YUIMA SUMMER SCHOOL Brixen (June 26)

Lecture 5 Refresh on diffusion processes

Nakahiro Yoshida

Graduate School of Mathematical Sciences, University of Tokyo Japan Science and Technology Agency CREST Institute of Statistical Mathematics

Tokyo April 2019

Recall Wiener process (Brownian motion)

Random walk

• $(\xi_j)_{j \in \mathbb{N}}$: independent and identically distributed random variables (defined on a probability space (Ω, \mathcal{F}, P)).

$$ullet$$
 $S_0:=0,\,S_n:=\sum_{j=1}^n \xi_j$

Random walk

• Take more data and zoom out

• What appears when $n = \infty$?

Donsker's theorem (Functional Central Limit Theorem)

- $(\xi_j)_{j\in\mathbb{N}}$: independent and identically distributed random variables with $E[\xi_1] = 0$, $E[\xi_1^2] = 1$, and $S_0 = 0$, $S_n = \sum_{j=1}^n \xi_j$, as before
- scaling space-time and linear interpolation

$$X_t^n = \frac{1}{\sqrt{n}} S_{\lfloor nt \rfloor} + \frac{\left(nt - \lfloor nt \rfloor\right)}{\sqrt{n}} \xi_{\lfloor nt \rfloor + 1}$$

Theorem 1.

$$X^n \to^d W \quad ext{in } C \quad (n \to \infty)$$

- C is the space of continuous functions $f : \mathbb{R}_+ \to \mathbb{R}$, equipped with a certain topology. $\mathbb{R}_+ = [0, \infty)$.
- A standard <u>Wiener process</u> (Brownian motion) W appeared as the limit.

Wiener process (Brownian motion)

- $W = (W_t)_{t \in \mathbb{R}_+}$: a standard Wiener process
- \bullet W has the following properties.

Standard Wiener process (i) $W_0 = 0$. (ii) $W_t - W_s \sim N(0, t - s)$ for s < t. (iii) For $0 = t_0 < t_1 < \cdots < t_k$ $(k \in \mathbb{N})$, the random variables $W_{t_1}, W_{t_2} - W_{t_1}, \cdots, W_{t_k} - W_{t_{k-1}}$ are independent. (iv) Each path $t \mapsto W_t$ is continuous.

• The Wiener process has many interesting properties.

Wiener integral

Transform of a Wiener process

• simple function
$$h_s = \sum_{j=1}^k a_{j-1} \mathbb{1}_{(t_{j-1}, t_j]}(s), a_0, ..., a_{k-1} \in \mathbb{R} \text{ and } 0 = t_0 \leq t_1 \leq \cdots \leq t_k$$

• $J(h)_t := \sum_{j=1}^k a_{j-1} (W_{t_j \wedge t} - W_{t_{j-1} \wedge t}), s \wedge t = \min\{s, t\}$
Exercise 1. (a) $E[J(h)_t] = 0$
(b) $E[J(h)_t^2] = \|h\|_{L^2([0,t],ds)}^2$, where
 $\|h\|_{L^2([0,t],ds)} = (\int_0^t h_s^2 ds)^{1/2}$. [For the simple function, the value is $\sum_{j=1}^k a_{j-1}^2 (t_j \wedge t - t_{j-1} \wedge t)$.]
(c) $J(h)_t \sim N(0, \|h\|_{L^2([0,t],ds)}^2)$.
(d) For $s < t$, the conditional expectation
 $E[J(h)_t| W_r (r \leq s)] = J(h)_s$.

• As a limit of $J(H)_t$ discussed above, we obtain the so-called Wiener integral.

If $h : \mathbb{R}_+ \to \mathbb{R}$ is a locally bounded piecewise continuous function, then the Wiener integral

$$J(h)_t = \int_0^t h_s \, dW_s$$

is well defined and the properties in Exercise 1 hold.

• Some details are given below.

Wiener integral

- (Ω, \mathcal{F}, P) : a probability space
- $L^2(P)$: the space of square-integrable random variables. $\|X\|_2 = \left\{ \int_{\Omega} X(\omega)^2 P(d\omega) \right\}^{1/2}$.
- Fact. For any $h \in L^2(\mathbb{R}_+, ds)$, there exists a sequence of simple functions h^n_{\cdot} such that $\|h^n h\|_{L^2([0,t],ds)} \to 0$ as $n \to \infty$ for every $t \in \mathbb{R}_+$.
- The property (b) gives an isometry

$$\|J(h)_t\|_2 = \|h\|_{L^2([0,t],ds)}$$

- Thus, we can define $J(h)_t = \lim_{n \to \infty} J(h^n)_t$ in $L^2(P)$.
- We write

$$J(h)_t = \int_0^t h_s dW_s$$

Wiener integral

- More simply, as already stated, e.g.,
 - If $h : \mathbb{R}_+ \to \mathbb{R}$ is a locally bounded piecewise continuous function, then the Wiener integral

$$J(h)_t = \int_0^t h_s \, dW_s$$

is well defined and the properties in Exercise 1 hold. Exercise 2. Verify

$$\int_0^t e^{ heta s} dW_s = J(e^{ heta \cdot})_t \sim Nig(0, (e^{2 heta t}-1)/(2 heta)ig)$$
 for $heta
eq 0$.

- We say that a random variable ξ is $\underline{\mathcal{F}_t}$ -measurable if ξ is a function of $(W_s)_{s \in [0,t]}$.
- $(\mathcal{F}_t)_{t \in \mathbb{R}_+}$ is called a <u>filtration</u>.
- We say a stochastic process $X = (X_t)_{t \in \mathbb{R}_+}$ is <u>adapted</u> to $(\mathcal{F}_t)_{t \in \mathbb{R}_+}$ if X_t is \mathcal{F}_t -measurable for every $t \in \mathbb{R}_+$.
- Remark. More generally and rigorously, $F = (\mathcal{F}_t)_{t \in \mathbb{R}_+}$ is a <u>filtration</u>, i.e., each \mathcal{F}_t is a sub σ -field of \mathcal{F} , and $\mathcal{F}_s \subset \mathcal{F}_t$ for s < t. Usually, the right-continuity $\mathcal{F}_{t+} = \cap_{u > t} \mathcal{F}_u = \mathcal{F}_t$ is assumed. We suppose that $W = (W_t)_{t \in \mathbb{R}_+}$ is adapted to F, and that $W_t - W_s$ is independent of \mathcal{F}_s for s < t.

• We call a stochastic process $H = (H_t)_{t \in \mathbb{R}_+}$ a simple predictable process (with respect to F) if it admits a representation

$$H_t = H_0 \mathbf{1}_{\{0\}}(t) + \sum_{j=1}^J H_{(j-1)} \mathbf{1}_{(t_{j-1}, t_j]}(t) \quad (1)$$

for some $J \in \mathbb{Z}_+$, $0 = t_0 \leq t_1 \leq \cdots \leq t_J$, some \mathcal{F}_0 -measurable random variable H_0 and some \mathcal{F}_{t_j} -measurable random variable $H_{(j)}$.

 \bullet Define $J_W(H) = (J_W(H)_t)_{t \in \mathbb{R}_+}$ by

$$J_W(H)_t = \sum_{j=1}^J H_{(j-1)} (W_{t_j \wedge t} - W_{t_{j-1} \wedge t})$$

- Denote by \mathbb{S}_b the set of all bounded simple predictable processes.
- For $H \in \mathbb{S}_b$,

$$E[J_W(H)_t^2] = E\left[\int_0^t H_s^2 ds\right]$$
(2)

Exercise 3. Verify (2).

$$\begin{split} &\text{Hint. When } t_{j-1} < t_{j'-1} \leq t, \text{ we have} \\ & E \big[H_{(j-1)} H_{(j'-1)} \big(W_{t_j \wedge t} - W_{t_{j-1} \wedge t} \big) \big(W_{t_{j'} \wedge t} - W_{t_{j'-1} \wedge t} \big) \big] \\ &= E \bigg[H_{(j-1)} H_{(j'-1)} \big(W_{t_j \wedge t} - W_{t_{j-1} \wedge t} \big) \\ & \times E \big[W_{t_{j'} \wedge t} - W_{t_{j'-1} \wedge t} | \mathcal{F}_{t_{j'-1}} \big] \bigg] \\ &= 0. \end{split}$$

i

- L: the set of F-adapted processes that are left-continuous and admitting right-hand limits.
- Starting with the isometry (2), it is possible to extend J_W from \mathbb{S}_b to \mathbb{L} (with some topology). Therefore we can define the Itô integral $J_W(H)_t$ for $H \in$ \mathbb{L} . We write

$$J_W(H)_t = \int_0^t H_s \, dW_s$$

- Then, J_W is extending the Wiener integral J.
- $t \mapsto J_W(H)$ is continuous (such version exists)
- Martingale property.

$$egin{aligned} &Eig[J_W(H)_t|\mathcal{F}_sig]=J_W(H)_s & a.s. \ (s < t) \ & ext{f} \ E[\int_0^t H_s^2 ds] < \infty. \end{aligned}$$

- L^p -maximum inequality. For $p \in (1, \infty)$, $\left\| \sup_t |J_W(H)_t| \right\|_p \le \frac{p}{p-1} \sup_t \|J_W(H)_t\|_p$
- Burkholder-Davis-Gundy inequality. For $p \in (0, \infty)$, there exist constants A_p and B_p such that

$$egin{aligned} &A_p ig\| [J_W(H), J_W(H)]_t^{1/2} ig\|_p &\leq ig\| \sup_{s \in [0,t]} |J_W(H)_s| ig\|_p \ &\leq B_p ig\| [J_W(H), J_W(H)]_t^{1/2} ig\|_p \end{aligned}$$

where $[J_W(H), J_W(H)]_t = \int_0^t H_s^2 ds.$

Itô's formula

Itô's formula, starting with a simple example

$$ullet f\in C^2_b(\mathbb{R}),\,t_j=j/n$$

•
$$M_n := \sum_{j=1}^n f''(W_{t_{j-1}}) \{ (W_{t_j} - W_{t_{j-1}})^2 - n^{-1} \}$$

• Then

$$egin{aligned} E[M_n^2] &= 2n^{-2}\sum_{j=1}^n Eig[f''(W_{t_{j-1}})^2ig] \ &\leq 2\|f''\|_\infty^2 n^{-1} o 0 \quad (n o \infty) \end{aligned}$$

Therefore

$$\sum_{\substack{j=1\ n}}^n f''(W_{t_{j-1}})(W_{t_j}-W_{t_{j-1}})^2 = \sum_{\substack{j=1\ j=1}}^n f''(W_{t_{j-1}})n^{-1}+o_p(1) ext{ } o p \int_0^1 f''(W_t)dt$$

Itô's formula

• In this situation,

$$\begin{split} &f(W_1) - f(W_0) \\ &= \sum_{j=1}^n \left(f(W_{t_j}) - f(W_{t_{j-1}}) \right) \\ &= \sum_{j=1}^n f'(W_{t_{j-1}}) (W_{t_j} - W_{t_{j-1}}) \\ &\quad + \frac{1}{2} \sum_{j=1}^n f''(W_{t_{j-1}}) (W_{t_j} - W_{t_{j-1}})^2 + o_p(1) \\ &\rightarrow^p \int_0^1 f'(W_t) dW_t + \frac{1}{2} \int_0^1 f''(W_t) dt \quad (n \to \infty) \end{split}$$

Itô's formula

• Consequently,

$$f(W_1) = f(W_0) + \int_0^1 f'(W_t) dW_t + rac{1}{2} \int_0^1 f''(W_t) dt.$$

• More generally, <u>Itô's fomula</u>:

$$egin{aligned} f(X_t) &= f(X_r) + \int_r^t f'(X_s) dX_s + rac{1}{2} \int_r^t f''(X_s) H_s^2 ds \ &= f(X_r) + \int_r^t f'(X_s) K_s ds + \int_r^t f'(X_s) H_s dW_s \ &+ rac{1}{2} \int_r^t f''(X_s) H_s^2 ds \quad (0 \leq r \leq t) \end{aligned}$$

for $X_t = X_0 + \int_0^t K_s ds + \int_0^t H_s dW_s$ with $K, H \in \mathbb{L}$ and $f \in C^2(\mathbb{R})$ (boundedness is not necessary).

Stochastic differential equation

- $\mathbf{F} = (\mathcal{F}_t)_{t \in \mathbb{R}_+}$, a filtration on a probability space $(\Omega, \mathcal{F}, P).$
- A stochastic integral equation

$$X_t = x_0 + \int_0^t a(X_s) ds + \int_0^t b(X_s) dW_s$$
 (3)

where a and b are given functions.

• An F-adapted continuous process $X = (X_t)_{t \in \mathbb{R}_+}$ for which the equality (3) holds for every t is called a solution to the stochastic integral equation. The last term of the right-hand side of (3) is the Itô integral.

Stochastic integral equation

• Given W, the equation (3) has a unique solution Xif the following condition is satisfied: $\exists L > 0$ such that

 $|a(x)-a(y)|+|b(x)-b(y)|\leq L|x-y|\quad (x,y\in\mathbb{R})$

- This solution is called a strong solution.
- Equation (3) is equivalently expressed as a stochastic differential equation

$$\begin{cases} dX_t = a(X_t)dt + b(X_t)dW_t \\ X_0 = x_0 \end{cases}$$
(4)

Diffusion process

- A continuous-time strongly Markovian process with almost surely continuous sample paths is called a diffusion process.
- Many diffusion processes can be constructed by a stochastic differential equation having a unique so-lution.
- The generator gives essential information of the diffusion process. For the diffusion corresponding to the stochastic differential equation (4), the generator is given by

$$Lf = a(x)f'(x) + rac{1}{2}b(x)^2f''(x)$$

for $f\in C^2(\mathbb{R})$.

Diffusion process

• For a solution X to (4), Itô's formula is written as

$$f(X_t)=f(X_0)+\int_0^t f'(X_s)b(X_s)dW_s+\int_0^t Lf(X_s)ds.$$

Diffusion process: an example

• Let

$$X_t = x_0 \exp\left((\mu - 2^{-1}\sigma^2)t + \sigma W_t
ight)$$

• By applying Itô's formula to the function $f(x) = x_0 e^x$ and the process $(\mu - 2^{-1}\sigma^2)t + \sigma W_t$, we obtain

$$egin{aligned} X_t &= x_0 + \int_0^t X_s (\mu - 2^{-1} \sigma^2) ds + \int_0^t X_s \sigma dW_s \ &+ rac{1}{2} \int_0^t X_s \sigma^2 ds \ &= x_0 + \int_0^t \mu X_s ds + \int_0^t \sigma X_s dW_s \quad ext{equivalently} \end{aligned}$$

• Geometric Brownian motion (Black-Scholes model)

$$dX_t = \mu X_t dt + \sigma X_t dW_t, \quad X_0 = x_0$$

Realized volatility

•
$$t_j = t_j^n = j/n.$$

• $V_n := \sum_{j=1}^n (X_{t_j} - X_{t_{j-1}})^2$
• Then $V_n \rightarrow^p V_\infty = \int_0^1 H_s^2 ds$ as $n \rightarrow \infty$
for $X_t = X_0 + \int_0^t K_s ds + \int_0^t H_s dW_s$ with $K, H \in \mathbb{L}.$

Exercise 4. Prove this fact for the geometric Brownian motion analytically and/or by simulation with YUIMA.

Euler-Maruyama approximation

- An approximation to the solution of the SDE (4) is given by the so-called Euler-Maruyama method.
- $t_j = t_j^n := jt/n$ for given t > 0. $h = h_n := t/n$
- Y_{t_j} is recursively generated by

- Y_{t_j} approximates X_{t_j} when n is large.
- The YUIMA simulate basically uses this approximation method.

- (Ω, \mathcal{F}, P) : a probability space equipped with a filtration $\mathbf{F} = (\mathcal{F}_t)_{t \in \mathbb{R}_+}$
- an r-dimensional Wiener process $W = (W_t^{\alpha})_{\alpha=1,...,r}, t \in \mathbb{R}_+$: each $W^{\alpha} = (W_t^{\alpha})_{t \in \mathbb{R}_+}$ is a standard Wiener process and $W^1, ..., W^r$ are independent.
- Multi-dimensional Itô process $X = (X^i)_{i=1,...,d}$

$$X^i_t = X^i_0 + \int_0^t K^i(s) dt + \sum_{lpha=1}^{\mathsf{r}} \int_0^t H^i_lpha(s) dW^lpha_s \quad (i=1,...,\mathsf{d})$$

for K^i , $H^i_{\alpha} \in \mathbb{L}$ such that

$$\sum_{i,lpha}\int_0^tig(|K^i(s)|+|H^i_lpha(s)|^2ig)ds<\infty\quad(t\in\mathbb{R}_+)$$

Multi-dimensional processes

• Itô's formula

$$egin{aligned} f(X_t) &= f(X_0) \ &+ \int_0^t iggl\{ \sum_i \partial_i f(X_s) K^i(s) ds + rac{1}{2} \sum_{i,j,lpha} \partial_i \partial_j f(X_s) H^i_lpha(s) H^j_lpha(s) iggr\} ds \ &+ \sum_{i,lpha} \int_0^t \partial_i f(X_s) H^i_lpha(s) dW^lpha_s \end{aligned}$$

for $f \in C^2(\mathbb{R}^d)$, where $\partial_i = \partial/\partial x^i$ for $x = (x^i)_{i=1,...,d}$.

Multi-dimensional processes

- Multi-dimensional SDEs are also considered.
- e.g. Heston model

$$\left\{ egin{array}{ll} dX^1_t = \mu X^1_t dt + \sqrt{X^2_t} X^1_t dB^1_t \ dX^2_t = \kappa (heta - X^2_t) dt + \epsilon \sqrt{X^2_t} dB^2_t \end{array}
ight.$$

where $B^1 = W^1$ and $B^2 = \rho W^1 + \sqrt{1 - \rho^2} W^2$.