Refresh on probability \& stochastic processes

Yuta Koike
Mathematics and Informatics Center, The University of Tokyo CREST JST
June 25, 2019

YSS2019
(1) Mode of convergence

- Example: i.i.d. obsevations
(2) Stochastic processes and Brownian motion
- Stochastic processes
- Brownian motion
(3) Brief review on Itô calculus
- Itô integral
- Itô's formula

Mode of convergence

- U_{1}, U_{2}, \ldots : sequence of random vectors (of a common dimension)
- U_{∞} : a random vector (of the same dimension as U_{i} 's)
- $\left(U_{n}\right)_{n=1}^{\infty}$ is said to converge in probability to U_{∞} if

$$
P\left(\left\|U_{n}-U_{\infty}\right\|>\varepsilon\right) \rightarrow 0
$$

as $n \rightarrow \infty$ for any $\varepsilon>0(\|\cdot\|$ denotes the Euclidean norm); we then write $U_{n} \rightarrow^{p} U_{\infty}$

- $\left(U_{n}\right)_{n=1}^{\infty}$ is said to converge in law to U_{∞} if

$$
f\left(U_{n}\right) \rightarrow f\left(U_{\infty}\right)
$$

as $n \rightarrow \infty$ for any continuous bounded function f; we then write $U_{n} \rightarrow^{d} U_{\infty}$

- Statistical context
- " $U_{n} \rightarrow^{p} U_{\infty}$ " means that U_{∞} is an asymptotically good estimator for U_{∞} (consistent estimator for U_{∞})
- If " $U_{n} \rightarrow^{d} U_{\infty}$ ", we can approximate the distribution of U_{n} by U_{∞} 's: In the univariate case,

$$
P\left(a \leq U_{n} \leq b\right) \rightarrow P\left(a \leq U_{\infty} \leq b\right)
$$

as $n \rightarrow \infty$ for any real numbers a, b such that $P\left(U_{\infty}=a\right)=P\left(U_{\infty}=b\right)=0$

- Continuous mapping theorem: If f is a continuous function,

$$
U_{n} \rightarrow^{p} U_{\infty} \Rightarrow f\left(U_{n}\right) \rightarrow^{p} f\left(U_{\infty}\right)
$$

and

$$
U_{n} \rightarrow^{d} U_{\infty} \Rightarrow f\left(U_{n}\right) \rightarrow^{d} f\left(U_{\infty}\right)
$$

Example: i.i.d. obsevations

- X_{1}, X_{2}, \ldots i.i.d. random variables with mean μ and variance σ^{2}
- $\bar{X}_{n}=n^{-1} \sum_{i=1}^{n} X_{i}$: sample mean
- Law of Large Numbers (LLN, consistency of \bar{X}_{n}):

$$
\bar{X}_{n} \rightarrow^{p} \mu \quad(n \rightarrow \infty)
$$

- Central Limit Theorem (CLT, asymptotic normality of \bar{X}_{n}):

$$
\frac{\sqrt{n}\left(\bar{X}_{n}-\mu\right)}{\sigma} \rightarrow^{d} Z \quad(n \rightarrow \infty)
$$

where Z is a standard normal variable

Example: i.i.d. obsevations

- Reproducing LLN and CLT by R
- Assume X_{i} 's are Bernoulli random variables with success probability p :

$$
P\left(X_{i}=1\right)=1-P\left(X_{i}=0\right)=p
$$

- X_{i} has mean p and variance $p(1-p)$
- $\sum_{i=1}^{n} X_{i}$ follows the binomial distribution with n trials and success probability p
- R examples: lln.r, clt.r

Stochastic processes

- (Continuous-time) stochastic process
- Randomly determined function of time t
- The time t usually varies in the closed interval $[0, T](T>0)$ or the half non-negative real line $[0, \infty)$

Example 1

Let ϵ be a random variable. For every $t \in[0, T]$, set

$$
X_{t}:=\sin (\epsilon t)
$$

Then we obtain a stochastic process $\left(X_{t}\right)_{t \in[0, T]}$.

Stochastic processes

- When we say " $\left(X_{t}\right)_{t \in[0, T]}$ is a stochastic process", X_{t} represents the function value of the stochastic process at the time t
- Since the function is randomly determined, so is X_{t}, and thus X_{t} is a random variable
- Each random function possibly realized by a stochastic process $X=\left(X_{t}\right)_{t \in[0, T]}$ is called a sample path of X
- When we simulate a stochastic process, since it is impossible to continuously vary the time t in practice, we proceed as follows:

1. We fix (sufficiently fine) sampling times in the time interval $[0, T]$
2. We simulate sample paths of the stochastic process evaluated at those sampling times

Stochastic processes

- The sampling times are usually taken to be equi-spaced, so we focus only on such a case in the following
- Hence, the sampling times are of the form $t_{i}=\operatorname{Ti} n(i=0,1, \ldots, n)$, and we consider the number n as a parameter of simulation
- Here we give an example of an R code to simulate the stochastic process given by Example 1
- R example: process.r

Brownian motion

Definition 1 (Brownian motion)

A stochastic process $\left(B_{t}\right)_{t \in[0, T]}$ is said to be a (standard) Brownian motion if it satisfies the following properties:
(i) $B_{t}=0$ and $\mathrm{E}\left[B_{t}^{2}\right]=t$ for all $t \in[0, T]$.
(ii) $\left(B_{t}\right)_{t \in[0, T]}$ has continuous sample paths
(iii) (independence of increments) For any $0 \leq t_{0}<t_{1}<\cdots<t_{n} \leq T$, $B_{t_{1}}-B_{t_{0}}, B_{t_{2}}-B_{t_{1}}, \ldots, B_{t_{n}}-B_{t_{n-1}}$ are independent random variables
(iv) (stationarity of increments) For any $0 \leq s<t \leq T, B_{t}-B_{s}$ has the same law as B_{t-s}

Brownian motion is also called Wiener process

Normality of increments of Brownian motion

- The definition of Brownian motion seems to impose no restriction on the laws of the random variables B_{t}
- However, this definition indeed implies that B_{t} should follow a normal distribution!

Proposition 1 (Normality of increments of Brownian motion)

Let $\left(B_{t}\right)_{t \in[0, T]}$ be a Brownian motion. Then, for any $0 \leq s<t \leq T$, $B_{t}-B_{s}$ follows the normal distribution with mean 0 and variance $t-s$.

Simulation of Brownian motion

- Using Proposition 1 and the independence of increments of Brownian motion, we can simulate sample paths of Brownian motion at the sampling times $t_{i}=T i / n(i=0,1, \ldots, n)$ as follows:

1. Generate n independent standard normal random variables $Z_{1}, Z_{2}, \ldots, Z_{n}$.
2. Set $B_{t_{0}}:=0$ and

$$
B_{t_{i}}:=\left(Z_{1}+Z_{2}+\cdots+Z_{n}\right) \sqrt{\Delta_{n}}
$$

$$
\text { for } i=1,2, \ldots, n \text {, where } \Delta_{n}:=T / n
$$

- \mathbf{R} example: bm.r

Brief review on Itô calculus

- From now on, we briefly review Itô calculus, a standard mathematical tool to analyze continuous-time stochastic processes (especially Brownian motion driven models)
- In the following, $B=\left(B_{t}\right)_{t \in[0, T]}$ denotes a Brownian motion

Itô integral

- Let $X=\left(X_{t}\right)_{t \in[0, T]}$ and $Y=\left(Y_{t}\right)_{t \in[0, T]}$ be two stochastic processes having continuous sample paths
- Our aim here is to properly define an "integral" of the form

$$
\begin{equation*}
\int_{0}^{t} X_{s} d Y_{s}, \quad t \in[0, T] \tag{1}
\end{equation*}
$$

- In particular, we would like to define the above form of integral when $Y=B$, i.e. the integrator is Brownian motion

Itô integral

- A "standard" approach to define an integral of the form (1):
(i) Divide the interval $[0, t]$ into n equi-spaced time points $t_{n, i}:=i t / n$ $(i=0,1, \ldots$,
(ii) If the "Riemann sum"

$$
\begin{equation*}
\sum_{i=1}^{n} X_{t_{n, i-1}}\left(Y_{t_{n, i}}-Y_{t_{n, i-1}}\right) \tag{2}
\end{equation*}
$$

converges as $n \rightarrow \infty$ in some sense, we define the integral (1) by the limit variable

- Problem When does the Riemann sum (2) have the limit?
- It is well-known that it has the limit in the usual sense if Y has differentiable sample paths
- However, sample paths of Brownian motion are NOT differentiable almost everywhere!

Itô integral

- If we consider the Brownian motion B as the "integrator" process Y, we need an additional restriction on the "integrated" process X to ensure that the Riemann sum (2) has the limit
- Specifically, it is known that the following condition is sufficient to ensure the existence of such a limit:
- For every $t \in[0, T], X_{t}$ is a functional of $\left(B_{s}\right)_{s \in[0, t]}$:

$$
X_{t}=f_{t}\left(\left(B_{s}\right)_{s \in[0, t]}\right) .
$$

Here, f_{t} is a functional of functions on $[0, t]$ with satisfying some regularity conditions (w.r.t. measurability)

- Such a stochastic process X is said to be adapted (w.r.t. the filtration generated by B)
- Ex. If X is given by $X_{t}=f\left(B_{t}\right)(t \in[0, T])$ with some continuous function $f: \mathbb{R} \rightarrow \mathbb{R}$, then X is adapted

Itô integral

- If X is an adapted process having continuous sample paths, the Riemann sum

$$
\sum_{i=1}^{n} X_{t_{n, i-1}}\left(B_{t_{n, i}}-B_{t_{n, i-1}}\right)
$$

has the limit as $n \rightarrow \infty$ (in the sense of convergence in probability)

- This limit is denoted by

$$
\begin{equation*}
\int_{0}^{t} X_{s} d B_{s} \tag{3}
\end{equation*}
$$

and called the Itô integral or stochastic integral of X w.r.t. B

Itô integral vs backward Itô integral

- What happens if we consider the following form of Riemann sum?

$$
\begin{equation*}
\sum_{i=1}^{n} X_{t_{n, i}}\left(B_{t_{n, i}}-B_{t_{n, i-1}}\right) \tag{4}
\end{equation*}
$$

- If sample paths of B were differentiable, this should converge to $\int_{0}^{t} X_{s} d B_{s}$ as $n \rightarrow \infty$; but this is NOT the case in general!
- For example, if $X=B$, (4) converges to

$$
\int_{0}^{t} B_{s} d B_{s}+t
$$

- The limit of the Riemann sum (4) is called the backward Itô integral of X w.r.t. B if it exists
- Let us check this phenomenon by R: backward.r

Itô's formula

- Suppose that X has differentiable sample paths
- Then, for any C^{1} function $f: \mathbb{R} \rightarrow \mathbb{R}$, we have

$$
\begin{aligned}
f\left(X_{t}\right)-f\left(X_{0}\right) & =\int_{0}^{t} \frac{d}{d s} f\left(X_{s}\right) d s=\int_{0}^{t} f^{\prime}\left(X_{s}\right) \frac{d}{d s} X_{s} d s \\
& =\int_{0}^{t} f^{\prime}\left(X_{s}\right) d X_{s}
\end{aligned}
$$

by the fundamental theorem of calculus and chain rule

- Thus, we obtain an integral representation of $f\left(X_{t}\right)$

Itô's formula

- Alternatively, this identity can be viewed as a way to directly compute the integral

$$
\int_{0}^{t} f^{\prime}\left(X_{s}\right) d X_{s}
$$

by $f\left(X_{t}\right)-f\left(X_{0}\right)$ rather than to approximate it by the corresponding Riemann sums

- For this reason, it would be convenient if we have an analogous formula for the case of Itô integrals
- However, the above argument is not applicable to Itô integrals because sample paths of Brownian motion are not differentiable
- Indeed, we need an additional term to get an analogous formula for the case of Itô integrals as follows:

Itô's formula

Theorem (Itô's formula for Brownian motion)
Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be a C^{2} function. Then we have

$$
f\left(B_{t}\right)-f\left(B_{0}\right)=\int_{0}^{t} f^{\prime}\left(B_{s}\right) d B_{s}+\frac{1}{2} \int_{0}^{t} f^{\prime \prime}\left(B_{s}\right) d s
$$

Itô's formula: Examples with R codes

- Example 1 Taking $f(x)=x^{2}$, we have $f^{\prime}(x)=2 x$ and $f^{\prime \prime}(x)=2$, so we obtain

$$
B_{t}^{2}=2 \int_{0}^{t} B_{s} d B_{s}+t
$$

- Example 2 Taking $f(x)=e^{x}$, we have $f^{\prime}(x)=f^{\prime \prime}(x)=e^{x}$, so we obtain

$$
e^{B_{t}}=1+\int_{0}^{t} e^{B_{s}} d B_{s}+\frac{1}{2} \int_{0}^{t} e^{B_{s}} d s
$$

- R examples: ito-1.r, ito-2.r

