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What is an estimator?

Suppose to have a sample of i.i.d. observations Xi , i = 1, . . . , n, with
common distribution indexed by some parameter θ ∈ Θ, say {Pθ.θ ∈ Θ}.

An estimator Tn of θ is any function solely of the data X and not θ, i.e.
Tn = f (X1, . . . ,Xn).

An estimator is said to be Unbiased if its Bias is zero, i.e.

Biasθ(Tn) = Eθ(Tn)− θ, ∀θ ∈ Θ

We can also study the variance of an estimator, define din the usual way

Varθ(Tn) = Eθ(Tn − ETn)2
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Mean Squared Error (MSE)

As always in statistics, there is a tradeoff between mean and variance. One
measure of the quality of an estimator is given by the Mean Squared
Error or simply MSE, defined as follows

MSEθ(Tn) = Eθ(Tn − θ)2, ∀θ ∈ Θ

Which can be decomposed as

MSEθ(Tn) = Eθ(Tn − θ ± ETn)2

= Eθ(Tn − ETn)2 + Eθ(ETn − θ)2 + 2Eθ{(Tn − ETn)(ETn − θ)}
= Varθ(Tn) + (Biasθ(Tn))2
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Relative Efficiency
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or, equivalently, if the relative efficiency behaves as follows:
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quite often too optimistic! Often the best estimator is searched within the
class of unbiased estimators (e.g. OLS), i.e. only variance is compared.
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Asymptotic properties of an estimator

An estimator Tn can be biased for finite n but asymptotically unbiased if:

Biasθ(Tn)→ 0, as n→∞

An estimator is said to consistent if:

Tn
p→ θ, as n→∞
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The likelihood function

Suppose to have a sample of i.i.d. observations Xi , i = 1, . . . , n, with
common distribution indexed by some parameter θ ∈ Θ. Seen as a random
vector, the sample (X1,X2, . . . ,Xn) has its own probability.

So, for a given set of observed values (x1, x2, . . . , xn) from the random
vector (X1,X2, . . . ,Xn), we might wonder about which is the probability
that these data come from a given model specified by θ.

Assume that the Xi ’s are discrete random variables with probability mass
function p(x ; θ) = Pθ(X = x). Let us construct the probability of the
observed sample as

Pθ(X1 = x1,X2 = x2, . . . ,Xn = xn) =
n∏

i=1

p(xi ; θ)
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The likelihood function for discrete r.v.’s

Pθ(X1 = x1,X2 = x2, . . . ,Xn = xn) =
n∏

i=1

p(xi ; θ)

Seen only as a function of θ ∈ Θ and given the observed values
(X1 = x1,X2 = x2, . . . ,Xn = xn), this quantity if called the

“likelihood of θ given the sample data”

and we write

Ln(θ) = Ln(θ|x1, . . . , xn) =
n∏

i=1

p(xi ; θ)
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The likelihood function for continuous r.v.’s

In case of continuous random variables with density function f (x ; θ) we
denote the likelihood as

Ln(θ) = Ln(θ|x1, . . . , xn) =
n∏

i=1

f (xi ; θ).

Now recall that f (x) 6= P(X = x) = 0 for continuous random variables
(but f (x)dx ' P{X ∈ [x , x + dx)}), so it is important to interpret Ln(θ)
as the likelihood of θ, rather than the “probability of the sample”.

Indeed, Ln(θ) weights different values of θ ∈ Θ on the basis of the
observed (and given) data. This allows to define a general approach in the
search of estimators of the unknown parameter θ as we will see shortly.
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How to use the likelihood?

Consider again the case of discrete random variables with our data
(x1, . . . , xn) at hands/given/not changeable/etc

Ln(θ) = Ln(θ|x1, . . . , xn) =
n∏

i=1

p(xi ; θ)

Suppose that for some value θ = θ1 we observe that

Ln(θ1) > Ln(θ2)

where θ2 is another value of θ.

In this case, we do think that it is more likely that the observed data
(x1, . . . , xn) come from the model Pθ1 rather than the model Pθ2 .

Is there a particular value of θ ∈ Θ which makes Ln(θ) the highest ? If so,
we can take this value as an estimate of θ. Indeed!
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How to use the likelihood?

R> set.seed(123)

R> library("stats4")

R> x <- rnorm(1000, mean = 5, sd = 2)

R> lik1 <- dnorm(x, mean = 5, sd = 2)

R> lik2 <- dnorm(x, mean = 10, sd = 2)

R> lik1[1:10]

[1] 0.17047746 0.19425636 0.05919776 0.19897593 0.19781098 0.04583031

[7] 0.17936946 0.08961114 0.15755682 0.18061402

R> lik2[1:10]

[1] 0.0018448795 0.0048005716 0.1280799331 0.0104275863 0.0120074975

[6] 0.1465853830 0.0249466166 0.0001665977 0.0012431569 0.0026044131

R> lik1[1:10] > lik2[1:10] # most of the times true

[1] TRUE TRUE FALSE TRUE TRUE FALSE TRUE TRUE TRUE TRUE

R> sum(lik1 > lik2)/1000*100

[1] 89.9
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How to use the likelihood?

R> d1 <- density(lik1)

R> d2 <- density(lik2)

R> xlim = range(c(d1$x, d2$x))

R> ylim = range(c(d1$y, d2$y))

R> plot(d1, xlim=xlim, ylim=ylim,

R+ main = "comparing likelihoods",

R+ xlab="", ylab="likelihood") # likely for most points

R> lines(density(lik2),col="red") # very unlikely for most points

R> legend(0.05, 20, legend=c("other", "true"), col=c("black","red"),lty=1)
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How to use the likelihood?
R> ell <- NULL

R> theta <- seq(-20,20, length=500)

R> for(mu in theta){

R> ell <- c(ell, sum(dnorm(x, mean = mu, sd = 2, log=TRUE)))

R> }

R> plot(theta, ell, type="l")

R> abline(v=1, lty=2)

R> abline(v=5, lty=3, col="red")

R> legend(10, -40000, legend=c("other", "true"), col=c("black","red"),lty=c

(2,3))
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Maximum Likelihood Estimators (MLE)

If we study the likelihood Ln(θ) as a function of θ given the n numbers
(X1 = x1, . . . ,Xn = xn) and we find that this function has a maximum, we
can use this maximum value as an estimate of θ.

In general we define maximum likelihood estimator of θ, and we abbreviate
this with MLE, the following estimator

θ̂n = arg max
θ∈Θ

Ln(θ)

= arg max
θ∈Θ

Ln(θ|X1,X2, . . . ,Xn)

provided that the maximum exists.

Remark: MLE’s are often biased but asymptotically unbiased (see later
example)
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Log-likelihood function

We do normally use the log-likelihood function `n(θ) = log Ln(θ) rather
than the likelihood function L(θ) because, especially in the i.i.d. setting,
transforms the product into a sum

`n(θ) = log Ln(θ) =
∑

log p(xi ; θ)

or
`n(θ) = log Ln(θ) =

∑
log f (xi ; θ)

Moreover, being the log a monotonic function, for numerical purposes, the
problem is transformed from

θ̂n = arg max
θ∈Θ

Ln(θ) into θ̂n = arg min
θ∈Θ
−`n(θ)
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Derived quantities from the likelihood
The quantity In(θ) defined below is called the Fisher information (for the
sample)

In(θ) = Eθ

{
∂

∂θ
`n(θ)

}2

= −Eθ

{
∂2

∂θ2
`n(θ)

}
= nI(θ)

(where I(θ) is the Fisher information for one observation). The quantity

∂

∂θ
`n(θ)

is called the score function of the model.

Cramér-Rao’s theorem: for any estimator Tn of θ

Varθ(Tn) ≥
(
1 + ∂

∂θBiasθ(Tn)
)2

In(θ)

which means: no matter Tn the lower bound of the variance is controlled
by the Fisher information of the model.
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MLE and optimality

Clearly, if θ̂n is the MLE of θ, then

∂

∂θ
`n(θ)

∣∣∣∣
θ=θ̂n

= 0

because the above represents the normal equation in optimization.
If Tn is the ML estimator, we have that

√
n(Tn − θ)

d→ N(0, I(θ)−1)

Therefore MLE, being asymptotically unbiased, are also asymptotically
optimal because they reach the asymptotic lower bound of Cramér-Rao.
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A simple example: N(θ, σ2)

Let Xi , i = 1, . . . , n, be an i.i.d. sample extracted from the Gaussian
distribution N(θ, σ2). For simplicity, assume σ2 is known. We want to find
the MLE of θ. Hence

Ln(θ) =
n∏

i=1

1√
2πσ2

e−
(Xi−θ)2

2σ2 =

(
1√

2πσ2

)n n∏
i=1

e−
(Xi−θ)2

2σ2 .

Instead of maximizing Ln(θ) we maximize the log-likelihood
`n(θ) = log Ln(θ)

`n(θ) = n log

(
1√

2πσ2

)
−

n∑
i=1

(Xi − θ)2

2σ2
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A simple example: N(θ, σ2)

The first term of `n(θ) contains only constants so it does not affect
optimization, hence we just need to solve

θ̂n = arg min
θ

1

2σ2

n∑
i=1

(Xi − θ)2

but this minimum is exactly X̄n = 1
n

∑n
i=1 Xi by the properties of the

arithmetic mean.1 Hence the ML estimator of θ is θ̂n = X̄n. Explicit
calculations lead to the same result

∂

∂θ

1

2σ2

n∑
i=1

(Xi − θ)2 =
1

σ2

n∑
i=1

(Xi − θ) = 0⇔

⇔
n∑

i=1

Xi = nθ ⇔ θ̂ =
1

n

n∑
i=1

Xi = X̄n.

1It is easy to show that: mina

∑n
i=1(xi − a)2 =

∑n
i=1(xi − x̄n)2.
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Example: continues

Consider the setup of the previous example. Find the maximum likelihood
estimator of θ = (µ, σ2).

We minimize minus the log-likelihood function as a function of µ and σ

h(µ, σ2) = −`n(µ, σ2) =
n

2
log(2π) +

n

2
log σ2 +

n∑
i=1

(Xi − µ)2

2σ2

∂

∂µ
h(µ, σ2) = − 1

σ2

n∑
i=1

(Xi − µ) = 0

∂

∂σ2
h(µ, σ2) =

n

2σ2
− 1

2σ4

n∑
i=1

(Xi − µ)2 = 0

From the first equation we get µ̂ = X̄n and pluggin-in this value into the
second equation we obtain σ̂2 = S2

n = 1
n

∑n
i=1(X1 − X̄n)2.
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Example: continues

We now need to verify that at least one of the two second derivatives at
point (µ̂, σ̂2) is positive and the determinant of the Hessian matrix of
second-order partial derivatives of h(µ, σ2) evaluated at the point (µ̂, σ̂2)
is positive. So we calculate partial derivatives first.

∂2

∂µ2
h(µ, σ2) =

n

σ2
,

∂2

∂(σ2)2
h(µ, σ2) = − n

2σ4
+

1

σ6

n∑
i=1

(Xi − µ)2,

∂2

∂µσ2
h(µ, σ2) = +

1

σ4

n∑
i=1

(Xi − µ).

(1)
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Example: continues
Now we recall that σ̂2 = 1

n

∑n
i=1(Xi − µ̂)2 and

∑n
i=1(Xi − µ̂) = 0, hence

∂2

∂µ2
h(µ, σ2)

∣∣∣∣
µ=µ̂,σ2=σ̂2

=
n

σ̂2
> 0,

∂2

∂(σ2)2
h(µ, σ2)

∣∣∣∣
µ=µ̂,σ2=σ̂2

= − n

2σ̂4
+

n

σ̂4
=

n

2σ̂4
> 0,

∂2

∂µσ2
h(µ, σ2)

∣∣∣∣
µ=µ̂,σ2=σ̂2

=
1

σ̂4

n∑
i=1

(Xi − µ̂) = 0.

Finally, we calculate the determinant of the Hessian matrix evaluated at
point (µ̂, σ̂2) to check if it is positive

H(µ̂, σ̂2) =

∣∣∣∣∣ ∂2

∂µ2 h(µ, σ2) ∂2

∂µσ2 h(µ, σ2)
∂2

∂µσ2 h(µ, σ2) ∂2

∂(σ2)2 h(µ, σ2)

∣∣∣∣∣
µ=µ̂,σ2=σ̂2

=

∣∣∣∣ n
σ̂2 0
0 n

2σ̂4

∣∣∣∣ =
1

2

n2

σ̂6
> 0.
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Example: continues - Fisher information

From (1) we can obtain the Fisher information matrix of the Gaussian
model. Indeed

−Eθ

(
∂2

∂µ2
`n

)
=

n

σ2

−Eθ

(
∂2

∂(σ2)2
`n

)
= − n

2σ4
+

1

σ6
= Eθ

(
n∑

i=1

(Xi − µ)2

)
= − n

2σ4
+

n

σ4
=

n

2σ4

−Eθ

(
∂2

∂µσ2
`n

)
= +

1

σ4
Eθ

(
n∑

i=1

(Xi − µ)

)
= 0

In(θ) =

(
n
σ2 0
0 n

2σ4

)
= n

(
1
σ2 0
0 1

2σ4

)
= nI(θ)
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MLE with R

It is not always the case, that maximum likelihood estimators can be
obtained in explicit form.

For what concerns applications to real data, it is important to know if
mathematical results about optimality of MLE estimators exist and then
find the estimators numerically.

R offers a prebuilt generic function called mle( ) in the package package
stats4 which can be used to maximize a likelihood.

The mle( ) function actually minimizes the negative log-likelihood −`(θ)
as a function of the parameter θ.
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MLE with R

For example, consider a sample of n = 1000 observations from a Gaussian
law with N(µ = 5, σ2 = 4), and let us estimate the parameters
numerically:

R> set.seed(123)

R> library("stats4")

R> x <- rnorm(1000, mean = 5, sd = 2)

R> log.lik <- function(mu = 1, sigma = 1) -sum(dnorm(x, mean = mu,

+ sd = sigma, log = TRUE))

R> fit <- mle(log.lik, lower = c(0, 0), method = "L-BFGS-B")

R> fit

Call:

mle(minuslogl = log.lik, method = "L-BFGS-B", lower = c(0, 0))

Coefficients:

mu sigma

5.032256 1.982398
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MLE with R

Using explicit estimators for µ and σ2 we get:

R> mean(x)

[1] 5.032256

R> sd(x)

[1] 1.98339

which almost coincides numerically.

What is worth knowing is that the output of the mle( ) function is an
object which contains several informations, including the value of `(θ) at
the point of its maximum

R> logLik(fit)

’log Lik.’ -2103.246 (df=2)

S.M. Iacus (U. of Milan, CREST JST) A primer on Statistical Inference June 25, 2019 26 / 28



MLE with R

The variance-covariance matrix of the estimators, which is obtained
inverting the Hessian matrix at the point θ corresponding to the maximum
likelihood estimate

R> vcov(fit)

mu sigma

mu 3.929901e-03 8.067853e-10

sigma 8.067853e-10 1.964946e-03
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MLE with R

Similarly, approximate confidence intervals and the complete summary of
the estimated parameters can be obtained using respectively the functions
confint( ) and summary( )

R> confint(fit)

Profiling...

2.5 % 97.5 %

mu 4.909269 5.155242

sigma 1.898595 2.072562

R> summary(fit)

Maximum likelihood estimation

Call:

mle(minuslogl = log.lik, method = "L-BFGS-B", lower = c(0, 0))

Coefficients:

Estimate Std. Error

mu 5.032256 0.06268893

sigma 1.982398 0.04432771

-2 log L: 4206.492

R code: MLE.R
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