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Realized volatility

Let X = (Xt)t∈[0,T ] be a stochastic process given by the following
equation:

Xt = X0 +

∫ t

0
bsds +

∫ t

0
σsdBs ,

where
▶ b = (bs)s∈[0,T ]: càdlàg adapted process (drift process)
▶ σ = (σs)s∈[0,T ]: càdlàg adapted process (volatility process)
▶ B = (Bs)s∈[0,T ]: Brownian motion

(càdlàg: right continuous with left limits)

The quadratic variation of X :

[X ,X ]T =

∫ T

0
σ2
s ds
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Realized volatility

In high-frequency financial econometrics,
▶ X is used as a model for the intraday log-price process of an asset

([0,T ] corresponds to one day)
▶ Then, [X ,X ]T is regarded as a proxy of the variance of X and called

the integrated volatility or integrated variance (IV)

We observe X at discrete sampling times 0 ≤ t0 < t1 < · · · < tN ≤ T
in [0,T ]

The statistic

[̂X ,X ]T :=
N∑
i=1

(
Xti − Xti−1

)2
is called the realized volatility or realized variance (RV)
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Realized volatility

Suppose that t0, t1, . . . , tN are stopping times, i.e. the point process
(
∑N

i=1 1{ti≤t})t∈[0,T ] is adapted

Then, a general theory of stochastic calculus implies that

[̂X ,X ]T →p [X ,X ]T

as
rN := t0 ∨ max

1≤i≤N
(ti − ti−1) ∨ (T − tN) →p 0

(“→p” denotes convergence in probability)
▶ See e.g. Thm. 4.47 in Chap. I of Jacod and Shiryaev (2003)

⇒ [̂X ,X ]T is a consistent estimator for [X ,X ]T
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Realized volatility: Asymptotic distribution

Now we assume that ti ’s are equi-spaced: ti = i∆N (i = 0, 1, . . . ,N)
with ∆N = T/N

We are interested in the asymptotic distribution of [̂X ,X ]T − [X ,X ]T
as N → ∞

Definition 1 (Stable convergence)

A sequence of random variables U1,U2, . . . are said to converge stably in
law to a random variable U∞ if

(UN ,V ) →d (U∞,V )

as N → ∞ for any random variable V (“→d” denotes convergence in
law). In this case, we write UN →ds U∞.

See Section 2.1 in Podolskij and Vetter (2010) for a concise
description of this concept
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Realized volatility: Asymptotic distribution

Theorem 1 (Asymptotic mixed normality of realized volatility)

1√
∆N

(
[̂X ,X ]T − [X ,X ]T

)
→ds

√
2IQT ζ

as N → ∞, where

IQT :=

∫ T

0
σ4
t dt

and ζ is a standard normal variable independent of X

IQT is called the integrated quarticity

Note that IQT is NOT independent of X

See Theorem 5.4.2 in Jacod and Protter (2012) for a proof; see also
pp. 341–343 of Podolskij and Vetter (2010) for a sketch of the proof
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Realized volatility: Statistical inference

Assume IQT > 0 almost surely

By Theorem 1, we have(
1√
∆N

(
[̂X ,X ]T − [X ,X ]T

)
, IQT

)
→d

(√
2IQT ζ, IQT

)
Thus, the continuous mapping theorem yields

[̂X ,X ]T − [X ,X ]T√
∆N · 2IQT

→d ζ (1)

Caution

▶ The convergence 1√
∆N

(
[̂X ,X ]T − [X ,X ]T

)
→d

√
2IQT ζ alone does

NOT imply (1) in general because IQT is NOT independent of X ; this
is why we need stable convergence in Theorem 1
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We can construct e.g. confidence intervals for [̂X ,X ]T using (1) once
we have a consistent estimator for IQT

To construct a consistent estimator for IQT , we introduce the
realized p-variation (p > 0):

RPV (X ; p)NT := Np/2−1
N∑
i=1

∣∣Xti − Xti−1

∣∣p .
Theorem 2 (LLN for the realized p-variation)

RPV (X ; p)NT →p T p/2−1 ·mp

∫ T

0
|σs |pds

as N → ∞. Here, mp denotes the p-th absolute moment of the standard
normal distribution:

mp =
2p/2√
π
Γ

(
p + 1

2

)
.
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This is a special case of Theorem 3.4.1 in Jacod and Protter (2012)

Since m4 = 3, RPV (X ; 4)NT →p T · 3IQT as N → ∞
Thus we obtain the following feasible CLT:

[̂X ,X ]T − [X ,X ]T√
2
3NRPV (X ; 4)NT

→d ζ (N → ∞) (2)

A 100(1− α)% confidence interval for [X ,X ]T :[
[̂X ,X ]T − zα/2

√
2

3N
RPV (X ; 4)NT , [̂X ,X ]T + zα/2

√
2

3N
RPV (X ; 4)NT

]
,

(3)

where zα/2 denotes the (1− α/2)-quantile of N(0, 1)
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Realized volatility: Statistical inference

The CI (3) has the problem that its lower limit is not necessarily
positive (we always have [X ,X ]T > 0 a.s. under the present
assumption)

We can resolve this issue by considering CIs for log([X ,X ]T ) rather
than [X ,X ]T

CIs for log([X ,X ]T ) can be derived by the delta method:

Theorem 3 (Delta method for stable convergence)

Let FN (N = 1, 2, . . . ), F∞ and U∞ be random variables and g : R → R
be a C 1 function. Suppose that r−1

N (FN − F∞) →ds U∞ as N → ∞ for
some rN > 0 with rN → 0. Then

r−1
N (g(FN)− g(F∞)) →ds g ′(F∞)U∞.
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Realized volatility: Statistical inference

A proof of Thm. 3 can be found in e.g. Proposition 2 in Podolskij and
Vetter (2010) (they consider the case rN = 1/

√
N, but this is not

essential)

Applying Thm. 3 with g(x) = log x , we obtain

1√
∆N

{
log

(
[̂X ,X ]T

)
− log ([X ,X ]T )

}
→ds

√
2IQT

[X ,X ]T
ζ (N → ∞)

Thus we get

log
(
[̂X ,X ]T

)
− log ([X ,X ]T )√

2
3NRPV (X ; 4)NT

/
[̂X ,X ]T

→d ζ (N → ∞) (4)
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Realized volatility: Statistical inference

Hence,log ([̂X ,X ]T

)
− zα/2

√
2
3N

RPV (X ; 4)NT

[̂X ,X ]T

, log
(
[̂X ,X ]T

)
+ zα/2

√
2
3N

RPV (X ; 4)NT

[̂X ,X ]T


gives a 100(1− α)% confidence interval for log([X ,X ]T )

By exponential transform, we obtain another 100(1− α)% confidence
interval for [X ,X ]T :e log([̂X ,X ]T

)
−zα/2

√
2
3N

RPV (X ;4)N
T

[̂X ,X ]T , e
log

(
[̂X ,X ]T

)
+zα/2

√
2
3N

RPV (X ;4)N
T

[̂X ,X ]T

 (5)

Y. Koike (U. of Tokyo, CREST JST) Variance-covariance estimation June 28, 2019 13 / 40



Realized volatility: Remarks on irregular sampling schemes

The convergence (2) is still valid even if the sampling times ti are
NOT equi-spaced under some mild regularity assumptions, as long as
ti ’s are independent of X

▶ See Theorem 3.10 in Hayashi et al. (2011) for details

Thus, the CIs (3) and (5) are still valid in such a situation

If ti ’s are NOT independent of X , the convergence (2) does NOT
hold in general

▶ See Fukasawa (2010) and Li et al. (2014) for details
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Realized volatility in YUIMA

The package yuima has the function mpv( ) to compute realized
p-variations

For a yuima object x,
▶ Realized volatility: mpv(x,r=2)
▶ RPV (X ; 4)NT/3: mpv(x,r=4)
▶ The lower and upper limits of the CI (3):

mpv(x,r=2)-sqrt(2*mpv(x,r=4)/N)*qnorm(1-alpha/2),

mpv(x,r=2)+sqrt(2*mpv(x,r=4)/N)*qnorm(1-alpha/2)

▶ The lower and upper limits of the CI (5):

exp(log(mpv(x,r=2))-qnorm(1-alpha/2)*sqrt(2*mpv(x,r=4)/N

)/mpv(x,r=2)),

exp(log(mpv(x,r=2))+qnorm(1-alpha/2)*sqrt(2*mpv(x,r=4)/N

)/mpv(x,r=2))
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Realized volatility in YUIMA: SImulation

Let us estimate the IV of the process Xt = log St , t ∈ [0, 1], where St
is given by the Heston model:{

dSt = µStdt +
√
VtStdB1,t ,

dVt = −θ(Vt − v)dt + γ
√
Vt(ρdB1,t +

√
1− ρ2dB2,t),

where (B1,t)t∈[0,T ] and (B2,t)t∈[0,T ] are two independent Brownian
motions

In this case we have

[X ,X ]1 =

∫ 1

0
Vtdt

R examples: rv.r, rv-spx.r
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> ### Realized volatility in Yuima

> ## Simulated data example

> ## We simulate the Heston model

> drift <- c("mu*S", "-theta*(V-v)") # drift coefficient

> diffusion <- matrix(c("sqrt(max(V,0))*S", "gamma*sqrt(max(V,0))*rho",

+ 0, "gamma*sqrt(max(V,0))*sqrt(1-rho^2)"),

+ 2,2) # diffusion coefficient

> mod <- setModel(drift = drift, diffusion = diffusion,

+ state.variable = c("S", "V"))

> samp <- setSampling(n = 10000)

> heston <- setYuima(model = mod, sampling = samp)

> set.seed(123)

> x0 <- c(1, 0.1) # initial value

> param <- list(mu = 0.03, theta = 3, v = 0.09,

+ gamma = 0.3, rho = -0.6) # true parameters

> result <- simulate(heston, xinit = x0,

+ true.parameter = param) # simulation

> ## construct the yuima object correspoding to the log-price process

> zdata <- get.zoo.data(result) # extract the zoo data

> x <- zdata[[1]] # extract the first component (price process)

> x <- log(x) # convert to the log-rpice process
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> x <- setData(x) # convert to the yuima object

> # we subsample data to construct observation data

> N <- 100 # number of observations - 1

> x <- subsampling(x, sampling = setSampling(n = N))

> ## Estimation of IV

> (rv <- mpv(x)) # computing the realized volatility

[1] 0.07039031

> (iv <- mean(zdata[[2]][-1])) # "true" integrated volatility

[1] 0.08454659

> ## Construction of CIs for IV

> alpha <- 0.05 # significance level

> # CI based on Eq.(3)

> c(mpv(x,r=2)-sqrt(2*mpv(x,r=4)/N)*qnorm(1-alpha/2),

+ mpv(x,r=2)+sqrt(2*mpv(x,r=4)/N)*qnorm(1-alpha/2))

[1] 0.05239262 0.08838799

> # CI based on Eq.(5)

> c(exp(log(mpv(x,r=2))-qnorm(1-alpha/2)*sqrt(2*mpv(x,r=4)/N )/mpv(x,r

=2)),

+ exp(log(mpv(x,r=2))+qnorm(1-alpha/2)*sqrt(2*mpv(x,r=4)/N)/mpv(x,r=2)))

[1] 0.05450930 0.09089815
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Covariance estimation

Let X = (Xt)t∈[0,T ] be a d-dimensional stochastic process given by
the following equation:

Xt = X0 +

∫ t

0
bsds +

∫ t

0
σsdBs ,

where
▶ b = (bs)s∈[0,T ]: d-dimensional càdlàg adapted process
▶ σ = (σs)s∈[0,T ]: d × r matrix-valued càdlàg adapted process
▶ B = (Bs)s∈[0,T ]: r -dimensional Brownian motion

We denote by X (j) = (X
(j)
t )t∈[0,T ] the j-th component process of X
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Covariance estimation

The quadratic covariation matrix of X :

[X ,X ]T :=

∫ T

0
σsσ

⊤
s ds

(⊤ stands for transposition of a matrix)
▶ A d × d (random) matrix, the multi-dimensional extension of the

quadratic variation

For every i , we observe X (j) at discrete sampling times

0 ≤ t
(j)
0 < t

(j)
1 < · · · < t

(j)
Nj

≤ T in [0,T ]

We are interested in estimating [X ,X ]T based on the observation

data (X
(j)
ti )

Nj

i=0, j = 1, . . . , d
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Covariance estimation

The diagonal entries [X (j),X (j)]T can be estimated by the realized
volatilities
⇒ We focus on the off-diagonal entries, say [X (1),X (2)]T

If N1 = N2 =: N and t
(1)
i = t

(2)
i =: ti for all i (synchronous case), we

can use the following natural extension of the realized volatility:

̂[X (1),X (2)]T :=
N∑
i=1

(
X

(1)
ti − X

(1)
ti−1

)(
X

(2)
ti − X

(2)
ti−1

)
,

which is known as the realized covariance

This is generally not the case. What should we do then?
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Epps effect

A näıve idea Interpolating the data onto a equi-spaced sampling grid
to construct synchronized data:

▶ Choose a step size h > 0 and set

τ
(1)
k := max{t(1)i : t

(1)
i ≤ kh}, τ

(2)
k := max{t(2)i : t

(2)
i ≤ kh}

for k = 0, 1, . . . ,Th−1 =: nh (assume nh is an integer)
▶ Compute the realized covariance based on (X

(1)

τ
(1)
k

)nhk=0 and (X
(2)

τ
(2)
k

)nhk=0:

̂[X (1),X (2)]T ,h :=

nh∑
k=1

(
X

(1)

τ
(1)
k

− X
(1)

τ
(1)
k−1

)(
X

(2)

τ
(2)
k

− X
(2)

τ
(2)
k−1

)

τ
(j)
k ≈ kh because the data are observed at a high-frequency, so we

expect that ̂[X (1),X (2)]T ,h ≈ [X ,X ]T when h is sufficiently small
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Epps effect

This is generally NOT true!

▶ ̂[X (1),X (2)]T ,h is often strongly downward biased in the absolute value
as h → 0 (Epps, 1979)

▶ One can show that ̂[X (1),X (2)]T ,h is ALWAYS downward biased in the
absolute value when original observation times are non-synchronous
under mild regularity condition (Hayashi and Yoshida, 2005,
Proposition 2.1)

This phenomenon is known as the Epps effect

Let us check the Epps effect by simulation
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Epps effect: Simulation

We simulate the following two-dimensional stochastic processes:

X
(1)
t = B

(1)
t , X

(2)
t = ρB

(1)
t +

√
1− ρ2B

(2)
t , t ∈ [0, 1]

where B(1) and B(2) are two independent Brownian motions and ρ is
the correlation parameter; we set ρ = 0.5 here

For each j = 1, 2, we generate the sampling times t
(j)
0 , t

(j)
1 , . . . so that

t
(j)
1 − t

(j)
0 , t

(j)
2 − t

(j)
1 , . . .

are i.i.d. variables following the exponential distribution with rate λj ;
this is called the Poisson random sampling with intensity λj

▶ (t
(1)
i )N1

i=1 and (t
(2)
i )N2

i=1 are independently generated
▶ We set λ1 = λ2 = n/5 with n = 10, 000
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Epps effect: Simulation

We compute ̂[X (1),X (2)]T ,h with varying h as

h = 1/n, 2/n, . . . , 10/n, 20/n, . . . , 100/n, 200/n

The true value of [X (1),X (2)]1 is ρ = 0.5, so they should be close to
0.5 if they correctly estimate [X (1),X (2)]1

R example: epps.r
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Epps effect: Simulation
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Hayashi-Yoshida estimator

Hayashi and Yoshida (2005) resolved this problem by proposing the
following novel covariance estimator:

̂[X (1),X (2)]
HY

T :=
∑
i ,j

∆iX
(1)∆jX

(2)1{(t(1)i−1,t
(1)
i ]∩(t(2)j−1,t

(2)
j ] ̸=∅}

where ∆iX
(p) := X

(p)

t
(p)
i

− X
(p)

t
(p)
i−1

for i = 1, . . . ,Np and p = 1, 2

Note that ̂[X (1),X (2)]
HY

T is reduced to the realized covariance when
the observation times are synchronous

In this sense, the Hayashi-Yoshida estimator is a natural extension of
the realized covariance
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Hayashi-Yoshida estimator

Fig. 1: Hayashi-Yoshida estimator. We sum up cross-products of returns with
overlapping observation intervals
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Hayashi-Yoshida estimator

Under mild regularity assumptions, we have

̂[X (1),X (2)]
HY

T →p [X (1),X (2)]T

as

rN := max
p=1,2

[
t
(p)
0 ∨ max

1≤i≤Np

(t
(p)
i − t

(p)
i−1) ∨ (T − t

(p)
Np

)

]
→p 0

⇒ The Hayashi-Yoshida estimator is a consistent estimator for
[X (1),X (2)]T

See Hayashi and Yoshida (2005) and Hayashi and Kusuoka (2008) for
detailed regularity conditions
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Hayashi-Yoshida estimator in YUIMA

The package yuima has the function cce( ) to compute the
Hayashi-Yoshida estimator from a yuima object

More precisely, it computes the estimate of the quadratic covariation
matrix (

̂[X (i),X (j)]
HY

T

)
1≤i ,j≤d

and its correlation matrix counterpart: ̂[X (i),X (j)]
HY

T√
̂[X (i),X (i)]

HY

T
̂[X (j),X (j)]

HY

T


1≤i ,j≤d

(6)
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Hayashi-Yoshida estimator in YUIMA

If you implement cce(psample) for the simulated data of epps.r,
you will obtain the following output

> cce(psample)

$covmat

Series 1 Series 2

Series 1 0.9530663 0.4853256

Series 2 0.4853256 1.0424305

$cormat

Series 1 Series 2

Series 1 1.0000000 0.4869093

Series 2 0.4869093 1.0000000
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Hayashi-Yoshida estimator: Statistical inference

The Hayashi-Yoshida estimator also enjoys the asymptotic mixed
normality under some regularity assumptions:

1√
∆∗

n

(
̂[X (i),X (j)]

HY

T − [X (i),X (j)]T

)
→ds

√
AVARHY

T ,ij × ζ (7)

▶ ∆∗
n ≍

∑N1

i=1(t
(1)
i − t

(1)
i−1)

2 +
∑N2

j=1(t
(2)
j − t

(2)
j−1)

2

▶ AVARHY
T ,ij : Asymptotic variance (independent of ζ)

AVARHY
T ,ij has the explicit but somewhat complicated expression

(cf. Eq. (4.1) in Hayashi and Yoshida, 2011)
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Hayashi-Yoshida estimator: Statistical inference

The package yuima has the function hyavar( ) to construct
estimators for

√
∆∗

n · AVARHY
T ,ij (i , j = 1, . . . , d) following Section 8.2

of Hayashi and Yoshida (2011)

It also computes asymptotic variance estimates for entries of the
correlation matrix (6)

If you implement hyavar(psample) for the simulated data of
epps.r, you will obtain the output shown in the next slide
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> hyavar(psample)

$covmat

Series 1 Series 2

Series 1 0.9530663 0.4853256

Series 2 0.4853256 1.0424305

$cormat

Series 1 Series 2

Series 1 1.0000000 0.4869093

Series 2 0.4869093 1.0000000

$avar.cov

[,1] [,2]

[1,] 0.001481935 0.002300558

[2,] 0.002300558 0.002823336

$avar.cor

[,1] [,2]

[1,] 0.000000000 0.001614687

[2,] 0.001614687 0.000000000
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Hayashi-Yoshida estimator: Statistical inference

The convergence (7) can be used to construct CIs for [X (i),X (j)]T as
usual

100(1− α)% CI for [X (i),X (j)]T :[
̂[X (i),X (j)]

HY

T − zα/2
√
∆∗

n · AVARHY
T ,ij ,

̂[X (i),X (j)]
HY

T + zα/2
√
∆∗

n · AVARHY
T ,ij

]
(Of course, we need to replace

√
∆∗

n · AVARHY
T ,ij by its estimate in

practice)
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Hayashi-Yoshida estimator: Statistical inference

To construct CIs for a correlation parameter ρ ∈ (−1, 1), it is often
useful to consider Fisher’s z-transformation

Suppose that we have an estimator ρ̂N for ρ such that
r−1
N (ρ̂N − ρ) → Z as N → ∞, where Z is a centered normal variable
with variance v and rN > 0 satisfying rN → 0

Let

FN := tanh−1(ρ̂N) =
1

2
log

(
1− ρ̂N
1 + ρ̂N

)
The delta method implies that

r−1
N (FN − tanh−1(ρ)) → (1− ρ2)−1Z

as N → ∞
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Hayashi-Yoshida estimator: Statistical inference

Thus we obtain the following 100(1− α)% CI for ρ[
tanh

(
FN − zα

rN
√
v

1− ρ̂2N

)
, tanh

(
FN + zα

rN
√
v

1− ρ̂2N

)]
This CI is always contained in (−1, 1)

Application to the simulated data of epps.r is shown in the next slide
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> v <- hyavar(psample)

> alpha <- 0.05 # significance level

> ## CI for covariance

> c(v$covmat[1,2]-qnorm(1-alpha/2)*sqrt(v$avar.cov[1,2]),

v$covmat[1,2]+qnorm(1-alpha/2)*sqrt(v$avar.cov[1,2]))

[1] 0.3913176 0.5793336

> ## CI for correlation

> c(v$cormat[1,2]-qnorm(1-alpha/2)*sqrt(v$avar.cor[1,2]),

v$cormat[1,2]+qnorm(1-alpha/2)*sqrt(v$avar.cor[1,2]))

[1] 0.4081517 0.5656669

> ## CI for correlation based on Fisher’s z-transformation

> Fn <- atanh(v$cormat[1,2])

> c(tanh(Fn-qnorm(1-alpha/2)*sqrt(v$avar.cor[1,2])/(1 - v$cormat

[1,2]^2)),

tanh(Fn+qnorm(1-alpha/2)*sqrt(v$avar.cor[1,2])/(1 - v$cormat

[1,2]^2)))

[1] 0.4042923 0.5616450
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