il — { (23 A’LJ) if ith row # 0

0 otherwise

Xavier Bresson
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Irreducible matrix

@ A matrix is considered irreducible if it represents a graph where every node is reachable
from every other node. This property is known as strong connectivity in graph theory.

@ A graph is strongly connected if, for any pair of nodes (i,j), there exists a directed
path from node i to node j and a directed path from node j to node i.

@ To ensure that an adjacency matrix A is both stochastic (i.e., each row sums to 1)
and irreducible, we can proceed as follows :

Ly
A—aD 'A+(1—a)>
n

with
A € R™ ™ is the original (sparse) adjacency matrix of the graph
I, € R"™™ is the (full) identity matrix

a € [0, 1], original choice is o = 0.85(1

[1] Page, Brin, Motwani, Winograd, The PageRank citation ranking: Bringing order to the web, 1999
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Personalized PageRank N

@) J 7
NG B
@ Vanilla PageRank :

@ The term (1-a)I,/n is equivalent to a user who has the freedom to jump to any webpage
within the network, without specific preferences or constraints.

@ The terms aD!A + (1-a)I,/n models a user who follows the internet structure a% of the
time (mirroring the typical browsing pattern where users click on links provided on a
webpage) and for the remaining (1-a)% of the time, decides to click to a webpage that has
no connection to the previous page (due to curiosity for a different topic).

@ Personalized PageRank :
@ It is feasible to further refine this model by incorporating a user’s preferences or biases,

such as those influenced by advertisements or personalized recommendations :

A<+ aD PA+ (1 — @) pprior € R™™"
with
Prrior € R™ ™ is a prior probability designed by Google

PPrior; j € 0, 1] is the prior probability of a user moving from page i to page j

Xavier Bresson 15



Spectral algorithm

@ PageRank function is given by the stationary equation AT u = u, where A is the fully stochastic
and irreducible matrix derived from the original (sparse) adjacency matrix of graph G.

@ The most direct technique to solve AT u = u is to compute the eigenvector corresponding to the
largest eigenvalue, which is known to be 11,2l

@ Advantages of Eigenvalue Decomposition (EVD) :
@ EVD guarantees finding the exact solution.
@ The solution is independent of the initial condition.

@ Limitations :

@ EVD is computationally intensive with O(n?) speed complexity and memory consuming O(n2).

@ EVD cannot be parallelizable because eigenvectors are solutions of a global linear system.

@ EVD does not scale well to large networks, s.a. internet, which contains billions of nodes.

[1] Perron, Zur Theorie der Matrices, 1907
[2] Frobenius, Ueber Matrizen aus nicht negativen Elementen, 1912
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Power method

@ An alternative solution is the Power method![!:2:3] ;

@ The stationary state equation AT u = u can be solved using a fixed-point iterative scheme,
with convergence guaranteed since the eigenvalues of A are less than or equal to 1 :

Wt = AuF e R™, £ =0,1,2, ...
At convergence, we have :
w = Au*

where u* € R" is the PageRank function.

[1] Mises, Pollaczek-Geiringer, Praktische Verfahren der Gleichungsauflosung, 1929
[2] Page, Brin, Motwani, Winograd, The PageRank citation ranking: Bringing order to the web, 1999
[3] Nesterov, Nemirovski, Finding the stationary states of Markov chains by iterative methods, 2015
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Power method

The power method is an iterative algorithmlll :

_ 1
Initialization (uniform distribution): v*=% = =% ¢ R"
n

1
Iterate until convergence: uF T = oD ATUR + (1 —a) =2 e R
n

Speed complexity is O(EK), where E is the number of edges in the graph and K is the number
of iterations to converge to a precision € as follows :

2"t —2F|; <e for K= ,and e = 107°

logipe [ 85 for « = 0.85
| 1833  for o =0.99

log,p @

The Power Method can be parallelized due to the operation of matrix-vector multiplication.

It is the optimal technique for computing the largest or smallest eigenvector of a linear operator.

age, Brin, Motwani, Winograd, The PageRank citation ranking: Bringing order to the web, 1999



Spectral vs Power techniques

@ Memory complexity

EVD : ATy = wis O(n?) as A is full (irreducible property)
Ly . :
Power method : v = aD 1ATu* + (1 — )= is O(E) as A is sparse (for most real-world graphs)
n
@ Speed complexity
EVD : O(n?) for the eigenvector with the largest eigenvalue

Power method : O(EK) (K is the number of iterations)

Xavier Bresson
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Lab 1 : PageRank

@ Run codeOl.ipynb and conduct the following actions :

@ Compare the computational speed between the EVD and the Power method.

@ Visualize the PageRank function of a basic network.

# Power Method

# Initialization

X =e
diffx = lel0
k=0

# Iterative scheme

start = time.time()

alpha = 0.85

while (k<1000) & (diffx>le-6):

# Update iteration
k += 1

# Update x
xold = x

x = alpha* P.dot(x) + e.dot( alpha* a.T.dot(x) + (1.0-alpha) )

# Stopping condition

diffx = np.linalg.norm(x-xold,1)

Xavier Bresson
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Collaborative recommendation

Outline
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Recommendation task

@ A prominent example is the 1IM$ Netflix Prizel2l in 2009.

@ The Netflix competition aimed to develop the best algorithm for predicting user ratings based on
a sparse set of previously rated movies.

@ The dataset statistics

® 480,189 users, 17,770 movies, 100,480,507 ratings = Only 0.011% of all possible ratings !

@ Interestingly, the winning algorithm was never implemented by Netflix due to its complexity and
high engineering costs.

NETFLIX Q& & | &
} J'Il-i a4 i“ ﬁ" | '\ ™
5.8 o i h A . o B
\l' ¢
5 M "l* -~ %s\ A k(& | ¥
! IR e L
[ Q DF .
|||+
[1] Bennett, Lanning, The netflix prize, 2007 (3,200 citations) T
[2] https://en.wikipedia.org/wiki/Netflix Prize
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Task formalization

@ Problem : Given a (small) set of ratings/observations M;; (€ [1,5]) for movie j and user i,
estimate a matrix X that best fits the given ratings.

@ This problem is known as the matrix completion task.

Recommendation

Matrix completion

>

20 40 80 00 20 0 deo 180 200 50 100 150 200

Given sparse ratings Fully estimated ratings
M e Rrxm X € Roxm

Xavier Bresson
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Collaborative recommendation

@ We assume that the rating matrix is low-rank, meaning that several of its rows and columns are
linearly dependent.

@ The rank of a matrix is defined as the number of its independent rows or columns.
@ The low-rank hypothesis has proven valid for several real-world datasets.
@ For example, Netflix :
@ There exist communities of users who rate movies similarly.
@ There are groups of movies that receive the same ratings.

@ Same assumptions for Amazon (users, products), LinkedIn (users, jobs), Facebook (users, ads).

.5 Low-rank matrix

" X € [R100 x 200

3 # linearly independent rows = 13
Z’s # linearly independent cols = 15
15 = rank(X) = max(13,15) = 15

Xavier Bresson



Low-rank modeling

@ Approximating a low-rank matrix from the original sparse observation matrix is typically
achieved through optimization techniques :

(X, = M, Vij € Qops (noiseless case)
(observations are clean)
min rank(X) s.t. <
X eRnxm Xij = M;; +n;; Vij € Qops (n0isy case)
\ (observations are corrupted)

This combinatorial NP-hard problem can be relaxed using two continuous approaches :

1) Convex relaxation with nuclear norm!!.

2) Non-convex relaxation with matrix factorization!234l. \

Convex function Non-convex function
[1] Candes, Recht, Exact matrix completion via convex optimization, 2009

[2] Luo, Zhou, Xia, Zhu, An efficient non-negative matrix-factorization-based approach to collaborative filtering for recommender systems, 2014
[3] Sarwar, Karypis, Konstan, Riedl, Application of dimensionality reduction in recommender system-a case study, 2000
[4] Seung, Algorithms for non-negative matrix factorization, 2000

(@5t
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Unconstrained low-rank optimization

@ We further relax the original constrained optimization problem with an unconstrained problem :

min rank(X) s.t. X;; = M;; + nij Vij € Qobs
Xe]RnXm
which is equivalent to
. by 5 1 ity € Qons
Xé%n%m rank(X) + §Hlndobs o (X —M)||z where (IndobS)ij - { 0 otherwise

where

H}}Il rank(X) promotes the low-rank property.

[Indops © (X — M)||% enforces data fidelity and robustness to perturbation.

Operator o is the Hadamard point-wise product.

Constant A > 0 controls the trade-off low-rank vs. fidelity.

There exists a closed-form formula between A and n for the Gaussian noise (Lagrange multiplier[l]).

[1] Boyd, Vandenberghe, Convex optimization, 2004 (75,000 citations)
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Convex relaxation

@ The unconstrained NP-hard combinatorial problem is intractable and in its original form and
therefore must be relaxed :
1 if ¢ VS Qobs

0 otherwise

A
Xn%in rank(X) + §||IndolOS o (X — M)||% where (Indops)ij = {
E nXxXm

An exact continuous, non-smooth and convex relaxation was proposed within

the compressed sensing framework!(!:23] : L! function
A

r%in | X ||« + §Hlndobs o (X — M)||% where || - ||+ is the nuclear norm defined as

XG nxm
p N
[ Xl = 1% = Z |0 (X)|, where o (X) are the singular values of X s.t. i/ \:
k=1
X =UxVv! U eR™P ¥ = diag(ay,...,0,) € RF*P V€ RP*™ p = min(n,m) min L! s.t. X =M

[1] Candes, Romberg, Tao, Exact signal reconstruction, 2006 (19,000 citations)
[2] Donoho, Compressed sensing, 2006 (35,000 citations)
[3] Candes, Recht, Exact matrix completion via convex optimization, 2009

20
Terrence Tao Emmanuel Candes David Donoho
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Primal-dual optimization

@ We can design an algorithm that is guaranteed to converge with a rate of O(1/k)l13l) where k is
the number of iterations :

Initialization : X*=0 = M € R™*™ YF=0 = e R**™

Iterate until convergence, i.e. k=0,1,.. S;rink/*(')
—H
YR+ = v gk Ushrink, o« (Z)V7 € R™™ (dual variable) /o k
Wlth SVD . Yk -+ Uka = UZVT - Rnxm Shrinkage opera,tor[2]

Xk: L Tkyk+1 T Tk)\M

Xk—}—l _
1+ Tk)\IndobS

€ R™"*™ (primal variable)

[1] Candes, Recht, Exact matrix completion via convex optimization, 2009
[2] Donoho, De-noising by soft-thresholding, 1995 (15,000 citations)
[3] Liu, Vandenberghe, Interior-point method for nuclear norm approximation with application to system identification, 2010

Xavier Bresson 28



Algorithmic properties

@ Advantages

@ The solution is unique, exact, and stable, regardless of the initialization.

@ Limitations
@ Time complexity is dominated by Singular Value Decomposition (SVD), which is O(n3).
@ The memory requirement is O(n2).

@ SVD-based algorithms cannot scale to large datasets, i.e. for n significantly large.

Xavier Bresson
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Non-convex relaxation

@ The unconstrained NP-hard combinatorial problem is intractable and in its original form and

therefore must be relaxed :

A
Xn%in rank(X) + EHIndobs o (X — M)||% where (Indops)ij = {
6 nXxXm

1 if 1] € Qobs
0 otherwise

Approximate, continuous and smooth relaxations were proposed within matrix factorization

techniques s.a. NMF12:3] (non-negative matrix factorization) :

1 1 A
LeRner,gleRer 2H I+ 2” I + QH ndops © ( Nz
| ifi e Q. L
where (Indobs)ij = { 0 i)tiljerwiseb and r < n,m.
L
nx T

[1] Luo, Zhou, Xia, Zhu, An efficient non-negative matrix-factorization-based approach to collaborative filtering for recommender systems, 2014
[2] Sarwar, Karypis, Konstan, Riedl, Application of dimensionality reduction in recommender system-a case study, 2000
[3] Lee, Seung, Algorithms for non-negative matrix factorization, 2000 (12,000 citations)

Xavier Bresson
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Algorithmic properties

@ Advantages

@ Optimization problem is smooth and quadratic : Enables fast optimization techniques with
e.g. conjugate gradientlll, Newton’s method, etc.

@ The objective is differentiable : Facilitates the application of stochastic gradient descent
(SGD) technique for large-scale recommender systems!2l.

@ Monotonicity property : Factorization algorithms s.a. NMF[34 ensure a monotonic decrease
in loss over iterations, Ext! < Ek vk.

@ Limitations

@ Non-convex optimization : Prone to getting trapped in local minimizers, making good
initialization critical.

@ Introduction of a new hyper-parameter : The rank value r requires to be evaluated.

[1] Boyd, Vandenberghe, Convex optimization, 2004

[2] Gemulla, Nijkamp, Haas, Sismanis, Large-scale matrix factorization with distributed stochastic gradient descent, 2011
[3] Sarwar, Karypis, Konstan, Riedl, Application of dimensionality reduction in recommender system-a case study, 2000
[4] Lee, Seung, Algorithms for non-negative matrix factorization, 2000
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Lab 2 : Collaborative filtering

@ Execute code02.ipynb and perform the following tasks:

Xavier Bresson

@ Compute the low-rank solution.

@ Visualize reconstruction process.

# Collaborative filtering / low-rank approximation by nuclear norm

# Indentify zero columns and zero rows in the data matrix X
idx_zero_cols = np.where(np.sum(Otraining,axis=0)<1le-9)[0]
idx_zero_rows = np.where(np.sum(Otraining,axis=1)<le-9) [0]
nb_zero_cols = len(idx_zero_cols)

nb_zero_rows = len(idx_zero_rows)

# Regularization parameter
OM = 0+M

normOM = np.linalg.norm(OM,2)
lambdaNuc = normOM/4.
lambdaDF = 1e3

# Initialization

X =M; Xb = X;

Y = np.zeros([n,m])
normA = 1.

sigma = 1./normA
tau = 1./normA

diffX = lel@
min_nm = np.min([n,m])
k=0

while (k<1000) & (diffx>le-2):

# Update iteration
K += 1

# Update dual variable y

Y = Y + sigmax Xb

U,S,V = np.linalg.svd(Y/sigma)

Sdiag = shrink( S , lambdaNuc/ sigma )
I = np.array(range(min_nm))

Sshrink = np.zeros([n,m])

Sshrink[I,I] = Sdiag

Y = Y - sigmax U.dot(Sshrink.dot(V))

# Update primal variable x

Xold = X

X =X - taux Y

X = ( X + taux lambdaDFx O M)/ (1 + tausx lambdaDF* 0)

# Fix issue with no observations along some rows and columns

r,c = np.where(X>0.0); median = np.median(X[r,c])
if nb_zero_cols>0: X[:,idx_zero_cols] = median
if nb_zero_rows>0: X[nb_zero_rows,:] = median

# Update primal variable xb
Xb = 2.% X = Xold

Ground truth low-rank matrix M

0 25 50 75 100 125 150 175

Ground-truth ratings
Artificial dataset

Original rating matrix
: 65

200

400

500

Ground-truth ratings
Real-world dataset

100

Observed values of M

25 50 75 100 125 150

Available ratings

Observed rating matrix
Percentage observed ratings: 13.17

Available ratings

Collaborative Filtering
Iteration=1000
Reconstruction Error= 33.5

Low-rank solution

Collaborative Filtering
Iteration=616
Reconstruction Error= 409.76023

Low-rank solution
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Content recommendation

Outline
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Content recommendation

@ Content filtering recommendationl!l leverage similarities between users and between items to
predict ratings.

@ Task formulation

® Given a (small) set of ratings/observations M;; for movie j and user i, along with a set of
user features and product features, estimate a matrix X that best fits the provided ratings

while maintaining similarity among users and products.

o Examples
@ User features/attributes : Gender, age, job, occupation, interests, etc.

@ Product features/attributes : Domain, price, release date, size, etc.

Users with their features Products with their features

[1] Pazzani, Billsus, Content-based recommendation systems, 2007 (4,000 citations)

Xavier Bresson
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Encoding similarity

@ Graphs serve as a universal representation of similarity relationships between users and between
products :

Gr — (‘/;“7 Era Ar)
Row /user graph with

A, the adjacency matrix of rows

" Ge = (Vo Be, Ac)
Column/product graph with
A

A. the adjacency matrix of columns

Network of products

Xavier Bresson
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Task formalization

@ Graph-based content filteringlll :

Gc — (cha EC7 Ac)
Column /product graph

Gr — (V;“a ET‘? Ar)
Row /user graph

oq o2 g o
20 40 60 80 100 120 140 160 180 200

Given sparse ratings
M e Rrxm

[1] Huang, Chung, Ong, Chen, A graph-based recommender system for digital library, 2002

Xavier Bresson

Collaborative
Recommendation

Graph diffusion
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Fully estimated ratings
X € Roxm
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Graph recommendation

@ We can fill out the sparse matrix M with the user and product graphs by diffusing/smoothing
the available ratings across these graphs.

@ Diffusion on graphs can be formulated as a smooth optimization problem :

min | X[|ETON [ XN + S Indons © (X — M)||%
X ERnXm 2

where

_ 1 if ’L] € Qobs
(Indops)ij = { 0 otherwise

| X ||&iffusion 5 5 diffusion loss on a graph G.

Xavier Bresson
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Modeling diffusion on graphs

@ Assumption : When a user i is closely connected to another user i’ on the graph G (i-e. G,),
it suggests that these two users share similarities, likely having similar interests and product
preferences. Consequently, it can be anticipated that these users will rate products similarly.

@ This implies that the row; and the row; in matrix X are expected to be similar.

Xavier Bresson
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Modeling diffusion on graphs

@ The diffusion loss should enforce smoothness of observations/ratings across the graph.

@ The Dirichlet norml!l is widely favored as the default measure of graph smoothness :

HXHdlffusmn — HXHDII‘ — tI'(XTLX) c R—i—; X c RnXm
where
L=1,— D Y2AD~Y2 ¢ R®*" (graph Laplacian)

m

tr(XTLX) =) af Lay, zp € R
k:_

_ ZIZ Johann Dirichlet
- Z Z Lij(xr); 1805-1859

le,5€eV

Z — (zn);)’

3N

[
FMS ||

[1] Chung, Spectral graph theory, 1997
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Least squares optimization

Least squares problem with graph regularization :

. ir ir )\
min || X[|gF + [ X]|g + 5 [ Indobs o (X — M)||%
XGRnXm 2

A
omin - tr(XTLX) 4 (X LX) + ZIndans o (X = M)
E nXxXm

The optimization problem is smooth and quadratic.
It can be reduced to a linear system of equations, represented as Ax =b.
Techniques s.a. conjugate gradient or stochastic gradient descent are applicable :

(I, @ L+ L.®1L, + Appn)r = Am
with © = reshape(X), m = reshape(M) € R"™ ® is the tensor product
Ar =0
r=A"1h e R"™
X = reshape(z) € R™*™



Lab 3 : Content filtering

@ Run code03.ipynb and perform the following tasks :
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@ Compute the graph-based solution.

@ Visualize the solution.

# Content Filtering / Graph Regularization by Dirichlet Energy

# Compute Graph Laplacians

Lr = graph_laplacian(Wrow)

Lc = graph_laplacian(Wcol)

I = scipy.sparse.identity(m, dtype=Lr.dtype)
r = scipy.sparse.kron( I, Lr )

Lr = scipy.sparse.csr_matrix(Lr)

I = scipy.sparse.identity(n, dtype=Lc.dtype)

Lc = scipy.sparse.kron( Lc, I )

Lc = scipy.sparse.csr_matrix(Lc)

# Regularization parameter
lambdaDir = le-2%8
lambdaDF = 1e3

alpha = 0.1

# Pre-processing

L = alphax Lc + (1.-alpha)* Lr

vecO = np.reshape(0.T, [-1])

vecO = scipy.sparse.diags(vec0, @, shape=(nxm, nxm) ,dtype=L.dtype)
vecO0 = scipy.sparse.csr_matrix(vec0)

At = lambdaDir* L + lambdaDF* vecO

vecM = np.reshape(M.T, [-1])

bt = lambdaDF* scipy.sparse.csr_matrix( vecM ).T

bt = np.array(bt.todense()).squeeze()

# Solve by linear system
X,_ = scipy.sparse.linalg.cg(At, bt, x0=bt, tol=1le-9, maxiter=100)
X = np.reshape(x, [m,n]).T

# Reconstruction error
err_test = np.linalg.norm(Otestx(X-Mgt))

0

100 1

200 1

400 -

Graph of users

Adjacency matrix of users indexed
according to the NCut communities

100 200 300 400 500

400

Adjacency matrix of products indexed
according to the NCut communities

10 20 30 40 50 60 70

Graph of products

Observed rating matrix
Percentage observed ratings: 13.17

Available ratings
Real-world dataset

Content Filtering
Reconstruction Error= 411.24489

Graph-based
smooth solution
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Hybrid systems

Outline



Hybrid system

e It is possible to integrate collaborative and content recommendation techniquesl!.

@ Task formulation : Given a limited set of ratings/observations M;; for item j and user i, along
with user features and item features, design a recommender system that effectively combines :

@ Collaborative filtering to capture the low-rank property of ratings.

@ Content filtering to diffuse ratings across user and product graphs, ensuring alignment
with user and product similarities.

[1] Ma, Zhou, Liu, Lyu, King, Recommender systems with social regularization, 2011
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Matrix completion on graphs

@ A method called matrix completion on graphslll effectively combines these two key aspects :

@ Capturing the low-rank structure of ratings using the nuclear norm.

@ Diffusing ratings across user and product graphs by leveraging the graph Dirichlet norm.

min
X eRn Xm

where (Indops)i; = {

[1] Kalofolias, Bresson, Bronstein, Vandergheynst, Matrix completion on graphs, 2014
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A A
1X ]|, + 7Gtr(XTLrX) + 7%

1 if 1] € Qobs
0 otherwise

Content-based Filtering
(Graph-based Recommendation)
like Amazon

T -

~—

-Collaborative Filtering
[(Rating-based Recommendation)
like Facebook, Netflix

oo jo

Fig 1. Matrix of collected ratings
Only 5% is available!

A
(XLXT) + 3 [Indobs o (X — M)

Our contibution:

= >
Unifying Collaborative

and
Content-based Filtering

Fig. Solution of our
recommender system




Sample complexity vs performance

@ Building a recommender system :
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@ In the absence of sufficient ratings, prioritize the collection of data features.

@ Once an adequate number of ratings have collected, reduce the need on features.

Prediction error
(the lower the better)

Hybrid =
Content

Collaborative recommendation (low-rank approximation)

/ Content recommendation (graph diffusion)

/

Hybrid recommender Hybrid =
System : Collaborative
—— —— #Available
Small number Large number Observations/ratings
of ratings of ratings



Lab 4 : Hybrid recommendation

@ Run code04.ipynb and perform the following tasks :
@ Compute the hybrid solution. s

Original rating matrix Observed rating matrix
Percentage observed ratings: 65.89 Percentage observed ratings: 13.17

@ Visualize the obtained solution. .

# Hybrid system : Matrix Completion on graphs

#Compute Graph Laplacians
Lr = graph_laplacian(Wrow)
Lc = graph_laplacian(Wcol) 400
I = scipy.sparse.identity(m, dtype=Lr.dtype)
Lr = scipy.sparse.kron( I, Lr ) 500
Lr = scipy.sparse.csr_matrix(Lr)

I = scipy.sparse.identity(n, dtype=Lc.dtype)
Lc = scipy.sparse.kron( Lc, I ) 600
Lc = scipy.sparse.csr_matrix(Lc)

500

# Indentify zero columns and zero rows in the data matrix X

APl | A i e Ground-truth ratings Available ratings Hybrid solution
idx_zero_rows = np.where(np.sum(Otraining,axis=1)<le-9) [0]
nb_zero_cols = len(idx_zero_cols)
nb_zero_rows = len(idx_zero_rows) Rea‘]'_world da’ta‘set
# Regularization parameter
OM = 0*M . .
normOM = np.linalg.norm(0OM,2) Scenano 1 . LOW number Of rat|ngs (1.3%)
lambdaNuc = normOM/4.
low-rank/collab sol : 800.25
# Regularization parameter Prediction error /
lambdaDir = le-248 (the lower the better) graph/content sol :399.89
lambdaDF = 1e3 Collaborative recommendation (low-rank approximation) hybrld SOI . 402 71 (~ graph SOI)

alpha = 0.1
# Pre-processing / Content recommendation (graph diffusion) Scenario 2 : Good number of ratings (13%)

L = alphax Lc + (1l.-alpha)* Lr
e e aaets low-rank/collab sol : 409.76
graph/content sol :411.24

vecO = scipy.sparse.diags(vecO, @, shape=(n#m, nxm) ,dtype=L.dtype) Hybrid =
vecO = scipy.sparse.csr_matrix(vec0) Content
At = lambdaDirx L + lambdaDFx vecO

vecM = np.reshape(M.T, [-1])

/

e o e Bybrid recommonder ybrid= hybrid sol :397.47

0 ot e e PR i Scenario 3 : High number of ratings (52%)
# Initialization Small number Large number ﬁ&zzﬂ:zfns/ratings low-ran k/CO”a b sol :698.97

Y of ratings of ratings graph/content sol :748.52

normA = 1.

hybrid sol : 695.00 (= low-rank sol)
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Conclusion
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Conclusion

Recommender systems operate on the premise that customers naturally form clusters based on
shared interests and preferences.

The effectiveness of recommendations typically increases with the accumulation of ratings.

However, obtaining ratings poses challenges, as soliciting customers to rate numerous products is
impractical.

To address this, user and product features are leveraged to enhance predictions, ensuring that
similar users and products receive comparable ratings.

Deep learning techniques can enrich raw features, augmenting the system’s predictive capabilities.

Additionally, in scenarios involving temporal changes in ratings -- such as when movies transition
from box office disappointments to cult classics -- capturing these dynamics is critical.

Time series and Markov models are used to model the temporal nature of ratings, with deep
learning architectures s.a. RNNs or Transformers serving as powerful tools for learning dynamic
systems!l.

[1] Monti, Bronstein, Bresson, Geometric matrix completion with recurrent multi-graph neural networks, 2017
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