YUIMA SUMMER SCHOOL Brixen (June 26)

Lecture 07 QLA – Quasi-likelihood analysis + Lecture 08 Bayesian analysis

Nakahiro Yoshida

Graduate School of Mathematical Sciences, University of Tokyo Japan Science and Technology Agency CREST Institute of Statistical Mathematics

Tokyo April 2019

MENU

- QMLE and QBE
- Quick introduction to the QLA theory
- Applications of the Quasi-Likelihood Analysis
- Slightly deeper discussion (omitted)

MENU

1. QMLE and QBE

- **2.** Quick introduction to the QLA theory
- **3.** Applications of the Quasi-Likelihood Analysis
- 4. Slightly deeper discussion (omitted)

Quasi likelihood analysis (QLA)

- Θ : a (bounded) open set in \mathbb{R}^{p} , the parameter space
- $ullet T\in\mathbb{T}\;(\mathbb{T}=\mathbb{Z}_+=\{0,1,...\},\mathbb{R}_+=[0,\infty),...)$
- $\mathbb{H}_T : \Omega \times \overline{\Theta} \to \mathbb{R}$: a random field (quasi-log likelihood function)
- Example. $\{P_{n,\theta} = N(\theta, 1)^n\}_{\theta \in \Theta}, T = n \in \mathbb{T} = \mathbb{N},$

$$\mathbb{H}_n(heta) = \sum_{j=1}^n \log \phi(x_j; heta, 1) \quad (ext{log likelihood function})$$

QLA estimators

• $\hat{\theta}_T^M$: the quasi-maximum likelihood estimator (QMLE) defined as

$$\mathbb{H}_{T}(\hat{\theta}_{T}^{M}) = \max_{\boldsymbol{\theta} \in \overline{\Theta}} \mathbb{H}_{T}(\boldsymbol{\theta}).$$
(1)

• $\hat{\theta}_T^B$: the quasi-Bayes estimator (QBE) for a prior density $\pi: \Theta \to \mathbb{R}_+$ defined by

$$\hat{ heta}_T^B = \left(\int_{\Theta} \exp(\mathbb{H}_T(heta)) \pi(heta) d heta
ight)^{-1} \int_{\Theta} heta \exp(\mathbb{H}_T(heta)) \pi(heta) d heta.$$

Assume that π is continuous and $0 < \inf_{\theta \in \Theta} \pi(\theta) \le \sup_{\theta \in \Theta} \pi(\theta) < \infty$. Here $\pi(d\theta)$ is a strategy or tuning parameter to estimate the fixed true value θ^* .

Summary of Lectures 07 and 08

- By the QLA theory, for the QLA estimators (QMLE, QBE), we can prove
 - -consistency and asymptotic (mixed) normality
 - -asymptotic optimality
 - -convergence of the moments of the error
- QLA can apply to stochastic processes such as diffusion processes and point processes.
- Without deep knowledge of the QLA theory, through YUIMA, we can use many cutting-edge results in statistics of stochastic processes.

MENU

1. QMLE and QBE

2. Quick introduction to the QLA theory

- **3.** Applications of the Quasi-Likelihood Analysis
- 4. Slightly deeper discussion (omitted)

Quasi likelihood analysis (QLA)

• Example. $N(\theta, 1)$. The log likelihood ratio

$$egin{aligned} \mathbb{H}_n(heta) &= \sum_{j=1}^n \log \phi(x_j; heta,1)/\phi(x_j; heta^*,1) \ &= (heta- heta^*)\sum_{j=1}^n x_j - rac{n}{2}(heta^2- heta^{*\,2}) \end{aligned}$$

$$\mathbb{H}_n(heta^st+n^{-1/2}u)-\mathbb{H}_n(heta^st)=n^{-1/2}\sum_{j=1}^n\epsilon_ju-rac{1}{2}u^2, \ \epsilon_j=x_j- heta^st\sim N(0,1)$$

- \bullet a quadratic form of the normalized parameter u
- This phenomenon occurs asymptotically in quite many cases if the model is differentiable.

Quasi likelihood analysis (QLA)

• Θ : a bounded open set in \mathbb{R}^p , the parameter space

$$ullet T \in \mathbb{T} \ (\mathbb{T} = \mathbb{Z}_+, \mathbb{R}_+, ...)$$

- $\mathbb{H}_T : \Omega \times \Theta \to \mathbb{R}$: a random field
- $a_T \in \operatorname{GL}(\mathbb{R}^p), a_T \to 0 \ (T \to \infty)$

$$ullet \mathbb{U}_T = \{u; \ heta^* + a_T u \in \Theta\}$$

• Quasi-likelihood ratio process

$$\mathbb{Z}_T(u) = \exp\left\{\mathbb{H}_T(heta^* + a_T u) - \mathbb{H}_T(heta^*)
ight\}$$

Locally asymptotically quadratic \mathbb{Z}_T

• \mathbb{Z}_T is Locally Asymptotically Quadratic (LAQ)

$$\mathbb{Z}_T(u) = \exp\left(\Delta_T[u] - rac{1}{2}\Gamma[u^{igotimes 2}] + r_T(u)
ight)$$

- Δ_T : a random vector (linear form)
- Γ : a deterministic or random bilinear form

•
$$r_T(u) \rightarrow^p 0$$
 as $T \rightarrow \infty$

• Notation.

$$egin{aligned} v[u] &= \sum_i v_i u^i,\ M[u^{\otimes 2}] &= M[u,u] = \sum_{i,j} M_{i,j} u^i u^j \ ext{for } v &= (v_i), \ M &= (M_{i,j}) \ ext{and } u &= (u^i). \end{aligned}$$

• $P_{ heta} <<
u,
u$: a reference measure (e.g. dx on \mathbb{R})

•
$$p_{ heta}(x) = rac{dP_{ heta}}{d
u}(x)$$

- likelihood function $\Theta \ni \theta \mapsto L_n(\theta) = \prod_{j=1}^n p_{\theta}(x_j)$
- \bullet maximum likelihood estimator $\hat{\theta}_n^M:\mathcal{X}^n\to\Theta$

$$L_n(\hat{ heta}_n^M) = \max_{ heta \in \Theta} L_n(heta)$$

- Let $\mathbb{H}_n(\theta) = \log L_n(\theta)$. T = n.
- Then, for $a_T = n^{-1/2}$,

$$egin{aligned} \log \mathbb{Z}_n(u) &= \mathbb{H}_n(heta^* + a_n u) - \mathbb{H}_n(heta^*) \ &= \sum_{j=1}^n \log rac{p(x_j, heta^* + n^{-1/2}u)}{p(x_j, heta^*)} \end{aligned}$$

Example: Likelihood Analysis

Roughly

$$egin{aligned} &\log \mathbb{Z}_n(u) \ &= \sum_{j=1}^n \log \left(1 + n^{-1/2} rac{\partial_ heta p_ heta(x_j)}{p_ heta(x_j)} [u] + rac{1}{2} n^{-1} rac{\partial_ heta^2 p_ heta(x_j)}{p_ heta(x_j)} [u, u] + \cdots
ight) \ &= \sum_{j=1}^n \left\{ n^{-1/2} rac{\partial_ heta p_ heta(x_j)}{p_ heta(x_j)} [u] + rac{1}{2} n^{-1} rac{\partial_ heta^2 p_ heta(x_j)}{p_ heta(x_j)} [u, u] \ &- rac{1}{2} n^{-1} \left(rac{\partial_ heta p_ heta(x_j)}{p_ heta(x_j)} [u]
ight)^2 + \cdots
ight\} \ &= n^{-1/2} \sum_{j=1}^n rac{\partial_ heta p_ heta(x_j)}{p_ heta(x_j)} [u] - rac{1}{2} I(heta^*) [u, u] + o_p(1), \end{aligned}$$

where

$$I(heta^*) \,=\, E_{ heta^*} igg[\left(rac{\partial_ heta p_ heta}{p_ heta}(heta^*)
ight)^{\otimes 2} igg] \,\,\, ext{(Fisher information matrix)}$$

Example: local asymptotic normality (LAN, Le Cam)

$$\mathbb{Z}_{n}(u) = \exp\left(\Delta_{n}[u] - \frac{1}{2}I(\theta^{*})[u, u] + o_{p}(1)\right),$$
$$\Delta_{n} \to^{d} \Delta \sim N_{p}(0, I(\theta^{*})) \tag{3}$$
as $n = T \to \infty.$

Convergence of the random field and QLA estimators

• LAQ

$$\mathbb{Z}_T(u) = \exp\left(\Delta_T[u] - rac{1}{2}\Gamma[u^{\otimes 2}] + r_T(u)
ight)$$

• Assume $(\Delta_T, \Gamma) \to^d (\Delta, \Gamma)$.

$$ullet \mathbb{Z}(u) = \exp\left(\Delta[u] - rac{1}{2}\Gamma[u^{igotometa 2}]
ight)$$

• Then

 $\mathbb{Z}_T o^{d_f} \mathbb{Z}$ (finite dimensional convergence)

More strongly

• Convergence of the random field

$$\mathbb{Z}_T o^d \mathbb{Z} \quad ext{in } \hat{C} = \{f: \mathbb{R}^\mathsf{p} o \mathbb{R}, \ \lim_{|u| o \infty} |f(u)| = 0\}$$

Quasi-maximum likelihood estimator (QMLE)

• For arbitrary $U \subset \mathbb{R}^p$,

$$\sup_{u\in U}\mathbb{Z}_T(u) o^d \sup_{u\in U}\mathbb{Z}(u)$$

• Therefore, for any sequence of QMLE's,

$$\hat{u}_T^M = ext{argmax} \ \mathbb{Z}_T o^d \ \hat{u} = ext{argmax} \ \mathbb{Z},$$

that is,

$$\hat{u}_T^M = a_T^{-1}(\hat{\theta}_T^M - \theta^*) \rightarrow^d \hat{u} = \Gamma^{-1}\Delta$$

Quasi-Bayesian estimator (QBE)

• By definition,

$$a_T^{-1}(\hat{ heta}_T^B- heta^*) \ = \int u \, \mathbb{Z}_T(u) \pi(heta^*+a_T u) du ig/\int \mathbb{Z}_T(u) \pi(heta^*+a_T u) du$$

- $ullet \left(\int \mathbb{Z}_T(u) du, \int u \ \mathbb{Z}_T(u) du
 ight) o^d \left(\int \mathbb{Z}(u) du, \int u \ \mathbb{Z}(u) du
 ight)$
- Convergence

$$egin{aligned} \hat{u}_T^B &:= a_T^{-1}(\hat{ heta}_T^B - heta^*) o^d \int u \, \mathbb{Z}(u) du / \int \mathbb{Z}(u) du \ &= \int u \, \expig(\Delta[u] - rac{1}{2}\Gamma[u,u]ig) du / \int \expig(\Delta[u] - rac{1}{2}\Gamma[u,u]ig) du \ &= \Gamma^{-1}\Delta \end{aligned}$$

• Exercise. In the LAN case (3), we obtain

$$\hat{u}_T^{\mathsf{A}}
ightarrow^d N_{\mathsf{p}}ig(0, I(heta^*)^{-1}ig) \quad (\mathsf{A}=M,B)$$

• The random field approach works quite well.

However, a basic question is there

- ullet Is it possible to control $\int u \, \mathbb{Z}_T(u) du?$
 - The region of the integral

$$\mathbb{U}_T = \{u; \ heta^* + a_T u \in \Theta\} o \mathbb{R}^\mathsf{p}$$

as $T \to \infty$ even when Θ is bounded.

- Estimate of \mathbb{Z}_T at the tail is essential. (See the plot on the next page.)
 - \Rightarrow Large deviation for the random field \mathbb{Z}_T
- See the last section.

Random field \mathbb{Z}_T

15

MENU

- **1.** QMLE and QBE
- **2.** Quick introduction to the QLA theory
- 3. Applications of the Quasi-Likelihood Analysis
- 4. Slightly deeper discussion (omitted)

Let's apply the QLA to stochastic processes

We shall discuss some applications of the QLA theory:

- ergodic diffusion
- non-ergodic diffusion

Quasi likelihood analysis for ergodic diffusion processes

• We consider a stationary diffusion process satisfying the stochastic differential equation

$$dX_t = a(X_t, heta_2)dt + b(X_t, heta_1)dw_t, \quad X_0 = x_0$$

- $w = (w_t)_{t \in \mathbb{R}_+}$: an r-dimensional standard Wiener process
- $\bullet \; \theta_i \in \Theta_i \subset \mathbb{R}^{\mathsf{p}_i} :$ unknown parameters (i=1,2)
- $ullet a: \mathbb{R}^{\mathsf{d}} imes \overline{\Theta}_2 o \mathbb{R}^{\mathsf{d}}$
- $ullet b: \mathbb{R}^{\mathsf{d}} imes \overline{\Theta}_1 o \mathbb{R}^{\mathsf{d}} \otimes \mathbb{R}^{\mathsf{r}}$
- The true value of $\theta \in \Theta_1 \times \Theta_2$ will be denoted by $\theta^* = (\theta_1^*, \theta_2^*).$

• Assume a mixing property: there exists a > 0 such that

$$\alpha_X(h) \le a^{-1}e^{-ah} \quad (h > 0)$$

where

$$lpha_X(h) = \sup_{t\in \mathbb{R}_+} \sup_{\substack{A\in \sigma[X_r;\, r\leq t],\ B\in \sigma[X_r;r\geq t+h]}} \left| P[A\cap B] - P[A]P[B]
ight|$$

• Consequently, we have

$$rac{1}{T}\int_0^T g(X_t)dt o^p \int_{\mathbb{R}^d} g(x)
u(dx) \quad (T o\infty)$$

for every bounded measurable function g, where $\nu = \nu_{\theta^*}$ is the invariant measure of X.

• Data
$$\mathbf{x}_n = (X_{t_j})_{j=0,1,...,n}, t_j = t_j^n = jh, h = h_n$$

• Estimate $\theta = (\theta_1, \theta_2)$ based on the data $(X_{t_j})_{j=0,1,\dots,n}$.

- Assume $h \to 0$, $nh \to \infty$ and $nh^2 \to 0$ as $n \to \infty$. That is, long-term high frequency data.
- $B(x, \theta_1) = (bb^*)(x, \theta_1)$, assumed uniformly non-degenerate

• quasi-likelihood function

$$egin{aligned} p_n(\mathrm{x}_n, heta)&=\prod_{j=1}^nrac{1}{(2\pi h)^{\mathsf{d}/2}\det B(X_{t_{j-1}}, heta_1)^{1/2}}\ & imes\expigg(-rac{1}{2h}B(X_{t_{j-1}}, heta_1)^{-1}ig[(\Delta_j X-ha(X_{t_{j-1}}, heta_2)^{\otimes 2}ig]igg)\ & ext{where}\ \Delta_j X&=X_{t_j}-X_{t_{j-1}}. \end{aligned}$$

• Equivalently, we consider the quasi-log likelihood function

$$egin{aligned} \mathbb{H}_n(heta) &= \logig\{(2\pi h)^{n\mathsf{d}/2}p_n(\mathrm{x}_n, heta)ig\} \ &= -rac{1}{2}\sum_{j=1}^nig\{h^{-1}B(X_{t_{j-1}}, heta_1)^{-1}ig[(\Delta_j X-ha(X_{t_{j-1}}, heta_2)^{\otimes 2}ig] \ &+\log\det B(X_{t_{j-1}}, heta_1)ig\}. \end{aligned}$$

 \bullet The QMLE $\hat{\theta}_n^M=(\hat{\theta}_{1,n}^M,\hat{\theta}_{2,n}^M)$ is any measurable mapping of the data such that

$$\mathbb{H}_n(\hat{ heta}_n^M) = \max_{ heta\in\overline{\Theta}_1 imes\overline{\Theta}_2}\mathbb{H}_n(heta).$$

Information matrices

• Let

$$\begin{split} \Gamma_1(\theta^*)[u_1^{\otimes 2}] &= \frac{1}{2} \int_{\mathbb{R}^d} \operatorname{Tr} \{ B^{-1}(\partial_{\theta_1} B[u_1]) B^{-1}(\partial_{\theta_1} B[u_1])(x,\theta_1^*) \} \nu(dx) \\ \text{for } u_1 \in \mathbb{R}^{\mathbf{p}_1}, \text{ and} \\ \Gamma_2(\theta^*)[u_2^{\otimes 2}] &= \int_{\mathbb{R}^d} B(x,\theta_1^*)^{-1} [(\partial_{\theta_2} a(x,\theta_2^*)[u_2])^{\otimes 2}] \nu(dx) \\ \text{for } u_2 \in \mathbb{R}^{\mathbf{p}_2}. \end{split}$$

• Applying the QLA theory twice, to θ_1 first and to θ_2 next, we obtain

Theorem 1. For any sequence of M-estimators for $\theta = (\theta_1, \theta_2)$,

$$Eigg[fig(\sqrt{n}(\hat{ heta}_{1,n}^M- heta_1^*),\sqrt{nh}(\hat{ heta}_{2,n}^M- heta_2^*)ig)igg] o Eig[f(\zeta_1,\zeta_2)igg]$$

as $n \to \infty$ for $f \in C_p(\mathbb{R}^{p_1+p_2})$, where

 $(\zeta_1,\zeta_2)\sim N_{\mathsf{p}_1+\mathsf{p}_2}ig(0,\mathrm{diag}ig[\Gamma_1(heta^*)^{-1},\Gamma_2(heta^*)^{-1}ig]ig).$

QMLE by YUIMA (cf. Iacus and Yoshida Springer p.85)

• a SDE model

 $dX_t = (2 - \theta_2 X_t)dt + (1 + X_t^2)^{\theta_1}dw_t, \quad X_0 = 1$

• Let
$$\theta_1^* = 0.2, \ \theta_2^* = 0.3.$$

- By YUIMA simulate, generate sampled data X_{t_j} with $t_j = jn^{-2/3}$, n = 750.
- For the simulated data, apply YUIMA qmle to estimate θ .

Estimate Std. Error theta1 0.1969182 0.008095453 theta2 0.2998350 0.126410524

Adaptive quasi-Bayesian estimator (adaBayes)

- The quasi-Bayesian estimator can be defined for $\mathbb{H}_n(\theta)$ to estimate parameters simultaneouly.
- However, an adaptive method is superior to it from computational point of view. Numerical integration (even with MCMC) becomes easier if the dimension is reduced.
- The scheme of the adaptive quasi-Bayesian estimator ("adaBayes") is as follows.

Adaptive quasi-Bayesian estimator (adaBayes)

• Step 1.

$$egin{aligned} \hat{ heta}_{1,n}^{aB} &= igg[\int_{\Theta_1} \expig(\mathbb{H}_n(heta_1, heta_2^0)ig)\pi_1(heta_1)d heta_1igg]^{-1} \ & imes \int_{\Theta_1} heta_1 \expig(\mathbb{H}_n(heta_1, heta_2^0)ig)\pi_1(heta_1)d heta_1 \end{aligned}$$

where θ_2^0 is any value of θ_2 .

• Step 2.

$$\hat{ heta}_{2,n}^{aB} = igg[\int_{\Theta_2} \expigl(\mathbb{H}_n(\hat{ heta}_{1,n}^{aB}, heta_2)igr)\pi_2(heta_2)d heta_2igg]^{-1} \ imes \int_{\Theta_2} heta_2 \expigl(\mathbb{H}_n(\hat{ heta}_{1,n}^{aB}, heta_2)igr)\pi_2(heta_2)d heta_2.$$

- Apply the QLA theory, we obtain Theorem 2. For the adaptive Bayesian estimator for $\theta = (\theta_1, \theta_2),$ $E\left[f(\sqrt{n}(\hat{\theta}_{1,n}^{aB} - \theta_1^*), \sqrt{nh}(\hat{\theta}_{2,n}^{aB} - \theta_2^*))\right] \rightarrow E[f(\zeta_1, \zeta_2)]$ as $n \rightarrow \infty$ for $f \in C_p(\mathbb{R}^{p_1+p_2})$, where $(\zeta_1, \zeta_2) \sim N_{p_1+p_2}(0, \operatorname{diag}[\Gamma_1(\theta^*)^{-1}, \Gamma_2(\theta^*)^{-1}]).$
- Asymptotic properties are the same as QMLE.
- It is a commonly observed fact that the MLE and the BE perform in the same fashion at the first-order asymptotics.
- Reference. Yoshida AISM2011

QBE by YUIMA (cf. Iacus and Yoshida Springer p.87)

• a SDE model

$$dX_t = (2 - heta_2 X_t) dt + (1 + X_t^2)^{ heta_1} dw_t, \quad X_0 = 1$$

• Let
$$\theta_1^* = 0.2, \ \theta_2^* = 0.3.$$

- By YUIMA simulate, generate sampled data X_{t_j} with $t_j = jn^{-2/3}$, n = 750.
- For the simulated data, apply YUIMA adaBayes to estimate θ with a MCMC method.

QBE by YUIMA (cf. Iacus and Yoshida Springer p.87)

Estimate Std. Error theta1 0.1974995 0.008112845 theta2 0.3487866 0.126663874

• The convergence of $\hat{\theta}_2^B$ is slow.

 $\left(\sqrt{n}(\hat{\theta}_{1,n}^{aB} - \theta_1^*), \sqrt{nh}(\hat{\theta}_{2,n}^{aB} - \theta_2^*)\right) \rightarrow^d (\zeta_1, \zeta_2)$

QBE by YUIMA

(cf. Iacus and Yoshida Springer p.87)

- Try qmle and adaBayes for n = 2750.
- The estimation of $\hat{\theta}_n^B$ is improved:

> coef(summary(bayes1))
 Estimate Std. Error
theta1 0.1978142 0.003730354
theta2 0.2925331 0.088708241
> coef(summary(mle1))
 Estimate Std. Error
theta1 0.1979697 0.003732584
theta2 0.2914936 0.088761680

Quasi likelihood analysis for volatility

• An m-dimensional Itô process satisfying the stochastic differential equation

$$dY_t = b_t dt + \sigma(X_t, \theta) dw_t, \quad t \in [0, T], \quad (4)$$

- \bullet w: an r-dimensional standard Wiener process
- b and X: progressively measurable processes with values in \mathbb{R}^m and \mathbb{R}^d , respectively. b is unobservable, completely unknown.
- σ : an $\mathbb{R}^{\mathsf{m}} \otimes \mathbb{R}^{r}$ -valued function defined on $\mathbb{R}^{\mathsf{d}} \times \Theta$,
- Θ : a bounded domain in \mathbb{R}^p
- θ^* denotes the true value of θ .

• Data:

$$\mathbf{Z}_n = (X_{t_j}, Y_{t_j})_{0 \leq j \leq n} ext{ with } t_j = jh$$

for $h = h_n = T/n$. T is fixed.

- For example, when $b_t = b(Y_t, t)$ and $X_t = (Y_t, t)$, Y is the time-inhomogeneous diffusion process.
- Ergodicity is not assumed.
- Remark. Even if the drift coefficient b_t is parametrically modeled, it is known that, under a finite time horizon, consistent estimatimation of the drift parameter is impossible. So, we are interested in the parameter θ in the diffusion coefficient only.

Quasi likelihood

• Quasi log likelihood function:

$$\begin{split} \mathbb{H}_{n}(\theta) &= -\frac{n\mathsf{m}}{2} \log(2\pi h) - \frac{1}{2} \sum_{j=1}^{n} \left\{ \log \det S(X_{t_{j-1}}, \theta) \right. \\ &+ h^{-1} S^{-1} (X_{t_{j-1}}, \theta) [(\Delta_{j} Y)^{\otimes 2}] \right\}, \\ S &= \sigma^{\otimes 2} = \sigma \sigma^{\star}, \\ \Delta_{j} Y &= Y_{t_{j}} - Y_{t_{j-1}}. \end{split}$$

• $\Gamma(\theta^{*}) &= (\Gamma^{ij}(\theta^{*}))_{i,j=1,\dots,\mathsf{p}} \text{ with } \\ \Gamma^{ij}(\theta^{*}) &= \frac{1}{2T} \int_{0}^{T} \operatorname{Tr} \left((\partial_{\theta_{i}} S) S^{-1} (\partial_{\theta_{j}} S) S^{-1} (X_{t}, \theta^{*}) \right) dt \end{split}$

QLA estimators

• $\hat{\theta}_n^M$: the quasi-maximum likelihood estimator (QMLE) defined as

$$\mathbb{H}_{n}(\hat{\theta}_{n}^{M}) = \sup_{\boldsymbol{\theta}\in\overline{\Theta}} \mathbb{H}_{n}(\boldsymbol{\theta}).$$
(5)

• $\hat{\theta}_n^B$: the quasi-Bayesian estimator (QBE) for a prior density $\pi: \Theta \to \mathbb{R}_+$ is defined by

$$\hat{\theta}_n^B = \left(\int_{\Theta} \exp(\mathbb{H}_n(\theta))\pi(\theta)d\theta\right)^{-1} \int_{\Theta} \theta \exp(\mathbb{H}_n(\theta))\pi(\theta)d\theta.$$
(6)

We assume that π is continuous and $0 < \inf_{\theta \in \Theta} \pi(\theta) \le \sup_{\theta \in \Theta} \pi(\theta) < \infty$.

 \bullet An *m*-dimensional Itô process satisfying the stochastic differential equation

$$dY_t = b_t dt + \sigma(X_t, heta) dw_t, \quad t \in [0,T],$$

• Data: $\mathbf{Z}_n = (X_{t_j}, Y_{t_j})_{0 \le j \le n}$ with $t_j = jh$ for $h = h_n = T/n$.

Asymptotic properties of the QLA estimators

- Non-ergodic statistics
- Reference. Uchida and Yoshida SPA2013

Remark

- YUIMA qmle returns some estimated value of θ_2 even when the time horizon nh is not sufficiently large.
- The user should be careful to use such estimated value.
- There is no theoretical backing unless all condition are satisfied.
- If the process is not ergodic, then any long-term observation cannot ensure the correctness of the estimation of the drift parameter.

MENU

- **1.** QMLE and QBE
- **2.** Quick introduction to the QLA theory
- **3.** Applications of the Quasi-Likelihood Analysis
- 4. Slightly deeper discussion (omitted)

Quasi likelihood analysis (QLA)

- Θ : a bounded open set in \mathbb{R}^p , the parameter space
- $T \in \mathbb{T} \ (\mathbb{T} = \mathbb{Z}_+, \mathbb{R}_+, ...)$
- $\mathbb{H}_T : \Omega \times \Theta \to \mathbb{R}$: a random field
- θ^* : "true" value of θ
- $a_T \in \operatorname{GL}(\mathbb{R}^p), a_T \to 0 \ (T \to \infty)$
- $ullet \mathbb{U}_T = \{ u \in \mathbb{R}^{\mathsf{p}}; \ heta^* + a_T u \in \Theta \}$

 $egin{aligned} ext{Quasi likelihood ratio process} \ \mathbb{Z}_T(u) &= \expig\{\mathbb{H}_T(heta^* + a_T u) - \mathbb{H}_T(heta^*)ig\} \end{aligned}$

Locally asymptotically quadratic random field

Locally Asymptotically Quadratic (LAQ)

$$\mathbb{Z}_T(u) = \exp\left(\Delta_T[u] - rac{1}{2}\Gamma[u^{\otimes 2}] + r_T(u)
ight)$$

- Δ_T : a random vector (linear form)
- Γ : a random bilinear form
- $r_T(u) \rightarrow^p 0$ as $T \rightarrow \infty$
- \bullet Notation.

$$egin{aligned} v[u] &= \sum_i v_i u^i,\ M[u^{\otimes 2}] &= \sum_{i,j} M_{i,j} u^i u^j \ ext{for } v &= (v_i), \, M = (M_{i,j}) ext{ and } u = (u^i). \end{aligned}$$

• Since \mathbb{Z}_T is exponential of a nearly quadratic function, we expect fast decay of \mathbb{Z}_T

Polynomial type large deviation (PLD) inequality: "tail of \mathbb{Z}_T is short"

38

Polynomial type large deviation (PLD) inequality

$$ullet V_T(r) = \{ u \in \mathbb{U}_T; \ |u| \geq r \}$$

• For $\exists \alpha \in (1,2), \forall L > 0, \exists C_L$ such that

$$Pigg[\sup_{u\in V_T(r)} \mathbb{Z}_T(u) \geq e^{-r^lpha} igg] \leq rac{C_L}{r^L} \quad (r>0, \ T\in \mathbb{T})$$

NB:

$$\mathbb{Z}_T(u) = \exp\left\{\mathbb{H}_T(heta^* + a_T u) - \mathbb{H}_T(heta^*)
ight\}$$

• LAQ + nondegeneracy of χ_0 implies PLD (Y 2011AISM), where χ_0 is

Key index χ_0

• $b_T = \{\lambda_{\min}(a'_T a_T)\}^{-1} (\text{ex. } b_T = T)$

•
$$\mathbb{Y}_T(\theta) = \frac{1}{b_T} (\mathbb{H}_T(\theta) - \mathbb{H}_T(\theta^*))$$

- $\mathbb{Y}_T(\theta) \to^{L^p} \mathbb{Y}(\theta) \ (T \to \infty)$ (and slightly more)
- Assumption. \exists a positive r.v. χ_0 and a positive constant ρ s.t. $\mathbb{Y}(\theta) = \mathbb{Y}(\theta) - \mathbb{Y}(\theta^*) \leq -\chi_0 |\theta - \theta^*|^{\rho}$
- Nondegeneracy of the key index: for $\forall L > 0, \exists C_L,$

$$P[\chi_0 \leq r^{-1}] \leq rac{C_L}{r^L} \quad (r>0)$$

• Nondegeneracy of the key index \Rightarrow PLD inequality

L^p -boundedness of the quasi likelihood estimators

$$\bullet \, \hat{u}_T^M := a_T^{-1} (\hat{\theta}_T^M - \theta^*)$$

• Tail probability

$$P[|\hat{u}_T^M| \geq r] \leq Pigg[\sup_{u \in V_T(r)} \mathbb{Z}_T(u) \geq 1 igg] \ \leq \ rac{C_L}{r^L}$$

In particular, $\sup_T \|\hat{u}_T\|_p < \infty$.

• Similarly, for $\hat{u}_T^B = a_T^{-1}(\hat{\theta}_T^B - \theta^*)$, $P[|\hat{u}_T^B| \ge r] \le \frac{C_L}{r^L}$

In particular, $\sup_T \|\hat{u}_T^B\|_p < \infty$.

Scheme of the quasi likelihood analysis (QLA) based on Ibragimov-Has'minskii and Kutoyants program

$$egin{cases} & \cdot \operatorname{LAQ} \quad \mathbb{Z}_T(u) = \exp\left(\Delta_T[u] - rac{1}{2}\Gamma[u^{\otimes 2}] + r_T(u)
ight) \ & \cdot \operatorname{Limit} ext{ theorem } (\Delta_T, \Gamma) o^d (\Delta, \Gamma) \ & \cdot \operatorname{PLD} ext{ for } \mathbb{Z}_T(u) [\Leftarrow ext{ nondegeneracy of } \chi_0] \end{cases}$$

$$\begin{cases} \cdot \mathbb{Z}_T \to^d \mathbb{Z} = \exp\left(\Delta[u] - \frac{1}{2}\Gamma[u^{\otimes 2}]\right) & \text{in } \hat{C} \\ \cdot \hat{u}_T^M = a_T^{-1}(\hat{\theta}_T^M - \theta^*), \ \hat{u}_T^B = a_T^{-1}(\hat{\theta}_T^B - \theta^*) \to^d \Gamma^{-1}\Delta \\ \cdot L^p \text{-boundedness of } \{\hat{u}_T^M\}_T \text{ and } \{\hat{u}_T^B\}_T \end{cases}$$

where $\hat{C} = \{f \in C(\mathbb{R}^p); \lim_{|u| \to \infty} |f(u)| = 0\}$

Theory of Quasi Likelihood Analysis

diffusion, jump diffusion, point process, asymptotic expansion, model selection, sparse estimation

in summary: Scheme of the QLA

• LAQ
$$\mathbb{Z}_T(u) = \exp\left(\Delta_T[u] - \frac{1}{2}\Gamma[u^{\otimes 2}] + r_T(u)\right)$$

+ Moment conditions \Rightarrow PLD

• LAQ+Limit theorem $(\Delta_T, \Gamma) \rightarrow^d (\Delta, \Gamma) + \text{PLD}$ \Rightarrow Convergence of the random field

 $\mathbb{Z}_{T}
ightarrow^{d} \mathbb{Z} \quad ext{in } \hat{C} = \{f: \mathbb{R}^{\mathsf{p}}
ightarrow \mathbb{R}, \ \lim_{|u|
ightarrow \infty} |f(u)| = 0\}$

where
$$\mathbb{Z}(u) = \exp\left(\Delta[u] - rac{1}{2}\Gamma[u^{\otimes 2}]
ight)$$

• Consequently

$$\hat{u}_T^M, \; \hat{u}_T^B o^d \; \Gamma^{-1} \Delta \ + \; L^p ext{-boundedness of } \{ \hat{u}_T^M \}_T ext{ and } \{ \hat{u}_T^B \}_T.$$

Quasi Likelihood Analysis: Summary

QLA: a systematic inferential framework \ni

- \bullet (quasi) likelihood random field
- quasi MLE
- quasi Bayesian estimator
- (polynomial type) large deviation estimates for the quasi likelihood random field
- tail probability estimate for the QLA estimators, convergence of moments.

<u>NB</u>

• QLA does not depend on a particular structure of the model.

Recent applications of the Quasi Likelihood Analysis

- sampled diffusion processes (Y AISM2011, Uchida and Y SPA2013)
- jump-diffusion processes (Ogihara and Y SISP2011)
- non-synchronous samapling (Ogihara and Y SPA2014)
- model selection (Uchida AISM2010, Uchida and Y 2016)
- asymptotic expansion (Y 2016)
- point processes (Clinet and Y SPA2016, Muni Toke and Y QF2016, QF2019?, Ogihara and Y arXiv2015)
- sparse estimation, penalized methods (Umezu-Shimizu-Masuda-Ninomiya, Kinoshita-Y, Suzuki-Y)