CS6208 : Advanced Topics in Artificial Intelligence
Graph Machine Learning

Lecture 6 : Graph-based Visualization

Semester 2 2022/23

Xavier Bresson

https://twitter.com/xbresson

Department of Computer Science

National University of Singapore (NUS) BH &

NUS
%5

National University
of Singapore

Xavier Bresson

https://twitter.com/xbresson

Course lectures

@ Introduction to Graph Machine Learning

@ Part 1: GML without feature learning
(before 2014)

@ Introduction to Graph Science

@ Graph Analysis Techniques without
Feature Learning

—

Graph clustering
Graph SVM
Recommendation on graphs

Graph-based visualization

@ Part 2 : GML with shallow feature learning
(2014-2016)

@ Shallow graph feature learning

Xavier Bresson

@ Part 3 : GML with deep feature learning,
a.k.a. GNNs (after 2016)

Graph Convolutional Networks
(spectral and spatial)

Weisfeiler-Lehman GNNs

Graph Transformer & Graph
ViT /MLP-Mixer

Benchmarking GNNs

Molecular science and generative GNNs
GNNSs for combinatorial optimization
GNNs for recommendation

GNNs for knowledge graphs
Integrating GNNs and LLMs

Xavier Bresson

Outline

Visualization as dimensionality reduction

Linear visualization techniques

@ Standard PCA
@ Robust PCA
@ Graph-based PCA
Non-linear visualization techniques
o LLE
@ Laplacian eigenmaps
o TSNE
o UMAP

Conclusion

Outline

@ Visualization as dimensionality reduction

Xavier Bresson

Visualization

@ The visualization task involves projecting high-dimensional data, s.a. images, text documents,
user /product attributes, sequences of actions, etc into 2D or 3D low-dimensional Euclidean spaces
to reveal underlying data structures.

@ This projection is achieved using dimensionality reduction techniques, which aim to compress the
original information while discarding unnecessary details and noise.

EEUBIOCBENE
EEEEERCOEEN

BNdEOEEBER N |
ACAENDOERBE

ENODOGOGER A |
EREEHdEBEAME ;

28 x 28 MNIST images
Visualization of MNIST

images in R3
Xavier Bresson

Dimentionality reduction

@ Two classes of dimensionality reduction techniques have been developed :

@ Linear Techniques: These methods produce low-dimensional Euclidean (flat) spaces.

@ Common examples include Principal Component Analysis (PCA)lll: Linear Discriminant
Analysis (LDA)Pl and Independent Component Analysis (ICA)IB.

@ Non-Linear Techniques: These methods compute low-dimensional manifolds, i.e. curved
hyper-surfaces.

o Standard techniques are Kernel methods/4, Locally Linear Embedding (LLE)[®: Laplacian
Eigenmapslfl, t-distributed Stochastic Neighbor Embedding (TSNE)"l] and Uniform Manifold

Approximation and Projection (UMAP)I8l.

[1] Pearson, On lines and planes of closest fit to systems of points in space, 1901

[2] Fisher, The Use of Multiple Measurements in Taxonomic Problems, 1936

[3] Herault, Jutten, Architectures neuromimétiques adaptatives: Détection de primitives, 1985

[4] Scholkopf et-al, Nonlinear Component Analysis as a Kernel Eigenvalue Problem, 1998

[5] Roweis, Saul, Nonlinear dimensionality reduction by locally linear embedding, 2000

[6] Belkin, Niyogi, Laplacian eigenmaps for dimensionality reduction and data representation, 2003

[7] Van der Maaten, Hinton, Visualizing data using t-SNE, 2008

[8] McInnes et-al, UMAP: Uniform manifold approximation and projection for dimension reduction, 2018

Xavier Bresson

Linear dimensionality reduction

@ Assumption: The data distribution exists within a low-dimensional Euclidean space.

4

High-dimensional Euclidean space

T ERd,d>>1

Xavier Bresson

Linear s
Dimensionality o
Reduction °
A, e o
— >
A

Low-dimensional hyper-plane
z € R™ m<d

Projection map

w:x; = 2z = p(z;) = Ax;

-J

Linear techniques

@ Task formalization : Restrict the mapping ¢ to be a linear operator A.

@ Several techniques exist to compute a linear operator A.

o PCA, LDA, ICA, Non-negative matrix factorizationl!!l (NMF'), Sparse Coding!?, etc.
| <A17,,33>] I <1 |
i <Ak;7., .I’) | Zk

with
z € R% d>> 1, high-dimensional data point
z € R"™, m <« d, low-dimensional data point

A € R™* ™ dictionary of patterns or basis functions
A;. € R", i-th pattern/linear filter

[1] Lee, Seung, Learning the parts of objects by non-negative matrix factorization, 1999
[2] Olshausen, Field, Learning a sparse code for natural images, 1996

Xavier Bresson

Linear dimensionality reduction

@ An example where linear dimensionality reduction falls short in producing clear patterns.

@ This highlights the need for greater expressivity to uncover the underlying structures.

Xavier Bresson

SE3N7 MR (MINONSH/NS)
FEEAEERBEROBEN
BlNvEIOBHEABERO —
CAaENnNBROdAadBE
BN BHOEAE 2B
RERBEOENBOHAAH
28 x 28 MNIST images Visualization of MNIST

images in R3 with PCA

9

Non-linear dimensionality reduction

@ Assumption: Data distribution resides on low-dimensional curved spaces, known as
manifolds (which can be smooth or non-smooth).

@ Techniques designed to uncover these structures are referred to as manifold learning.

" Non-Linear

JLi Dimensionality
’ Reduction
] e i
o ° ;
o
High-dimensional Euclidean space Projection map Low-dimensional manifold
z; € RY d>1 ©:x; — 2z = () M C R dim(M) =m, m < d

Xavier Bresson 10

Dimensionality reduction

@ An example where non-linear reduction effectively reveals clear patterns.

@ Several non-linear techniques are available, each suited to different data distributions.

p(x) =2
reR® 2R3
SEEARANEBERB0AE | —
FEEEEROABEN ¢-LloBigomaps! -
Bl EBEOBHEBERO —
o 0nen B .
BB EODEaEAan
ERREBEOHEAR)

e BEarar—ah

28 x 28 MNIST images Visualization of MNIST

X € R28 x28=684 images in 3D

z € R3

[1] Belkin, Niyogi, Laplacian eigenmaps for dimensionality reduction and data representation, 2003

Xavier Bresson

Xavier Bresson

Linear visualization techniques
@ Standard PCA
)

Outline

12

Principal component analysis

e PCA!l introduced in 1901, is inspired by the principal axis theorem in mechanics.
@ It is the most popular technique for linear dimensionality reduction.

@ It aims to capture the direction of greatest variance within the data distribution.

Karl Pearson

1857-1936
€9 y
o v
T; o 7
° ° ? Lq (
. °) m— —
o © 761
o
Oricinal data. Projection of data points into Principal component v and
dis tri‘gu tion in R2 the direction of the largest approximation of the
variation v of the distribution original distribution w.r.t.

the largest variance

[1] Pearson, On lines and planes of closest fit to systems of points in space, 1901

Xavier Bresson 13

Task formulation

@ Given a set of data points, PCA projects the data onto an orthogonal basis that best captures its
variance.

@ Assuming the data distribution is centered at the origin, PCA defines an orthogonal
transformation, i.e. a rotation matrix, that maps the data to a new coordinate system (vy,va,...,vk)
known as principal directions such that

@ The first basis function or principal direction v; captures the largest possible variance in data.

@ The second basis function or principal direction v, captures the second largest possible
variance while being orthogonal to the first principal direction (v;,vy)=0.

@ For each subsequent direction, the v’s capture the k-th largest possible data variance,

maintaining orthogonality to all previous directions. L €2
U1

V2

°
S Rotation

—>

N

Origin

Xavier Bresson

Covariance matrix

@ Data variance across feature dimensions is captured by the covariance matrix :

Xavier Bresson

C=XTX e R4

with data matrix X € R™*? where
n is the number of data points
d is the number of data features

Then we have

n
C11 = XT1X-,1 = || X.1]]5 = E X7 variance in the direction e;
i=1

mn
Cio = X,TlX.,Q = g X;1X;2 cross-variance in the direction ej-es
i=1

Reminder : Data is centered in each feature dimension j, i.e.

n Vector e; is the
E(X. ;) = ZXU =0, Vje{1,..,d} direction of the largest

— variance with value Cq;
1=

Direction of the largest variation

@ Consider an arbitrary centered data distribution.

@ Let us compute the direction of the largest data variance, vigest :
Vlargest
A

n

d Z T,\? d

Ulargest € R* = argmaX”U”Z:l <CUZ ’U) , Ti € R
1=1

= argmaxnv”Q:l ’UTC’U

given that Z (x;fpv)2 = [|[X2 = (X0)" (Xv) =0T XT Xv

and by definition C' = X7 X €9

T A x'l,

x; v is the projection of z; on the direction v : v

Xavier Bresson

. .
Eigenvalue decomposition

@ Next, we perform the eigenvalue decomposition (EVD) of the positive semi-definite (PSD)
covariance matrix C :

Vlargest — V1
C’Uj =)\j?}j S Rd, 7=1,...,d
with the eigenvalues: A\jpax = A1 > X > ... 2 A g =Apin =0

Let us consider the largest eigenvalue, we have
T

max

v Cvmax —)\maxvrjrlaxvmax —)\maxHUmaXHg — Amax Z >\j7 Vj 7é 1

In other words, we have vjargest = Umax = V1 a8

T

maXCUmaX —)\max —)\1

Argmax||,(,—1 v Cv =v

-J

Xavier Bresson 1

Direction of the second largest variation

@ The direction of the greatest data variance, known as the first Principal Direction (PD),
is given by the spectral solution and corresponds to the eigenvector v, associated with the largest
eigenvalue of the covariance matrix C :

n

Cvy = Mv1 — v] Coy = Mvi v = M||vi]]3 = M\ = argmax||,||,—1 Z (2] v)
i=1

2

@ Similarly, the direction of the second largest data variance, or the second PD, is defined as :

n
v € R = argmax|||,=1 Z (x,LT’U)2, s.t. viv; =0 (v is orthogonal to v;)
i=1
and the solution is given by the second eigenvalue and its eigenvector:
ngUQ = >\2U§’02 =)\2”?)2“% =)\2 Z)\ja Vj Z 3 and)\2 S)\1

In other words, we have

argmax,, v! Cv = v3 Cvy = Ao (second largest variance)

|2:]-7IUTIU1

Xavier Bresson 18

PCA as EVD of covariance matrix

@ In the same way, the direction of the third largest data variance is defined as

Xavier Bresson

n
v3 € RY = Argmax||, ||, =1 Z (mzrv)Z, s.t. vTv; =0 and v vy =0
i=1
(v is orthogonal to v and wvs)
The solution is given by the third eigenvalue and its eigenvector:
01}3 ==)\3”03
Altogether, we consider the full matrix factorization of C' with EVD:

C=VAV! e R

with V = [Ul, ey vd] c R VTY =1; € R¥™? (Identity matrix), A = diag(\y, ...

7)\d) e Rdxd

19

Xavier Bresson

Principal directions and components

The principal directions (PDs) indicate the directions along which the data has the greatest variance.
The EVD of the covariance matrix C provides

@ The principal directions v; in R¢ as the eigenvectors of C.

@ The magnitude of the variances along each direction C;; = A; as the eigenvalues of C.

The principal components of a data point x; are defined as the projection onto the basis formed by
these principal directions :

P =VTy; € R (Rotated data along the PDs)
XPea — XV € R"™4 (Rotated data matrix X along the PDs)

Dimensionality reduction

@ Suppose that the data is primarily concentrated along the first principal directions, the remaining
directions, which mostly capture noise or insignificant details, can be discarded.

@ The first K principal directions (PDs) can be selected as :

k such that || X — X% < e
where XP = XV, € R™ ¥ is the approximation of X with the first k PDs

and V, = [’01, ...,fuk} S Rka,VkTVk — I, € RF*F
is the truncated V with the first k PDs

€2

A
U1
e ¢ rP? =V7Ty, € RY
o L T k
. - ®) i ~ Vk‘ x; € R
o o e ~ v x; € R (this example)

Projection of data points into
the direction of the largest
variation v of the distribution

Original data
distribution in R?2

Xavier Bresson

Number of reduced dimensions

@ Simple selection of the hyper-parameter k.

@ Since principal directions capture the most significant variances in the data distribution, simply
retain the first k directions that collectively account for e.g. 90% of the total data variance.

Variances of Principal Directions

Select k such that | X — XP||% < e Aj o

or simply 00

Select k htht—zﬁ:l)\j>09
elec suc a d = 90% of total data variance
j:l J 300

200

100

YaleBFaces dataset Y v

Xavier Bresson 22

Xavier Bresson

PCA as SVD of data matrix

We identified the principal directions of variance by performing EVD on the covariance matrix.

Alternatively, the same information can be derived using singular value decomposition (SVD) on
the data matrix X :

X =ULW € R™*¢

with U € R™", UTU =1,,,W € R™>4 WIw =1,;,% € R"*4
We have

C=X"X=Usw)H(Uz=w)

WUt sw! = we*w?t (SVD)

C=X'X=VvAV!' (EVD)

As a result

V=W, A=%>) =07, X=XV, =US,W, € R"**

with X, W} are truncated matrices of X, W with the k largest singular values

[\
w

EVD or SVD

@ The choice depends on the value of the size (n x d) of the data matrix X :
@ For d<n: Use EVD, complexity is O(d3)
@ For n<d: Apply SVD, complexity is O(min(nd2,n2d))

e Examples

@ MNIST dataset : 60,000 x 684 = Apply EVD
@ Microarray-based gene expression dataset!!! : 240 x 7,399 = Apply SVD

[1] Rosenwald et-al, The use of molecular profiling to predict survival after chemotherapy for diffuse large-B-cell lymphoma, 2002

Xavier Bresson

Lab 1 : (Standard

@ Run codeOl.ipynb

@ Visualize the principal directions of a Gaussian distribution.

@ Plot the distribution of data variances and generate new faces.

@ Compute the 3D PCA embedding of MNIST.

Mean Face - alpha* PD(1) Mean Face Mean Face + alpha* PD(1)

Principal Directions - .. h
201 . 'R 5 T
10 1 - -
Mean Face - aIpha* PD(2) Mean Face Mean Face + aIpha* PD(2)
) ! A"
_10 B
Mean Face - alpha* PD(3) Mean Face Mean Face + alpha* PD(3)
_20 .
-30 -20 -10 0 10 20 30

New faces generated
with PCA

Principal Directions of
a Gaussian

Xavier Bresson

linear PCA

Zero-centered data
Xzc = X - np.mean(X,axis=0)

Covariance matrix
CovX = (Xzc.T).dot(Xzc)

Compute largest 5 eigenvectors/eigenvalues

nb_pca = 5

CovX = scipy.sparse.csr_matrix(CovX)

lamb, U = scipy.sparse.linalg.eigsh(CovX, k=nb_pca, which='LM') # U = d x nb_pca
EVec = U[:,::-1] # largest = index @

Eval = lamb[::-1]

Principal Components
Xpc = X.dot(EVec)

Principal Directions
vl = EVec[:2,0]
v2 = EVec[:2,1]
print(vl,v2,Evall:2])

PCA of MNIST

Xavier Bresson

Linear visualization techniques

Robust PCA

Outline

26

Robust PCA

@ Standard PCA is sensitive to outliers; even a single outlier can
significantly change the PCA solution.

@ Robust PCAIl is a technique designed to separate outliers from the data, y }m
allowing PCA to be performed on the clean part of the data. Emmanuel Candes Yi Ma

60

50 Noisy

40 - Principal

directions

30 1

20 A Lo

10 e“' "

"
-10
-20 ¥
-30 T T T T T

-30 —-20 -10 0 10 20 30

[1] Candes, Li, Ma, Wright, Robust principal component analysis, 2011 (8,000 citations)

Xavier Bresson

@ Standard PCA :

@ Robust PCA :

Xavier Bresson

Task formalization

i X — L||% s.t. rank(L) =k
min | Iz s-t. rank(L)

L’Srg]%xd rank(L) + A card(S) st. X =L+ S e R"¥4 (1)

where X € R™*? is the (noisy) data matrix

L is a low-rank matrix that captures the clean/standard PCA (data structure)

S is a sparse matrix that captures outliers (noise)

card(.) is the cardinality of the matrix, i.e. the number of elements of the matrix
The combinatorial optimization problem (1) is NP-hard,

and thus requires a continuous relaxation:

min || L], + A ||S|l; st. X =L+ 8 e R™ (2)
L,SeRnxd

where || - ||1 is the L1 norm
| - |lx is the nuclear norm (L; norm of the singular values)
Theoretical result: Solution (2) is (almost) the solution of (1) !

Optimization algorithm

@ Alternating direction method of multipliers (ADMM) techniquell-2 :

@ Provides a fast, robust, and accurate solution to the relaxed problem (2).

@ The core idea is to decompose the problem into simpler sub-problems using Lagrangian multipliers.

min IL|[x + X ||S]|1 st. X =L48¢cR"™ (2)
L,SGRntlmesd

which is equivalent to

min (Ll A S|+ (2 X — (L+8)) + 217 = (X = (L+8)) 3, 7> 0

L.S,ZcRnxd

Initialization : L™= = X e R™*4 gm=0 — 7zm=0 _ .,
Iterate until convergence : m =1, 2, ...

L™ = Uhy p(A)VT € R4 with UAVT PXP X — g™ 4 zm)y

S™H = hy (X = L™ 4 27 r) e R™
Zm—|—1 _ Zm —|—’I"(X . Lm+1 L Sm—|—1) c Rnxd

[1] Glowinski, Le Tallec, Augmented Lagrangian and operator-splitting methods in nonlinear mechanics, 1989
[2] Boyd et-al, Distributed optimization and statistical learning via the alternating direction method of multipliers, 2011 (23,000 citations)

Xavier Bresson

hy(x) |

/,

S h

o >

Shrinkage

oper

ator

29

Lab 2 : Robust PCA

@ Run code02.ipynb :

Xavier Bresson

@ Visualize the principal directions and components of a noisy Gaussian distribution.

@ Compute the robust PCA solution and compare with the standard (noisy) solution.

Run Robust PCA

X = Xref - np.mean(Xref,axis=0)
L=X

S = np.zeros(X.shape)

Z = np.zeros(X.shape)

n,m = X.shape

min_nm = np.min([n,m])

r=1

lambdaN = 1.

lambdaS = 0.1
for i in range(1001):

Update L
Lold = L
L=X=-S+12Z/r

Usvd, Ssvd, Vsvd = np.linalg.svd(L) # L = UxSxV'

Sdiag = shrink(Ssvd , lambdaN/ r)
I = np.array(range(min_nm))

Sshrink = np.zeros([n,m])
Sshrink[I,I] = Sdiag

L = Usvd.dot(Sshrink.dot(Vsvd))

Update S

Sold = S

S=X-L+2Z/r

S = shrink(S , lambdaS/ r)

Update Z
Z=Z+rx(X-L=-5)

Iteration=1000
(Standard) linear PCA (red)
Robust PCA (green)

40

30 1

201

10 1

-30 -20 -10 0 10 20 30

Robust PCA (green)
Noisy PCA (red)

40

30 1

20

10 A

Principal Components :
Data projected on the Principal Directions

-30 -20 -10 0 10 20 30

Robust principal
components

40

30

Xavier Bresson

Linear visualization techniques

Graph-based PCA

Outline

@ Standard PCA :

@ Robust PCA :

@ Graph PCAlI :

Graph-based PCA

i X — L||% s.t. rank(L) =k
min | Iz s-t. rank(L)

min rank(L) 4+ X card(S) st. X =L+ S e R™™¢
L,S€Rnxd

. SmIiRn) rank(L) 4+ Ag card(S) + A¢ || L|lg st. X =L+ S e R**
, c n X

where || - ||g is a graph smoothness term.

The aim is to enhance PCA with data similarities represented by a graph.

Problem is still NP-hard, and requires a new continuous relaxation:

min || Ll + A IS]l1 + ¢ | Llpiwe st. X =L+ S e R4
L,ScRnxd

where || - ||pir; is the graph Dirichlet norm, defined as
|L||lpirg = tr(L* LgL) with the graph Laplacian £g € R™*™.

[1] Shahid, Kalofolias, Bresson, Bronstein, Vandergheynst, Robust principal component analysis on graphs, 2015

Xavier Bresson

w
[\

Optimization algorithm

@ ADMM technique :

Xavier Bresson

min ||L|lx + As [|S|l1 + A¢ | Llpirg st- X =L+ S € R™¥
L,SeRnXd

is equivalent to

min ||L|« + As [|S]l1 + Ag |M||pirg st. X =L+S€R™ M=L¢cR"
L.,S,McRnxd

as well as min IL]l« + X [|S]h + Ac [|M]|Dirg +
L,S,M,Zl,ZQGRnXd

(21, X = (L+8) + 2120 = (X = (L+)|} + (22, L - M)+ 2|12, — (L - M)|I3

Initialization : L™=0 = X € R"*4, §m=0 = pym=0 = zm=0 — zm=0 _ gnxd
Iterate until convergence : m =1, 2, ...

L™ = Uhy) (A)VT € R4 with UAVT P27 X — §™ 4 27" /ry

S =k (X = L™+ 277 fry) € R™

M™ = (I, + AgLg) (L™ + 23" frs) € R™*1

Z0tt = Z0 (X — L - gt e R

Z0t = 75 + o (L™ — M) e R

33

Application to video surveillance

@ Separate the background from moving objects :

Xavier Bresson

34

Xavier Bresson

Outline

@ Non-linear visualization techniques
)

Non-linear visualization techniques

@ All non-linear dimensionality reduction techniques follow a two-step approach:

@ Construct a k-nearest neighbor (kNN) graph G from the n high-dimensional data points
{xi} € R4, d > 1.

@ Compute a low-dimensional embedding of the graph that preserves
@ The geometric distance between neighboring data points, i.e. the graph structure, and

@ Additional properties specific to the chosen dimensionality reduction technique, s.a.
physical forces.

: 0 00 i, k-NN graph L(;)W;Silm

mu construction embedding %
BEnNdEBEOBHEBEQR N
aEnNDoBoAdBE i :>

BN BnEODGEn

REAREAEBAHEEBAA

V= {z1,..,7,} € R G={V,E, A}, AecR"™" B k<

Xavier Bresson

36

Non-linear visualization techniques

@ We will explore the following non-linear visualization techniques:
e LLE[I and Laplacian Eigenvectorsl?l, which are spectral techniques.
@ TSNEBI a technique based on probability matching.
e UMAPI, which uses a physics-based approach.

[1] Roweis, Saul, Nonlinear dimensionality reduction by locally linear embedding, 2000 (18,000 citations)

[2] Belkin, Niyogi, Laplacian eigenmaps for dimensionality reduction and data representation, 2003 (10,000 citations)

[3] Van der Maaten, Hinton, Visualizing data using t-SNE, 2008 (46,000 citations)

[4] McInnes et-al, UMAP: Uniform manifold approximation and projection for dimension reduction, 2018 (13,000 citations)

Xavier Bresson

w
-

Xavier Bresson

Outline

@ Non-linear visualization techniques

o LLE

38

LL!

-

@ Locally Linear Embedding/!l(LLE) was one of the pioneering non-linear
visualization techniques.

Sam Roweis Lawrence Saul

@ It involves three key steps: 1973-2010

@ First, construct a k-nearest neighbor graph G the high-dimensional data distribution
{x;} e R, d>»1.

@ Second, approximate the high-dimensional data distribution as a manifold ‘M discretized

with local linear patches, i.e. a data point x; and its neighbors {x;};ex; lie on a locally linear
patch of ‘M.

@ Third, project the high-dimensional data points {x;} € R4 into a low-dimensional Euclidean
space {z;} € Rk, k « d by preserving data proximity, i.e. if data i close to data j then z;
should be similar to z;.

[1] Roweis, Saul, Nonlinear dimensionality reduction by locally linear embedding, 2000

Xavier Bresson 39

Algorithm

@ Step 1: Compute a k-nearest neighbor graph G.

@ For each data x;, we identify its k nearest neighbors {x;}jen)-

@ Then, we compute the adjacency matrix A of the graph :

s { exp(— By i j € Ni(0))

ij =)
0 otherwise

where o is the scale parameter, defined e.g.
as the mean distance of all k-th neighbors.
and dist(-,-) is the distance between the two data vectors,

e.g. L? norm.

Xavier Bresson

Algorithm

@ Step 2 : Compute linear patches.

® Find the weights W;; € [0,1] which best linearly reconstruct x; from its neighbors :

WIEI%R}'?XR 5 ; sz - ZWWAZJ:UJH; S.t. jzzlww =1V

Equivalently, WIEI%Rglxn 3 Z sz Z WwafjH; s.t. Z Wi =1We
JEN; JEN;

Wgﬁng?m 2H Z Wiz — Z wajﬂz H Z Wi;(x xj)Hz s.t. Z Wi; =1Vi

JEN; JEN; JEN; JEN;
We derive the solution of this least-square problem for one data point z; :
with Z;; = x; —x; € R and Z; = (2;1,,)7 — (lmAi,jeNi)TX e R x4
and n; is the number of points in N;

We can re-write the problem as

1)
Wigﬁé}}ix1 iHWzTZzHQ S.t. W,LTlnz =1

Xavier Bresson

Algorithm

@ Step 2 : Compute linear patches.

® Find the weights W;; € [0,1] which best linearly reconstruct x; from its neighbors :

: 1 9
Wigﬁéﬁm §HWz'TZiH2 s.t. WiTlni =1

1
Lagrange multiplier technique : min — ||WZ-TZZ- ||§ +N(WE,, —1)
W,€R?ixX1 \,cR 2

Derivative w.r.t. W; : W' Z,Z" + N1} =0 = W, = (Z,Z]) 7' \il,,
1
172(2%'2?)_11711'
(ZiZz‘T)_llm
1T (Z:iZ) 1y,

Matrix C = Z;Z] € R™>™ is called the correlation or Gram matrix

Derivative w.r.t. A; : Wll, —1=0 = \ =

Finally, the solution for data z; is W, = e R™ix1

In practice, a small identity matrix is added for numerical stability : C' = ZiZiT +el,,

Xavier Bresson

Algorithm

@ Step 3 : Compute the low-dim embedding data z; with the weights Wj; :

@ Find the coordinates z; € Rk which best linearly reconstruct z; from its neighbors :

Z:[Z1,H,lmeRn><k ZHZ@ ZW’LJ'ZJHQ s.t. =On,ZTZ:In

The solution is given by EVD.
min || Z — WZ|3st. 2472 =1,

min tr((Z — W'z -WZz))st. 2772 =1,

min tr(Z1 (1, - W1, —W)Z) st. 2772 =1,

Solution is given by EVD of the matrix M = (I, — W7)(I,, — W) "=’
with Z =U. 1, € R™¥k

Xavier Bresson

1

Lab 3 : LLE

@ Run code03.ipynb :

@ Compute the LLE solution for the Swiss Roll dataset.

MNIST visualized with 2D LLE

0.04
® Visualize the MNIST dataset with the LLE techni
1Suallze e atase 1 e ecnnique.
q 0.02 1
Swiss roll visualized with 2D LLE 0.001
0.04 oo
Lo B¢
Run LLE ’i
un . . 4
X = Xref "i* 002
X = X - np.mean(X,axis=0) # zero—centered data 0.02 b4
o
Step 1: Compute k-NN b} - 1
KN = 20 > 0.04
WKNN = construct_knn_graph(X,kNN, ‘euclidean").todense() 0.00 -‘
3
.
Step 2: Compute locally linear patches l‘ —0.06 1
start = time.time()) ’
0 & LeEiEERl) ~0:02 . ~0.075 —-0.050 —-0.025 0000 0025 0050 0.075
W = np.zeros([n,n]) >
for i in range(n):
Find neighbors of data i .
idx_kNN = np.where(WKNN[i,:]1>0.0) [1] ~0.04 L
K = len(idx_kNN)
if K>kNN:
K = kNN

-0.04 -0.03 -0.02 -0.01 000 001 002 003 004
idx_kNN = idx_kNN[:K]
XKNN = X[idx_kNN,:]
= np.ones([K,1])
(X[i,:][:,None].dot(Ones.T) - XkNN.T).T
C = C.dot(C.T)
if K (nb nearest neighbors) > d (data dimensionality)
C = C + le-1x np.eye(K)#x trace(C)
t,_ = scipy.sparse.linalg.cg(C, Ones)
t = t/ (Ones.T.dot(t))
Wi, idx_kNN] = t
print('time(min) step 2 :',(time.time()-start)/60)

Step 3: Compute low-dim embedding coordinates
start = time.time()
M = (np.eye(n) - W.T).dot(np.eye(n) - W)
EVD
lamb, U = np.linalg.eig(M)
def sortEVD(lamb, U):
idx = lamb.argsort()
return lamb[idx], U[:,idx]
lamb, U = sortEVD(lamb, U)
print(lamb[:4])

Xvis = U[:,1]

is = U[:,2]

= Ul[:,3]
print('time(min) step 3 :',(time.time()-start)/60)

Swiss Roll dataset 2D and 3D LLE 2D and 3D LLE
of Swiss Roll dataset of MNIST dataset

Xavier Bresson

Xavier Bresson

Outline

@ Non-linear visualization techniques
)
@ Laplacian eigenmaps
o

[1] B

Xavier Bresson

Laplacian eigenmaps

Laplacian eigenmaps techniquel!l was one of the first non-linear visualization

techniques grounded in mathematical theory.

. .) . ..] . Misha Belkin Partha Niyogi
It is based on the manifold assumption, i.e. the data distribution is sampled 1967-2010

from a smooth and continuous manifold M.

Since the manifold cannot be directly observed, it is approximated using a k-nearest neighbor graph.

elkin, Niyogi, Laplacian eigenmaps for dimensionality reduction and data representation, 2003

46

Spectral analysis and differential geometry

@ Mathematical tools have been developed to analyze smooth, continuous manifoldslil.

@ The eigenfunctions vy € R4 of the continuous Laplace-Beltrami operator Ay can serve as
embedding coordinates for ‘M.

@ The discretization of Ay provides the graph Laplacian L (but it is not unique, i.e. multiple
definitions exist).

U2
. I
-_I__I__I--I____r-r_r_T-
| T T R NN ' R
1 1 1 1]]]]
Sp [| S R T
1 1 1 1 1 1 1 1
[N P (SN [N S Sy S S S
1 1 1 1 1 1 1 1
= —— | U1
FRI=SI=SImFSFSFSFSFSF-T=
Unwrap F === -F-F-r-F-T-
SR EE vkl i A &
L e e e e = b =k =Lk =k =
]]]] 1 1] 1
Unwrap M

[1] Chung, Spectral graph theory, 1997 (11,000 citations)

Xavier Bresson A7

Xavier Bresson

Task formalization

Let us begin with a simple 1D dimensionality reduction.

The goal is to map a given graph G = (V,E,A) onto a line with the constraint that neighboring
data points on G remain as close as possible on the line.

To achieve this, we can design a loss function that computes the mapping y = ¢(x) such that :

min Aii(yi —y;)?, with y; = o(z3),y; = ¢(z;), and
]

Aij:{ 1 ifjeN;

yeR

0 otherwise % graph adjacency matrix

Task formalization

@ Let us analyze the loss function : IIEI]%{H Aij(yi — yj)Q, with y;,y; € R
yERN —

L3 L3 ZJ L3 L3 L3 L3 L3 L3
@ When A;; =1, i.e. x; is close to x;, then minimizing the loss encourages y; to be similar to y;.

@ When A;;=0, i.e. x; is far from x;, then minimizing the loss allows y; to differ significantly
from y;.

@ In summary, minimizing this loss ensures that data points that are close in the high-dim space
remain close in the low-dim space, satisfying the first key property of dimensionality reduction

techniques.

@ Observe that the non-linear mapping ¢ is never explicitly computed.

Xavier Bresson 19

@ Finally, the loss function can be reformulated in terms of the Laplacian operator :

Xavier Bresson

Task formalization

min Ay —y5)° = Z Lijysy; = y' Ly

Y ij

with L=D — A

The unit-vector constraint, i.e. the orthogonality constraint y’y =1,

avoids the trivial solution y = 0

The constraint y* 1,, = 0, avoids a constant solution (by centering y)

In summary, we have the constrained optimization problem :

min y' Ly st. yly=1, y'1, =0
ymer

which solution is given by EVD of L :
Luy = Mup € R™, with \; is the smallest non-zero eigenvalue of L,

with its eigenvector uq

(zeneralization to k dimensions

@ Let us extend this mapping process, i.e. from a graph to a k-dimensional Euclidean space :

mi% y'Lyst. y'y=1, y'1, =0 (1D mapping)
yne

k
min YT LY. ,, =tr(YTLY) (k-D mappin
Y=[y1,....yn] ER" XK 2231 ! ! () (pping)

with the generalized orthogonality constraint Y'Y = I,
Spectral Solution : Solution is given by the k non-zero smallest eigenvectors of
the graph Laplacian L = A — D :

EYD UAUT = Y =U.

Pl A

i € Rnxk

Properties : Global solution (independent of initialization)

and O(n?k) complexity

Xavier Bresson

Normalized Laplacian

@ Considering the importance of the nodes with the degree matrix D :

Xavier Bresson

min tr(Y'LY) =tr(Y' (D - A)Y) st. Y'DY =14
YGRHX

Change of variable : Z = DY2Y so we have
YTDY = (D22 "D~ YV2 7 =277
and

min tr(D"Y22)T(D - A)D7V22) st. 277 =1,
ZeRnXk

tr(ZTD"Y3(D - ADY22) st. ZTZ =1,
tr(ZT(1— D~ YV2AD Y 2) = (27 L2Z) st. ZTZ =1,
where £ =1— D™Y24D~1/2 is the normalized graph Laplacian

Lab 4 : Laplacian eigenmaps

@ Run codeO4.ipynb :
@ Visualize MNIST with PCA.

@ Compare PCA with Laplacian eigenmaps.

Compute a k-NN graph

kNN = 10

dist = 'euclidean'

W = construct_knn_graph(X, kNN, dist)
#print (W)

Laplacian Eigenmaps

start = time.time()

Xvis,Yvis,Zvis = nldr_visualization(W)
print('time(sec):', (time.time()-start)/1)

MNIST visualized with LapEigMap

T
-0.020

1500 A
0.015 1

1000 1
0.010 1

500 4
ol 0.005 -
500 1 0.000
~1000 1 ~0.005 -
~1500 A —0.010

—1(’)00 —5‘00 (’) 5(‘)0 10’00 15b0 20‘00 25b0
2D PCA 3D PCA
of MNIST dataset of MNIST dataset

Xavier Bresson

T T T T T T
-0.015 -0.010 -0.005 0.000 0.005 0.010

2D LapEigMaps

of MNIST dataset

3D LapEigMaps
of MNIST dataset

Xavier Bresson

Outline

Non-linear visualization techniques
)

o TSNE

TSN

&

o T-distributed Stochastic Neighbor Embedding/!! (TSNE) has been the

most successful non-linear visualization technique. o

] Geoffrey Hinton Laurens van der
@ It involves four steps : Maaten

@ Step 1: Compute a k-nearest neighbor graph G from the high-dimensional data points
{x;} e R, d>»1.

@ Step 2: Represent the distribution of the high-dim points using exponential weights :

o—llzi—a;13/07

S e—llzi—zmll3/0}

m=

pij = Probhigh-dim (¢,) =

where o; is the nearest neighbour distance from data point ¢

[1] Van der Maaten, Hinton, Visualizing data using t-SNE, 2008
[2] Interactive demo : https://distill.pub/2016 /misread-tsne

ot

Xavier Bresson

ot

https://distill.pub/2016/misread-tsne

TSN

(-

@ Step 3: Parametrize the distribution of the low-dim points using polynomial weights :

. (T4 llyi —y;ll5) 1
qm(y) = PI'ObloW—dim(?w]) = Zn (1 n ”y i; H%)_l
m=1 7 m

with y = ¢(z) € R™¥ are the low-dim embedding coordinates of data points.

@ Step 4: Minimize the Kullback-Leibler divergence (/distance) between the high-dim
distribution P and the low-dim distribution Q parametrized by Y :

' Dx1, (P, Q(Y
Jmin Dy (P, Q(Y))

with DKL Pl, P2 Z Pl log EZ;

[1] Van der Maaten, Hinton, Visualizing data using t-SNE, 2008

Xavier Bresson

Xavier Bresson

Optimization problem

The minimization problem is a continuous non-convex problem.

Standard gradient descent (GS) can be applied.

However, since the problem is non-convex, the GD solution is not guaranteed to reach a global
minimum.

In practice, PCA is often used as the starting point for initialization.
Although GD is a slow optimization process, TSNE has significant advantages :

@ 'TSNE does not enforce the manifold assumption, meaning there is no orthogonality
constraint YTY=I, which allows for greater flexibility in representing complex structures.

@ Minimizing the KL loss ensures that local distances in the high-dimensional data
distribution are preserved in the low-dimensional representation.

Algorithm

@ Optimization problem :

Xavier Bresson

: Di .7
ygl[glglxk DKL P, Q szj log

(Y)

is minimized by the standard gradient descent :
Initialization : Y'=0 = PCA(X) € R™*k

Iterate until convergence, t = 1,2, ... :

n

gt =yl 10> (pyy —)L+ llyl = yh13) 7 (- o) e RY
j=1

@ Run code05.ipynb :

@ Compare TSNE with Laplacian Eigenmaps using MNIST.

MNIST visualized with LapEigMap

0.015 A

0.010 A

0.005 A

0.000 -

—0.005 4

—0.010 A

-0.020

-0.015 -0.010 -—0.005 0.000 0.005

2D LapEigMaps
of MNIST dataset

Xavier Bresson

0.010

Lab 5 : TSNI

3D LapEigMaps
of MNIST dataset

-

TSNE

start = time.time()

#tsne = TSNE(n_components=3, learning_rate='auto', init='random', perplexity=3)
tsne = TSNE(n_components=3, verbose=1, perplexity=40, n_iter=300)
print(X.shape)

embedding = tsne.fit_transform(X)

print('time(sec):"', (time.time()-start)/1)

print(embedding.shape)

Xvis = embedding|:,0]
Yvis = embedding[:,1]
Zvis = embedding!:,2]

MNIST visualized with TSNE

-2

-4

—6

2D TSNE
of MNIST dataset

3D TSNE
of MNIST dataset

Xavier Bresson

Outline

)
)

Non-linear visualization techniques
)
)

o UMAP

60

UMAP

Uniform Manifold Approximation and Projection (UMAP)!l enhances TSNE
in several key aspects.

Notice that the TSNE gradient can be interpreted as an attractive force between Leland McInnes
data points, similar to interactions in physics.

UMAP generalizes this concept by introducing a more flexible attractive force, controlled by two
hyperparameters.

Additionally, UMAP introduces a repulsive force by sampling a few non-neighboring data points.

Instead of using PCA for initialization in gradient descent, UMAP uses Laplacian Eigenmaps,
which offer a more effective starting point.

To my opinion, both TSNE and UMAP excel in visualization.

The choice boils down to the implementation with the fastest computational speed.

[1] McInnes et-al, UMAP: Uniform manifold approximation and projection for dimension reduction, 2018

Xavier Bresson

61

Task formalization

@ The visualization task involves minimizing two physics-based losses, each parameterized by the
low-dimensional embedding coordinates of the data points.

@ One loss function generates attractive forces between closely connected data points on the graph,

while the other creates repulsive forces for data points that are far apart on the graph.

Lattr(dij) Lrepul(dij)

A A

vdij Lattr<dij) vdij Lrepul(dij)

>

>
>

dij = |lyi — ;I3 dij = |lyi — y;l3
Attractive loss Repulsive loss
B.g. Law(y) = Ai(1+ ally: — y;1l3)°, b>2 E.g Lrepu(y) = (1 = Ai) (1 +allys — y;[3) 7" b>2
_ 1
vyLattr — 2(1,[)141](1 + a”yZ - yJH%)b 1(yl o yj) vyLrepu] = —Zab(l — A”> (yz

(1 +ally: — y;113)+!

Xavier Bresson

—¥j)

Algorithm

@ Minimization problem :

ygﬂlgr{lxk Lattr(A7 Y) + Lrepul(1 — Aa Y)

1. Compute graph adjacency matrix A with a kg-NN graph
2. Minimize by gradient descent
Initialization : Y= = LapEig(X) € R"**
Iterate until convergence, t = 1,2, ... :
v =yl = It (VyLawe(Aij, U, 45) + VyLepu (1 — Aij, 1, 45)) € R
where

2(b—1
—2ab||y; — y; |27

L+ |lyi —v;ll3
VyLiepu(1 — Aijyvi,y5) = (

Vy Later(Aij, Yis Yj) = Aii(yi —yj) € R*
20

1+ ally; — y;13°) (e + llvi — y;113)
where a, b are arbitrary hyper-parameters coming from the polynomials

Xavier Bresson

(1 — Aij)(yi — y;) € RF

0.015

0.0101

0.005

0.000

—0.005

-0.010

Lab 6 : UMAP

@ Run code06.ipynb

@ Compare UMAP visualization with LapEigenmaps and TSNE on MNIST. = Bl e
dlhﬂ!EiHil
® Apply UMAP on CIFAR (raw) images. CIFAR dataset

-8 -6 -4 -2 0 2 4 6 8

-0.020 -0.015 -0.010 -0.005 0.000 0.005 0.010

2D and 3D LapEigMaps 2D and 3D TSNE 2D and 3D UMAP 2D and 3D UMAP

of MNIST dataset of MNIST dataset of MNIST dataset of CIFAR dataset

Xavier Bresson 64

Lab 7 : Visualization with deep learning

airplane g‘-!v -V- :#:

atnomobile Bagalﬂat

@ Run code07.ipynb : - ERcomERWeP
: giSaeanscs

. . . . dog W K - »

@ Visualize CIFAR with TSNE/UMAP and InceptionV3 features. =

ho.rse ;ggmﬁﬁg%m

@ Create a mosaic of CIFAR images. v AWM= SN

CIFAR dataset

CIFAR visualized with UMAP and inception features

CIFAR visualized with TSNE and inception features

-10.0

2D and 3D TSNE Mosaic of CIFAR images 2D and 3D UMAP Mosaic of CIFAR images
of CIFAR inception with TSNE and inception of CIFAR inception with UMAP and inception
features features features features

Xavier Bresson

Xavier Bresson

Lab 7

Mosaic of CIFAR images with
TSNE and inception features

Visualization with deep learning

Cropped mosaic of CIFAR
images with TSNE and
inception features

66

Xavier Bresson

Visualizing ImageNet dataset

[1] Andrej Karpathy’s course cs231n on convolutional neural networks for image recognition

Andrej Karpathy

Following

Visualizing video games

[1] Mnih, Human-level control through deep reinforcement learning, 2015

Xavier Bresson 68

Xavier Bresson

@ Conclusion

Outline

69

Conclusion

Linear Non-linear
structure structure Main property
¢ preserves local distances in high-dim

and in low-dim spaces:

i = sz Zi = €T; T 0 e)
Low-dim High-dim Low-dim High-dim
data data ,
R

data data RL 4> 1

Dictionary/pattern matching Non-linear mapping/embedding

S/)N ==/ N N\

PCA ICA LDA Sparse Coding Kernel PCA NMF LLE LapEigMaps T-SNE UMAP

1 1 1 1 1]] f 1 1
1901 1936 1985 1996 1998 1999 2000 2003 2008 2018

Most popular Most popular

linear technique non-linear technique

Conclusion

@ Non-linear visualization techniques typically involve two key steps :

Xavier Bresson

@ Construct a k-nearest neighbors (kNN) graph from the high-dim data points, and

@ Determine low-dim embedding coordinates, usually in 2D or 3D, that preserve the pairwise
distances between the high-dim data points while maintaining a specific visualization
property :

In spectral-based methods like LLE and Laplacian Eigenmaps, the embedding
coordinates Y are orthogonal,

In TSNE, the low-dim distribution is optimized to match the high-dim distribution using
the Kullback-Leibler (KL) distance,

UMAP achieves its embedding Y by balancing attractive and repulsive forces based on
the high- and low-dim data representations.

Conclusion

@ LLE and LapEigenmaps
@ Offer global solutions but lack flexibility in adjusting the visualization outcome.

@ The spectral orthogonality constraint, needed to avoid trivial solutions, restricts
the low-dimensional embeddings.

@ TSNE and UMAP

@ Produce local solutions through non-linear loss functions,
offering greater flexibility and often more visually appealing results.

@ Without the orthogonality constraint, the class of possible solutions is larger,
and more diverse than those provided by spectral methods.

@ UMAP includes two hyperparameters that control the visualization aspect.

@ Wahile this flexibility is advantageous, it also raises the question: what are the optimal
UMAP hyperparameter values for visualizing a new dataset?

-
[\

Xavier Bresson

Xavier Bresson

Conclusion

No visualization technique, whether linear or non-linear, is universally effective for high-
dimensional data due to the curse of dimensionality.

A key prerequisite for successful visualization is that the input data must be sufficiently
expressive.

In some cases, representing e.g. a text document as a bag of words (a distribution over the
dictionary) may work.

But typically, the most effective visualizations are achieved using the hidden representations
from a deep neural network.

For example, extracting the hidden vector R?%4® of one of the last layers of an Inception or
ResNet network can provide a strong representation of images.

Similarly, using the memory state vector R512 from an RNN can effectively represent a time
series, or a class token embedding R!024 from the last layer of a Transformer.

BN |
w

7

(Questions

74

Xavier Bresson

