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Quasi likelihood analysis (QLA)

e ©: a (bounded) open set in RP, the parameter space
o7 €T (T=24={0,1,...},Ry =[0,00),...)

ot : X ©® — R: arandom field (quasi-log likelihood
function)

e Example. {P, 9 = N(0,1)"}gce, T =n €T =N,

n
Hp(0) = Z log ¢(xj;0,1) (log likelihood function)
j=1



QLA estimators

° HA%/I : the quasi-maximum likelihood estimator (QMLE)
defined as

Hrp(67") = max Hr(6). (1)

oé? : the quasi-Bayes estimator (QBE) for a prior
density 7w : ® — R, defined by

1

AB_ X 7T exX 7T .

oB — ( | exp(siz(@) <9>d9) [ oexpEir(@)) <9>d0<)
2

Assume that 7 is continuous and 0 < infg-g 7™(0) <
suppee m(6) < .

Here w(d@) is a strategy or tuning parameter to es-
timate the fixed true value 6*.



Summary of Lectures 07 and 08

e By the QLA theory, for the QLA estimators (QMLE,
QBE), we can prove
— consistency and asymptotic (mixed) normality
—asymptotic optimality
— convergence of the moments of the error

e QLA can apply to stochastic processes such as diffu-
sion processes and point processes.

e Without deep knowledge of the QLA theory, through
YUIMA, we can use many cutting-edge results in
statistics of stochastic processes.
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Quasi likelihood analysis (QLA)

e Example. N(6,1). The log likelihood ratio

Hyp (0) — Hyp(0%) = Z log ¢(wga 0, 1)/¢(w39 6%, 1)

1=1
= (0 — 0%) Zm ——(92—9*2)
71=1
Hn (0% +n~ Y 2u) — Hp(6%) = n™1/? Z €ju — —u ,

€j = T; —0* NN(O,l)
e a quadratic form of the normalized parameter u

e This phenomenon occurs asymptotically in quite many
cases if the model is differentiable.



Quasi likelihood analysis (QLA)

e ©: a bounded open set in RP, the parameter space
eT €T (T=%2Z4+,R4,...)

o Hy : (2 X ® — R: a random field

ear € GL(RP), ap — 0 (T — o0)

e Ur = {u; 0" + ayu € B}

e (Quasi-likelihood ratio process

Zr(u) = exp {Hp(0* + aru) — Hp(6¥)}



Locally asymptotically quadratic Zp

e Z7r is Locally Asymptotically Quadratic (LAQ)
1
Zr(w) = exp ((Agla] = ST + ro(u)

e A7: a random vector (linear form)
e I': a deterministic or random bilinear form
erp(u) P 0asT — oo

e Notation.

’U[U] — Zz viuia o
M[u®? = M[u,u] = >ij M jutu’

for v = (v;), M = (M; ;) and u = (u?).



Example: Likelihood Analysis

e Py << v, v: a reference measure (e.g. dr on R)

dP,
® pg(x) = d—,f(w)
e likelihood function ® > 0 +— L, (0) = ;":1 Po(T;)

e maximum likelihood estimator é% X" -5 O

Ln(6M) = max L(0)

e Let Hy,(0) =log L,(0). T = n.

e Then, for ar = n_l/z,

log Zn(u) = Hp (0™ + apu) — H,(0%)

= 2 log o
j=1 p(xj, 0%)




Example: Likelihood Analysis

Roughly
log Zy,(u)

— zn: log (1 + n_l/zaepe(wj) [u] + ln_lagpe(wj) [u, u] + - - )
j=1

po(x;) 2 Po(x;)

- 0 - 1 _, 95pe(x;
{n—l/z 9p9(a33)[u]_|__n—1 HPB(%)[U’ u]

po(x;) 2 po(x;)

(e )+

n

— o 1/2 Oopo(;) » _1 (s o
>0 SR ] = 17wl £ 0y(1),

ot

Q.

DN | =

J=1
where

1(6%) = Egl(

OvPo
Do

®2
(9*)) ] (Fisher information matrix)
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Example: local asymptotic normality (LAN, Le Cam)

Za(w) = exp (Anfu] = 16w u] + 0p(1)),
An =4 A ~ Np(0,1(6%)) (3)

asn =1 — oo.
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Convergence of the random field and QLA estimators

o LAQ
Zr(w) = exp ( Arlu] - ST + rr(w))
e Assume (Ap,T') =% (A,T).

o 2(u) = exp (Alu] - Jr[u? )
e Then

2 45 7 (finite dimensional convergence)

More strongly

e Convergence of the random field

Zr —-%47 inC={f:RP >R, lim |f(u)| =0}

|u|—o00



Quasi-maximum likelihood estimator (QMLE)
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e For arbitrary U C RP,

sup Zp(u) —% sup Z(u)
uclU uclU

e Therefore, for any sequence of QMLE’s,

ﬁé\w/‘[ = argmax Zr —yd

that is,
aM = a ' (OM —0*) - a=1"1A

i = argmax Z,



Quasi-Bayesian estimator (QBE)
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e By definition,
az' (07 — 6%)
= /u Zr(u)m(0* + aru)du/ / Zr(uw)w(0* + aru)du

o ([Zr(u)du, [uZr(u)du) —* ( [ Z(u)du, [ u Z(u)du)

e Convergence

U 1= arp (HB —0%) — /uZ(u)du//Z(u)du

= /u exp (Afu] — §I‘[u, u)) du//exp (Alu] — EI‘[u, u])du

=TI'A
e Exercise. In the LAN case (3), we obtain
ap —<¢ N,(0,I1(6*)"') (A= M,B)

e The random field approach works quite well.
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However, a basic question is there

e Is it possible to control [ u Zp(u)du?
— The region of the integral
Ur = {u; 6" + ayu € 6} > RP
as T' — oo even when O is bounded.

e Estimate of Z at the tail is essential. (See the plot
on the next page.)
= Large deviation for the random field Zp

® See the last section.



Random field Zp
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Z+(u)

process Zt

0.8

0.6

0.4

0.2

tail of process Zt is short

10

-10
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Let’s apply the QLA to stochastic processes

We shall discuss some applications of the QLA theory:
e ergodic diffusion

e non-ergodic diffusion



-

N

|

Quasi likelihood analysis for ergodic diffusion pro-
cesses

|

~

%
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An ergodic diffusion process

e We consider a stationary diffusion process satisfying
the stochastic differential equation

dX¢ = a(Xt, 02)dt + b(X¢, 01)dwe, Xo=xq
ow = (Wi)icRr ,: an r-dimensional standard Wiener
process
e 0, € ©; C RPi: unknown parameters (¢ = 1, 2)
ea:RY x By — Rd
ob:RIXxO; 5> RIQR

@ The true value of 8 € ®; X ®5 will be denoted by
0* = (07, 05).
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An ergodic diffusion process

e Assume a mixing property: there exists a > 0 such
that

ax(h) < a le™® (h > 0)
where

ax(h) = sup sup |P[AN B] — P[A]P[B]|
teRy Aco[Xp;r<t],
Beo[Xpr;r>t+h]

e Consequently, we have

T
%/O g(X;)dt —P /Rdg(a:)l/(daz) (T — o)

for every bounded measurable function g,
where v = vg« is the invariant measure of X.
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An ergodic diffusion process

e Data x,, = (th)j:O,l,...,na t; = t?’ = qh, h = hy

e Estimate § = (01, 02) based on the data (th)jzo,l,...,n-

e Assume h — 0, nh — oo and nh? — 0 as n — oo.

That is, long-term high frequency data.

e B(x,01) = (bb*)(x,01), assumed uniformly non-degenerate

e quasi-likelihood function

Pu(xn, 0) = ﬁ (27h)d/2 det]13(Xt. 0,)1/2
e i1

1
X exp ( — %B(Xt

where A]X — th — th—l'

j-17

01) ' [(A; X — ha(Xy,_,, 92)®2})
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QMLE

e Equivalently, we consider the quasi-log likelihood func-
tion

H,,(0) = log {(27rh)"d/2pn(xn, 0)}
— _% Z {h_lB(th_l, 01) " [(A;X — ha(Xy,_,,02)%7
j=1
+ log det B(X;,_,, 91)}.
e The QMLE é,,]y = (é%, é%) is any measurable
mapping of the data such that

Hn,(6M) = max  Hy(6).
0cB1x0O>
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Information matrices

o Let
L1 (6%)[uf?] = %/RdTI‘{B_l(aelB[ul])B_l(aelB[ul])(fL’a91‘)}’/(61513)
for uq1 € RP1, and

L0 = [ B, 00) (e, 05)[us) o ()

for uy € RP2,
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QMLE

e Applying the QLA theory twice, to 81 first and to 02
next, we obtain

Theorem 1. For any sequence of M-estimators for 8 =

(61982)7
E|f(vn(67%, — 67),Vnh(037, — 03))| — E[£(¢1,C2)]

as n — oo for f € Cp(RP1TP2), where

(€1,¢2) ~ Np;+p, (09 diag [1‘1(9*)—1, I‘2(‘9*)_1} )
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QMLE by YUIMA
(cf. Tacus and Yoshida Springer p.85)

e a SDE model
dXi = (2 — 02 Xy)dt + (1 + th)gld”wt, Xo=1

e Let 67 = 0.2, 65 = 0.3.
e By YUIMA simulate, generate sampled data th
with t; = jn~2/3, n = 750.

e For the simulated data, apply YUIMA qmle to esti-
mate 0.

Estimate Std. Error
thetal 0.1969182 0.008095453
theta2 0.2998350 0.126410524
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Adaptive quasi-Bayesian estimator (adaBayes)

e The quasi-Bayesian estimator can be defined for Hj, (0)
to estimate parameters simultaneouly.

e However, an adaptive method is superior to it from
computational point of view. Numerical integration
(even with MCMC) becomes easier if the dimension
is reduced.

e The scheme of the adaptive quasi-Bayesian estimator
(“adaBayes”) is as follows.
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Adaptive quasi-Bayesian estimator (adaBayes)

e Step 1.

1
| exp (Eaen, 98>>m<01>d91]
x /@ Onexp (Fn (01, 03)) w1 (01)d0)

where 9(2) is any value of 0.

e Step 2.
—1
6aB /@ exp (Hn (895, 92))772(92)6192]
2

X /@ 0- exp (Hn(el n 92))71'2(92)6192.
2
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An ergodic diffusion process

e Apply the QLA theory, we obtain
Theorem 2. For the adaptive Bayesian estimator for
0 = (017 02)7
E f(\/ﬁ(éfﬁ — 07), Vv nh(égﬁ —63))| = E[f(¢1,¢2)]

as n — oo for f € Cp(RP1TP2), where

(¢1,¢2) ~ Np,+p,(0,diag[T1(8%) 71, T2(6%)71)).

e Asymptotic properties are the same as QMLE.

e It is a commonly observed fact that the MLE and
the BE perform in the same fashion at the first-order
asymptotics.

® Reference. Yoshida AISM2011



27

QBE by YUIMA
(cf. Tacus and Yoshida Springer p.87)

e a SDE model
dX; = (2 — 02 Xy)dt + (1 + X2)%dwy, Xo=1
e Let 67 = 0.2, 65 = 0.3.
e By YUIMA simulate, generate sampled data th
with t; = jn~2/3, n = 750.

e For the simulated data, apply YUIMA adaBayes to
estimate 0 with a MCMC method.
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QBE by YUIMA
(cf. Tacus and Yoshida Springer p.87)

prior <- list(theta2=1list(measure.type="code",
df="dunif (theta2,0,1)"),
thetal=1list (measure.type="code",
df="dunif (thetal,0,1)"))
bayesl <- adaBayes(yuima, start=param.init, prior=prior,
lower=lower ,upper=upper, method="mcmc")

Estimate Std. Error
thetal 0.1974995 0.008112845
theta2 0.3487866 0.126663874

e The convergence of éZB is slow.

(Vn(655 — 67), vVnh(037 — 03)) =% (C1,¢2)



QBE by YUIMA
(cf. Tacus and Yoshida Springer p.87)
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e Try gqmle and adaBayes for n = 2750.

e The estimation of HAE is improved:

> coef (summary (bayesl))
Estimate Std. Error
thetal 0.1978142 0.003730354
theta2 0.2925331 0.088708241
> coef (summary(mlel))
Estimate Std. Error
thetal 0.1979697 0.003732584
theta2 0.2914936 0.088761680



[Quasi likelihood analysis for volatility
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Stochastic regression model

e An m-dimensional Ito process satistying the stochas-
tic differential equation

4 N

dY; = bydt + o(X¢,0)dwe, t € [0,T], (4)

\_ J

e w: an r-dimensional standard Wiener process

e b and X: progressively measurable processes with
values in R™ and ]R{d, respectively. b is unobservable,
completely unknown.

e o: an RM ® R"-valued function defined on RY x O,
e ©: a bounded domain in RP

e O* denotes the true value of 4.
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e Data:
[Zn = (X, Yi;)o<j<n With t; = jh J

for h = hy, =T /n. T is fixed.

e For example, when by = b(Y, t) and Xy = (Y, t), Y
is the time-inhomogeneous diffusion process.

e Ergodicity is not assumed.

e Remark. Even if the drift coefficient b; is parametri-
cally modeled, it is known that, under a finite time
horizon, consistent estimatimation of the drift pa-
rameter is impossible. So, we are interested in the
parameter 6 in the diffusion coefficient only.
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Quasi likelihood

e (Quasi log likelihood function:

n

nm 1
Hp(0) = — log(2mh) — 5 Z { log det S(th_l, 0)
j=1

+h—1s—1<xtj_1,9>[<AjY>®2]},

S = %% = oo™,
A;Y = Yi, — Yi,_

o (%) = (T*(8%))i,j=1,...p With

I (6%) = %/OTTr ((89iS)S_1(89jS)S_1(Xt,0*)) dt
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QLA estimators

° HA,,]?\J/I : the quasi-maximum likelihood estimator (QMLE)
defined as

Hn(6") = sup Hn(6). (5)
0cO

° é,,]:? : the quasi-Bayesian estimator (QBE) for a prior
density 7w : ©® — R, is defined by

6, = ( /@ exp(Hnw»w(e)de)_l /@ 6 exp (Hn(6))m(0)do.
(6)

We assume that 7 is continuous and 0 < infg-g 7(0) <
supgco m(8) < 0.



Recall the model

e An m-dimensional Ito process satisfying the stochas-
tic differential equation

dY; = budt + o(X¢,0)dwe, t € [0,T],

e Data: Z, = (th’Y;fj)OSan with t; = 7h for h =
hn — T/n.
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Asymptotic properties of the QLA estimators

e By the QLA theory, we obtain
Theorem 3. For the A € {M, B},
(a) vn(0p — 6%) —%F1) 1 (%) ~1/2¢

(b) For all continuous functions h of at most polyno-
mial growth,

E [h(vn(0} - 0%)| = E [h(T(")7Y2%¢)|  (n — o0)

Here ¢ is a standard Gaussian random vector _| |

r'(6%).

e Non-ergodic statistics
® Reference. Uchida and Yoshida SPA2013
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Remark

e YUIMA gmle returns some estimated value of 09
even when the time horizon nh is not sufficiently
large.

® The user should be careful to use such estimated
value.

e There is no theoretical backing unless all condition
are satisfied.

e If the process is not ergodic, then any long-term ob-
servation cannot ensure the correctness of the esti-
mation of the drift parameter.
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Quasi likelihood analysis (QLA)
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e ©: a bounded open set in RP, the parameter space
eT €T (T=%2Z4+,R4,...)

o Hy : (2 X ® — R: a random field

e 0*: “true” value of 6

ear € GL(RP), ap — 0 (T — o0)

e Ur = {u € RP; 0* + agu € O}

Quasi likelihood ratio process

Zr(u) = exp {H(0* + apu) — Hr(6%)}
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Locally asymptotically quadratic random field

'Locally Asymptotically Quadratic (LAQ)

Zr(u) = exp (AT[u] O Tu®] 4 rT<u>)

\_ J

e A7: a random vector (linear form)
e I': a random bilinear form
err(u) »>P0asT — oo

e Notation. .
’U[”U,] — Zz viuza o
M [u®?] = >ij M jutu’ |
for v = (v;), M = (M; ;) and u = (u’).
e Since Z7 is exponential of a nearly quadratic func-
tion, we expect fast decay of Zp .....



Polynomial type large deviation (PLD) inequality:

”tail of Zp is short”

process Zt

1.0
|

0.8
|

tail of process Zy is short

0.6

Z7(u)

0.4

0.2
|
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Polynomial type large deviation (PLD) inequality

o Vp(r) ={u € Up; |u| > r}
e For da € (1,2), VL > 0, 3Cy, such that

e R

_pQ Cr,
P| sup Zp(u)>e " | < L

ueVrp(r)
g y,

NB:

(r >0, Te€T)

Zr(u) = exp {Hp(0" + agu) — Hr(6%)}

e LAQ + nondegeneracy of xg implies PLD (Y 2011AISM),
where Xq is ....
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Key index g

*br = (hnin(agar)} ™" (ex. by =)
® Y7 (0) = - (Hr(0) — Hr(6%))
o Y (0) —>Lp Y(0) (I' — oo) (and slightly more)

e Assumption.
d a positive r.v. g and a positive constant p s.t.

Y(0) = Y(0) —Y(0") < —xo0l60 — 677
e Nondegeneracy of the key index: for VL > 0, dC7,,

\

C
Pixo<r '] <—f (r>0)
r

J

e Nondegeneracy of the key index = PLD inequality



LP-boundedness of the quasi likelihood estimators
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o ’&TM = aEl(éé\fI — 0%)

e Tail probability

Plla}| > r] < P| sup Zp(u) >1| < —F
ueVyp(r) r

In particular, supy ||[dr||p < oo.

o Similarly, for a2 = a7} (08 — 6*),

. Cr
Pllag| > ] ST_L

In particular, supt |€L% |p < oo.
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Scheme of the quasi likelihood analysis (QLA) based
on Ibragimov-Has’minskii and Kutoyants program

y

- LAQ  Zp(u) = exp (AT[U] — 3T [u®?] + "“T(U))

{ - Limit theorem (Ar,T) =9 (A,T)
- PLD for Zp(u)[<= nondegeneracy of ]

I —% 7 = exp (Afu] — —I‘[u®2]) in C
{ - ué\w/—[ = ap (éM 0*), uT = ap (éB —0*) 4T 1A
. LP-boundedness of {uT }r and {u Y

\

where € = {f € C(RP); limy)_,o0 | £(u)| = 0}



Theory of Quasi Likelihood Analysis

s 2

Statistics for Stochastic Processes
diffusion, jump diffusion,
point process,
asymptotic expansion,
model selection,
sparse estimation
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in summary: Scheme of the QLA

o LAQ Zr(u) = exp (AT[u] - %I‘[u®2] + ’rT(u))
+ Moment conditions = PLD

e LAQ-+Limit theorem (Ap,T) —»% (A,T) + PLD
= Convergence of the random field

Zr —-%47 inC={f:RP >R, lim |f(u)| =0}

|lu|—o00
where Z(u) = exp (A[u] — %I‘[u@)z])
e Consequently
aM, af =2 171A

+ LP-boundedness of {ﬁé‘fl }r and {ﬁ? }r.
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Quasi Likelihood Analysis: Summary

QLA: a systematic inferential framework 3
® (quasi) likelihood random field

e quasi MLE

e quasi Bayesian estimator

e (polynomial type) large deviation estimates for the
quasi likelihood random field

e tail probability estimate for the QLA estimators, con-
vergence of moments.

NB

e QLA does not depend on a particular structure of
the model.
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Recent applications of the Quasi Likelihood Analysis

e sampled diffusion processes (Y AISM2011, Uchida
and Y SPA2013)

e jump-diffusion processes (Ogihara and Y SISP2011)

e non-synchronous samapling (Ogihara and Y SPA2014)

e model selection (Uchida AISM2010, Uchida and Y
2016)

e asymptotic expansion (Y 2016)

e point processes (Clinet and Y SPA2016,
Muni Toke and Y QF2016, QF20197, Ogihara and Y
arXiv2015 )

e sparse estimation, penalized methods (Umezu-Shimizu-
Masuda-Ninomiya, Kinoshita-Y, Suzuki-Y)



