Lecture 15
 Asymptotic expansion methods

Nakahiro Yoshida
Graduate School of Mathematical Sciences, University of Tokyo
Japan Science and Technology Agency CREST
Institute of Statistical Mathematics

Tokyo April 2019

Asymptotic Expansion

We will discuss:

- Introduction to asymptotic expansion
- Small diffusion and asymptotic expansion
- Asymptotic expansion by YUIMA: pricing options

Introduction to asymptotic expansion

What is asymptotic expansion?

- central limit theorem $Z_{n} \rightarrow^{d} N(0,1) \Leftrightarrow$

$$
E\left[f\left(Z_{n}\right)\right]-\int f(z) \phi(z) d z \rightarrow 0 \quad(n \rightarrow \infty)
$$

for $f \in C_{b}$, where ϕ is a normal density.

- asymptotic expansion (first order)

$$
E\left[f\left(Z_{n}\right)\right]-\int f(z)\left\{\phi(z)+n^{-1 / 2} p_{1}(z)\right\} d z=o\left(n^{-1 / 2}\right)
$$

uniformly in a class of measurable functions f.

Why asymptotic expansion?

Asymptotic expansion is one of the fundamentals in

- higher-order inferential theory
- prediction
- model selection, information criteria
- bootstrap and resampling methods
- information geometry
- stochastic numerical analysis

Some references on the asymptotic expansion

- independent sequences
- Bhattacharya and Ranga Rao (1986)
- Markov chain
- Götze and Hipp (ZW1983, AS1994)
- semimartngales
- Mykland (AS1992) for differentiable f
- Y (PTRF1997, 2004)
- Kusuoka and Y (PTRF2000)
- martingale expansion around a mixed normal limit Y (SPA2013, arXiv2012) (discussed in this talk)
- an exposition
- Y (Chap 2 of "Rabi N. Bhattacharya", Springer 2016)

Regularity of the distribution

- Bernoulli trials $X_{j}(n \in \mathbb{N})$ independent,

$$
P\left[X_{j}=-1\right]=P\left[X_{j}=1\right]=1 / 2
$$

- F_{n} : the distribution function of $n^{-1 / 2} \sum_{j=1}^{n} X_{j}$
- For even $n \in \mathbb{N}$,

$$
\begin{aligned}
F_{n}(0)-F_{n}(0-) & =P\left[\sum_{j=1}^{n} X_{j}=0\right] \\
& =\binom{n}{n / 2}\left(\frac{1}{2}\right)^{n} \sim C n^{-1 / 2}
\end{aligned}
$$

- For any sequence of continuous functions Φ_{n},

$$
\sup _{x \in \mathbb{R}}\left|F_{n}(x)-\Phi_{n}(x)\right| \geq c n^{-1 / 2}
$$

- Regularity of the distribution is essential.

Regularity of the distribution

- Asymptotic expansion is valid for

$$
Z_{n}=n^{-1 / 2} \sum_{j=1}^{n}\left(X_{j}-E\left[X_{j}\right]\right)
$$

for i.i.d. sequence if $\mathcal{L}\left\{X_{j}\right\}$ has absolutely continuous part.

- Malliavin calculus ensures existence of density
- Natural to use the Malliavin calculus for functionals of semimartinagales

Small diffusion and asymptotic expansion

What we want to do

- pricing option
- Black-Scholes model

$$
\begin{aligned}
d X_{t}= & 0.1 X_{t} d t+\epsilon X_{t} d w_{t}, \quad X_{0}=100 \\
& \epsilon=0.5, \quad K=100
\end{aligned}
$$

- Compute the price of Asian Call Option ($r=0$)

$$
C=E\left[\left(\frac{1}{T} \int_{0}^{T} X_{t} d t-K\right)^{+}\right]
$$

- Monte Carlo method (time-consuming/iaccurate)
- asymptotic expansion (fast and fairly accurate)

$$
C \sim c_{0}+\epsilon c_{1}+\epsilon^{2} c_{2}+\cdots+\epsilon^{k} c_{k} \quad(\epsilon \downarrow 0)
$$

Small diffusion: a setting

- a diffusion process $X^{\epsilon}=\left(X_{t}^{\epsilon}\right)_{t \in[0, T]}$ satisfying

$$
\begin{align*}
d X_{t}^{\epsilon} & =V_{0}\left(X_{t}^{\epsilon}, \epsilon\right) d t+V\left(X_{t}^{\epsilon}, \epsilon\right) d w_{t}, \quad t \in[0, T] \\
X_{0}^{\epsilon} & =x_{0}, \tag{1}
\end{align*}
$$

- x_{0} is a given vector,
- $V_{0} \in C_{\beta}^{\infty}\left(\mathbb{R}^{d} \times[0,1], \mathbb{R}^{d}\right)$,
$\bullet V=\left[V_{1}, \ldots, V_{r}\right] \in C_{\beta}^{\infty}\left(\mathbb{R}^{d} \times[0,1], \mathbb{R}^{d} \otimes \mathbb{R}^{r}\right)$,
- $w_{t}=\left[w_{t}^{1}, \ldots w_{t}^{r}\right]^{\prime}$ is an r-dimensional standard Wiener process.

Functional of $X^{\epsilon}=\left(X_{t}^{\epsilon}\right)$

Many statistical problems of the perturbed system (1) entail a functional of the form

$$
\begin{equation*}
F^{\epsilon}=\sum_{\alpha=0}^{r} \int_{0}^{T} f_{\alpha}\left(X_{t}^{\epsilon}, \epsilon\right) d w_{t}^{\alpha}+F\left(X_{T}^{\epsilon}, \epsilon\right) \tag{2}
\end{equation*}
$$

Here

- $F, f_{\alpha} \in C_{p}^{\infty}\left(\mathbb{R}^{d} \times[0,1], \mathbb{R}^{k}\right)(\alpha=0,1, \ldots, r)$ and $w_{t}^{0}=$ t by convention.
- Our setting includes time-dependent stochastic differential equations and time-dependent functions f_{α} since we can always enlarge X_{t} to have the argument t if necessary.

Example of the functional $\boldsymbol{F}^{\boldsymbol{\epsilon}}$

- the price X_{t}^{ϵ} of a security
- the Black-Scholes economy:

$$
\begin{align*}
d X_{t}^{\epsilon} & =c X_{t}^{\epsilon} d t+\epsilon X_{t}^{\epsilon} d w_{t}, \quad t \in[0, T] \\
X_{0}^{\epsilon} & =x_{0} \tag{3}
\end{align*}
$$

- A computational problem occurs when evaluating the average option as the expected value

$$
E\left[\max \left\{\frac{1}{T} \int_{0}^{T} X_{t}^{\epsilon} d t-K, 0\right\}\right]
$$

where K is a constant.

- The value of the option is given by composition of the smooth functional $F^{\epsilon}=\int_{0}^{T} X_{t}^{\epsilon} d t / T$ and the irregular function $\mathbf{f}(x)=\max \{x, 0\}$.

Go back to the general small diffusion model

- A diffusion process $X^{\epsilon}=\left(X_{t}^{\epsilon}\right)_{t \in[0, T]}$ and a functional $\boldsymbol{F}^{\boldsymbol{\epsilon}}$:

$$
\left\{\begin{aligned}
d X_{t}^{\epsilon} & =V_{0}\left(X_{t}^{\epsilon}, \epsilon\right) d t+V\left(X_{t}^{\epsilon}, \epsilon\right) d w_{t}, \quad t \in[0, T] \\
X_{0}^{\epsilon} & =x_{0}
\end{aligned}\right.
$$

$$
F^{\epsilon}=\sum_{\alpha=0}^{r} \int_{0}^{T} f_{\alpha}\left(X_{t}^{\epsilon}, \epsilon\right) d w_{t}^{\alpha}+F\left(X_{T}^{\epsilon}, \epsilon\right)
$$

Deterministic limit condition

- Here we assume the deterministic limit condition

$$
\begin{aligned}
& {[\mathrm{DL} 1] V_{\alpha}(x, 0) \equiv 0 \text { and } f_{\alpha}(x, 0) \equiv 0 \text { for } \alpha=} \\
& 1, \ldots, r .
\end{aligned}
$$

- Under Condition [DL1], the system X^{0} in the limit is deterministic, described by the ordinary differential equation

$$
\begin{align*}
d X_{t}^{0} & =V_{0}\left(X_{t}^{0}, 0\right) d t, \quad t \in[0, T] \\
X_{0}^{0} & =x_{0} \tag{4}
\end{align*}
$$

- A smooth eversion of X^{ϵ} exists: w.p.1, the mappring $(x, \epsilon) \mapsto X^{\epsilon}(t, x)$ is smooth.

Derivatives of $\boldsymbol{X}_{\boldsymbol{t}}^{\boldsymbol{\epsilon}}$

- $D_{t}^{0}=\left.\partial_{\epsilon} X_{t}^{\epsilon}\right|_{\epsilon=0}$:

$$
\begin{aligned}
d D_{t}^{0}= & \partial_{x} V_{0}\left(X_{t}^{0}, 0\right)\left[D_{t}^{0}\right] d t+\partial_{\epsilon} V_{0}\left(X_{t}^{0}, 0\right) d t \\
& +\partial_{\epsilon} V\left(X_{t}^{0}, 0\right) d w_{t}, \quad t \in[0, T] \\
D_{0}^{0}= & 0
\end{aligned}
$$

- D_{t}^{0} is a Gaussian process

$$
D_{t}^{0}=Y_{t} \int_{0}^{t} Y_{s}^{-1}\left\{\partial_{\epsilon} V_{0}\left(X_{s}^{0}, 0\right) d s+\sum_{\alpha=1}^{r} \partial_{\epsilon} V_{\alpha}\left(X_{s}^{0}, 0\right) d w_{s}^{\alpha}\right\}
$$

where $G L(d)$-valued process $Y=\left(Y_{t}\right)$ is a unique solution to the ODE

$$
\frac{d Y_{t}}{d t}=\partial_{x} V_{0}\left(X_{t}^{0}, 0\right) Y_{t}, \quad Y_{0}=I_{d}
$$

- The second derivative $E_{t}^{0}=\left.\partial_{\epsilon}^{2} X_{t}^{\epsilon}\right|_{\epsilon=0}$ is a 2 nd order polynomial of w_{t}.
- Similarly, the higher-order derivatives $\partial_{\epsilon}^{i} X_{t}^{\epsilon}$ are a solution of a higher-order SDE, and represented by multiple Wiener integrals

$$
\int \cdots \iint * * * * * d w_{t_{1}}^{\alpha_{1}} d w_{t_{2}}^{\alpha_{2}} \cdots d w_{t_{n}}^{\alpha_{n}}
$$

- On the other hand, the derivatives of the functional

$$
F^{\epsilon}=\sum_{\alpha=0}^{r} \int_{0}^{T} f_{\alpha}\left(X_{t}^{\epsilon}, \epsilon\right) d w_{t}^{\alpha}+F\left(X_{T}^{\epsilon}, \epsilon\right)
$$

are represented by $\partial_{\epsilon}^{i} X_{t}^{\epsilon}(i=0,1, \ldots)$.

Smooth stochastic expansion of $\boldsymbol{F}^{\boldsymbol{\epsilon}}$

- Expand $\boldsymbol{F}^{\boldsymbol{\epsilon}}$ around $\boldsymbol{\epsilon}=\mathbf{0}$.
- We always take a smooth version of the solution X^{ϵ} : with probability 1 , the mapping $(x, \epsilon) \mapsto X^{\epsilon}(t, x)$ is smooth.
- Apply the Taylor formula to obtain $F^{\epsilon}=F^{0}+\epsilon F^{[1]}+\epsilon^{2} F^{[2]}+\cdots+\epsilon^{J-1} F^{[J-1]}+\epsilon^{J} \boldsymbol{R}^{[J]}(\epsilon)(5)$ with

$$
R^{[J]}(\epsilon)=\left.\frac{1}{(J-1)!} \int_{0}^{1}(1-s)^{J-1} \partial_{\epsilon}^{J} F^{\epsilon}\right|_{\epsilon=s \epsilon} d s
$$

- Here $F^{[j]}=\left.(j!)^{-1} \partial_{\epsilon}^{j} F^{\epsilon}\right|_{\epsilon=0}$ and $\partial_{\epsilon}^{j} F^{\epsilon}$ are expressed by $\partial_{x}^{\nu} \partial_{\epsilon}^{n} f_{\alpha}, \quad \partial_{x}^{\nu} \partial_{\epsilon}^{n} F$ and $\partial_{\epsilon}^{n} X_{t}^{\epsilon}$.
Everything is a "polynomial of w_{α} ".

Smooth stochastic expansion of $\boldsymbol{F}^{\epsilon}$

- Since

$$
\begin{equation*}
F^{0}=\int_{0}^{T} f_{0}\left(X_{t}^{0}, 0\right) d t+F\left(X_{T}^{0}, 0\right) \tag{6}
\end{equation*}
$$

is a deterministic number, it is more natural to deal with the normalized functional

$$
\tilde{F}^{\epsilon}=\epsilon^{-1}\left(F^{\epsilon}-F^{0}\right)
$$

- Then $\tilde{\boldsymbol{F}}^{\epsilon}$ admits an expansion corresponding to (5) $\tilde{\boldsymbol{F}}^{\boldsymbol{\epsilon}}=\tilde{\boldsymbol{F}}^{[0]}+\boldsymbol{\epsilon} \tilde{\boldsymbol{F}}^{[1]}+\boldsymbol{\epsilon}^{2} \tilde{\boldsymbol{F}}^{[2]}+\cdots+\boldsymbol{\epsilon}^{\boldsymbol{J}-1} \tilde{\boldsymbol{F}}^{[J-1]}+\boldsymbol{\epsilon}^{\boldsymbol{J}} \tilde{\boldsymbol{R}}^{[J]}(\boldsymbol{\epsilon})_{(2)}$ where $\tilde{F}^{[j]}=F^{[j+1]}$ and $\tilde{R}^{[J]}(\epsilon)=R^{[J+1]}(\epsilon)$.
$\tilde{\boldsymbol{F}}^{\epsilon}=\tilde{\boldsymbol{F}}^{[0]}+\epsilon \tilde{\boldsymbol{F}}^{[1]}+\epsilon^{2} \tilde{\boldsymbol{F}}^{[2]}+\cdots$
- In particular, under Condition [DL1],

$$
\begin{align*}
\tilde{F}^{[0]}= & \int_{0}^{T} \partial_{(x, \epsilon)} f_{0}\left(X_{t}^{0}, 0\right)\left[\left(D_{t}^{0}, 1\right)\right] d t+\sum_{\alpha=1}^{r} \int_{0}^{T} \partial_{\epsilon} f_{\alpha}\left(X_{t}^{0}, 0\right) d w_{t}^{\alpha} \\
& +\partial_{(x, \epsilon)} F\left(X_{T}^{0}, 0\right)\left[\left(D_{T}^{0}, 1\right)\right], \tag{8}\\
\tilde{F}^{[1]}= & \frac{1}{2} \int_{0}^{T} \partial_{x} f_{0}\left(X_{t}^{0}, 0\right)\left[E_{t}^{0}\right] d t+\frac{1}{2} \int_{0}^{T} \partial_{(x, \epsilon)}^{2} f_{0}\left(X_{t}^{0}, 0\right)\left[\left(D_{t}^{0}, 1\right)^{\otimes 2}\right] d t \\
& +\frac{1}{2} \sum_{\alpha=1}^{r} \int_{0}^{T}\left\{2 \partial_{x} \partial_{\epsilon} f_{\alpha}\left(X_{t}^{0}, 0\right)\left[D_{t}^{0}\right]+\partial_{\epsilon}^{2} f_{\alpha}\left(X_{t}^{0}, 0\right)\right\} d w_{t}^{\alpha} \\
& +\frac{1}{2} \partial_{x} F\left(X_{T}^{0}, 0\right)\left[E_{T}^{0}\right]+\frac{1}{2} \partial_{(x, \epsilon)}^{2} F\left(X_{T}^{0}, 0\right)\left[\left(D_{T}^{0}, 1\right)^{\otimes 2}\right] \tag{9}
\end{align*}
$$

where $D_{t}^{0}=\partial_{\epsilon} X_{t}^{0}$ and $E_{t}^{0}=\partial_{\epsilon}^{2} X_{t}^{0}$, and

$$
\tilde{\boldsymbol{F}}^{\epsilon}=\tilde{\boldsymbol{F}}^{[0]}+\epsilon \tilde{\boldsymbol{F}}^{[1]}+\epsilon^{2} \tilde{\boldsymbol{F}}^{[2]}+\cdots
$$

$$
\begin{align*}
\tilde{F}^{[2]}= & \frac{1}{6} \int_{0}^{T} \partial_{x} f_{0}\left(X_{t}^{0}, 0\right)\left[C_{t}^{0}\right] d t+\frac{1}{2} \int_{0}^{T} \partial_{x}^{2} f_{0}\left(X_{t}^{0}, 0\right)\left[D_{t}^{0} \otimes E_{t}^{0}\right] d t \\
& +\frac{1}{2} \int_{0}^{T} \partial_{x} \partial_{\epsilon} f_{0}\left(X_{t}^{0}, 0\right)\left[E_{t}^{0}\right] d t+\frac{1}{6} \int_{0}^{T} \partial_{(x, \epsilon)}^{3} f_{0}\left(X_{t}^{0}, 0\right)\left[\left(D_{t}^{0}, 1\right)^{\otimes 3}\right] d t \\
& +\sum_{\alpha=1}^{r} \int_{0}^{T}\left\{\frac{1}{2} \partial_{x} \partial_{\epsilon} f_{\alpha}\left(X_{t}^{0}, 0\right)\left[E_{t}^{0}\right]+\frac{1}{2} \partial_{x}^{2} \partial_{\epsilon} f_{\alpha}\left(X_{t}^{0}, 0\right)\left[D_{t}^{0} \otimes D_{t}^{0}\right]\right. \\
& \left.+\frac{1}{2} \partial_{x} \partial_{\epsilon}^{2} f_{\alpha}\left(X_{t}^{0}, 0\right)\left[D_{t}^{0}\right]+\frac{1}{6} \partial_{\epsilon}^{3} f_{\alpha}\left(X_{t}^{0}, 0\right)\right\} d w_{t}^{\alpha} \\
& +\frac{1}{2} \partial_{x}^{2} F\left(X_{T}^{0}, 0\right)\left[E_{T}^{0} \otimes D_{T}^{0}\right]+\frac{1}{2} \partial_{x} \partial_{\epsilon} F\left(X_{T}^{0}, 0\right)\left[E_{T}^{0}\right] \\
& +\frac{1}{6} \partial_{x} F\left(X_{T}^{0}, 0\right)\left[C_{T}^{0}\right]+\frac{1}{6} \partial_{(x, \epsilon)}^{3} F\left(X_{T}^{0}, 0\right)\left[\left(D_{T}^{0}, 1\right)^{\otimes 3}\right] \tag{10}
\end{align*}
$$

with $C_{t}^{0}=\partial_{\epsilon}^{3} X_{t}^{0}$.

Malliavin calculus, Watanabe theory

- smooth stochastic expansion

$$
f^{\epsilon} \sim f^{[0]}+\epsilon f^{[1]}+\epsilon^{2} f^{[2]}+\cdots(\epsilon \downarrow 0)
$$

(i.e., every residual term and its "derivatives" with respect to w are of small order.)

- g : function

$$
\begin{aligned}
g\left(f^{\epsilon}\right) & \sim \sum_{j} \frac{1}{j!} \partial_{x}^{j} g\left(f^{[0]}\right)\left(\epsilon f^{[1]}+\epsilon^{2} f^{[2]}+\cdots\right)^{j} \\
& =\Phi^{[0]}+\epsilon \Phi^{[1]}+\epsilon^{2} \Phi^{[2]}+\cdots
\end{aligned}
$$

In particular,

$$
\begin{aligned}
& \Phi^{[0]}=g\left(f^{[0]}\right) \\
& \Phi^{[1]}=\partial_{x} g\left(f^{[0]}\right) f^{[1]}, \ldots
\end{aligned}
$$

- generalized expectation and asymptotic expansion

$$
E\left[g\left(f^{\epsilon}\right)\right] \sim E\left[\Phi^{[0]}\right]+\epsilon E\left[\Phi^{[1]}\right]+\epsilon^{2} E\left[\Phi^{[2]}\right]+\cdots
$$

- Example. $g(x)=\max \{x-K, 0\}$.

$$
E\left[\partial_{x}^{2} g\left(f^{[0]}\right) \Psi\right] ?
$$

- Watanabe theory formulates

$E\left[T\left(f^{\epsilon}\right) \psi\right], T: S c h w a r t z$ distribution

and drives asymptotic expansion.

- formal computation

$$
\begin{aligned}
E\left[\partial_{x}^{2} g\left(f^{[0]}\right) \Psi\right] & =E\left[\partial_{x}^{2} g\left(f^{[0]}\right) E\left[\Psi \mid f^{[0]}\right]\right] \\
& =\int \partial_{x}^{2} g(x) E\left[\Psi \mid f^{[0]}=x\right] p^{f^{[0]}}(x) d x \\
& =\int g(x)\left(-\partial_{x}\right)^{2}\left(E\left[\Psi \mid f^{[0]}=x\right] p^{f^{[0]}}(x)\right) d x
\end{aligned}
$$

- The (generalized) expectation of the j-th term in the expansion takes the form

$$
E\left[\Phi^{[j]}\right]=\int g(x) p_{j}(x) d x
$$

where $p_{j}(x)$ is expressed by the conditional expectation

$$
E\left[\left(\text { a polynomial of } f^{[1]}, f^{[2]}, \ldots\right) \mid f^{[0]}=x\right]
$$

Therefore, this problem is reduced to the computation of

$$
E\left[\int \cdots \iint * * * d w_{t_{1}}^{\alpha_{1}} d w_{t_{2}}^{\alpha_{2}} \cdots d w_{t_{n}}^{\alpha_{n}} \mid \int * * * d w_{u}=x\right]
$$

Smooth stochastic expansion of $\boldsymbol{F}^{\boldsymbol{\epsilon}}$

Theorem 1. Suppose

- [DL1] and [DL2] (nondegeneracy condition)
- a sequence $\left(\boldsymbol{H}^{\epsilon}\right)_{\epsilon \in(0,1]}$ of \boldsymbol{k}^{\prime}-dimensional random variables admits a smooth stochastic expansion

$$
\begin{equation*}
H^{\epsilon} \sim H^{[0]}+\epsilon H^{[1]}+\epsilon^{2} H^{[2]}+\cdots(\epsilon \downarrow 0) \tag{11}
\end{equation*}
$$

- $\mathcal{G} \subset \mathcal{F}_{\uparrow}\left(\mathbb{R}^{k}\right)$

$$
\sup _{g \in \mathcal{G}} \sup _{x}\left(1+|x|^{2}\right)^{-s / 2}|g(x)|<\infty
$$

for some $s \geq 0$.

- Let $q \in C_{\uparrow}^{\infty}\left(\mathbb{R}^{k^{\prime}}\right)$.

Then ...

Then the expectation $E\left[g\left(\tilde{F}^{\epsilon}\right) \boldsymbol{q}\left(\boldsymbol{H}^{\epsilon}\right)\right]$ has an asymptotic expansion
$E\left[g\left(\tilde{F}^{\epsilon}\right) q\left(H^{\epsilon}\right)\right] \sim c_{0}(g)+\epsilon c_{1}(g)+\epsilon^{2} c_{2}(g)+\cdots \quad(\epsilon \downarrow 0)$,
where

$$
c_{i}(g)=\int_{\mathbb{R}^{k}} g(z) p_{i}(z) d z \quad(g \in \mathcal{G})
$$

for some densities $p_{i}(z)$. In particular,

$$
\begin{gathered}
p_{0}(z)=E\left[q\left(H^{[0]}\right) \mid \tilde{\boldsymbol{F}}^{[0]}=z\right] \phi(z ; \mu, \Sigma) \\
p_{1}(z)=-\partial \cdot\left(E\left[q\left(H^{[0]}\right) \tilde{\boldsymbol{F}}^{[1]} \mid \tilde{\boldsymbol{F}}^{[0]}=z\right] \phi(z ; \mu, \Sigma)\right) \\
\\
+E\left[\partial q\left(H^{[0]}\right)\left[\boldsymbol{H}^{[1]}\right] \mid \tilde{F}^{[0]}=z\right] \phi(z ; \mu, \Sigma) .
\end{gathered}
$$

and

$$
\begin{aligned}
p_{2}(z)= & \frac{1}{2} \partial^{2} \cdot\left(E\left[\left(\tilde{F}^{[1]}\right)^{\otimes 2} q\left(H^{[0]}\right) \mid \tilde{F}^{[0]}=z\right] \phi(z ; \mu, \Sigma)\right) \\
& -\partial \cdot\left(E\left[\tilde{F}^{[2]} q\left(H^{[0]}\right) \mid \tilde{F}^{[0]}=z\right] \phi(z ; \mu, \Sigma)\right) \\
& -\partial \cdot\left(E\left[\tilde{F}^{[1]} \partial q\left(H^{[0]}\right)\left[H^{[1]}\right] \mid \tilde{F}^{[0]}=z\right] \phi(z ; \mu, \Sigma)\right) \\
& +E\left[\partial q\left(H^{[0]}\right)\left[H^{[2]}\right] \mid \tilde{F}^{[0]}=z\right] \phi(z ; \mu, \Sigma) \\
& +\frac{1}{2} E\left[\partial^{2} q\left(\boldsymbol{H}^{[0]}\right)\left[\left(H^{[1]}\right)^{\otimes 2}\right] \mid \tilde{F}^{[0]}=z\right] \phi(z ; \mu, \Sigma)
\end{aligned}
$$

This expansion is valid uniformly in $g \in \mathcal{G}$.
Remark 2. More than 900 terms are in the third order expansion. Each term is defined by a multiple integral. Remark 3. Conditional expectation of a multiple Wiener integral given a Wiener integral is necessary and available.

Asymptotic expansion by YUIMA: pricing options

Asymptotic expansion vs. Monte Carlo method

- YUIMA provides "asymptotic_term" function for asymptotic expansion of a functional of a diffusion process.
- At present, asymptotic_term is not available (out of order!) if the dimension of the diffusion process is greater than 1.
- A quite general, extended "expander" will be released soon.

Asymptotic expansion vs. Monte Carlo method

- Compare the values obtained by asymptotic expansion and the Monte Carlo method, both by YUIMA
- Average Price Call Option for Black-Scholes model

$$
\begin{aligned}
d X_{t}= & 0.1 X_{t} d t+\epsilon X_{t} d w_{t}, \quad X_{0}=100 \\
& \epsilon=0.5, \quad K=100
\end{aligned}
$$

- $\operatorname{MC}\left(10^{5}\right)$
- Results:

method	value	d.r.
MC	14.56604	-
asy \exp (1st order)	14.6774428	0.7648314%
asy \exp (2st order)	14.5997711	0.2315927%

d.r. $=$ difference rate

Asymptotic expansion vs. Monte Carlo method

- Average Price Call Option for CEV model

$$
\begin{aligned}
d X_{t}= & 0.1 X_{t} d t+\epsilon \sqrt{X_{t}} d w_{t}, \quad X_{0}=100 \quad(\gamma=1 / 2) \\
& \epsilon=0.5, \quad K=100
\end{aligned}
$$

- Results:

method	value	d.r.
MC	5.21069	-
asy \exp (1st order)	5.2170308	0.1216788%
asy \exp (2st order)	5.2170489	0.1220259%

d.r. $=$ difference rate

Asymptotic expansion vs. Monte Carlo method

- Average Price Call Option for CEV model

$$
\begin{aligned}
d X_{t}= & 0.1 X_{t} d t+\epsilon \sqrt{X_{t}} d w_{t}, \quad X_{0}=100 \quad(\gamma=2 / 3) \\
& \epsilon=0.5, \quad K=100
\end{aligned}
$$

- Results:

method	value	d.r.
MC	5.915403	-
asy \exp (1st order)	5.91404393	-0.02298126%
asy exp (2st order)	5.9134162	-0.0335933%
.r. $=$ difference rate		

Asymptotic expansion vs. Monte Carlo method

- The same method can be applied to Digital option, Basket option, Bermuda option.....
- VaR, CTE
- Control variable method

Some references

- Small σ expansion
- Watanabe (AP1987), Kusuoka and Stroock (JFA1991)
- Applications to statistics:

Y (PTRF1992,1993),
Dermoune and Kutoyants (Stochastics1995),
Sakamoto and Y (JMA1996, SISP1998),
Uchida and Y (SISP2004),
Masuda and Y (StatProbLet2004),

- Application to option pricing: Y (JJSS1992),
Kunitomo and Takahashi (MathFinance2001),
Uchida and Y (SISP2004),
Takahashi and Y (SISP2004, JJSS2005),
Osajima (SSRN2007),
Takahashi and Takehara (2009,2010),
Andersen and Hutchings (SSRN2009), Antonov and Misirpashaev (SSRN2009), Chenxu Li (ColumbiaUniv2010),

Comments

- Today, we did not discuss really distributional asymptotic expansions.
- Ex. Asy exp of the distribution of an ergodic process
- Ex. Asy exp of the realized volatility
- Ex. Asy exp of Skorohod integrals
- The theory of asymptotic expansion is now developing.

