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Time series analysis

Time series analysis aims at analyzing time series data

A main feature of time series data is that they are recorded along
time

▶ The order of observations plays a role
▶ The independence assumption is often NOT reasonable; it is important

to model the dependence structure btw different time points

This session briefly describes basic models and tools to analyze time
series

▶ We focus on discrete-time stochastic processes, but many concepts
used there are extended to continuous-time stochastic processes

▶ R has the class ts to handle time series data observed at equi-spaced
time points
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Auto-covariance and auto-correlation functions

X = (X1, . . . ,XT ): Time series data
▶ Xt denotes the data observed at the time t
▶ Each Xt is assumed to be a random variable

A standard way to measure the dependence btw Xt and Xs is to
evaluate their covariance

Cov[Xt ,Xs ] = E[(Xt − E[Xt ])(Xs − E[Xs ])]

It would be natural to expect that this dependence is related to how
the time t is far from the time s
⇒ This suggests us to model the above covariance as a function of
|t − s|
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Auto-covariance and auto-correlation functions

The auto-covariance function (ACF) of X is a function γ(h) such
that

Cov[Xt ,Xs ] = γ(|t − s|)

for all t, s

In this case, the variance of Xt is given by Var[Xt ] = γ(0), so it does
not depend on t

Thus, the correlation coefficient btw Xt and Xs is given by

Corr[Xt ,Xs ] = γ(|t − s|)/γ(0)

The function ρ(h) = γ(h)/γ(0) is called the auto-correlation
function of X
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Auto-covariance and auto-correlation functions

How to estimate the ACF from data?

One would naturally use the following sample counterpart:

γ̂(h) :=
1

T

T−h∑
t=1

(Xt − X̄ )(Xt+h − X̄ ),

where

X̄ =
1

T

T∑
t=1

Xt

is the sample mean

R has the function acf( ) to compute the ACF: acf.r
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Weak stationarity

In order that γ̂(h) is a reasonable estimator for γ(h), we need (at
least) the following conditions:

1. The ACF really exists
2. X̄ is a reasonable estimator for E[Xt ] for all t

For this reason, we focus on the following class of stochastic
processes:

Definition 1 (Weak stationarity)

The process X is said to be weakly stationary if it satisfies the following
conditions:

1. The ACF of X exists, i.e. Cov[Xt ,Xs ] depends only on |t − s|.
2. E[Xt ] deos not depend on t.
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Weak stationarity

Since non-stationary time series have time-varying characteristics such
as mean and variance, it is not straightforward to fit an adequate
model

In practice, even if the time series data X itself is non-stationary, its
differences Xt − Xt−1 or logarithms logXt are often stationary

Ex. X is called a random walk if it is of the form Xt = Xt−1 + ϵt
with ϵt ’s being centered i.i.d. variables

▶ X is non-stationary because Var[Xt ] = t
▶ Meanwhile, the difference process is Xt − Xt−1 = ϵt and thus weakly

stationary
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Weak stationarity

A standard procedure to fit a model to the time series data X :

1. Check whether X is stationary or not
2. If X is stationary, replace X by its difference and return to Step 1;

otherwise, go to the next step
3. Fit an adequate model to X

How to check whether X is stationary or not?

1. Correlogram (ACF plot): A non-stationary process typically has (very)
slowly decaying ACF

2. Unit root test: statistical hypothesis testing for (non-)stationarity
⋆ Ex.: Phillips-Perron test for the null hypothesis that X has a unit root

(a random walk like structure) against a stationary alternative
(PP.test( ) in R)

⋆ The tseries package has other unit root tests adf.test( ) and
kpss.test( )

R example: stationary.r
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Autoregressive (AR) model

The autoregressive model of order p is the time series model of the
form

Xt = a1Xt−1 + · · ·+ apXt−p + ϵt ,

where a1, . . . , ap are some constants and ϵt ’s are centered
i.i.d. variables

This model is usually referred to as the AR(p) model

▶ The past p states Xt−1, . . . ,Xt−p linearly affects the present state Xt

A random walk is a special case of AR(1) with a1 = 1

R example: ar.r
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Moving average (MA) model

The moving average model of order q is the time series model of
the form

Xt = b1ϵt−1 + · · ·+ bqϵt−q + ϵt ,

where b1, . . . , bq are some constants and ϵt ’s are centered
i.i.d. variables

This model is usually referred to as the MA(q) model

R example: ma.r
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ARMA model

The autoregressive moving average model of order (p, q) is the
time series model of the form

Xt = a1Xt−1 + · · ·+ apXt−p + b1ϵt−1 + · · ·+ bqϵt−q + ϵt , (1)

where a1, . . . , ap, b1, . . . , bq are constants and ϵt ’s are centered
i.i.d. variables

This model is usually referred to as the ARMA(p,q) model
▶ Hybrid of AR and MA models
▶ The ARMA model is one of the most widely used models for time

series data; it is simple but can describe various ACF shapes

R example: arma.r
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ARIMA model

As mentioned, when time series data seem to be non-stationary, one
typically takes the differences until they seem to be stationary

After that, we fit a stationary ARMA model to the differentiated data

Such a time series model is called the ARIMA model; X is the
ARIMA(p,d,q) model if ∆dX is the ARMA(p,q) model, where
∆0Xt := Xt and

∆dXt := ∆d−1Xt −∆d−1Xt−1, d = 1, 2, . . .

▶ d is the parameter of how many times one takes differences

Y. Koike (U. of Tokyo, CREST JST) Basics on time series analysis June 25, 2019 13 / 14



Fitting ARIMA models

We can use the R function arima( ) to fit a stationary ARMA model
to time series possibly after differentiation

When we fit the ARMA model (1) to the time series X , we usually
check the ACF of the residuals, which are recursively defined by

et := Xt − (a1Xt−1 + · · ·+ apXt−p + b1et−1 + · · ·+ bqet−q)

(the initial values e1, . . . , eq are set to 0 or computed by backward
prediction)

▶ If (1) is an adequate model, the residuals et should behave like white
noise

▶ The R function tsdiag( ) is helpful to assess this behavior

The AIC can be used to compare several fitted models (AIC( ) in R)

R example: fit-arma.r
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