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Recall Wiener process (Brownian motion)� �
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Random walk

• (ξj)j∈N: independent and identically distributed ran-
dom variables (defined on a probability space (Ω,F , P )).

• S0 := 0, Sn :=
∑n

j=1 ξj
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Random walk

• Take more data and zoom out
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•What appears when n = ∞?
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Donsker’s theorem (Functional Central Limit Theorem)

• (ξj)j∈N: independent and identically distributed ran-

dom variables with E[ξ1] = 0, E[ξ21] = 1, and S0 = 0,
Sn =

∑n
j=1 ξj, as before

• scaling space-time and linear interpolation

Xn
t =

1
√
n
S⌊nt⌋ +

(
nt − ⌊nt⌋

)
√
n

ξ⌊nt⌋+1

� �
Theorem 1.

Xn →d W in C (n → ∞)� �
•C is the space of continuous functions f : R+ → R,
equipped with a certain topology. R+ = [0,∞).

•A standard Wiener process (Brownian motion) W
appeared as the limit.
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Wiener process (Brownian motion)

•W = (Wt)t∈R+
: a standard Wiener process

•W has the following properties.
� �
Standard Wiener process

(i)W0 = 0.

(ii)Wt − Ws ∼ N(0, t − s) for s < t.

(iii) For 0 = t0 < t1 < · · · < tk (k ∈ N), the
random variables

Wt1, Wt2 − Wt1, · · · , Wtk − Wtk−1

are independent.

(iv) Each path t 7→ Wt is continuous.� �
• The Wiener process has many interesting properties.



� �� �
Wiener integral� �

� �
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Transform of a Wiener process

• simple function hs =
∑k

j=1 aj−11(tj−1,tj]
(s),

a0, ..., ak−1 ∈ R and 0 = t0 ≤ t1 ≤ · · · ≤ tk

• J(h)t :=
k∑

j=1

aj−1
(
Wtj∧t−Wtj−1∧t

)
, s∧t = min{s, t}

Exercise 1. (a)E[J(h)t] = 0

(b)E[J(h)2t ] = ∥h∥2
L2([0,t],ds)

, where

∥h∥L2([0,t],ds) =
( ∫ t

0 h2
sds

)1/2
. [For the simple func-

tion, the value is
∑k

j=1 a
2
j−1(tj ∧ t − tj−1 ∧ t).]

(c) J(h)t ∼ N
(
0, ∥h∥2

L2([0,t],ds)

)
.

(d) For s < t, the conditional expectation

E
[
J(h)t

∣∣ Wr (r ≤ s)
]
= J(h)s.
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Wiener integral

•As a limit of J(H)t discussed above, we obtain the
so-called Wiener integral.

� �
If h : R+ → R is a locally bounded piecewise contin-
uous function, then the Wiener integral

J(h)t =

∫ t

0
hs dWs

is well defined and the properties in Exercise 1 hold.� �
• Some details are given below.
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Wiener integral

• (Ω,F , P ): a probability space

• L2(P ): the space of square-integrable random vari-

ables. ∥X∥2 =
{ ∫

ΩX(ω)2P (dω)
}1/2

.

• Fact. For any h ∈ L2(R+, ds), there exists a se-
quence of simple functions hn

· such that
∥hn − h∥L2([0,t],ds) → 0 as n → ∞ for every t ∈ R+.

• The property (b) gives an isometry

∥J(h)t∥2 = ∥h∥L2([0,t],ds)

• Thus, we can define J(h)t = limn→∞ J(hn)t in L2(P ).

•We write

J(h)t =

∫ t

0
hsdWs
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Wiener integral

•More simply, as already stated, e.g.,

If h : R+ → R is a locally bounded piecewise contin-
uous function, then the Wiener integral

J(h)t =

∫ t

0
hs dWs

is well defined and the properties in Exercise 1 hold.

Exercise 2. Verify∫ t

0
eθsdWs = J(eθ·)t ∼ N

(
0, (e2θt − 1)/(2θ)

)
for θ ̸= 0.
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Itô integral� �

� �
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Itô integral

•We say that a random variable ξ is Ft-measurable if
ξ is a function of (Ws)s∈[0,t].

• (Ft)t∈R+
is called a filtration.

•We say a stochastic process X = (Xt)t∈R+
is adapted

to (Ft)t∈R+
if Xt is Ft-measurable for every t ∈ R+.

•Remark. More generally and rigorously, F = (Ft)t∈R+
is a filtration, i.e., each Ft is a sub σ-field of F , and
Fs ⊂ Ft for s < t. Usually, the right-continuity
Ft+ = ∩u>tFu = Ft is assumed. We suppose that
W = (Wt)t∈R+

is adapted to F, and that Wt − Ws

is independent of Fs for s < t.
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Itô integral

•We call a stochastic process H = (Ht)t∈R+
a simple predictable process (with respect to F)
if it admits a representation

Ht = H01{0}(t) +
J∑

j=1

H(j−1)1(tj−1,tj]
(t) (1)

for some J ∈ Z+, 0 = t0 ≤ t1 ≤ · · · ≤ tJ , some
F0-measurable random variable H0 and some Ftj-
measurable random variable H(j).

•Define JW (H) = (JW (H)t)t∈R+
by

JW (H)t =
J∑

j=1

H(j−1)

(
Wtj∧t − Wtj−1∧t

)
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Itô integral

•Denote by Sb the set of all bounded simple pre-
dictable processes.

• For H ∈ Sb,

E
[
JW (H)2t

]
= E

[ ∫ t

0
H2

sds

]
(2)

Exercise 3. Verify (2).

Hint. When tj−1 < tj′−1 ≤ t, we have

E
[
H(j−1)H(j′−1)

(
Wtj∧t − Wtj−1∧t

)(
Wtj′∧t − Wtj′−1∧t

)]
= E

[
H(j−1)H(j′−1)

(
Wtj∧t − Wtj−1∧t

)
×E

[
Wtj′∧t − Wtj′−1∧t|Ftj′−1

]]
= 0.
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Itô integral

• L: the set of F-adapted processes that are left-continuous
and admitting right-hand limits.

• Starting with the isometry (2), it is possible to ex-
tend JW from Sb to L (with some topology). There-
fore we can define the Itô integral JW (H)t for H ∈
L. We write

JW (H)t =

∫ t

0
Hs dWs

• Then, JW is extending the Wiener integral J .

• t 7→ JW (H) is continuous (such version exists)

•Martingale property.

E
[
JW (H)t|Fs

]
= JW (H)s a.s. (s < t)

if E[
∫ t
0 H2

sds] < ∞.
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Itô integral

• Lp-maximum inequality. For p ∈ (1,∞),∥∥∥∥sup
t

|JW (H)t|
∥∥∥∥
p
≤

p

p − 1
sup
t

∥JW (H)t∥p

•Burkholder-Davis-Gundy inequality. For p ∈ (0,∞),
there exist constants Ap and Bp such that

Ap
∥∥[JW (H), JW (H)]

1/2
t

∥∥
p ≤

∥∥∥∥ sup
s∈[0,t]

|JW (H)s|
∥∥∥∥
p

≤ Bp
∥∥[JW (H), JW (H)]

1/2
t

∥∥
p

where [JW (H), JW (H)]t =
∫ t
0 H2

sds.
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Itô’s formula� �
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Itô’s formula, starting with a simple example

• f ∈ C2
b(R), tj = j/n

•Mn :=
∑n

j=1 f
′′(Wtj−1

)
{
(Wtj − Wtj−1

)2 − n−1
}

• Then

E[M2
n] = 2n−2

n∑
j=1

E
[
f ′′(Wtj−1

)2
]

≤ 2∥f ′′∥2∞n−1 → 0 (n → ∞)

Therefore
n∑

j=1

f ′′(Wtj−1
)(Wtj − Wtj−1

)2

=
n∑

j=1

f ′′(Wtj−1
)n−1 + op(1) →p

∫ 1

0
f ′′(Wt)dt
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Itô’s formula

• In this situation,

f(W1) − f(W0)

=
n∑

j=1

(
f(Wtj) − f(Wtj−1

)
)

=
n∑

j=1

f ′(Wtj−1
)(Wtj − Wtj−1

)

+
1

2

n∑
j=1

f ′′(Wtj−1
)(Wtj − Wtj−1

)2 + op(1)

→p
∫ 1

0
f ′(Wt)dWt +

1

2

∫ 1

0
f ′′(Wt)dt (n → ∞)
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Itô’s formula

•Consequently,

f(W1) = f(W0) +

∫ 1

0
f ′(Wt)dWt +

1

2

∫ 1

0
f ′′(Wt)dt.

•More generally,
Itô’s fomula:

f(Xt) = f(Xr) +

∫ t

r
f ′(Xs)dXs +

1

2

∫ t

r
f ′′(Xs)H

2
sds

= f(Xr) +

∫ t

r
f ′(Xs)Ksds +

∫ t

r
f ′(Xs)HsdWs

+
1

2

∫ t

r
f ′′(Xs)H

2
sds (0 ≤ r ≤ t)

for Xt = X0 +
∫ t
0 Ksds +

∫ t
0 HsdWs with K,H ∈ L

and f ∈ C2(R) (boundedness is not necessary).
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Stochastic differential equation� �
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Stochastic integral equation

• F = (Ft)t∈R+
, a filtration on a probability space

(Ω,F , P ).

•A stochastic integral equation

Xt = x0 +

∫ t

0
a(Xs)ds +

∫ t

0
b(Xs)dWs (3)

where a and b are given functions.

•An F-adapted continuous process X = (Xt)t∈R+
for

which the equality (3) holds for every t is called a
solution to the stochastic integral equation. The last
term of the right-hand side of (3) is the Itô integral.
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Stochastic integral equation

•Given W , the equation (3) has a unique solution X
if the following condition is satisfied:
∃L > 0 such that

|a(x) − a(y)| + |b(x) − b(y)| ≤ L|x − y| (x, y ∈ R)

• This solution is called a strong solution.

• Equation (3) is equivalently expressed
as a stochastic differential equation{

dXt = a(Xt)dt + b(Xt)dWt

X0 = x0
(4)
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Diffusion process

•A continuous-time strongly Markovian process with
almost surely continuous sample paths is called a
diffusion process.

•Many diffusion processes can be constructed by a
stochastic differential equation having a unique so-
lution.

• The generator gives essential information of the dif-
fusion process. For the diffusion corresponding to
the stochastic differential equation (4), the genera-
tor is given by

Lf = a(x)f ′(x) +
1

2
b(x)2f ′′(x)

for f ∈ C2(R).
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Diffusion process

• For a solution X to (4), Itô’s formula is written as

f(Xt) = f(X0) +

∫ t

0
f ′(Xs)b(Xs)dWs +

∫ t

0
Lf(Xs)ds.
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Diffusion process: an example

• Let

Xt = x0 exp
(
(µ − 2−1σ2)t + σWt

)
•By applying Itô’s formula to the function f(x) =
x0e

x and the process (µ−2−1σ2)t+σWt, we obtain

Xt = x0 +

∫ t

0
Xs(µ − 2−1σ2)ds +

∫ t

0
XsσdWs

+
1

2

∫ t

0
Xsσ

2ds

= x0 +

∫ t

0
µXsds +

∫ t

0
σXsdWs equivalently

•Geometric Brownian motion (Black-Scholes model)

dXt = µXtdt + σXtdWt, X0 = x0
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Realized volatility

• tj = tnj = j/n.

• Vn :=
∑n

j=1

(
Xtj − Xtj−1

)2
• Then Vn →p V∞ =

∫ 1
0 H2

sds as n → ∞
for Xt = X0 +

∫ t
0 Ksds +

∫ t
0 HsdWs with K,H ∈ L.

Exercise 4. Prove this fact for the geometric Brownian
motion analytically and/or by simulation with YUIMA.
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Euler-Maruyama approximation

•An approximation to the solution of the SDE (4) is
given by the so-called Euler-Maruyama method.

• tj = tnj := jt/n for given t > 0. h = hn := t/n

• Ytj is recursively generated by

Ytj = Ytj−1
+ a(Ytj−1

)h + b(Ytj−1
)h1/2ξj, Y0 = x0

with ξj ∼ i.i.d. N(0, 1).

• Ytj approximates Xtj when n is large.

• The YUIMA simulate basically uses this approxima-
tion method.
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Multi-dimensional processes

• (Ω,F , P ): a probability space equipped with a fil-
tration F = (Ft)t∈R+

• an r-dimensional Wiener process W = (Wα
t )α=1,...,r, t∈R+

:
each Wα = (Wα

t )t∈R+
is a standard Wiener process

and W 1, ...,W r are independent.

•Multi-dimensional Itô process X = (Xi)i=1,...,d

Xi
t = Xi

0 +

∫ t

0
Ki(s)dt +

r∑
α=1

∫ t

0
Hi

α(s)dW
α
s (i = 1, ..., d)

for Ki, Hi
α ∈ L such that∑

i,α

∫ t

0

(
|Ki(s)| + |Hi

α(s)|
2)ds < ∞ (t ∈ R+)
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Multi-dimensional processes

• Itô’s formula

f(Xt) = f(X0)

+

∫ t

0

{∑
i

∂if(Xs)K
i(s)ds +

1

2

∑
i,j,α

∂i∂jf(Xs)H
i
α(s)H

j
α(s)

}
ds

+
∑
i,α

∫ t

0

∂if(Xs)H
i
α(s)dW

α
s

for f ∈ C2(Rd), where ∂i = ∂/∂xi for x = (xi)i=1,...,d.
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Multi-dimensional processes

•Multi-dimensional SDEs are also considered.

• e.g. Heston model
dX1

t = µX1
t dt +

√
X2

tX
1
t dB

1
t

dX2
t = κ(θ − X2

t )dt + ϵ
√
X2

t dB
2
t

where B1 = W 1 and B2 = ρW 1 +
√

1 − ρ2W 2.


