
1 / 62

Model Selection and Lasso for SDE models

Stefano M. Iacus ( University of Milan )

Third YUIMA Workshop @ Brixen-Bressanone, 28-06-2019

@


Model selection

Model selection

Idea

Exact vs quasi-likelihood

analysis

Model selection in

practice

Sparse Estimation

Adaptive Estimation

Application to SDEs

Adaptive Lasso properties

Numerical evidence of

oracle properties

Application to real data

Sparsity and robustness

in forecasting

Model selection and

causal inference (with

Lasso)

References

2 / 62



Idea
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The aim is to try to identify the underlying continuous model on the basis of discrete

observations using AIC (Akaike Information Criterion) statistics defined as (Akaike 1973,1974)

AIC = −2ℓn

(

θ̂(ML)
n

)

+ 2dim(Θ),

where θ̂
(ML)
n is the true maximum likelihood estimator and ℓn(θ) is the true log-likelihood



Model selection via AIC

4 / 62

Akaike’s index idea is to penalize this value

−2ℓn

(

θ̂(ML)
n

)

with the dimension of the parameter space

2 dim(Θ)

Thus, as the number of parameter increases, the fit may be better, i.e. −2ℓn

(

θ̂
(ML)
n

)

decreases, at the cost of overspecification and dim(Θ) compensate for this effect.

When comparing several models for a given data set, the models such that the AIC is lower is

preferred.



Model selection via AIC
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In order to calculate

AIC = −2ℓn

(

θ̂(ML)
n

)

+ 2dim(Θ),

we need to evaluate the exact value of the log-likelihood ℓn(·) at point θ̂
(ML)
n .

Problem: for discretely observed diffusion processes the true likelihood function is not known in

most cases

Uchida and Yoshida (2005) develop the AIC statistics defined as

AIC = −2ℓ̃n

(

θ̂(QML)
n

)

+ 2dim(Θ),

where θ̂
(QML)
n is the quasi maximum likelihood estimator and ℓ̃n the local Gaussian

approximation of the true log-likelihood.

Here we proceed with the QLA approach as seen in the previous slides. It it then important to

see what is the effect of the two different approximations on the results.
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CIR model
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The U.S. Interest Rates monthly data from 06/1964 to 12/1989

R> library(Ecdat)

R> library(sde)

R> data(Irates)

R> X <- Irates[,"r1"]

R> plot(X)
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dXt = (θ1 − θ2Xt)dt+ θ3
√

XtdWt, X0 = x0 > 0 ,

where θ1, θ2, θ3 ∈ R+. If 2θ1 > θ23 , the process is strictly positive; otherwise

it is only nonnegative.The transition density pθ(t, ·|x) follows a non-central χ2

distribution,

pθ(t, y|x) = ce−u−v
(u

v

)q/2
Iq(2

√
uv), x, y ∈ R+ ,

where

c =
2θ2

θ23(1− e−θ2t)
, q =

2θ1
θ23

− 1 ,

u = cxe−θ2t, v = cy .

Here Iq(·) is the modified Bessel function of the first kind of order q and Γ(·) is

the Gamma function.
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For CIR, MLE estimators do not exist in explicit form.

Numerical optimization is far from being easy because of the Bessel functions

Iq(x) =
∞
∑

k=0

(x

2

)2k+q 1

k!Γ(k + q + 1)
, x ∈ R,

Indeed, for real data (e.g. interest rate models) the parameters are in a region

for which numerical method are not well behaved.

A number of papers deal with this purely numerical problem. The sde package

implements some tricks for the different regions of the parameters’ space. But

it’s only for 1-dimensional models.



CIR model
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We try to fit the CIR model using the exact maximum likelihood estimation through the sde

package

dXt = (θ1 − θ2Xt)dt+ θ3
√

XtdBt

R> CIR.loglik <- function(theta1,theta2,theta3) {

+ n <- length(X)

+ dt <- deltat(X)

+ -sum(dcCIR(x=X[-1], Dt=dt, x0=X[-n], theta=c(theta1,theta2,theta3),

+ log=TRUE))

+ }

R>

R> fit <- mle(CIR.loglik, start=list(theta1=.1, theta2=.1,theta3=.3),

+ method="L-BFGS-B",lower=rep(1e-3,3), upper=rep(1,3))

R> coef(fit)

theta1 theta2 theta3

0.9194592 0.1654958 0.8255179



CIR model
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We try to fit the CIR model using the quasi maximum likelihood using yuima

dXt = (θ1 − θ2Xt)dt+ θ3
√

XtdBt

R> start <- list(theta1=1, theta2 =.1, theta3 =.3)

R> low <- list(theta1=1e-3, theta2 =1e-3, theta3 =1e-3)

R> upp <- list(theta1=3, theta2 =3, theta3 =3)

R> mod <- setModel(drift = "theta1-theta2*x", diffusion = "theta3*sqrt(x)")

R> yuima <- setYuima(data=setData(X), model=mod)

R> fit2 <- qmle(yuima, start=start, lower=low, upper=upp,

+ method="L-BFGS-B")

R> coef(fit2)[names(coef(fit))] # QMLE

theta1 theta2 theta3

0.8555436 0.1524043 0.8154104

compared to exact maximum likelihood estimation

R> coef(fit) # EXACT MLE

theta1 theta2 theta3

0.9194592 0.1654958 0.8255179



CKLS model
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We try to fit the CLKS model using the quasi maximum likelihood using yuima

dXt = (θ1 − θ2Xt)dt+ θ3Xt
θ4dBt

R> mod2 <- setModel(drift="theta1-theta2*x", diffusion=matrix("theta3*x^theta4",1,1))

R> start <- list(theta1=1, theta2 =.1, theta3 =.3, theta4=0.5)

R> low <- list(theta1=1e-3, theta2 =1e-3, theta3 =1e-3, theta4=.1)

R> upp <- list(theta1=3, theta2 =3, theta3 =3, theta4=2)

R> yuima <- setYuima(data=setData(X), model=mod2)

R> fit3 <- qmle(yuima, start=start, lower=low, upper=upp,

+ method="L-BFGS-B")

the quasi-maximum likelihood estimation

R> coef(fit3)[sort(names(coef(fit3)))] # QMLE

theta1 theta2 theta3 theta4

0.8863715 0.1591604 0.7151518 0.5929715

but which is the true model for these data?
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A trivial example
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We compare three models

dXt = α1(α2 −Xt)dt+ β1
√

XtdWt (true model/competing model 1),

dXt = α1(α2 −Xt)dt+
√

β1 + β2XtdWt (competing model 1),

dXt = α1(α2 −Xt)dt+ (β1 + β2Xt)
β3dWt (competing model 2),

We call the above models Mod1, Mod2 and Mod3.

We generate data from Mod1 with parameters

dXt = (10−Xt)dt+ 0.3
√

XtdWt ,

and initial value X0 = 8. We use n = 1000 and ∆ = 0.1, therefore T = n∆ = 100.

We test the performance of the AIC statistics for the three competing models
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dXt = 1(10−Xt)dt+ 0.3
√

XtdWt (true model),

dXt = α1(α2 −Xt)dt+ β1

√

XtdWt (competing model 1),

dXt = α1(α2 −Xt)dt+
√

β1 + β2XtdWt (competing model 1),

dXt = α1(α2 −Xt)dt+ (β1 + β2Xt)
β3dWt (competing model 2),

Model selection via AIC
Model 1 Model 2 Model 3

(true)

86 % 14 % 0 %

QMLE estimates under the different models
α1 = 1 α2 = 10 β1 = 0.3 β2 β3

Model 1 1.070 10.001 0.322

Model 2 1.069 10.001 0.995 0.003

Model 3 1.069 10.001 2.827 5.015 0.030
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Same analysis with ∆ = 0.01, but in this case T = n∆ = 10, hence we

loose performance in the estimation of the drift parameters

Model selection via AIC
Model 1 Model 2 Model 3

(true)

87 % 11 % 2 %

QMLE estimates under the different models
α1 = 1 α2 = 10 β1 = 0.3 β2 β3

Model 1 1.413 9.970 0.303

Model 2 1.415 9.970 0.358 0.055

Model 3 1.418 9.969 0.083 0.018 0.165
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Lasso: Least Absolute Selection and Shrinkage Operator
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Lasso estimates (see Tibshirani, 1996; Knight and Fu, 2000, Efron et al., 2004) minimize

RSS + λ
k

∑

j=1

|βj |.

The important difference with ridge regression is in the penalty part (l1 vs l2). This seemingly

tiny difference makes qualitative gaps practically as well as theoretically.

The l1 penalty causes some coefficients to be shrunken exactly to zero, i.e., the predictive model

is sparse

Lasso performs both variable selection and shrinkage



Bridge estimation
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The previous Lasso approach can be generalized further to lq constraints (Bridge estimation),

for some q > 0, i.e.

β̂ = argmin
β

RSS + λ
k

∑

i=1

|βi|q

Where Lasso is for q = 1, Ridge is for q = 2 and the limiting case q = 0 is OLS.

Notice that, in the limit as q → 0, this procedure approximates AIC/BIC criteria as

lim
q→0

k
∑

i=1

|βi|q =
k

∑

i=1

1{βi 6=0}

as the RHS amounts to the number of non-null parameters.
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Oracle procedures
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Let A = {j : βj 6= 0} be the set of true non-zero coefficients in the standard regression model

Y = β0 + β1X1 + . . .+ βpXp + ǫ, ǫ ∼ N(0, σ2)

such that |A| = p0 < p. Denote by β̂(δ) the estimates of an estimation procedure δ. Following

Fan and Li (2001), we call δ an oracle procedure if β̂(δ) (asymptotically) has the following

oracle properties:

� Identifies the right subset model, {j : β̂j 6= 0} = A

� Has the optimal estimation rate
√
n(β̂(δ)A − βA) converges in distribution to N(0,Σ∗)

where where Σ∗ is the covariance matrix of the true subset/reduced model.

Remind that if all coefficients are non-zero, the MLE estimator satisfies

√
n(β̂ML − β)

d→ N(0, I−1(β) =: Σ∗)



Oracle procedures
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In the classic Lasso procedure, the main assumption are that

1

n
X ′X → C

where C is A positive definite matrix. Let us re-order the coefficients β so that the true non-zero

coefficients occupy the first positions 1, . . . , p0. Then let

C =

[

C11 C12

C21 C22

]

where C11 is p0 × p0. Now let λ = λn in the Lasso penalty function

β̂n = argmin
β



RSS + λn

p
∑

j=1

|βj|







Lasso is not an Oracle procedure!
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If λn is such that lim
n→∞

λn/n = λ0 ≥ 0, then Lemma 1 (Knight and Fu, 2000):

β̂n
p→ argmin

β
V1, with V1(u) = (u− β)′C(u− β) + λ0

p
∑

j=1

|uj |

and if lim
n→∞

λn/
√
n = λ0 ≥ 0 then, Lemma 2 (Knight and Fu, 2000):

√
n(β̂n − β)

d→ argmin
β

V2

with

V2(u) = −2u′W + u′Cu+ λ0

p
∑

j=1

(

ujsign(βj)I{βj 6=0} + |uj |I{βj=0}
)

with W = N(0, σ2C).



Lasso is not an Oracle procedure!
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Lemma 1 shows that only if λ0 = 0 the Lasso estimators are consistent.

Lemma 2 shows that Lasso can be
√
n-consistent under the same conditions. But in general

bias remains.

Indeed, it is also possible to prove that

lim
n→∞

P (An = A) ≤ c < 1

which means that the true set of non-zero coefficients is not correctly identified even

asymptotically.

Adaptive Lasso addresses this problem.



Adaptive Lasso is an Oracle procedure!
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Let β̃ be a
√
n-consistent estimator of β (e.g. OLS or MLE). Let γ > 0 and define

w̃j = 1/|β̃|γ , j = 1, . . . , p. The adaptive Lasso estimator is defined as follows

β̂ = argmin
β



RSS + λn

p
∑

j=1

w̃j |βj|





If λn/
√
n → 0 and λnn

γ−1

2 → ∞, then (Zou, 2006), we have the oracle properties:

� consistent variable selection: limn→∞ P (An = A) = 1

� asymptotic normality:
√
n(β̂A − βA)

d→ N
(

0, σ2C−1
11

)

.
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Let Xt be a diffusion process solution to

dXt = b(α,Xt)dt+ σ(β,Xt)dWt

α = (α1, ..., αp)
′ ∈ Θp ⊂ R

p, p ≥ 1

β = (β1, ..., βq)
′ ∈ Θq ⊂ R

q, q ≥ 1

b : Θp × R
d → R

d, σ : Θq × R
d → R

d × R
m and Wt, t ∈ [0, T ], is a

standard Brownian motion in R
m.

We assume that the functions b and σ are known up to α and β.

We denote by θ = (α, β) ∈ Θp ×Θq = Θ the parametric vector and with

θ0 = (α0, β0) its unknown true value.



Sampling scheme
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The sample path of Xt is observed only at n+ 1 equidistant discrete times ti, such that

ti − ti−1 = ∆n < ∞ for 1 ≤ i ≤ n (with t0 = 0 and tn = T ). We denote by

Xn = {Xti}0≤i≤n our random sample with values in R
(n+1)×d.

The asymptotic scheme adopted in this talk is the following:

T = n∆n → ∞, ∆n → 0 and n∆2
n → 0 as n → ∞.

This asymptotic framework is called rapidly increasing design and the condition n∆2
n → 0

means that ∆n shrinks to zero slowly.

Implications: the parameters β are
√
n – consistent while the parameters α in the drift are only√

n∆n – consistent. This requires a non trivial adaptation of the Lasso method.



Lasso estimation
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The classical adaptive Lasso objective function for the present model is then

min
α,β







Hn(α, β) +

p
∑

j=1

λn,j |αj|+
q

∑

k=1

γn,k|βk|







λn,j and γn,k are appropriate sequences representing an adaptive amount of shrinkage for

each element of α and β.

Adaptiveness is essential to avoid the situation in which larger parameter are estimated with

larger bias (up to missing consistency)

Unfortunately, the above is a non-linear optimization problem under l1 constraints which might

be numerically challenging to solve. Luckily, following Wang and Leng (2007), the minimization

problem can be transformed into a quadratic minimization problem (under l1 constraints) which

is asymptotically equivalent to minimizing the original Lasso objective function.



Idea of Quadratic Approximation
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By Taylor expansion of the original Lasoo objective function, for θ around θ̃n (the QMLE

estimator)

Hn(Xn, θ) = Hn(Xn, θ̃n) + (θ − θ̃n)
′
Ḣn(Xn, θ̃n) +

1

2
(θ − θ̃n)

′
Ḧn(Xn, θ̃n)(θ − θ̃n)

+op(1)

= Hn(Xn, θ̃n) +
1

2
(θ − θ̃n)

′
Ḧn(Xn, θ̃n)(θ − θ̃n) + op(1)

with Ḣn and Ḧn the gradient and Hessian of Hn with respect to θ.
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We define the adaptive Lasso estimator the solution to the quadratic problem

under l1 constraints

θ̂n = (α̂n, β̂n) = argmin
θ

F(θ).

with

F(θ) = (θ − θ̃n)Ḧn(Xn, θ̃n)(θ − θ̃n)
′ +

p
∑

j=1

λn,j |αj |+
q

∑

k=1

γn,k|βk|

The yuima package implements the above optimization problem.
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Without loss of generality, we assume that the true model, indicated by

θ0 = (α0, β0), has parameters α0j and β0k equal to zero for p0 < j ≤ p and

q0 < k ≤ q, while α0j 6= 0 and β0k 6= 0 for 1 ≤ j ≤ p0 and 1 ≤ k ≤ q0.

Denote by θ∗ = (α∗, β∗)′ the vector corresponding to the nonzero

parameters, where α∗ = (α1, ..., αp0)
′ and β∗ = (β1, ..., βq0)

′, while

θ◦ = (α◦, β◦)′ is the vector corresponding to the zero parameters where

α◦ = (αp0+1, ..., αp)
′ and β◦ = (βq0+1, ..., βq)

′.

Therefore,

TRUE : θ0 = (α0, β0)
′ = (α∗

0, α
◦
0, β

∗
0 , β

◦
0)

′

Lasso : θ̂n = (α̂∗
n, α̂

◦
n, β̂

∗
n, β̂

◦
n)

′

MLE : θ̃n = (α̃∗
n, α̃

◦
n, β̃

∗
n, β̃

◦
n)

′



Intuition behind adaptiveness

Model selection

Exact vs quasi-likelihood

analysis

Model selection in

practice

Sparse Estimation

Adaptive Estimation

Application to SDEs

Adaptive Lasso properties

Numerical evidence of

oracle properties

Application to real data

Sparsity and robustness

in forecasting

Model selection and

causal inference (with

Lasso)

References

34 / 62

C1.
µn√
n∆n

→ 0 and νn√
n
→ 0 where µn = max{λn,j , 1 ≤ j ≤ p0} and

νn = max{γn,k, 1 ≤ k ≤ q0};

C2. κn√
n∆n

→ ∞ and ωn√
n
→ ∞ where κn = min{λn,j, j > p0} and

ωn = min{γn,k, k > q0}.
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C1.
µn√
n∆n

→ 0 and νn√
n
→ 0 where µn = max{λn,j , 1 ≤ j ≤ p0} and

νn = max{γn,k, 1 ≤ k ≤ q0};

C2. κn√
n∆n

→ ∞ and ωn√
n
→ ∞ where κn = min{λn,j, j > p0} and

ωn = min{γn,k, k > q0}.

Assumption C1 implies that the maximal tuning coefficients µn and νn for the

parameters αj and βk, with 1 ≤ j ≤ p0 and 1 ≤ k ≤ q0, tends to infinity

slower than
√
n∆n and

√
n respectively.
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C1.
µn√
n∆n

→ 0 and νn√
n
→ 0 where µn = max{λn,j , 1 ≤ j ≤ p0} and

νn = max{γn,k, 1 ≤ k ≤ q0};

C2. κn√
n∆n

→ ∞ and ωn√
n
→ ∞ where κn = min{λn,j, j > p0} and

ωn = min{γn,k, k > q0}.

Assumption C1 implies that the maximal tuning coefficients µn and νn for the

parameters αj and βk, with 1 ≤ j ≤ p0 and 1 ≤ k ≤ q0, tends to infinity

slower than
√
n∆n and

√
n respectively.

Analogously, we observe that C2 means that that the minimal tuning coefficient

for the parameter αj and βk, with j > p0 and k > q0, tends to infinity faster

than
√
n∆n and

√
n respectively.
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Theorem 1. Under conditions standard regularity conditions and C1, one has

that

||α̂n − α0|| = Op

(

(n∆n)
−1/2

)

and ||β̂n − β0|| = Op

(

n−1/2
)

.

Theorem 2. Under conditions standard regularity conditions and C2, we have

that

P (α̂◦
n = 0) → 1 and P (β̂◦

n = 0) → 1. (1)

From Theorem 1, we can conclude that the estimator θ̂n is consistent.

Theorem 2 says us that all the estimates of the zero parameters are correctly

set equal to zero with probability tending to 1
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Let I0(θ∗0) the (p0 + q0)× (p0 + q0) submatrix of I(θ) at point θ∗0 and

introduce the following rate of convergence matrix

ϕ0(n) =

( 1
n∆n

Ip0 0

0 1
nIq0

)

Theorem 3 (Oracle property). Under conditions A1 −A7 and C1 − C2, we

have that

ϕ0(n)
− 1

2 (θ̂∗n − θ∗0)
d→ N(0, I−1

0 (θ∗0)) (2)

where θ∗0 is the subset of non-zero true parameters.
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Clearly, the theoretical and practical implications of our method rely to the

specification of the tuning parameter λn,j and γn,k.

The tuning parameters should be chosen as is Zou (2006) in the following way

λn,j = λ0|α̃n,j|−δ1 , γn,k = γ0|β̃n,j |−δ2 (3)

where α̃n,j and β̃n,k are the unpenalized QML estimator of αj and βk
respectively, δ1, δ2 > 1. The asymptotic results hold under the additional

conditions
λ0√
n∆n

→ 0, (n∆n)
δ1−1

2 λ0 → ∞

and
γ0√
n
→ 0, n

δ2−1

2 γ0 → ∞

as n → ∞.
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To show the oracle properties of the lasso, we consider the following

1-dimensional SDE

dXt = (θ1 − θ2Xt)dt+ (θ3 + θ4Xt)
θ5dWt, X0 = 1

We simulate 1000 trajectories of this process with true parameter vector

θ = (θ1 = 1, θ2 = 0.1, θ3 = 0, θ4 = 2, θ5 = 0.5)

In order to get as close as possible to the asymptotic scheme of this talk, we

consider the following simulation setup: for a given number n of observations,

we set T = n
1

3 (time horizon) and ∆n = T/n.

Then we take n = 100 and obtain ∆n = 0.046, while for n = 1000, we have

that ∆n = 0.01.
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We simulate 1000 trajectories of this process according to the second Milstein

scheme

Xti+1
= Xti +

(

b− 1

2
σσx

)

∆n + σZ
√

∆n +
1

2
σσx∆nZ

2

+∆
3

2
n

(

1

2
bσx +

1

2
bxσ +

1

4
σ2σxx

)

Z +∆2
n

(

1

2
bbx +

1

4
bxxσ

2

)

with Z ∼ N(0, 1), bx and bxx (resp. σx and σxx) are the first and second

partial derivative in x of the drift (resp. diffusion) coefficient. This scheme has

weak second-order convergence and guarantees good numerical stability (see,

Milstein, 1978)

Next plot shows the oracle property as n increases from n = 100 (up) to

n = 1000 (bottom)



0 θ1 = 1 4.54 0θ2 = 0.1 4.61 0θ3 = 0 5 0 θ4 = 2 5 0θ5 = 0.5 5

0.04 θ1 = 1 4.73 0θ2 = 0.1 3.19 0θ3 = 0 2.12 0.24 θ4 = 2 3.98 0.36θ5 = 0.5 1.14
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θ1 θ2 θ3 θ4 θ5 % θ3 = 0
True 1.0 0.1 0.0 2.0 0.5

Qmle: n = 100 2.58 1.04 0.27 1.89 0.75

(1.47) (0.91) (0.57) (1.10) (0.87)

Lasso: λ0 = γ0 = 1, n = 100 1.92 0.69 0.17 1.69 0.78 78%

(1.10) (0.84) (0.41) (0.92) (0.93)

Lasso: λ0 = γ0 = 5, n = 100 0.70 0.11 0.14 1.30 0.79 87%

(0.56) (0.38) (0.37) (0.80) (0.96)

Qmle: n = 1000 2.07 0.56 0.11 1.90 0.52

(1.25) (0.52) (0.27) (0.37) (0.06)

Lasso: λ0 = γ0 = 1, n = 1000 1.74 0.42 0.07 1.94 0.51 84%

(1.01) (0.49) (0.25) (0.35) (0.06)

Lasso: λ0 = γ0 = 5, n = 1000 0.93 0.11 0.05 1.94 0.51 91%

(0.47) (0.29) (0.22) (0.33) (0.08)

Monte Carlo standard errors in parentheses; 1000 Monte Carlo replications for each sample size
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LASSO estimation of the U.S. Interest Rates monthly data from 06/1964 to 12/1989. These data

have been analyzed by many author including Nowman (1997), Aı̈t-Sahalia (1996), Yu and

Phillips (2001) and it is a nice application of LASSO.

Reference Model α β γ

Merton (1973) dXt = αdt+ σdWt 0 0

Vasicek (1977) dXt = (α+ βXt)dt+ σdWt 0

Cox, Ingersoll and Ross (1985) dXt = (α+ βXt)dt+ σ
√
XtdWt 1/2

Dothan (1978) dXt = σXtdWt 0 0 1

Geometric Brownian Motion dXt = βXtdt+ σXtdWt 0 1

Brennan and Schwartz (1980) dXt = (α+ βXt)dt+ σXtdWt 1

Cox, Ingersoll and Ross (1980) dXt = σX
3/2
t dWt 0 0 3/2

Constant Elasticity Variance dXt = βXtdt+ σXγ
t dWt 0

CKLS (1992) dXt = (α+ βXt)dt+ σXγ
t dWt
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Model Estimation Method α β σ γ
Vasicek MLE 4.1889 -0.6072 0.8096 –

CKLS Nowman 2.4272 -0.3277 0.1741 1.3610

CKLS Exact Gaussian 2.0069 -0.3330 0.1741 1.3610

(Yu & Phillips) (0.5216) (0.0677)

CKLS QMLE 2.0822 -0.2756 0.1322 1.4392

(0.9635) (0.1895) (0.0253) (0.1018)

CKLS QMLE + LASSO 1.5435 -0.1687 0.1306 1.4452

with mild penalization (0.6813) (0.1340) (0.0179) (0.0720)

CKLS QMLE + LASSO 0.5412 0.0001 0.1178 1.4944

with strong penalization (0.2076) (0.0054) (0.0179) (0.0720)

LASSO selected: Cox, Ingersoll and Ross (1980) model

dXt =
1

2
dt+ 0.12 ·X3/2

t dWt
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An example of Lasso estimation using yuima package. We make use of real data with CKLS

model

dXt = (α+ βXt)dt+ σXγ
t dWt

R> library(Ecdat)

R> data(Irates)

R> rates <- Irates[,"r1"]

R> plot(rates)

R> require(yuima)

R> X <- window(rates, start=1964.471, end=1989.333)

R> mod <- setModel(drift="alpha+beta*x", diffusion=matrix("sigma*x^gamma",1,1))

R> yuima <- setYuima(data=setData(X), model=mod)

rat
es

1950 1960 1970 1980 1990

0
5

10
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R> lambda10 <- list(alpha=10, beta =10, sigma =10, gamma =10)

R> start <- list(alpha=1, beta =-.1, sigma =.1, gamma =1)

R> low <- list(alpha=-5, beta =-5, sigma =-5, gamma =-5)

R> upp <- list(alpha=8, beta =8, sigma =8, gamma =8)

R> lasso10 <- lasso(yuima, lambda10, start=start, lower=low, upper=upp,

method="L-BFGS-B")

Looking for MLE estimates...

Performing LASSO estimation...

R> round(lasso10$mle, 3) # QMLE

sigma gamma alpha beta

0.133 1.443 2.076 -0.263

R> round(lasso10$lasso, 3) # LASSO

sigma gamma alpha beta

0.117 1.503 0.591 0.000

dXt = (α+ βXt)dt+ σXγ
t dWt

dXt = 0.6dt+ 0.12X
3

2

t dWt
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We now try to show, through an experiment why a Lasso (or a regularized solution) is preferable

to the full MLE solution when the target is the forecasting.

The experiment consists in trying to estimate the QMLE and LASSO solution on a subset of 350

observations from the previous real data consisting of a total of 531 observations. The remaining

181 observations are used as training set.

Once the QMLE and LASSO estimates are available, a number of simulations is run and then

the forecasting MSE is calculated for each simulated trajectory, i.e.

fMSE(LASSO) =
1

181

531
∑

i=351

(

XLASSO
j −XTRUE

j

)2

fMSE(QMLE) =
1

181

531
∑

i=351

(

XQMLE
j −XTRUE

j

)2
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fMSE(LASSO) =
1

181

531
∑

i=351

(

XLASSO
j −XTRUE

j

)2

fMSE(QMLE) =
1

181

531
∑

i=351

(

XQMLE
j −XTRUE

j

)2

Min. 1st Qu. Median Mean 3rd Qu. Max.

fMSE(QMLE) 5.43 20.19 26.55 26.84 33.12 51.38

fMSE(LASSO) 4.03 14.88 23.40 29.25 34.45 586.50
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Simulation by simulation MSE(QMLE) ≥ MSE(LASSO)
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LASSO seems slightly better in this example
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A typical usage of Lasso in model selection is the case causation (closely

related to Granger causation). For example, in a model like this

(

dXt

dYt

)

=

(

κ0 + µ11Xt + µ12Yt

κ1 + µ21Xt + µ22Yt

)

dt+

(

σ11Xt σ12Yt

σ21Xt σ22Yt

)(

dWt

dBt

)

with initial condition (X0 = 1, Y0 = 1) and Wt, t ∈ [0, T ], and

Bt, t ∈ [0, T ], are two independent Brownian motions.

The case of µ12 = 0, µ21 = 0, σ12 = 0, σ21 = 0 is of practical interest

because the systems becomes

dXt = κ0 + µ11Xt + σ11XtdWt

dYt = κ1 + µ22Yt + σ22YtdBt

Of course this can be generalized to affine diffusion in higher dimension without

imposing a specific correlation structure like in the above simple example.
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We consider this two dimensional geometric Brownian motion process solution

to the stochastic differential equation

(

dXt

dYt

)

=

(

1− µ11Xt + µ12Yt

2 + µ21Xt − µ22Yt

)

dt+

(

σ11Xt −σ12Yt

σ21Xt σ22Yt

)(

dWt

dBt

)

with initial condition (X0 = 1, Y0 = 1) and Wt, t ∈ [0, T ], and

Bt, t ∈ [0, T ], are two independent Brownian motions.

This model is a classical model for pricing of basket options in mathematical

finance.

We assume that α = (µ11 = 0.9, µ12 = 0, µ21 = 0, µ22 = 0.7)′ and

β = (σ11 = 0.3, σ12 = 0, σ21 = 0, σ22 = 0.2)′, θ = (α, β).



Results

59 / 62

µ11 µ12 µ21 µ22 σ11 σ12 σ21 σ22

True 0.9 0.0 0.0 0.7 0.3 0.0 0.0 0.2

Qmle: n = 100 0.96 0.05 0.25 0.81 0.30 0.04 0.01 0.20

(0.08) (0.06) (0.27) (0.15) (0.03) (0.05) (0.02) (0.02)

Lasso: λ0 = γ0 = 1, n = 100 0.86 0.00 0.05 0.71 0.30 0.02 0.01 0.20

(0.12) (0.00) (0.13) (0.09) (0.03) (0.05) (0.02) (0.02)

% of times θi = 0 0.0 99.9 80.2 0.0 0.3 67.2 66.7 0.1

Lasso: λ0 = γ0 = 5, n = 100 0.82 0.00 0.00 0.66 0.29 0.01 0.00 0.20

(0.12) (0.00) (0.00) (0.09) (0.03) (0.03) (0.01) (0.02)

% of times θi = 0 0.0 100.0 99.9 0.0 0.4 86.9 89.7 0.2

Qmle: n = 1000 0.95 0.03 0.21 0.79 0.30 0.04 0.01 0.20

(0.07) (0.04) (0.25) (0.13) (0.03) (0.06) (0.02) (0.02)

Lasso: λ0 = γ0 = 1, n = 1000 0.88 0.00 0.08 0.73 0.30 0.02 0.01 0.20

(0.08) (0.00) (0.16) (0.09) (0.03) (0.05) (0.01) (0.02)

% of times θi = 0 0.0 99.7 72.1 0.0 0.1 67.5 66.6 0.1

Lasso: λ0 = γ0 = 5, n = 1000 0.86 0.00 0.00 0.68 0.29 0.01 0.00 0.20

(0.09) (0.00) (0.01) (0.06) (0.03) (0.04) (0.01) (0.02)

% of times θi = 0 0.0 100.0 99.4 0.0 0.2 87.8 89.9 0.2
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