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Setting

B = (Bt)t∈[0,T ]: Brownian motion

We consider a diffusion process containing unknown parameters:

dXt = a(Xt , α)dt + b(Xt , β)dBt , X0 = x0, t ∈ [0,T ]. (1)

α and β are unknown parameters (possibly multi-dimensional)

The process X = (Xt)t∈[0,T ] is observed at equi-spaced time points
ti = i∆n (i = 0, 1, . . . , n; ∆n = T/n)

Aim Estimate the parameters α and β from the observation data
Xt0 ,Xt1 , . . . ,Xtn

YUIMA has two basic functions to accomplish this:
▶ qmle( ): Quasi-Maximum Likelihood Estimation (QMLE)
▶ adaBayes( ): Adaptive Bayes Estimation
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Quasi-log likelihood function

Euler-Maruyama type approximation:

∆Xi := Xti − Xti−1 ≈ a(Xti−1 , α)∆n + b(Xti−1 , β)(Bti − Bti−1)

Thus, the conditional pdf of ∆Xi given Xt (0 ≤ t ≤ ti−1) is
approximated by the normal density with mean a(Xti−1 , α)∆n and
variance b(Xti−1 , β)

2∆n:

1√
2πb(Xti−1 , β)

2∆n

exp

(
−
(∆Xi −∆na(Xti−1 , α))

2

2b(Xti−1 , β)
2∆n

)
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Quasi-log likelihood function

The corresponding quasi-log likelihood function:

Hn(α, β) = −1

2

n∑
i=1

{
log b(Xti−1 , β)

2 +
(∆Xi −∆na(Xti−1 , α))

2

b(Xti−1 , β)
2∆n

}

Using Hn(α, β) as a standard log-likelihood function, we can
implement ML type and Bayesian type estimation

In the following, Θα and Θβ denotes the parameter spaces for α and
β, respectively
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QMLE by qmle( )

The function qmle( ) computes the joint QMLE for α and β (when
the option joint = TRUE):

(α̂n, β̂n) = arg max
(α,β)∈Θα×Θβ

Hn(α, β)

▶ The optimization problem is solved by the function optim( ); we need
to set an initial value of the optimization to the option start

▶ Currently, only hyperrectangles are supported for the parameter spaces
Θα and Θβ ; they are set by the options lower and upper

▶ The standard errors and asymptotic covariance matrix for the
estimators are also available; summary( ) and vcov( )
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QMLE by qmle( )

When the option joint = FALSE (default), it computes the two
stage QMLE:

1. Given an initial value α∗ for α, we estimate β by

β̌n = arg max
β∈Θβ

Hn(α
∗, β)

2. We estimate α by
α̌n = arg max

α∈Θα

Hn(α, β̌n)

The two-stage QMLE has the same asymptotic property as the
standard QMLE and its computation is usually faster

Of course, their finite sample performance could be different

Y. Koike (U. of Tokyo, CREST JST) Estimation for diffusion processes June 26, 2019 7 / 14



QMLE by qmle( )

Summary: Basic formula for qmle( ):

qmle(yuima, start, method = "BFGS", lower, upper, joint

= FALSE, rcpp = FALSE)

▶ yuima: a yuima object
▶ start: initial parameter values for optimization
▶ method: optimization method used in optim( )
▶ lower: lower values for the parameter spaces
▶ upper: upper values for the parameter spaces
▶ joint: joint or two-stage?
▶ rcpp: use C++ code or not?
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QMLE by qmle( ): An example

Let us estimate the following SDE model:

dXt = (−α1Xt + α2)dt + βdBt , x0 = 0.3

▶ Known as the Ornstein-Uhlenbeck (OU) process
▶ The true parameter values: α1 = 3, α2 = 1, β = 0.3
▶ The parameters for the sampling schemes: n = 1000 and T = 3n1/3

R example: qmle-ex.r
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Adaptive Bayes Estimation by adaBayes( )

The function adaBayes( ) computes the adaptive Bayes-type
estimator for α and β as follows:

1. Given an initial value α∗ for α, we estimate β by

β̃n =

∫
Θβ

β exp(Hn(α
∗, β))π1(β)dβ∫

Θβ
exp(Hn(α∗, β))π1(β)dβ

2. We estimate α by

α̃n =

∫
Θα

α exp(Hn(α, β̃n))π2(α)dα∫
Θα

exp(Hn(α, β̃n))π2(α)dα

▶ π1 and π2 are prior densities for β and α, respectively (they can be
improper)
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Basic formula for adaBayes( ):

adaBayes(yuima, start, prior, lower, upper, method = "

mcmc", mcmc = 1000, rcpp = FALSE, algorithm = "

randomwalk")

▶ yuima: a yuima object
▶ start: initial parameter values for optimization
▶ prior: prior densities
▶ lower: lower values for the parameter spaces
▶ upper: upper values for the parameter spaces
▶ method: How to compute the integrals? ("mcmc" for MCMC and

"nomcmc" for numerical integration by the package cubature)
▶ mcmc: number of MCMC iterations
▶ rcpp: use C++ code or not?
▶ algorithm: MCMC algorithm: "randomwalk" and "MpCN" are

available

R example: adaBayes-ex.r
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Multi-dimensional process

Multi-dimensional SDEs can be handled analogously

As an illustration, we estimate the unknown parameters of the
following two-dimensional SDE:{

dX1,t = −α1X1,tdt + β1dB1,t + X2,tdB3,t ,
dX2,t = −(α2X1,t + α3X2,t)dt + X1,tdB1,t + β2dB2,t ,

(2)

where (B1,t)t∈[0,T ], (B2,t)t∈[0,T ], (B3,t)t∈[0,T ] are three independent
Brownian motions

R example: est-multi.r
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Real data example

The functions qmle( ) and adaBayes( ) can be used to fit a SDE
model to real data

As an illustration, we fit the OU model to the dataset LogSPX
contained in the package yuima

R example: est-spx.r
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Effect of sampling schemes

The convergence rates of QMLEs/adaptive Bayes estimators for α
and β are given by 1/

√
T and

√
∆n

Thus, regarding the sampling scheme, the estimation accuracy of α is
affected by T and the effect of ∆n is not large, at least asymptotically

The roles of T and ∆n are reversed for the estimation accuracy of β

We check this effect in the previous OU model example

R example: est-sampling.r
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