Simulation of diffusion processes *

Hiroki Masuda

Kyushu University
JST CREST

YUIMA Summer School 2019
Brixen-Bressanone, Italy
June 25-28, 2019

- Diffusion, widely used in: finance, biology, life sciences, ecology, epidemiology, microelectronics, engineering, mechanics, chemistry, ...

- This class: a concise overview of approximate generation of diffusions.

Contents

(1) Why approximation (discretization)?
(2) Euler-Maruyama scheme

E- Kloeden, P. E. and Platen, E. (1992).
Numerical solution of stochastic differential equations, volume 23 of Applications of Mathematics (New York).
Springer-Verlag, Berlin.
囲 Maruyama, G. (1955).
Continuous Markov processes and stochastic equations.
Rend. Circ. Mat. Palermo (2), 4:48-90.
(1) Why approximation (discretization)?

(2) Euler-Maruyama scheme

Diffusion process

- A solution to the d-dimensional stochastic differential equation (SDE):

$$
\begin{equation*}
d X_{t}=a\left(t, X_{t}\right) d t+b\left(t, X_{t}\right) d w_{t}, \quad t \in \mathbb{R}_{+}:=[0, \infty), \tag{1}
\end{equation*}
$$

or in the integral form

$$
X_{t}=X_{s}+\int_{s}^{t} a\left(u, X_{u}\right) d u+\int_{s}^{t} b\left(u, X_{u}\right) d w_{u}, \quad t>s
$$

User's input for simulating $X=\left(X_{t}\right)$ on computer:

- Initial variable $X_{0} \in \mathbb{R}^{d}$, possibly random.
- r-dimensional standard Wiener process $w=\left(w^{j}\right)_{j=1}^{r}$, independent of X_{0}
- Drift coefficient $a(t, x)=\left\{a_{k}(t, x)\right\}_{k \leq d}: \mathbb{R}_{+} \times \mathbb{R}^{d} \rightarrow \mathbb{R}^{d}$
- Diffusion coefficient $b(t, x)=\left\{b_{k l}(t, x)\right\}_{k \leq d ; l \leq r}: \mathbb{R}_{+} \times \mathbb{R}^{d} \rightarrow \mathbb{R}^{d} \otimes \mathbb{R}^{r}$

Coefficients

$$
d X_{t}=a\left(t, X_{t}\right) d t+b\left(t, X_{t}\right) d w_{t}
$$

- The coefficients are smooth in t and globally Lipschitz in x :

$$
\begin{align*}
& \exists C>0, \forall t \in \mathbb{R}_{+}, \forall x_{1}, x_{2} \in \mathbb{R}^{d} \\
& \quad\left|a\left(t, x_{1}\right)-a\left(t, x_{2}\right)\right|+\left|b\left(t, x_{1}\right)-b\left(t, x_{2}\right)\right| \leq C\left|x_{1}-x_{2}\right| \tag{2}
\end{align*}
$$

- (2) entails the linear-growth property if $\sup _{t}|a \vee b|(t, 0)<\infty$:

$$
\begin{aligned}
& \exists C^{\prime}>0, \forall t \in \mathbb{R}_{+}, \forall x \in \mathbb{R}^{d} \\
& \quad|a(t, x)|+|b(t, x)| \leq C^{\prime}(1+|x|) .
\end{aligned}
$$

Then (1) admits a unique non-explosive continuous Markov solution.

- Even for the ODE

$$
d X_{t}=a\left(t, X_{t}\right) d t, \quad X_{0}=x_{0},
$$

one needs care:

- Non-linear-growth, explosive (in finite time) example:

$$
d x_{t}=x_{t}^{2} d t, \quad x_{0}>0
$$

the solution being $x_{t}=x_{0} /\left(1-x_{0} t\right)$.

- Non-Lipschitz, non-unique example:

$$
d x_{t}=\left|x_{t}\right|^{\alpha} \quad(0<\alpha<1), \quad x_{0}=0
$$

and for any $t_{0}>0$, the process given by $x_{t}=0\left(t \in\left[0, t_{0}\right]\right)$ and $x_{t}=\left\{(1-\alpha)\left(t-t_{0}\right)\right\}^{1 /(1-\alpha)}\left(t>t_{0}\right)$ is a solution.

Discrete-time sample

$$
\begin{gathered}
d X_{t}=a\left(t, X_{t}\right) d t+b\left(t, X_{t}\right) d w_{t} \\
X_{t}=X_{s}+\int_{s}^{t} a\left(u, X_{u}\right) d u+\int_{s}^{t} b\left(u, X_{u}\right) d w_{u}, \quad t>s
\end{gathered}
$$

- Our primary interest here is to generate a discrete-time sample

$$
\begin{equation*}
\boldsymbol{X}_{n}:=\left(X_{t_{0}}, X_{t_{1}}, \ldots, X_{t_{n}}\right), \tag{3}
\end{equation*}
$$

where $t_{j}=j h$ with a sampling stepsize $h>0$.

- If we can generate X_{h} given any $h>0$ and $X_{0}=x_{0}$:

$$
X_{h}=x_{0}+\int_{0}^{h} a\left(s, X_{s}\right) d s+\int_{0}^{h} b\left(s, X_{s}\right) d w_{s},
$$

then, by the Markov nature of X, we may inductively generate (3).
Unfortunately, the SDE (1) cannot be explicitly solved except for some particular cases, thus necessitating some approximation.

Particular example: Gaussian additive process

- For a non-random function (a, b) of time, smooth enough, the process

$$
X_{t}=X_{0}+\int_{0}^{t} a_{s} d s+\int_{0}^{t} b_{s} d w_{s}
$$

defines a Gaussian Markov process with independent increments:

$$
X_{t}-X_{s}=\int_{s}^{t} a_{u} d u+\int_{s}^{t} b_{u} d w_{u} \sim N\left(\int_{s}^{t} a_{u} d u, \int_{s}^{t} b_{u}^{\otimes 2} d u\right),
$$

where $b_{u}^{\otimes 2}:=b_{u} b_{u}^{\top} \in \mathbb{R}^{d} \otimes \mathbb{R}^{d}$.

- The Gaussianity of the Wiener integral: roughly,

$$
\begin{aligned}
\int_{0}^{h} b_{u} d w_{u} & \approx \sum_{k=1}^{m} b_{(k-1) h / m}\left(w_{k h / m}-w_{(k-1) h / m}\right) \\
& \stackrel{\mathcal{L}}{\approx} N\left(0, \frac{h}{m} \sum_{k=1}^{m} b_{(k-1) h / m}^{\otimes 2}\right) \stackrel{\mathcal{L}}{\approx} N\left(0, \int_{0}^{h} b_{u}^{\otimes 2} d u\right), \quad m \rightarrow \infty
\end{aligned}
$$

Particular example: Gaussian Ornstein-Uhlenbeck process

- Univariate continuous-time $\operatorname{AR}(1)(\lambda \in \mathbb{R}, \sigma>0)$:

$$
d X_{t}=-\lambda X_{t} d t+\sigma d w_{t}
$$

admits an explicit solution (by Itô's formula)

$$
X_{t}=e^{-\lambda t} X_{0}+\sigma \int_{0}^{t} e^{-\lambda(t-s)} d w_{s}
$$

- Exact simulation is simple enough:

$$
\begin{aligned}
\mathcal{L}\left(X_{h} \mid X_{0}=x_{0}\right) & =N\left(e^{-\lambda t} x_{0}, \sigma^{2} \int_{0}^{h} e^{-2 \lambda(h-s)} d s\right) \\
& =N\left(e^{-\lambda t} x_{0}, \frac{\sigma^{2}}{2 \lambda}\left(1-e^{-2 \lambda h}\right)\right) .
\end{aligned}
$$

- More generally, (λ, σ) could be time-varying and random:

$$
X_{t}=\exp \left(-\int_{s}^{t} \lambda_{u} d u\right) X_{s}+\int_{s}^{t} \exp \left(-\int_{u}^{t} \lambda_{v} d v\right) \sigma_{u} d w_{u}
$$

(1) Why approximation (discretization)?

(2) Euler-Maruyama scheme

Discretization formula

Needs to approximate the time (Riemann) and stochastic integrals:

$$
X_{t}=X_{s}+\int_{s}^{t} a\left(u, X_{u}\right) d u+\int_{s}^{t} b\left(u, X_{u}\right) d w_{u}
$$

- Euler(-Maruyama) scheme with discretization stepsize $\Delta>0$:

$$
\begin{aligned}
\int_{t}^{t+\Delta} a\left(s, X_{s}\right) d s & \approx \int_{t}^{t+\Delta} a\left(t, X_{t}\right) d s=a\left(t, X_{t}\right) \Delta \\
\int_{t}^{t+\Delta} b\left(s, X_{s}\right) d w_{s} & \approx \int_{t}^{t+\Delta} b\left(t, X_{t}\right) d w_{s}=b\left(t, X_{t}\right)\left(w_{t+\Delta}-w_{t}\right)
\end{aligned}
$$

- Typically, the approximation errors are $O_{p}\left(\Delta^{3 / 2}\right)$ and $O_{p}(\Delta)$ for $\Delta \rightarrow 0$, respectively.

Euler-approximation process (càdlàg and piecewise constant):

$$
\begin{array}{rlr}
X_{t}^{\Delta} & :=X_{\Delta[t / \Delta]} \\
& = \begin{cases}X_{0} & t \in[0, \Delta), \\
X_{(j-1) \Delta}^{\Delta}+a\left((j-1) \Delta, X_{(j-1) \Delta}^{\Delta}\right) \Delta & \\
\quad+b\left((j-1) \Delta, X_{(j-1) \Delta}^{\Delta}\right)\left(w_{j \Delta}-w_{(j-1) \Delta}\right) & t \in[(j-1) \Delta, j \Delta) .\end{cases} \tag{4}
\end{array}
$$

YUIMA internally runs the steps through simulate function:

(1) generates a finest-approximating process X^{Δ},
(2) subsamples a thinned data $X^{k \Delta}$ for an integer $k \geq 2$,
(0) obtains an approximate $X_{0}, X_{h}, X_{2 h}, \ldots, X_{n h}$, with stepsize $h:=k \Delta$.

- Euler scheme (4) approximately embodies strong solution to (1):

$$
X_{N \Delta} \approx X_{N \Delta}^{\Delta}=: F_{N, \Delta}\left(X_{0},\left\{w_{j \Delta}-w_{(j-1) \Delta}\right\}_{j=1}^{N}\right)
$$

for some $F_{N, \Delta}$;

- X_{Δ}^{Δ} is a functional of X_{0} and w_{Δ} (with time variable t),
- $X_{2 \Delta}^{\Delta}$ is a functional of X_{0} and $\left\{w_{\Delta}, w_{2 \Delta}-w_{\Delta}\right\}$,
- ...
- $X_{N \Delta}^{\Delta}$ is a functional of X_{0} and $\left\{w_{\Delta}, w_{2 \Delta}-w_{\Delta}, \ldots, w_{N \Delta}-w_{(N-1) \Delta}\right\}$.
- polygonal-line approximation [Maruyama, 1955].
- May be useful when arguing weak convergence of processes.

- Another popular improvement is the Milstein scheme.

Approximation errors

$$
d X_{t}=a\left(t, X_{t}\right) d t+b\left(t, X_{t}\right) d w_{t}
$$

- X^{Δ} is a strong approximation of order $\gamma>0$ if

$$
\mathbb{E}\left(\left|X_{t}^{\Delta}-X_{t}\right|\right) \leq C_{t} \Delta^{\gamma}
$$

- Given an f smooth enough, X^{Δ} is a weak approximation of order $\beta>0$ if

$$
\left|\mathbb{E}\left\{f\left(X_{t}\right)\right\}-\mathbb{E}\left\{f\left(X_{t}^{\Delta}\right)\right\}\right| \leq C_{t} \Delta^{\beta}
$$

- As for the Euler scheme, $\gamma=0.5$ and $\beta=1$ (not for free!).
- As a matter of fact, the locally uniform approximation does hold:

$$
\forall T>0, \quad \lim _{\Delta \rightarrow 0} \mathbb{E}\left(\sup _{t \in[0, T]}\left|X_{t}-X_{t}^{\Delta}\right|\right)=0
$$

- e.g. [Kloeden and Platen, 1992, theorem 10.2.2]

Concluding remarks

$$
X_{t}=X_{s}+\int_{s}^{t} a\left(u, X_{u}\right) d u+\int_{s}^{t} b\left(u, X_{u}\right) d w_{u}, \quad t>s
$$

$$
\begin{array}{rlr}
X_{t}^{\Delta} & :=X_{\Delta[t / \Delta]} \\
& = \begin{cases}X_{0} & t \in[0, \Delta) \\
X_{(j-1) \Delta}^{\Delta}+a\left((j-1) \Delta, X_{(j-1) \Delta}^{\Delta}\right) \Delta & \\
\quad+b\left((j-1) \Delta, X_{(j-1) \Delta}^{\Delta}\right)\left(w_{j \Delta}-w_{(j-1) \Delta}\right) & t \in[(j-1) \Delta, j \Delta)\end{cases}
\end{array}
$$

- YUIMA can flexibly generate the Euler-approximation process X^{Δ}.
- Theoretical error bounds: the smaller Δ is, the better the approximations.
- Nevertheless, we need to take care about regularity of the coefficients!

