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Mode of convergence

@ Ui, Uy, ...: sequence of random vectors (of a common dimension)
@ Us: a random vector (of the same dimension as U;'s)

@ (U,)p, is said to converge in probability to U, if
P(|Up = Ux|| >€) = 0

as n — oo for any € > 0 (|| - || denotes the Euclidean norm); we then
write U, =P Uy
o (Up)s2, is said to converge in law to Uy if

f(Un) — f(Ux)
as n — oo for any continuous bounded function f; we then write

U, =9 Uy
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@ Statistical context

» “U, =P Us" means that Uy is an asymptotically good estimator for
U (consistent estimator for Us,)

» If “U, =9 Uy, we can approximate the distribution of U, by Us's:
In the univariate case,

P(a< Uy, < b) = P(a< U < b)

as n — oo for any real numbers a, b such that
P(Ux=a)=P(U,=b)=0

o Continuous mapping theorem: If f is a continuous function,
Un =P Uso = f(Up) =P f(Ux)

and
Uy =% Uy = F(U,p) =9 f(Us)
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Example: i.i.d. obsevations

® X1, Xo,...: i.i.d. random variables with mean p and variance o2

o X, =n"13", X;: sample mean
o Law of Large Numbers (LLN, consistency of X,,):

Xy =P (n— o0)

o Central Limit Theorem (CLT, asymptotic normality of X,):

\/E()_(n — :u’)

—947Z  (n— ),
g

where Z is a standard normal variable
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Example: i.i.d. obsevations

@ Reproducing LLN and CLT by R
@ Assume X;'s are Bernoulli random variables with success probability p:
P(X,':].):].—P(X;:O):p

» X; has mean p and variance p(1 — p)
» >, X; follows the binomial distribution with n trials and success
probability p

® R examples: 11n.r, clt.r
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Stochastic processes

o (Continuous-time) stochastic process

» Randomly determined function of time t
» The time t usually varies in the closed interval [0, T] (T > 0) or the
half non-negative real line [0, 00)

Example 1

Let € be a random variable. For every t € [0, T], set

X := sin(et).

Then we obtain a stochastic process (Xt):efo, 7]-
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Stochastic processes

@ When we say “(Xt)te[m—] is a stochastic process’, X; represents the
function value of the stochastic process at the time t

» Since the function is randomly determined, so is X;, and thus X; is a
random variable
@ Each random function possibly realized by a stochastic process
X = (Xt)tepo,1] is called a sample path of X
@ When we simulate a stochastic process, since it is impossible to
continuously vary the time t in practice, we proceed as follows:

1. We fix (sufficiently fine) sampling times in the time interval [0, T]
2. We simulate sample paths of the stochastic process evaluated at those
sampling times
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Stochastic processes

@ The sampling times are usually taken to be equi-spaced, so we focus
only on such a case in the following

@ Hence, the sampling times are of the form ¢, = Ti/n (i =0,1,...,n),
and we consider the number n as a parameter of simulation

@ Here we give an example of an R code to simulate the stochastic
process given by Example 1

@ R example: process.r
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Brownian motion

Definition 1 (Brownian motion)

A stochastic process (B:)¢c[o, 77 is said to be a (standard) Brownian
motion if it satisfies the following properties:

(i) By =0 and E[B?] =t for all t € [0, T].
(i) (Bt)tefo, 1] has continuous sample paths
(iii) (independence of increments) Forany 0 <tg <t; <---<t, < T,
Bi, — By, Bt, — Bty ..., By, — B, are independent random variables

(iv) (stationarity of increments) For any 0 <s <t < T, By — Bs has the
same law as B;_s

Brownian motion is also called Wiener process
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Normality of increments of Brownian motion

@ The definition of Brownian motion seems to impose no restriction on
the laws of the random variables B;

@ However, this definition indeed implies that B; should follow a normal
distribution!

Proposition 1 (Normality of increments of Brownian motion)

Let (Bt)te[o,T] be a Brownian motion. Then, forany 0 <s<t< T,
B: — Bs follows the normal distribution with mean 0 and variance t — s.
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Simulation of Brownian motion

@ Using Proposition 1 and the independence of increments of Brownian
motion, we can simulate sample paths of Brownian motion at the

sampling times t; = Ti/n (i =0,1,...,n) as follows:
1. Generate n independent standard normal random variables
Z1,25,...,2Z,.

2. Set B, :=0 and

B, =(&H+2L+ -+ Z)VA,

for i=1,2,...,n, where A, :=T/n.

@ R example: bm.r
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Brief review on Ito calculus

@ From now on, we briefly review I1td calculus, a standard
mathematical tool to analyze continuous-time stochastic processes
(especially Brownian motion driven models)

o In the following, B = (Bt)¢c[o, 7] denotes a Brownian motion
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It6 integral

o Let X = (Xt)eepo, 1] and Y = (Y4)¢e[o, 7] be two stochastic processes
having continuous sample paths
@ Qur aim here is to properly define an “integral” of the form

/tXSdYS, te|0, T] (1)
0

@ In particular, we would like to define the above form of integral when
Y = B, i.e. the integrator is Brownian motion
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It6 integral

@ A “standard” approach to define an integral of the form (1):
(i) Divide the interval [0, t] into n equi-spaced time points t,; := it/n
(i=0,1,...))
(ii) If the “Riemann sum”

Zth,i—l(Ytn,i - an,i—1) (2)
i=1

converges as n — 0o in some sense, we define the integral (1) by the
limit variable
° When does the Riemann sum (2) have the limit?
> It is well-known that it has the limit in the usual sense if Y has

differentiable sample paths
» However, sample paths of Brownian motion are NOT differentiable

almost everywhere!
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It6 integral

o If we consider the Brownian motion B as the “integrator” process Y,
we need an additional restriction on the “integrated” process X to
ensure that the Riemann sum (2) has the limit

@ Specifically, it is known that the following condition is sufficient to
ensure the existence of such a limit:

» For every t € [0, T], X; is a functional of (Bs)seo,y:

Xt = ﬂ((Bs)se[O,t])~

Here, f; is a functional of functions on [0, t] with satisfying some
regularity conditions (w.r.t. measurability)
@ Such a stochastic process X is said to be adapted (w.r.t. the
filtration generated by B)
» Ex. If X is given by X; = f(B;) (t € [0, T]) with some continuous
function f : R — R, then X is adapted
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It6 integral

e If X is an adapted process having continuous sample paths, the
Riemann sum

n
Z th,ifl(Btn,i - Btn,ifl)
i=1

has the limit as n — oo (in the sense of convergence in probability)
@ This limit is denoted by

/O ' X.dB. (3)

and called the It6 integral or stochastic integral of X w.r.t. B
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[t6 integral vs backward It0 integral

@ What happens if we consider the following form of Riemann sum?

n
Z an,i(Btn,i - Btn,ifl) (4)
i=1

@ If sample paths of B were differentiable, this should converge to
fot XsdBs as n — oco; but this is NOT the case in general!

e For example, if X = B, (4) converges to

t
/ BsdBs + t
0

@ The limit of the Riemann sum (4) is called the backward It
integral of X w.r.t. B if it exists

@ Let us check this phenomenon by R: backward.r
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[to's formula

@ Suppose that X has differentiable sample paths
@ Then, for any C! function f : R — R, we have

F(Xe) — F(Xo) = /0 %f(Xs)dS: /0 f’(Xs)%Xsds

t
- / F(Xs)dX.
0

by the fundamental theorem of calculus and chain rule

@ Thus, we obtain an integral representation of f(X;)
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[to's formula

o Alternatively, this identity can be viewed as a way to directly compute
the integral

t
/ F(X5)dX.
0

by f(X¢) — f(Xo) rather than to approximate it by the corresponding
Riemann sums

@ For this reason, it would be convenient if we have an analogous
formula for the case of It6 integrals

@ However, the above argument is not applicable to It6 integrals
because sample paths of Brownian motion are not differentiable

@ Indeed, we need an additional term to get an analogous formula for
the case of It6 integrals as follows:
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[to's formula

Theorem (Ité's formula for Brownian motion)

Let f : R — R be a C2 function. Then we have

f(B) — f(Bo) = /ot f’(Bs)st—F%/ot f"(Bs)ds.
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It6's formula: Examples with R codes

e Example 1 Taking f(x) = x2, we have f'(x) = 2x and f"(x) = 2, so
we obtain

t
B2 :2/ BsdBs + t.
0

o Example 2 Taking f(x) = €*, we have f'(x) = f"(x) = €*, so we

obtain
t 1 t
eBr =1 +/ eBsst + —/ eBsds.
0 2 Jo

@ R examples: ito-1.r, ito-2.r
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