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Monte Carlo Method

The Monte Carlo Method is a numeric method based on statistical
arguments which can be used to evaluate integrals. In particular, the
expected value of a random variable X with density f (·) is an integral of
this form

EX =

∫
xf (x)dx

In finance, we use the Monte Carlo Method to evaluate the expected
payoff of some derivative in order to price it.
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Monte Carlo Method

Suppose we are interested in calculating the expected value Eg(Y ), with g
is any function and Y is a given random variable.

Assume we know how to simulate n pseudo-random numbers y1, . . . , yn
according to the distribution of Y .

Then, we can think to approximate Eg(Y ) with the arithmetic mean of
the numbers g(yi )

Eg(Y ) ' 1

n

n∑
i=1

g(yi )
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Monte Carlo Method

Is this a good approximation?

Eg(Y ) ' 1

n

n∑
i=1

g(yi ) = ḡn

Yes! This is guaranteed by the Law of Large Numbers.

In addition, by the Central Limit Theorem we also have

1

n

n∑
i=1

g(yi ) ∼ N

(
Eg(Y ),

1

n
Var(g(Y ))

)
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Properties of the MC method

In summary, the number we estimate by n simulations, will have a
precision, around the true value Eg(Y ) of order εn = 1/

√
n.

Moreover, the estimate 1
n

∑n
i=1 g(yi ) is contained in the interval

(Eg(Y )− εn,Eg(Y ) + εn)

with probability 68.3%.

More precisely, a 95% confidence interval will be
of this form (

Eg(X )− 1.96
σ√
n
,Eg(X ) + 1.96

σ√
n

)
,

with σ =
√

Varg(X ).
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Properties of the MC method

The confidence interval depends on Varg(X ) which is estimated as

σ̂2 =
1

n − 1

n∑
i=1

(g(xi )− ḡn)2

and the approximate 95% Monte Carlo confidence interval for Eg(X ) is(
ḡn − 1.96

σ̂√
n
, ḡn + 1.96

σ̂√
n

)
.

The quantity σ̂/
√
n is called the standard error but standard error is itself

a random quantity and thus subject to variability; hence one should
interpret this value as a “qualitative” measure of accuracy.
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An application to integral evaluation

Suppose we have a function g defined on [a, b] with values in [c , d ],
c , d ≥ 0. We are interested in ∫ b

a
g(x)dx

We can make use of the Monte Carlo method in the following way:

let s = 0, A = (b − a) ∗ (d − c)

generate a pseudo-random number Ui ∼ U(a, b)

generate a second pseudo-random number Vi ∼ U(c , d)

if Vi < g(Ui ) then set s = s + 1

iterate n times

The value
∫ b
a g(x)dx ' A ∗ s/n
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Example:
∫ 2

0 x2dx = 23

3 = 2.66̄
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An application to integral evaluation

The algorithm just counts the number of points of random coordinates
(u, v) which fall below the curve g .

The proportion of this points which are below the graph of g is s/n.

But the points of coordinates (u, v) have been randomly extracted from
the rectangle of area A, thus, the area under the curve g (i.e. the integral
of g) is obtained using the formula A ∗ s/n.
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An application to integral evaluation

> set.seed(123)

> g <- function(x) x^2

> a <- 0

> b <- 2

> c <- 0

> d <- 4

> A <- (b - a) * (d - c)

> n <- 1e+05

> x <- runif(n, a, b)

> y <- runif(n, c, d)

> A * sum(y < g(x))/n

[1] 2.66792 # Monte Carlo estimate

> integrate(g, a, b) # Numerical integration

2.666667 with absolute error < 3.0e-14
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Connection with the Monte Carlo method

We set s = s + 1 whenever the Vi < g(Ui ) occurs, with Ui ∼ U(a, b) and
Vi ∼ U(c , d), i = 1, . . . , n.

If we set Yi = 1{Vi<g(Ui )}, i = 1, . . . , n, we obtain a sample of Bernoulli
random numbers which are all i.i.d as Y ∼ Ber(p), with
p = Pr(“being below the curve g ′′).

Then,

Ȳn =
1

n

n∑
i=1

Yi ' EY = p

and thus

A · Ȳn = A · 1

n

n∑
i=1

Yi = A · s
n
'
∫ b

a
g(x)dx
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Accuracy and speed of convergence

In some cases, Monte Carlo intervals are not very informative if the
variance of Y = g(X ) is too large.

Let Y = g(X ) = eβX with X ∼ N(0, 1), and assume we are interested in
Eg(X ) with β = 5.

The analytical value can be calculated as eβ
2/2 = 268337.3, and the true

standard deviation σ =
√
e2β2 − eβ2 = 72004899337, quite a big number

with respect to the mean of Y .

Suppose we want to estimate EY via the Monte Carlo method using
100000 replications and construct 95% confidence intervals using the true
standard deviation σ and the estimated standard error. Next R code does
the job.
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Accuracy and speed of convergence

> set.seed(123)

> n <- 1000000

> beta <-5

> x <- rnorm(n)

> y <- exp(beta*x)

>

> # true value of E(Y)

> exp(beta^2/2)

[1] 268337.3

> # MC estimation of E(Y)

> mc.mean <- mean(y)

> mc.mean

[1] 199659.2

> mc.sd <- sd(y)

> true.sd <- sqrt(exp(2*beta^2) - exp(beta^2))

>

> # MC conf. interval based on true sigma

> mc.mean - true.sd*1.96/sqrt(n)

[1] -140929943

> mc.mean + true.sd*1.96/sqrt(n)

[1] 141329262

>

> # MC conf. interval based on estimated sigma

> mc.mean - mc.sd*1.96/sqrt(n)

[1] 94515.51

> mc.mean + mc.sd*1.96/sqrt(n)

[1] 304802.9
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Accuracy and speed of convergence

n

ĝ n

0 250000 500000 750000 1000000

0
70

00
0

21
00

00
35

00
00
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Accuracy and speed of convergence

Running the previous R code we obtain the two intervals

(−140929943; 141329262) using σ

and
(94515.51; 304802.9) using σ̂

with an estimated value of Eg(X ), ĝn = 199659.2.

As one can see, the confidence interval based on σ contains the true value
of Eg(X ) but is too large and hence meaningless.

The confidence interval based on σ̂ is smaller but still large.

The first effect is due to the big variance of g(X ), while the second is due
to the fact that the sample variance underestimates the true one
(σ̂ = 53644741).
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Accuracy and speed of convergence

We have seen that variability affects stability of the Monte Carlo method

n

ĝ n

0 250000 500000 750000 1000000

0
70

00
0

21
00

00
35

00
00

We now present a couple of techniques to constrain instability
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Preferential sampling

The idea of this method is to express Eg(X ) in a different form in order to
reduce its variance.

Let f (·) be the density of X ; thus

Eg(X ) =

∫
R
g(x)f (x)dx .

Introduce now another strictly positive density h(·). Then,

Eg(X ) =

∫
R

g(x)f (x)

h(x)
h(x)dx

and

Eg(X ) = E

(
g(Y )f (Y )

h(Y )

)
= Eg̃(Y ) ,

with Y a random variable with density h(·) and g̃(·) = g(·)f (·)/h(·)

S.M. Iacus (U. of Milan, CREST JST) Monte Carlo analysis June 25, 2019 18 / 37



Preferential sampling

The idea of this method is to express Eg(X ) in a different form in order to
reduce its variance.

Let f (·) be the density of X ; thus

Eg(X ) =

∫
R
g(x)f (x)dx .

Introduce now another strictly positive density h(·). Then,

Eg(X ) =

∫
R

g(x)f (x)

h(x)
h(x)dx

and

Eg(X ) = E

(
g(Y )f (Y )

h(Y )

)
= Eg̃(Y ) ,

with Y a random variable with density h(·) and g̃(·) = g(·)f (·)/h(·)

S.M. Iacus (U. of Milan, CREST JST) Monte Carlo analysis June 25, 2019 18 / 37



Preferential sampling

Thus

Eg(X ) = E

(
g(Y )f (Y )

h(Y )

)
= Eg̃(Y )

If we are able to determine an h(·) such that Varg̃(Y ) < Varg(X ), then
we have reached our goal. But

Varg̃(Y ) = Eg̃(Y )2 − (Eg̃(Y ))2 =

∫
R

g2(x)f 2(x)

h(x)
dx − (Eg(X ))2 .

Let g() be strictly positive and choose h(x) = g(x)f (x)/Eg(X ), then

Varg̃(Y ) = Eg(X )

∫
R

g2(x)f 2(x)

g(x)f (x)
dx − (Eg(X ))2 = 0

This is nice only in theory because, of course, we don’t know Eg(X ).
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Preferential sampling

But the expression of h(x) suggests a way to obtain a useful
approximation: just take h̃(x) = |g(x)f (x)| (or something close to it),
then normalize it by the value of its integral, and use

h(x) =
h̃(x)∫

R h̃(x)dx
.

Of course this is simple to say and hard to solve in specific problems, as
integration should be done analytically and not using the Monte Carlo
technique again.

Let us see an example.
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Preferential sampling

Suppose we want to calculate Eg(X ) with

g(x) = max(0,K − eβx) = (K − eβx)+

K and β constants, and X ∼ N(0, 1).

This is the price of a put option in the Black and Scholes framework with
explicit solution

E
(
K − eβX

)
+

= KΦ

(
log(K )

β

)
− e

1
2
β2

Φ

(
log(K )

β
− β

)
,

where Φ is the cumulative distribution function of the standard Gaussian
law.

The true value, in the case K = β = 1, is Eg(X ) = 0.2384217.
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Monte Carlo: true value 0.2384217

> set.seed(123)

> n <- 1000

> beta <-1

> K <- 1

> x <- rnorm(n)

> y <- sapply(x, function(x) max(0,K-exp(beta*x)))

>

> # the true value

> K*pnorm(log(K)/beta)-exp(beta^2/2)*pnorm(log(K)/beta-beta)

[1] 0.2384217

>

> # MC value

> mean(y)

[1] 0.2313868

n ĝn 95% conf. interval

100 0.206 (0.153 ; 0.259)
1000 0.231 (0.213 ; 0.250)

10000 0.238 (0.232 ; 0.244)
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Variance reduction
We now try to rewrite Eg(X ) as Eg̃(Y ) in order to reduce its variance.
Indeed, Eg(X ) can be rewritten as

E
(
K − eβX

)
+

=

∫
R

(K − eβx)+
β|x |

β|x |e
− 1

2
x2

√
2π

dx ,

set K = 1 and notice that ex − 1 ' x for x close to 0.

By the change of variable x =
√
y for x > 0 and x = −√y for x < 0, the

integral above can be rewritten as∫ ∞
0

(
1− eβ

√
y
)
+

+
(
1− e−β

√
y
)
+√

2π
√
y

e−
1
2
y

2
dy ,

i.e.

g̃(x) =

(
1− eβ

√
x
)
+

+
(

1− e−β
√
x
)
+√

2π
√
x
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0

(
1− eβ

√
y
)
+

+
(
1− e−β

√
y
)
+√

2π
√
y

e−
1
2
y

2
dy ,

i.e.

g̃(x) =

(
1− eβ

√
x
)
+

+
(

1− e−β
√
x
)
+√

2π
√
x
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Variance reduction

Eg(X ) =

∫ ∞
0

(
1− eβ

√
y
)
+

+
(
1− e−β

√
y
)
+√

2π
√
y

e−
1
2
y

2
dy = Eg̃(Y )

Remark that f (y) = λe−λy , with λ = 1
2 , is the density of the exponential

distribution. Therefore,

Eg(X ) = E


(

1− eβ
√
Y
)
+

+
(

1− e−β
√
Y
)
+√

2π
√
Y


can be evaluated as the expected value of a function of the exponential
random variable Y .

At this point you should believe that this second expression with g̃(·) has
lower variance than the original with g(·).
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Monte Carlo with variance reduction: true value 0.2384217

> set.seed(123)

> n <- 1000

> beta <-1

> K <- 1

>

> x <- rexp(n,rate=0.5)

> h <- function(x) (max(0,1-exp(beta*sqrt(x))) +

+ max(0,1-exp(-beta*sqrt(x))))/sqrt(2*pi*x)

> y <- sapply(x, h)

> # the true value

> K*pnorm(log(K)/beta)-exp(beta^2/2)*pnorm(log(K)/beta-beta)

[1] 0.2384217

> mean(y)

[1] 0.2364467

n ĝn 95% conf. interval

100 0.234 (0.222 ; 0.245)
1000 0.236 (0.233 ; 0.240)

10000 0.238 (0.237 ; 0.239)

S.M. Iacus (U. of Milan, CREST JST) Monte Carlo analysis June 25, 2019 26 / 37



MC versus MC & Var. red. True value 0.2384217

n ĝn 95% conf. interval

100 0.206 (0.153 ; 0.259)
1000 0.231 (0.213 ; 0.250)

10000 0.238 (0.232 ; 0.244)

plain MC

n ĝn 95% conf. interval

100 0.234 (0.222 ; 0.245)
1000 0.236 (0.233 ; 0.240)

10000 0.238 (0.237 ; 0.239)

MC & variance reduction
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Control variables

Another approach to variance reduction can be obtained via control
variables.

Suppose that we can rewrite Eg(X ) in the form

Eg(X ) = E(g(X )− h(X )) + Eh(X ) ,

where Eh(X ) can be calculated explicitly and g(X )− h(X ) has variance
less than g(X ).

Then by estimating E(g(X )− h(X )) via the Monte Carlo method, we
obtain a reduction in variance.

Let us see another application based on previous example.
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Control variables

Consider the price of a call option

c(X ) = E
(
eβX − K

)
+
.

It is easy to show (put-call parity) that c(X )− p(X ) = e
1
2
β2 − K , where p

is the price of the put option.

Hence we can write c(X ) = p(X ) + e
1
2
β2 − K .

It is also known that the variance of p(X ) is smaller than the variance of
c(X ). Thus we obtained an estimator of c(X ) with reduced bias.

The exact formula for c(X ) is also known and reads as

E
(
eβX − K

)
+

= e
1
2
β2

Φ

(
β − log(K )

β

)
− KΦ

(
− log(K )

β

)
.
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Control variables: true value 0.887143

> set.seed(123)

> n <- 1000

> beta <-1

> K <- 1

>

> x <- rnorm(n)

> y <- sapply(x, function(x) max(0,exp(beta*x)-K))

> mean(y) # MC value

[1] 0.9030735

>

> exp(beta^2/2)*pnorm(beta-log(K)/beta)-K*pnorm(-log(K)/beta)

[1] 0.887143 # the true value

>

> set.seed(123)

> x <- rexp(n,rate=0.5)

> h <- function(x) (max(0,1-exp(beta*sqrt(x))) +

+ max(0,1-exp(-beta*sqrt(x))))/sqrt(2*pi*x)

> w <- sapply(x, h)

>

> # CALL = PUT + e^{0.5*beta^2} - K

> z <- w +exp(0.5*beta^2) - K

> mean(z)

[1] 0.885168 # MC & variance reduction
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MC versus MC & Var. red. True value 0.887143

n ĝn 95% conf. interval

100 0.858 (0.542 ; 1.174)
1000 0.903 (0.780 ; 1.026)

10000 0.885 (0.844 ; 0.925)

plain MC

n ĝn 95% conf. interval

100 0.882 (0.871 ; 0.894)
1000 0.885 (0.881 ; 0.889)

10000 0.887 (0.886 ; 0.888)

MC & variance reduction
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Antithetic sampling

The idea of antithetic sampling can be applied when it is possible to find
transformations of X that leave its distribution unchanged (for example, if
X is Gaussian, then −X is Gaussian as well).

Suppose that we want to calculate

I =

∫ 1

0
g(x)dx = Eg(X ) ,

with X ∼ U(0, 1). The transformation x 7→ 1− x leaves the distribution
unchanged, i.e.

1− X ∼ U(0, 1)

S.M. Iacus (U. of Milan, CREST JST) Monte Carlo analysis June 25, 2019 32 / 37



Antithetic sampling

Thus, I can be rewritten as

I =
1

2

∫ 1

0
(g(x) + g(1− x))dx

=
1

2
E(g(X ) + g(1− X ))

=
1

2
E(g(X ) + g(h(X )))

Therefore, we have a variance reduction if

Var

(
1

2
(g(X ) + g(h(X )))

)
< Var (g(X ))
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Antithetic sampling

So, variance reduction occurs if

Var

(
1

2
(g(X ) + g(h(X )))

)
< Var (g(X )) ,

which is equivalent to saying that Cov(g(X ), g(h(X ))) < 0.

Indeed, Var(X + Y ) = Var(X ) + Var(Y ) + 2Cov(X ,Y )

But, if h(x) is a monotonic function of x (as in the example above), this is
always the case.

This way of proceeding has the effect of reducing the variance but also
increasing the accuracy of the calculation of the mean.

Going back to the example of the calculation of the price of a put option,
one should calculate it using X and −X and then averaging as follows
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Antithetic sampling: true value 0.2384217

> set.seed(123)

> n <- 1000

> beta <-1

> K <- 1

> x <- rnorm(n)

> y1 <- sapply(x, function(x) max(0,K-exp(beta*x)))

> y2 <- sapply(-x, function(x) max(0,K-exp(beta*x)))

>

> y <- (y1+y2)/2

> mean(y) # MC with antithetic sampling

[1] 0.2347266

>

> # the true value

> K*pnorm(log(K)/beta)-exp(beta^2/2)*pnorm(log(K)/beta-beta)

[1] 0.2384217 # the true value
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MC versus MC & Ant. Samp. True value 0.2384217

n ĝn 95% conf. interval

100 0.206 (0.153 ; 0.259)
1000 0.231 (0.213 ; 0.250)

10000 0.238 (0.232 ; 0.244)

plain MC

n ĝn 95% conf. interval

100 0.226 (0.202 ; 0.250)
1000 0.235 (0.226 ; 0.242)

10000 0.238 (0.235 ; 0.240)

MC & antithetic sampling

S.M. Iacus (U. of Milan, CREST JST) Monte Carlo analysis June 25, 2019 36 / 37



Relationship with option pricing
In the Black & Scholes theory of option pricing, we model an underlying
asset using a stochastic process St called geometric Brownian motion
which satisfies the stochastic differential equation

dSt = µStdt + σStdWt

with volatility σ, interest rate r and drift µ.

The price of a derivative is given by the general formula

Pt = e−r(T−t)E{f (ST )}

where f (·) is some payoff function, e.g. f (x) = max(ST − K , 0) for a
european call option with strike price K , maturity T .

We need to estimate via Monte Carlo the expected value and, to this end,
we need to be able to simulate the values of ST .
R code: MC.R
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