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{Recall Wiener process (Brownian motion)




Random walk

° (53) jen: independent and identically distributed ran-
dom variables (defined on a probability space (2, F, P)).
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Random walk

e Take more data and zoom out
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e What appears when n = oo?
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Donsker’s theorem (Functional Central Limit Theorem)

® (£;)jcn: independent and identically distributed ran-
dom variables with F|[&1] = 0, E[ﬁ%] = 1, and Sg = 0,
Sn = ;7’:1 §;, as before

e scaling space-time and linear interpolation
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Theorem 1.

X" 54 W inC (n— o)

e C is the space of continuous functions f : Ry — R,
equipped with a certain topology. Ry = [0, 00).

e A standard Wiener process (Brownian motion) W
appeared as the limit.




Wiener process (Brownian motion)

o W = (Wy)icr, : a standard Wiener process
e W has the following properties.

'Standard Wiener process
(i) W = 0.
(ii) Wy — Ws ~ N(0,t — s) for s < t.

random variables
th, Wt2 — th, v, Wtk — Wtk—l

are independent.

(iv) Each path t — W} is continuous.
N

(iii) For 0 = tp < t1 < -+ < t (kK € N), the

/

e The Wiener process has many interesting properties.



[Wiener integral




Transform of a Wiener process

e simple function hg = Z?:l aj—ll(tj_l,tj](s)a

ag,...,a_1 €ERand 0 =t < t; < ... < 1
k
o J(h)t:= Z aj_l(Wtj/\t—Wtj_l/\t), sAt = min{s, t}
J=1

Exercise 1. (a) E[J(h)¢ =0

(b) BLI(W)2] = 11220 4 4p)» Where
||h||L2([0 t],ds) = (fO hZds )1/2 [For the simple func-
tion, the value is ZJ 1 a LAt =11 AT).]

(C) J(h)t ~ N( ’ ||h||L2([O,t],ds))'
(d) For s < t, the conditional expectation

E[J(h)t| Wy (r < 3)] = J(h)s.



Wiener integral

e As a limit of J(H); discussed above, we obtain the
so-called Wiener integral.

~

If h R4+ — R is a locally bounded piecewise contin-
uous function, then the Wiener integral

t
0

Kis well defined and the properties in Exercise 1 hold.
/

e Some details are given below.



Wiener integral

e (12, F, P): a probability space

e L?(P): the space of square-integrable random vari-

ables. || X ||z = { [, X (w)2P(dw)}'/2.

e Fact. For any h € L?*(R,,ds), there exists a se-
quence of simple functions h"™ such that
|h"™ — h”L2([0,t],ds) — 0 as n — oo for every t € R..

e The property (b) gives an isometry
[T (R)ell2 = IRl L2(10,,ds)
e Thus, we can define J(h); = lim,, o0 J(h"™); in L?(P).

e We write

t
0



Wiener integral

e More simply, as already stated, e.g.,

If h: Ry — R is alocally bounded piecewise contin-
uous function, then the Wiener integral

t
0

is well defined and the properties in Exercise 1 hold.

Exercise 2. Verify
t
/0 O5dW, = J (%) ~ N(0, (2% — 1)/(20))

for 6 #£ 0.



[Itf) integral




Ito integral

e We say that a random variable £ is Fi;-measurable if
§ is a function of (Ws)c0,4-

® (Ft)tcr, is called a filtration.

e We say a stochastic process X = (X¢)¢cRr, is adapted
to (Ft)tcr n if X; is Fi-measurable for every t € R

e Remark. More generally and rigorously, F = (F¢)icr,
is a filtration, i.e., each JF; is a sub o-field of F, and
Fs C Fp for s < t. Usually, the right-continuity
Fir = Nu>tFu = Fi is assumed. We suppose that
W = (Wi)icr, is adapted to F, and that Wy — W
is independent of Fg for s < t.
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Ito integral

e We call a stochastic process H = (H¢)¢cr,
a simple predictable process (with respect to F)
if it admits a representation

J
H; = Holygpy(t) + Z H 1)L, (1)
j=1

for some J € Z4, 0 =ty) < t; < .-+ < tj, some

Fo-measurable random variable Hp and some .’th-
measurable random variable H ()"

e Define Jy (H) = (Jyw (H)t)rer, by

J

Jw(H)t = > Hi_1)(Went — Wi, _at)
j=1
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Ito integral

e Denote by Sp the set of all bounded simple pre-
dictable processes.

e For H € 5,

E[Jw(H){| = [/ HZdS] (2)

Exercise 3. Verify (2).
Hint. When t; 1 <t;_; < t, we have
E :H(j_l)H(j’_l)(Wtj/\t — Wtj_l/\t) (Wtj//\t — Wtj/_l/\t)]

XE[Wtj//\t — Wtj,_l/\tlftj/_l]
= 0.
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Ito integral

e [.: the set of F-adapted processes that are left-continuous
and admitting right-hand limits.

e Starting with the isometry (2), it is possible to ex-
tend Jyy from Sy to L (with some topology). There-
fore we can define the Ito integral Jy (H )¢ for H €
L. We write

t

@ Then, Jy is extending the Wiener integral J.
ot — Jy (H) is continuous (such version exists)
e Martingale property.
E[JW(H)H]-'S} = Jw(H)s a.s. (s<t)
if E[fg’ H2ds] < co.
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Ito integral

e LP-maximum inequality. For p € (1, 00),

D
< ] Slzp | Jw (H)t||p

sup | Jw (H )¢

p

e Burkholder-Davis-Gundy inequality. For p € (0, c0),
there exist constants Ap and By such that

APH[JW(H)aJW(H)]%/zup < | sup [Jw(H)s|

s€|[0,t] P
< By||[Jw (H), Jw (H)]?|

where [Jy (H), Jw (H)]¢ = [ H2ds.



[Itf)’s formula
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Ito’s formula, starting with a simple example

o f€CiR), t; =j/n
o M, := ;”:1 f”(Wtj—1){(Wtj — Vth_l)2 — n_l}

E[M?] = 2n—?2 > E[f”(Wtj_l)z}
j=1
<212t = 0 (n— o0)

Therefore
n

Z f”(Wtj_l)(Wtj — Wtj_l)z

j=1
n 1

= 3 Wy )n T 4 op(1) > [ (W
j=1



Ito’s formula
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e In this situation,

féwl) — f(Wo)

—Dp

2.

ek

R

S
|
[

+
N | =

[

0

(f(WtJ) — f(Wtj_l))

f,(Wtj_l)(Wtj — Wtj_l)

J . )
F (W dWy + — / f'(Wydt (n — oo)
2 Jo

n
f”(Wtj_l)(Wtj — Wtj_l)z + Op(]')
=1
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Ito’s formula

e Consequently,

1 1
FOW) = £FWo) + [ Wawi+ o [ £ Wit

e More generally,
It6’s fomula:

t 1 /i
FXD) = £ + [ F(X)dXat [ (X H2ds
t t
= f(Xy) + / f(Xs)Ksds + / f(Xs)HsdW;
I //T 2 "“
_|_§/r ' (Xs)H;ds (0<r <t

for X; = Xo + [§ Ksds + [ HsdW; with K, H € L
and f € C%(R) (boundedness is not necessary).



[Stochastic differential equation
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Stochastic integral equation

o F = (Fi)icr ., a filtration on a probability space
(2, F, P).

e A stochastic integral equation

t t
Xt = :130—|—/0 a,(XS)ds—I—/O b(Xs)dWs (3)

where a and b are given functions.

e An F-adapted continuous process X = (X¢)icpr, for
which the equality (3) holds for every t is called a
solution to the stochastic integral equation. The last
term of the right-hand side of (3) is the It6 integral.
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Stochastic integral equation

e Given W, the equation (3) has a unique solution X
if the following condition is satisfied:
dL > 0 such that

la(z) — a(y)| + [b(z) — b(y)| < Lz —y| (z,y €R)
e This solution is called a strong solution.

e Equation (3) is equivalently expressed
as a stochastic differential equation

{ dX: = a(Xy)dt 4+ b(Xy)dWy

Xp = xg
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Diffusion process

e A continuous-time strongly Markovian process with
almost surely continuous sample paths is called a
diffusion process.

e Many diffusion processes can be constructed by a
stochastic differential equation having a unique so-
lution.

e The generator gives essential information of the dif-
fusion process. For the diffusion corresponding to
the stochastic differential equation (4), the genera-
tor is given by

L = a(@)f'(@) + b(@)*f" (@)
for f € C?*(R).
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Diffusion process

e For a solution X to (4), Itd’s formula is written as

t t
FXD) = £(X0) + [ F/(X)b(X)dWi + [ Lf(X2)ds
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Diffusion process: an example

e Let
_ —1 __2
Xt = zoexp (0 — 27 o)t + oWy)

e By applying Itd’s formula to the function f(x) =
zoe®” and the process (u — 2~ 1o?)t + oWy, we obtain

Xt = azo—l—/ Xs(u—2_102)ds—|—/ XsodWs
+— / XSO'
t
— :I:O—I—/ uXSds—l—/ o X;dWgs equivalently
0 0

e Geometric Brownian motion (Black-Scholes model)

dXi = pXydt + o XdWy, Xg = xg
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Realized volatility

Otj:t;?’:j/’n.
2
oV, := = 1(Xt —Xt )

e Then V,, =P V = fO Hszds as n — oo
for Xy = Xo + [ Ksds + [ HsdW, with K, H € L.

Exercise 4. Prove this fact for the geometric Brownian
motion analytically and/or by simulation with YUIMA.
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Euler-Maruyama approximation

e An approximation to the solution of the SDE (4) is
given by the so-called Euler-Maruyama method.

ot; = t?’ := jt/n for given t > 0. h = h, :=t/n

° Y;gj is recursively generated by
lftj — Y;ﬁj_l T a(Y;ﬁj_l)h T b(lftj_l)hl/zgja Yo = xg
with £ ~ i.i.d. N(0,1).

° Y;gj approximates th when n is large.

e The YUIMA simulate basically uses this approxima-
tion method.
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Multi-dimensional processes

e (2, F, P): a probability space equipped with a fil-
tration F = (F¢)er,

e an r-dimensional Wiener process W = (W) q—1,....r, tcR,
each W = (Wy¥)cRg, is a standard Wiener process

and W1, ...,W" are independent.
e Multi-dimensional It6 process X = (Xi)izl,...,d

: : t d t .
X! = X3+/ K*'(s)dt + Z/ H!(s)dAW® (i=1,...,d)
0 o170
for Ki, I-I;"X € L such that

t . .
S [ (K@) + [ (5)P)ds < o0 (4 € Ry)
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Multi-dimensional processes

e Ito’s formula

f(Xy) = f(Xo)

—I—/O { Z 9, f(X,)K'(s)ds + % Z Giajf(Xs)Hg(s)Hi(s)}ds

Z,J’a

t
+3 /0 0,f(X.)H' (s)dW?

for f € C?(RY), where 8; = 8/0x" for x = (wi)izl,...,d-
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Multi-dimensional processes

e Multi-dimensional SDEs are also considered.

e e.g. Heston model
dX}! = pXjdt+ /X2?X}dB}
dX? = k(0 — X?)dt + €/ X?dB?

where B! = W1l and B? = pW! + /1 — p2W?2.




