#### Basics on time series analysis

Yuta Koike

Mathematics and Informatics Center, The University of Tokyo CREST JST

June 25, 2019

**YSS2019** 

Y. Koike (U. of Tokyo, CREST JST)

э June 25, 2019 1 / 14

4 E



#### 2 Weak stationarity

#### 3 ARIMA model



## Time series analysis

- Time series analysis aims at analyzing time series data
- A main feature of time series data is that they are recorded along time
  - The order of observations plays a role
  - The independence assumption is often NOT reasonable; it is important to model the dependence structure btw different time points
- This session briefly describes basic models and tools to analyze time series
  - We focus on discrete-time stochastic processes, but many concepts used there are extended to continuous-time stochastic processes
  - R has the class ts to handle time series data observed at equi-spaced time points

- $X = (X_1, \ldots, X_T)$ : Time series data
  - X<sub>t</sub> denotes the data observed at the time t
  - Each X<sub>t</sub> is assumed to be a random variable
- A standard way to measure the dependence btw X<sub>t</sub> and X<sub>s</sub> is to evaluate their covariance

$$Cov[X_t, X_s] = E[(X_t - E[X_t])(X_s - E[X_s])]$$

It would be natural to expect that this dependence is related to how the time t is far from the time s
⇒ This suggests us to model the above covariance as a function of |t - s|

The auto-covariance function (ACF) of X is a function γ(h) such that

$$\operatorname{Cov}[X_t, X_s] = \gamma(|t-s|)$$

for all t, s

- In this case, the variance of X<sub>t</sub> is given by Var[X<sub>t</sub>] = γ(0), so it does not depend on t
- Thus, the correlation coefficient btw  $X_t$  and  $X_s$  is given by

$$\operatorname{Corr}[X_t, X_s] = \gamma(|t-s|)/\gamma(0)$$

• The function  $\rho(h) = \gamma(h)/\gamma(0)$  is called the **auto-correlation** function of X

- How to estimate the ACF from data?
- One would naturally use the following sample counterpart:

$$\hat{\gamma}(h) := \frac{1}{T} \sum_{t=1}^{T-h} (X_t - \bar{X}) (X_{t+h} - \bar{X}),$$

where

$$ar{X} = rac{1}{T}\sum_{t=1}^T X_t$$

is the sample mean

• R has the function acf() to compute the ACF: acf.r

## Weak stationarity

- In order that  $\hat{\gamma}(h)$  is a reasonable estimator for  $\gamma(h)$ , we need (at least) the following conditions:
  - 1. The ACF really exists
  - 2.  $\bar{X}$  is a reasonable estimator for  $E[X_t]$  for all t
- For this reason, we focus on the following class of stochastic processes:

#### Definition 1 (Weak stationarity)

The process X is said to be **weakly stationary** if it satisfies the following conditions:

- 1. The ACF of X exists, i.e.  $Cov[X_t, X_s]$  depends only on |t s|.
- 2.  $E[X_t]$  deos not depend on t.

## Weak stationarity

- Since non-stationary time series have time-varying characteristics such as mean and variance, it is not straightforward to fit an adequate model
- In practice, even if the time series data X itself is non-stationary, its differences X<sub>t</sub> - X<sub>t-1</sub> or logarithms log X<sub>t</sub> are often stationary
- <u>Ex.</u> X is called a **random walk** if it is of the form  $X_t = X_{t-1} + \epsilon_t$  with  $\epsilon_t$ 's being centered i.i.d. variables
  - X is non-stationary because  $Var[X_t] = t$
  - ► Meanwhile, the difference process is  $X_t X_{t-1} = \epsilon_t$  and thus weakly stationary

< □ > < 同 > < 三 > < 三 >

## Weak stationarity

- A standard procedure to fit a model to the time series data X:
  - 1. Check whether X is stationary or not
  - 2. If X is stationary, replace X by its difference and return to Step 1; otherwise, go to the next step
  - 3. Fit an adequate model to X
- How to check whether X is stationary or not?
  - 1. Correlogram (ACF plot): A non-stationary process typically has (very) slowly decaying ACF
  - 2. Unit root test: statistical hypothesis testing for (non-)stationarity
    - <u>Ex.</u>: Phillips-Perron test for the null hypothesis that X has a unit root (a random walk like structure) against a stationary alternative (PP.test() in R)
    - \* The tseries package has other unit root tests adf.test() and kpss.test()
- R example: stationary.r

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

# Autoregressive (AR) model

• The **autoregressive model of order** *p* is the time series model of the form

$$X_t = a_1 X_{t-1} + \dots + a_p X_{t-p} + \epsilon_t,$$

where  $a_1, \ldots, a_p$  are some constants and  $\epsilon_t$ 's are centered i.i.d. variables

- This model is usually referred to as the AR(p) model
  - ▶ The past *p* states  $X_{t-1}, \ldots, X_{t-p}$  linearly affects the present state  $X_t$
- A random walk is a special case of AR(1) with  $a_1 = 1$
- R example: ar.r

# Moving average (MA) model

• The **moving average model of order** *q* is the time series model of the form

$$X_t = b_1 \epsilon_{t-1} + \cdots + b_q \epsilon_{t-q} + \epsilon_t,$$

where  $b_1, \ldots, b_q$  are some constants and  $\epsilon_t$ 's are centered i.i.d. variables

- This model is usually referred to as the MA(q) model
- R example: ma.r

#### ARMA model

• The autoregressive moving average model of order (p, q) is the time series model of the form

$$X_t = a_1 X_{t-1} + \dots + a_p X_{t-p} + b_1 \epsilon_{t-1} + \dots + b_q \epsilon_{t-q} + \epsilon_t, \quad (1)$$

where  $a_1, \ldots, a_p, b_1, \ldots, b_q$  are constants and  $\epsilon_t$ 's are centered i.i.d. variables

- This model is usually referred to as the ARMA(p,q) model
  - Hybrid of AR and MA models
  - The ARMA model is one of the most widely used models for time series data; it is simple but can describe various ACF shapes
- R example: arma.r

#### ARIMA model

- As mentioned, when time series data seem to be non-stationary, one typically takes the differences until they seem to be stationary
- After that, we fit a stationary ARMA model to the differentiated data
- Such a time series model is called the ARIMA model; X is the **ARIMA(p,d,q)** model if  $\Delta^d X$  is the ARMA(p,q) model, where  $\Delta^0 X_t := X_t$  and

$$\Delta^d X_t := \Delta^{d-1} X_t - \Delta^{d-1} X_{t-1}, \qquad d = 1, 2, \dots$$

d is the parameter of how many times one takes differences

## Fitting ARIMA models

- We can use the R function arima() to fit a stationary ARMA model to time series possibly after differentiation
- When we fit the ARMA model (1) to the time series X, we usually check the ACF of the residuals, which are recursively defined by

$$e_t := X_t - (a_1 X_{t-1} + \dots + a_p X_{t-p} + b_1 e_{t-1} + \dots + b_q e_{t-q})$$

(the initial values  $e_1, \ldots, e_q$  are set to 0 or computed by backward prediction)

- ► If (1) is an adequate model, the residuals e<sub>t</sub> should behave like white noise
- The R function tsdiag() is helpful to assess this behavior
- The AIC can be used to compare several fitted models (AIC() in R)
- R example: fit-arma.r

▲ □ ▶ ▲ □ ▶ ▲ □ ▶