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A Point Process

Definition (Point Process)
Let (Ω,F ,P) be a probability space. Let (Ti )i∈N0

a sequence of
non-negative random variables such that ∀i ∈ Ti < Ti+1. We say (Ti )i∈N0
a Point Process on R+.

In particular, the variable Ti can represent the times of occurrence of
events.



Counting Process and Durations

Definition (Counting Process)
Let (Ti )i∈N0

be a point process. The right-continuous process

Nt =
∑
i∈N0

1Ti≤t

is called the counting process associated with (Ti )i∈N0

Definition (Duration)
The process ∆Ti defined as:

∆Ti = Ti − Ti−1

is called the duration process associated with (Ti )i∈N0
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Trajectory of a Point Process 1.
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Trajectory of a Point Process 2.

## Duration Point Proc. Count. Proc.
## 0.00000000 0.00000000 0.00000000
## 1.31297803 1.31297803 1.00000000
## 0.55160941 1.86458744 2.00000000
## 1.58521131 3.44979875 3.00000000
## 0.05635054 3.50614928 4.00000000
## 0.45885419 3.96500347 5.00000000
## 1.56435895 5.52936242 6.00000000



Intensity 1

Definition (Intensity)
Let Nt be a point process adapted to a filtration Ft . The left-continuous
intensity process is defined as:

λt|Ft = lim
h→0

E
[

Nt+h − Nt
h

∣∣∣∣Ft

]
,

From hereafter we assume that the filtration is the natural associated with
the counting process, denoted FN

t . We use λt instead of λt|Ft



Homogeneous Poisson Process: a short
definition

Definition
Poisson Process an homogeneous Poisson Point process is a point process
satisfies the following properties:

I N0 = 0
I Stationary and Independent Increments
I ∀h < t the randon variable Nt − Nh is a Poisson with Intensity
λ (t − h)



Homogeneous Poisson Process: some results

Using the previous definition we can see that

P [Nt+h − Nt = 1 |Ft ] =
λhe−λh

1!

= λh [1− λh + o (h)]
= λh + o (h) (1)

It means that the probability of a single arrival during a small interval of time h is λh

P [Nt+h − Nt > 1 |Ft ] = 1− P [Nt+h − Nt = 0 |Ft ]− P [Nt+h − Nt = 1 |Ft ]
= 1− e−λh − λhe−λh

= 1− (1 + λh) e−λh

= 1− (1 + λh) [1− λh + o (h)]
= o (h) (2)

The probability of more than a single arrival during a small interval of time is o (h).
The properties (1) and (2) can be used as an alternative definition of a Poisson Process.
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Homogeneous Poisson Process: Probability of
time arrival

Now we want to establish that in a Poisson Process at least a time arrival
T occurs in the interval (0, t). We can write an explicit expression as
follows:

F (t) = 1− P (no arrivals before t)
= 1− P (Nt = 0) = 1− e−λt

F (t) is the cdf of the time arrivals. Computing the first derivative of F (t)
we get the time arrival density function as:

f (t) = ∂F (t)
∂t = λe−λt

To say that the number of events per time interval follows a Poisson
distribution is equivalent to saying that the time between events is
exponentially distributed
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Homogeneous Poisson Process: Memoryless
property.

The Poisson Process has no memory in the sense that the move to a new
state depends only upon the current state and is independent of the
previous events. In our case:

P (T > t1 + t2 |T > t1 ) = P (T > t1 + t2 ∩ t > t1)
P (T > t1)

= e−λ(t1+t2)

e−λt1

= e−λt1 = P (T > t2)



Homogeneous Poisson Process: Simulation
Algorithm.

The simulation algorithm is based on the inversion theorem

Theorem
Let FX be a strictly increasing CDF. If u ∼ U(0, 1) and X = F−1X (u) then
X is a random variable with CDF FX

Algorithm:

I Generate ui ∼ U(0, 1).
I Set ∆ti = −− ln(1−ui )

λ .

I Set ti =
∑i

j=1 ∆ti.



Inhomogeneous Poisson Process: Definition.

Definition (Inhomogeneous Poisson Process)
Let λt : R+ → R+ be a positive function, we called Nt a inhomogeneous
Poisson process if Nt is a counting process and it satisfies ∀s < t that
Nt − Ns is independent of Ns and

P (Nt+h − Nt = 1 |Ft ) = 1− λth + o(h)

P (Nt+h − Nt = 1 |Ft ) = λth

P (Nt+h − Nt > 1 |Ft ) = o(h)

Remark. If λt = λ we get the homogeneous Poisson Process as a special
case



Point Process Regression Models

In a filtered space B := (Ω,F ,P) the d0-dimensional Point Process
Regression Model Y = (Yt)t∈[t0,t1] defined as:

Yt = [Xt ,Nt , λt ]> (3)

where the d1-dimensional process X = (Xt)t∈[t0,t1], denotes covariates, and
the N = (Nα

t )t∈[t0,t1],α∈I ,\ I = {1, . . . , d}, is a d-dimensional counting
process with the associated d-dimensional intensity process.

d0 = d1 + 2d



PPR: Covariates

The d-dimensional covariate vector process X = (Xt)t∈[t0,t1] satisfies the
following system of stochastic differential equations

dXt = A (t,Yt−, θ) dt + B (t,Yt−, θ) dWt + C (t,Yt−, θ) dZt (4)

where W = (WT )t∈[t0,t1] is an s-dimensional standard Wiener process and
Z = (Zt)t∈[t0,t1] is an h-dimensional L’evy process of purely discontinuous
type. θ ∈ Θ ⊆ Rp and

A : [t0, t1]× Rd0 ×Θ→ Rd1

,
B : [t0, t1]× Rd0 ×Θ→ Rd1 ⊗ Rs

C : [t0, t1]× Rd0 ×Θ→ Rd1 ⊗ Rh



PPR: Intensity Process

The d-dimensional vector intensity process λt is defined by

λt = g (t,Yt−, θ) +
∫ t−

t0
κ (t − s,Ys−, θ) dYs , t ∈ [t0, t1] , (5)

where g : [t0, t1]× Rd0 ×Θ→ Rd
+ and

κ : [t0, t1]× Rd0 ×Θ→ Rd×d0
+ ⊂ Rd ⊗ Rd0 are measurable functions. We

assume e.g. supt∈[t0,t1] |g(t,Yt−, θ)| <∞ and
sups,t∈[t0,t1]:s<t |κ(t − s,Ys−, θ)| <∞ a.s. for each θ ∈ Θ, for path-wise
integrability of t 7→ λt .

For each θ ∈ Θ, with respect to some filtration, both g (·,Y·−, θ) and∫ ·−
t0 κ (· − s·,Ys−, θ) dYs are d-dimensional predictable process with
non-negative components.



PPR: Counting Processs

The d-dimensional counting process N = (Nt)t∈[t0,t1] is characterized by
λ = (λt)t∈[t0,t1] so that each component of N is a pure jump process with
unit jumps and N −

∫ ·
t0 λsds is a d-dimensional local martingale with

respect to a specified filtration.



PPR: Model Classification

There are two different situations based on the way of interaction among
the components X , N and its intensity process λ.

I Doubly Stochastic Evolution (PPR-DSE)
I Simultaneous Evolution (PPR-SE)

In the first case there is not the feedback effect of the counting and
intensity process in the evolution of the covariates. Therefore Different
simulation algorithms are required.



PPR: Doubly Stochastic Evolution
\begin{frame}[fragile]{PPR: Doubly Stochastic Evolution} The
d1-dimensional process X = (Xt)t∈[t0,t1] satisfies a stochastic differential
equation

dXt = A (t,Xt−, θ) dt + B (t,Xt−, θ) dWt + C (t,Xt−, θ) dZt . (6)

The structure of λ = (λt)t∈[t0,t1] to

λt = g (t,Yt−, θ) +
∫ t−

t0
κ (t − s,Ys−, θ) dYs , (t ∈ T) (7)

The definition (7) admits as a special case the possibility of having a
feedback effect of Nt in λt . In this case we have a self-exciting PPR
model meaning that each arrival excites the intensity and increases, for
some time period, the probability of subsequent arrivals.

We can simulate separately Xt and Nt . Once the sample path of Xt has
been generated, we simulate the time arrivals using the usual scheme used
in the Point Process.



Simulation Algorithm: Doubly Stochastic
Evolution

Let N = (Nt)t∈[t0,t1] be a univariate counting variable in a Point Process
Regression model Yt .
We define the process Λ (t |F0,T1, . . . ,Tj ) as follows

Λ (t |F0,T1, . . . ,Tj ) =
∫ t

Tj

λudu (8)

Using (8), we evaluate the conditional probability of the next random
arrival Tj+1 occurs after t > Tj

P (Tj+1 ≥ t| F0) = e−Λ(t|F0,T1,...,Tj ).

We can use to simulate the arrival Tj+1 by solving with respect to u the
following equation:

ln (U) + Λ (u |F0,T1, . . . ,Tj ) = 0 (9)

where U ∼ U[0,1].



Simulation Algorithm

Notice that the left hand side of (9) is a monotonically increasing
differentiable function that starts from the negative value ln (U) and if the
intensity is a strict positive process, we are sure about the existence of the
solution u. In general the equation can be solved numerically using
Newton-Raphson’s algorithm which updates the value of u using the
following recursive equation

ui+1 = ui −
ln (U) + Λ (ui |F0,T1, . . . ,Tj )

λui

(10)



Simulation Algorithm: Multivariate case

The simulation algorithm based on (9) can be straightforward extended to
the multivariate context.
For each component Nα

t of the counting process, we firstly find the Tα
k+1

as a solution of the equation:

ln (Uα) + Λα (u |F0,T1, . . . ,Tk ) = 0

where Λα (u |F0,T1, . . . ,Tk ) is the compensator process of the
component λαt in the intensity process λt . We obtain the next time arrival
Tj+1 as follows:

Tj+1 = min
{

T 1
j+1, . . . ,Tα

j+1, . . . ,T d
j+1
}
.



PPR: Simultaneous Evolution

In this situation we have three different cases:

I Only the Counting process feedbacks the covariates:
dXt = A (t,Xt−,Nt−, θ) dt + B (t,Xt−,Nt−, θ) dWt + C (t,Xt−,Nt−, θ) dZt .

(11)
I Only the Intensity feedbacks to covariates:

dXt = A (t,Xt−, λt , θ) dt + B (t,Xt−, λt , θ) dWt + C (t,Xt−, λt , θ) dZt . (12)

I Both counting and intensity processes feedback to covariates:
dXt = A (t,Xt−, λt ,Nt−, θ) dt+B (t,Xt−, λt ,Nt−, θ) dWt +C (t,Xt−, λt ,Nt−, θ) dZt .

(13)

In this case it is not possible to simulate separately Counting Process,
Intensity and Covariates.



PPR: Quasi Maximum Likelihood

the likelihood function defined as:

LT (θ) =
d∑
α=1

∫ T

0
ln (λαs ) dNα

s −
d∑
α=1

∫ T

0
λαs ds. (14)

For a complete discussion about the optimal properties of the estimates
obtained by maimizing the quantity in (14) we refer for the ergodic point
process to Ogata (1978), Puri and Tuan (1986) and recently Clinet and
Yoshida (2017) while in the context of a non-ergodic point process,
Ogihara and Yoshida (2015) derived large sample properties for the
maximum likelihood and Bayesian type estimators.

We can also estimate the parameters in the SDE (4) of X with high
frequency data of X . If two formulas share some common parameters, we
should use the sum of log quasi likelihood functions.


