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General motivation
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Let us consider the simple regression model

Y = β0 + β1X1 + · · · + βpXp + ǫ = Xβ + ǫ, ǫ ∼ N(0, σ2
ǫ )

β ∈ Θ ⊆ R
p+1. The OLS solution is given by

β̂LS = arg min
β∈Θ

||Y − Xβ||2 = (X ′X)−1X ′Y

unbiased, asymptotically normal and with minimal variance (in the class of linear estimators)
provided that (X ′X)−1 exists or, more specifically, that X ′X is full rank.



General motivation
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Typical issues are:

� multi-collinearity: the regressors are correlated, therefore X ′X is not full rank and the
variance of estimates may diverge

� there are far more regressors than observations, i.e., n << p: identifiability problem

� we are not sure about model specification: need of model selection

Although the above issues has always been there, they became more and more compelling
recently due to the deluge of new data (genomics, finance, social sciences, ecc)



My motivation
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Helping the E.U. Commission to setup and early warning and forecasting system for asylum
applicants to EU28+ to setup the logistics and necessary HR capabilities before crises explode.

� 28 countries of destination (CoD) from 220 world countries of origin (CoO)
� Frontex data, monthly: irregular border crossings from CoO to about 10 CoD
� EASO data, weekly: from CoD to all CoD
� GDelt data: daily: conflict, social, economics events for (almost) all CoO
� Google Search, weekly: from CoO looking for different searches: the EU28 countries, Visa,

Passport, Asylum, etc (around 15)
� adding lagged effects: some populations move from a CoO, then transits to other CoO and

then enters EU.
� outcome: applicants in 4 weeks from each CoO to each CoD (and EU in general)

A few hundreds of time series and weekly frequency only up to 2016-2017 (about 52*3.5
data). No way to fit, e.g., VAR models. Push factors and triggers are different for each route
(model selection problem).

Nevertheless, using regularized estimation seems to produce working results.



Ridge estimation
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Ridge regression (Hoerl and Kennard, 1970): solution can be formalized as an unconstrained
but penalized optimization problem

β̂R
λ ≡ argminβ‖Y − Xβ‖2

︸ ︷︷ ︸
LS

+ λ
p∑

j=1

β2
j

︸ ︷︷ ︸
l2 - ’penalty’

= argminβRSS + λ
p∑

j=1

β2
j (1)

or as an unpenalized but constrained optimization problem

β̂R
λ = arg min

||β||2≤s

||Y − Xβ||2

Approximate relationship: λ ∼
1
s



Ridge regression: shrinkage
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β̂R
λ = argminβRSS + λ

p∑

j=1

β2
j

� The term λ
∑p

j=1 β2
j is called a shrinkage penalty.

� It depends on the tuning parameter λ:

� when λ = 0 the shrinkage penalty term has no effect and β̂R
λ = β̂LS .

� as λ grows the shrinkage effect increases too and β1, . . . , βp approach zero.

� selecting the best value for λ is crucial (data dependent).

� λ penalizes each βj differently unless X is standardized



Properties of Ridge estimates
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The explicit solution to (1) is: β̂R
λ = (X ′X + λI)−1X ′Y

Ridge regression can “solve” the multi-collinearity problem.



Properties of Ridge estimates
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The explicit solution to (1) is: β̂R
λ = (X ′X + λI)−1X ′Y

Ridge regression can “solve” the multi-collinearity problem. Let W = (X ′X + λI)−1, then

Bias(β̂R
λ ) = −λW β, Var(β̂R

λ ) = σ2
ǫ W X ′XW ′

Thus, the bias depends on λ but and it is possible to prove that

Var
(

β̂LS
)

− Var
(

β̂R
λ

)

is a positive definite matrix: variance shrinkage.



Properties of Ridge estimates
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The explicit solution to (1) is: β̂R
λ = (X ′X + λI)−1X ′Y

Ridge regression can “solve” the multi-collinearity problem. Let W = (X ′X + λI)−1, then

Bias(β̂R
λ ) = −λW β, Var(β̂R

λ ) = σ2
ǫ W X ′XW ′

Thus, the bias depends on λ but and it is possible to prove that

Var
(

β̂LS
)

− Var
(

β̂R
λ

)

is a positive definite matrix: variance shrinkage. Further

MSE
(

β̂LS
)

− MSE
(

β̂R
λ

)
S 0

but it is possible to prove (see, Theobald, 1974 and Farebrother, 1976) that there always exists
a value of λ > 0 such that the above quantity is strictly positive.



Ridge regression: averaging effect

9 / 69

Suppose now that X1, X2 are standardized and strongly positively collinear, and their
population slopes are β1 and β2 respectively, then their Ridge estimates are
Fits of the form:

(β1 + γ)X1 + (β2 − γ)X2 = X1β1 + γX1 + β2X2 − γX2 = EY + γ(X1 − X2),

have similar MSE values as γ varies, since X1 − X2 is small when X1 and X2 are strongly
positively associated.

In other words, OLS can’t easily distinguish among these fits.

For example, if X1 ≈ X2, then 3X1 + 3X2, 4X1 + 2X2, 5X1 + X2, etc. all have very similar
MSE values.



Ridge regression and collinearity (cont’d)
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For large λ, ridge regression favors the fits that minimize:

(β1 + γ)2 + (β2 − γ)2.

This expression is minimized at γ = (β2 − β1)/2, giving the fit:

(β1 + β2)X1

2
+

(β1 + β2)X2

2
= (β1 + β2)

X1 + X1

2
.

Therefore, multi-collinear variables share the same estimated coefficients or, put it in another
way, it averages covariates.



Ridge regression effective degrees of freedom
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In OLS the trace of the “hat” matrix H = X(X′X)−1X′ is equal to the rank of X , which
corresponds to the number of free independent parameters of the linear model = degrees of
freedom. In Ridge regression effective degrees of freedom (EDF) are

EDFλ = tr
[
X(X ′X + λI)−1X ′]

When λ = 0 and there is no multi-collineraity the matrix X ′X is full rank, otherwise the EDF
converges to 1 as λ grows, i.e. all coefficients other than the intercept are forced to take the
value zero.



The shrinkage effect of λ

12 / 69

0 20 40 60 80 100

0
.0

0
.2

0
.4

0
.6

λ

β λ

B0

B1

B2

0 20 40 60 80 100
0
.0

0
0
.0

5
0
.1

0
0
.1

5
0
.2

0

λ

V
a
r(β

λ)

B0

B1

B2



Ridge regression’s EDF vs λ
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The effective number of degrees of freedom as a function of λ
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Ridge regression estimates vs effective degrees of freedom
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Ridge regression summary
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So, Ridge estimates are

� biased but with less variance than OLS

� can address the multicollinearity problem (also average effect on the coefficients)

� notice that, incidentally, when p >> n, (X′X)−1 does not exist (ill-posed problem) and
thus Ridge regression can also help.

� but there is no model selection effect, i.e., the number of coefficients remains p, unless
λ → ∞ [EDFλ → 1]

� Still, another problem remains: overfitting.

� A model with too many predictor variables may be sub-optimal if the true model is sparse
(i.e., the response variable Y depends only on a small number of input variables).
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Lasso: Least Absolute Selection and Shrinkage Operator
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Lasso estimates (see Tibshirani, 1996; Knight and Fu, 2000, Efron et al., 2004) minimize

RSS + λ
k∑

j=1

|βj |.

The important difference with ridge regression is in the penalty part (l1 vs l2). This seemingly
tiny difference makes qualitative gaps practically as well as theoretically.

The l1 penalty causes some coefficients to be shrunken exactly to zero, i.e., the predictive model
is sparse

Lasso performs both variable selection and shrinkage



Bridge estimation
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The previous Lasso approach can be generalized further to lq constraints (Bridge estimation),
for some q > 0, i.e.

β̂ = arg min
β

RSS + λ
k∑

i=1

|βi|q

Where Lasso is for q = 1, Ridge is for q = 2 and the limiting case q = 0 is OLS.

Notice that, in the limit as q → 0, this procedure approximates AIC/BIC criteria as

lim
q→0

k∑

i=1

|βi|q =
k∑

i=1

1{βi 6=0}

as the RHS amounts to the number of non-null parameters.



A typical Lasso result
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OLS OLS-Step∗ Ridge Lasso
(Intercept) 0.43 0.26 -0.15 0.33

lcavol 0.58 0.57 0.27 0.45
lweight 0.61 0.62 0.45 0.40

age -0.02 -0.02 -0.00 –
lbph 0.14 0.14 0.09 0.01

svi 0.74 0.74 0.47 0.24
lcp -0.21 -0.21 0.05 –

gleason -0.03 – 0.07 –
pgg45 0.01 0.01 0.00 0.00

MSE (train) 0.44 0.44 0.56 0.59
R2 (train) 0.69 0.69 0.61 0.59

MSE (test) 0.52 0.52 0.52 0.47
R2 (test) 0.50 0.51 0.51 0.55

Lasso solution can achieve both model selection and shrinkage!

∗ : OLS-Step is the OLS model with stepwise regression.



Comparison of shirinkage between the Ridge and the Lasso
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Geometric interpretation
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Equivalent formulations for Lasso and Ridge
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Formulation 1:

β̂L = argminβ



RSS + λ
k∑

j=1

|βj |



 , β̂R = argminβ



RSS + λ
k∑

j=1

β2
j





Formulation 2:

β̂L = argminβ




n∑

i=1

(yi − β0 −
k∑

j=1

βjxij)2





subject to
∑k

j=1 |βj| ≤ s for Lasso and
∑k

j=1 |βj|2 ≤ s for Ridge.



Changing the value for s/λ
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λ ↑ or s ↓, the smaller estimates and viceversa



Why Lasso can give sparse solutions, but not Ridge
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Left: Lasso, solutions can reach the edge of the diamond for both coefficients while (right) this is
not possible for Ridge.



Extensions of the Lasso
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Lasso methods for selecting block of predictors at a time (categorical variable represented
through dummies). Indeed, individual sparsity does NOT ensure blockwise sparsity: Group
Lasso (Yuan and Lin, 2006) and Blockwise Sparse Regression (Kim et al. 2006).

Beware: sparse methods are OK ONLY IF the true model is sparse.

When there is a high correlation between predictors, the average of the correlated predictors
(Ridge) might be better than selecting a single predictor (Lasso).

Shrinkage methods with an oracle property: asymptotically unbiased and consistent for the non
null parameters.

There exists shrinkage methods with less sparse solutions than the Lasso: Elastic Net (Zou and
Hastie, 2005)



Visual comparison of Elastic Net, Ridge and Lasso
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Figure 1: Penalties for Lasso, ridge, and elastic net



Elastic Net: Computation
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� The main idea of the Elastic Net is to find a compromise between Ridge and Lasso.
� Naive elastic net minimizes the following objective function:

RSS + λ1‖β‖1︸ ︷︷ ︸
Lasso

+ λ2‖β‖2
2︸ ︷︷ ︸

Ridge

.

� Penalty for elastic net proposed by Zou and Hastie (2005):

λ
p∑

j=1

(αβ2
j + (1 − α)|βj|)

� The elastic net selects variables (in the way the Lasso does), and shrinks together the
coefficients of correlated predictors (in the way the Ridge regression does). For very small,
α > 0, ENet is almost Lasso but without the unpleasant degeneracies and wild behaviour in
the presence of strong correlation.



SCAD(Smoothly Clipped Absolute Deviation)
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� Fan and Li (2001) generalized the penalized approaches:

β̂ = argminβC(β) +
p∑

j=1

Jλ(|βj|),

where J is a penalty function and C(β) is a loss function (for example RSS or negative
log-likelihood).

� Hard thresholding (Fan, 1997): λ2 − (|θ| − λ)2I(|θ| < λ)
� Bridge regression: Jλ(θ) = λ|θ|q, q > 0
� Lasso regression: Jλ(θ) = λ|θ|
� Ridge regression: Jλ(θ) = λ|θ|2

� SCAD:

Jλ(θ) =






λ|θ|, |θ| ≤ λ,
−(θ2 − 2aλ|θ| + λ2)/[2(a − 1)], λ ≤ |θ| ≤ aλ
(a + 1)λ2/2, |θ| ≥ aλ.



SCAD: Properties
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Table 1: Penalty methods, sparsity and unbiasedness
Bridge(q < 1) Lasso Ridge SCAD ENet

sparsity Yes Yes No Yes Yes
unbiasedness Yes No No Yes No
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Oracle procedures
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Let A = {j : βj 6= 0} be the set of true non-zero coefficients in the standard regression model

Y = β0 + β1X1 + . . . + βpXp + ǫ, ǫ ∼ N(0, σ2)

such that |A| = p0 < p. Denote by β̂(δ) the estimates of an estimation procedure δ. Following
Fan and Li (2001), we call δ an oracle procedure if β̂(δ) (asymptotically) has the following
oracle properties:

� Identifies the right subset model, {j : β̂j 6= 0} = A

� Has the optimal estimation rate
√

n(β̂(δ)A − βA) converges in distribution to N(0, Σ∗)
where where Σ∗ is the covariance matrix of the true subset/reduced model.

Remind that if all coefficients are non-zero, the MLE estimator satisfies

√
n(β̂ML − β) d→ N(0, I−1(β) =: Σ∗)



Oracle procedures
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In the classic Lasso procedure, the main assumption are that

1
n

X ′X → C

where C is A positive definite matrix. Let us re-order the coefficients β so that the true non-zero
coefficients occupy the first positions 1, . . . , p0. Then let

C =
[
C11 C12
C21 C22

]

where C11 is p0 × p0. Now let λ = λn in the Lasso penalty function

β̂n = arg min
β



RSS + λn

p∑

j=1

|βj|







Lasso is not an Oracle procedure!
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If λn is such that lim
n→∞

λn/n = λ0 ≥ 0, then Lemma 1 (Knight and Fu, 2000):

β̂n
p→ arg min

β
V1, with V1(u) = (u − β)′C(u − β) + λ0

p∑

j=1

|uj |

and if lim
n→∞

λn/
√

n = λ0 ≥ 0 then, Lemma 2 (Knight and Fu, 2000):

√
n(β̂n − β) d→ arg min

β
V2

with

V2(u) = −2u′W + u′Cu + λ0

p∑

j=1

(
ujsign(βj)I{βj 6=0} + |uj |I{βj=0}

)

with W = N(0, σ2C).



Lasso is not an Oracle procedure!
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Lemma 1 shows that only if λ0 = 0 the Lasso estimators are consistent.

Lemma 2 shows that Lasso can be
√

n-consistent under the same conditions. But in general
bias remains.

Indeed, it is also possible to prove that

lim
n→∞

P (An = A) ≤ c < 1

which means that the true set of non-zero coefficients is not correctly identified even
asymptotically.

Adaptive Lasso addresses this problem.



Adaptive Lasso is an Oracle procedure!
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Let β̃ be a
√

n-consistent estimator of β (e.g. OLS or MLE). Let γ > 0 and define
w̃j = 1/|β̃|γ , j = 1, . . . , p. The adaptive Lasso estimator is defined as follows

β̂ = arg min
β



RSS + λn

p∑

j=1

w̃j |βj|





If λn/
√

n → 0 and λnn
γ−1

2 → ∞, then (Zou, 2006), we have the oracle properties:

� consistent variable selection: limn→∞ P (An = A) = 1

� asymptotic normality:
√

n(β̂A − βA) d→ N
(
0, σ2C−1

11
)
.



Adaptive Elastic Net is also oracle

36 / 69

In its other form, the Elastic Net estimator can be written as follows

β̂ENet =
(

1 +
λ2

n

) {

arg min
β

(
RSS + λ2||β||22 + λ1||β||1

)
}

then define w̃j =
(

|β̂ENet|
)−γ

and finally

β̂AdaENet =
(

1 +
λ2

n

)




arg min

β



RSS + λ2||β||22 + λ̃1

p∑

j=1

w̃j |βj|










but because ENet, like Lasso, likes sparse estimation, to avoid division by 0, we can use these

weights w̃j =
(

|β̂ENet| + 1/n
)−γ

.

Then, again, it is possible to prove that β̂AdaENet is oracle (see Zou and Zhang, 2009).



Application to Discretely Observed
Stochastic Differential Equations

About regularized
estimation

Sparse Estimation

Geometric interpretation

Adaptive Estimation

Application to Discretely
Observed Stochastic
Differential Equations

Model selection and
causal inference with
Lasso

Adaptive Lasso properties

General regularized
estimation

What’s next?

References

37 / 69



The SDE model
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Let Xt be a diffusion process solution to

dXt = b(α, Xt)dt + σ(β, Xt)dWt

α = (α1, ..., αp)′ ∈ Θp ⊂ R
p, p ≥ 1

β = (β1, ..., βq)′ ∈ Θq ⊂ R
q, q ≥ 1

b : Θp × R
d → R

d, σ : Θq × R
d → R

d × R
m and Wt, t ∈ [0, T ], is a

standard Brownian motion in R
m.

We assume that the functions b and σ are known up to α and β.

We denote by θ = (α, β) ∈ Θp × Θq = Θ the parametric vector and with
θ0 = (α0, β0) its unknown true value.



Sampling scheme
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The sample path of Xt is observed only at n + 1 equidistant discrete times ti, such that
ti − ti−1 = ∆n < ∞ for 1 ≤ i ≤ n (with t0 = 0 and tn = T ). We denote by
Xn = {Xti}0≤i≤n our random sample with values in R

(n+1)×d.

The asymptotic scheme adopted in this talk is the following:

T = n∆n → ∞, ∆n → 0 and n∆2
n → 0 as n → ∞.

This asymptotic framework is called rapidly increasing design and the condition n∆2
n → 0

means that ∆n shrinks to zero slowly.

Implications: the parameters β are
√

n – consistent while the parameters α in the drift are only√
n∆n – consistent. This requires a non trivial adaptation of the Lasso method.



Regularity conditions
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A1. there exists a constant C such that

|b(α0, x) − b(α0, y)| + |σ(β0, x) − σ(β0, y)| ≤ C|x − y|;

A2. infβ,x det(Σ(β, x)) > 0; with Σ(β, x) = σ(β, x)σ(β, x)′.
A3. the process Xt, t ∈ [0, T ], is ergodic for every θ with invariant probability measure µθ;
A4. if the coefficients b(α, x) = b(α0, x) and σ(β, x) = σ(β0, x) for all x (µθ0 -almost surely), then

α = α0 and β = β0;
A5. for all m ≥ 0 and for all θ ∈ Θ, supt E|Xt|m < ∞;
A6. for every θ ∈ Θ, the coefficients b(α, x) and σ(β, x) are five times differentiable with respect to x

and the derivatives are bounded by a polynomial function in x, uniformly in θ;
A7. the coefficients b(α, x) and σ(β, x) and all their partial derivatives respect to x up to order 2 are

three times differentiable with respect to θ for all x in the state space. All derivatives with respect to θ
are bounded by a polynomial function in x, uniformly in θ.

A1 ensures the existence and uniqueness of a solution to the SDE for the value θ0 = (α0, β0) of θ ∈ Θ,
while A4 is the identifiability condition. From now on we assume that the conditions A1 − A7 hold.



Quasi-likelihood function
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We can discretize the SDE

Xt+dt − Xt = b(α, Xt)dt + σ(β, Xt)(Wt+dt − Wt),

and the increments Xt+dt − Xt are then independent Gaussian random variables with mean
b(α, Xt)dt and variance-covariance matrix Σ(β, x)dt. Therefore the transition density of the
process can be written as a simple Gaussian density.



Quasi-likelihood function
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Hn(Xn, θ) =
1
2

n∑

i=1

{
log det(Σi−1(β)) +

1
∆n

(∆Xi − ∆nbi−1(α))′Σ−1

i−1
(β)(∆Xi − ∆nbi−1(α))

}

where ∆Xi = Xti − Xti−1 , Σi(β) = Σ(β, Xti) and bi(α) = b(α, Xti).

This quasi-likelihood has been introduced by, e.g., Yoshida (1992), Genon-Catalot and Jacod
(1993) and Kessler (1997) and used to obtain quasi-MLE estimators.

Hn plays the role of the negative log-likelihood for this model but the results of this part are such
that Hn it can be replaced by any contrast function (see Masuda and Shimizu, 2016) or random
field (in the sense of Yoshida, 2011)

The quasi-MLE θ̃n for this model is the solution of the following problem

θ̃n = (α̃n, β̃n)′ = arg min
θ

Hn(Xn, θ)



Optimality properties of the QMLE estimator
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Consider the matrix (of rates of convergence)

ϕ(n) =
( 1

n∆n
Ip 0

0 1
nIq

)

where Ip and Iq are respectively the identity matrix of order p and q. Let

I(θ) =

(
Γα = [Ikj

b (α)]k,j=1,...,p 0
0 Γβ = [Ikj

σ (β)]k,j=1,...,q

)

where

Ikj
b (α) =

∫
1

σ2(β, x)
∂b(α, x)

∂αk

∂b(α, x)
∂αj

µθ(dx) ,

Ikj
σ (β) = 2

∫
1

σ2(β, x)
∂σ(β, x)

∂βk

∂σ(β, x)
∂βj

µθ(dx) .



Optimality properties of the QMLE estimator

44 / 69

Lemma 1 (see e.g., Kessler, 1997). Let Λn(θ) = ϕ(n)1/2
Ḧn(Xn, θ)ϕ(n)1/2. Under the

conditions A1 − A7, and n∆n → ∞, n∆2
n → 0, ∆n → 0 as n → ∞, the following two

properties hold true

i) for ǫn → 0, as n → ∞, then
Λn(θ0) p→ I(θ0)

sup
||θ||≤ǫn

|Λn(θ + θ0) − Λn(θ0)| = op(1)

ii) for each θ ∈ Θ, θ̃n is a consistent estimator of θ and asymptotically Gaussian, i.e.

ϕ(n)−1/2(θ̃n − θ) d→ N(0, I(θ)−1)



Lasso estimation
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The classical adaptive Lasso objective function for the present model is then

min
α,β





Hn(α, β) +

p∑

j=1

λn,j |αj| +
q∑

k=1

γn,k|βk|






λn,j and γn,k are appropriate sequences representing an adaptive amount of shrinkage for
each element of α and β.

Adaptiveness is essential to avoid the situation in which larger parameter are estimated with
larger bias (up to missing consistency)

Unfortunately, the above is a non-linear optimization problem under l1 constraints which might
be numerically challenging to solve. Luckily, following Wang and Leng (2007), the minimization
problem can be transformed into a quadratic minimization problem (under l1 constraints) which
is asymptotically equivalent to minimizing the original Lasso objective function.
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By Taylor expansion of the original Lasoo objective function, for θ around θ̃n (the QMLE
estimator)

Hn(Xn, θ) = Hn(Xn, θ̃n) + (θ − θ̃n)′Ḣn(Xn, θ̃n) +
1
2

(θ − θ̃n)′Ḧn(Xn, θ̃n)(θ − θ̃n)

+op(1)

= Hn(Xn, θ̃n) +
1
2

(θ − θ̃n)′Ḧn(Xn, θ̃n)(θ − θ̃n) + op(1)

with Ḣn and Ḧn the gradient and Hessian of Hn with respect to θ.
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We define the adaptive Lasso estimator the solution to the quadratic problem
under l1 constraints

θ̂n = (α̂n, β̂n) = arg min
θ

F(θ).

with

F(θ) = (θ − θ̃n)Ḧn(Xn, θ̃n)(θ − θ̃n)′ +
p∑

j=1

λn,j |αj | +
q∑

k=1

γn,k|βk|

We will discuss adaptiveness later
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� Adaptiveness: without adaptiveness, larger (true) parameters are estimated with more bias
because of the penalization

� Speed of convergence: in diffusion models the speed of the parameters in the drift (α) and
diffusion (β) are different (big difference w.r.t. i.i.d. models)

� Oracle property: the method should correctly estimate as zero the parameters which are
truly zero

Before presenting formally the oracle property of the adaptive Lasso estimator, we will explain in
which sense Lasso can be used as a model selector in this framework.
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The CKLS model includes a special cases many famous models and is a nice example to apply
Lasso to non-linear models. Indeed, fitting Lasso to real data on the CKLS model is a one-step
model selection compared to the evalutaion of AIC for all the models below separately

Reference Model α β γ
Merton (1973) dXt = αdt + σdWt 0 0
Vasicek (1977) dXt = (α + βXt)dt + σdWt 0
Cox, Ingersoll and Ross (1985) dXt = (α + βXt)dt + σ

√
XtdWt 1/2

Dothan (1978) dXt = σXtdWt 0 0 1
Geometric Brownian Motion dXt = βXtdt + σXtdWt 0 1
Brennan and Schwartz (1980) dXt = (α + βXt)dt + σXtdWt 1

Cox, Ingersoll and Ross (1980) dXt = σX3/2
t dWt 0 0 3/2

Constant Elasticity Variance dXt = βXtdt + σXγ
t dWt 0

CKLS (1992) dXt = (α + βXt)dt + σXγ
t dWt
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Let Xt be a multidimensional diffusion process solution to

dXt =
p∑

i=1

αib(Xt)dt +
p∑

j=1

βjσ(Xt)dWt

where b(·) and σ(·) represent given statistical models. Then, the Lasso
estimators of αi and βj allows for model selection as well.

Group Lasso idea can also be applied.
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A typical usage of Lasso in model selection is the case causation (closely
related to Granger causation). For example, in a model like this

(
dXt

dYt

)
=

(
κ0 + µ11Xt + µ12Yt

κ1 + µ21Xt + µ22Yt

)
dt+

(
σ11Xt σ12Yt

σ21Xt σ22Yt

) (
dWt

dBt

)

with initial condition (X0 = 1, Y0 = 1) and Wt, t ∈ [0, T ], and
Bt, t ∈ [0, T ], are two independent Brownian motions.

The case of µ12 = 0, µ21 = 0, σ12 = 0, σ21 = 0 is of practical interest
because the systems becomes

dXt = κ0 + µ11Xt + σ11XtdWt

dYt = κ1 + µ22Yt + σ22YtdBt

Of course this can be generalized to affine diffusion in higher dimension without
imposing a specific correlation structure like in the above simple example.
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Without loss of generality, we assume that the true model, indicated by
θ0 = (α0, β0), has parameters α0j and β0k equal to zero for p0 < j ≤ p and
q0 < k ≤ q, while α0j 6= 0 and β0k 6= 0 for 1 ≤ j ≤ p0 and 1 ≤ k ≤ q0.

Denote by θ∗ = (α∗, β∗)′ the vector corresponding to the nonzero
parameters, where α∗ = (α1, ..., αp0)′ and β∗ = (β1, ..., βq0)′, while
θ◦ = (α◦, β◦)′ is the vector corresponding to the zero parameters where
α◦ = (αp0+1, ..., αp)′ and β◦ = (βq0+1, ..., βq)′.

Therefore,
TRUE : θ0 = (α0, β0)′ = (α∗

0, α◦
0, β∗

0 , β◦
0)′

Lasso : θ̂n = (α̂∗
n, α̂◦

n, β̂∗
n, β̂◦

n)′

MLE : θ̃n = (α̃∗
n, α̃◦

n, β̃∗
n, β̃◦

n)′
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C1. µn√
n∆n

→ 0 and νn√
n

→ 0 where µn = max{λn,j , 1 ≤ j ≤ p0} and

νn = max{γn,k, 1 ≤ k ≤ q0};
C2. κn√

n∆n
→ ∞ and ωn√

n
→ ∞ where κn = min{λn,j, j > p0} and

ωn = min{γn,k, k > q0}.
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C1. µn√
n∆n

→ 0 and νn√
n

→ 0 where µn = max{λn,j , 1 ≤ j ≤ p0} and

νn = max{γn,k, 1 ≤ k ≤ q0};
C2. κn√

n∆n
→ ∞ and ωn√

n
→ ∞ where κn = min{λn,j, j > p0} and

ωn = min{γn,k, k > q0}.

Assumption C1 implies that the maximal tuning coefficients µn and νn for the
parameters αj and βk, with 1 ≤ j ≤ p0 and 1 ≤ k ≤ q0, tends to infinity
slower than

√
n∆n and

√
n respectively.
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C1. µn√
n∆n

→ 0 and νn√
n

→ 0 where µn = max{λn,j , 1 ≤ j ≤ p0} and

νn = max{γn,k, 1 ≤ k ≤ q0};
C2. κn√

n∆n
→ ∞ and ωn√

n
→ ∞ where κn = min{λn,j, j > p0} and

ωn = min{γn,k, k > q0}.

Assumption C1 implies that the maximal tuning coefficients µn and νn for the
parameters αj and βk, with 1 ≤ j ≤ p0 and 1 ≤ k ≤ q0, tends to infinity
slower than

√
n∆n and

√
n respectively.

Analogously, we observe that C2 means that that the minimal tuning coefficient
for the parameter αj and βk, with j > p0 and k > q0, tends to infinity faster
than

√
n∆n and

√
n respectively.
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Theorem 2. Under conditions A1 − A7 and C1, one has that

||α̂n − α0|| = Op

(
(n∆n)−1/2

)
and ||β̂n − β0|| = Op

(
n−1/2

)
.

Theorem 3. Under conditions A1 − A7 and C2, we have that

P (α̂◦
n = 0) → 1 and P (β̂◦

n = 0) → 1. (2)

From Theorem 2, we can conclude that the estimator θ̂n is consistent.

Theorem 3 says us that all the estimates of the zero parameters are correctly
set equal to zero with probability tending to 1
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One as to prove the existence of a consistent local minimizer; this is implied by that fact that for
an arbitrarily small ε > 0, there exists a sufficiently large constant C , such that

lim
n→∞

P
{

inf
z∈Rp+q:||z||=C

F(θ0 + ϕ(n)1/2z) > F(θ0)
}

> 1 − ε, (3)

with z = (u, v)′ = (u1, ..., up, v1, ..., vq)′. After some calculations, we obtain that

F(θ0 + ϕ(n)1/2z) − F(θ0)

≥z′ϕ(n)1/2
Ḧn(Xn, θ̃n)ϕ(n)1/2z + 2z′ϕ(n)1/2

Ḧn(Xn, θ̃n)ϕ(n)1/2ϕ(n)−1/2(θ0 − θ̃n)

−
[
p0

µn√
n∆n

||u|| + q0
νn√

n
||v||

]

= Ξ1 + Ξ2 − Ξ3
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Let τmin(A) is the minimal eigenvalue of A. Then, Lemma 1, being ||z|| = C , Ξ1 is uniformly
larger than τmin(ϕ(n)1/2

Ḧn(Xn, θ̃n)ϕ(n)1/2)C2 and

τmin(ϕ(n)1/2
Ḧn(Xn, θ̃n)ϕ(n)1/2)C2 p→ C2τmin(I(θ0)).

Moreover, Lemma 1 also implies that

||ϕ(n)1/2
Ḧn(Xn, θ̃n)ϕ(n)1/2ϕ(n)−1/2(θ0 − θ̃n)|| = Op(1)

and then Ξ2 is bounded and linearly dependent on C .

Therefore, for C sufficiently large, F(θ0 + ϕ(n)1/2z) − F(θ0) dominates Ξ1 + Ξ2 with
arbitrarily large probability. Further, from the condition C1, one has that Ξ3 = op(1).

Strict convexity of F(θ) implies that the consistent local minimum is the consistent global one.
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Let I0(θ∗0) the (p0 + q0) × (p0 + q0) submatrix of I(θ) at point θ∗0 and
introduce the following rate of convergence matrix

ϕ0(n) =
( 1

n∆n
Ip0 0

0 1
nIq0

)

Theorem 4 (Oracle property). Under conditions A1 − A7 and C1 − C2, we
have that

ϕ0(n)−
1
2 (θ̂∗n − θ∗0) d→ N(0, I−1

0 (θ∗0)) (4)

where θ∗0 is the subset of non-zero true parameters.



How to choose the adaptive sequences

About regularized
estimation

Sparse Estimation

Geometric interpretation

Adaptive Estimation

Application to Discretely
Observed Stochastic
Differential Equations

Model selection and
causal inference with
Lasso

Adaptive Lasso properties

General regularized
estimation

What’s next?

References

60 / 69

Clearly, the theoretical and practical implications of our method rely to the
specification of the tuning parameter λn,j and γn,k.

The tuning parameters should be chosen as is Zou (2006) in the following way

λn,j = λ0|α̃n,j|−δ1 , γn,k = γ0|β̃n,j |−δ2 (5)

where α̃n,j and β̃n,k are the unpenalized QML estimator of αj and βk

respectively, δ1, δ2 > 1. The asymptotic results hold under the additional
conditions

λ0√
n∆n

→ 0, (n∆n)
δ1−1

2 λ0 → ∞

and γ0√
n

→ 0, n
δ2−1

2 γ0 → ∞

as n → ∞.
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Masuda and Shimizu (2016) generalized the above Lasso approach to the
wider class of regularized estimation methods. In their setup, they propose to
solve this problem

min
Θ

Hn(θ)

where
Hn = Mn(α, β) + Rb

n(α) + Rσ
n(β)

Mn is any contrast function and Rb
n(α) and Rσ

n(β) are called regularization
sequences and generalize the adaptive sequences of previous part of this talk.

In their proof, there is no need of convexity as they adopt the random field
approach of Yoshida (2011): LAQ + PLDI (locally asymptotic quadratic
structure) + (polynomial large deviation inequality).

They can also establish the converge of moment of the estimators (useful in
prediction problems), oracle properties, tail probability estimate.
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The Elastic Net method, is a regularization method proposed by Zou and
Hastie (2005) in the i.i.d. case Y = Xθ + ǫ, ǫ ∼ N(0, σ2), to solve some
problems in the Lasso estimation procedure in the following circumstances

� the number of regressors p is larger than n and grows with n
� the regressors are correlated

and later generalized to the case of diverging parameters (Zou and Zhang,
2009).

The ENet estimator is the solution to

(
1 +

λ2

n

)
arg min

θ





||(Y − Xθ)||22 + λ2

p∑

j=1

|θj |2 + λ1

p∑

j=1

|θj |






In orthogonal design this asymptotically converges to Lasso, but with correlated
regressors X the L2 penalty increase the accuracy of prediction.
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The AdaEnet estimator is a combination of ENet and adaptive Lasso. And works this way

� Step 1: let θ̂ENet be the solution of the previous ENet problem and compute

ŵj =
1∣∣∣θ̂ENet

j + 1
n

∣∣∣
γ , j = 1, . . . , p, γ > 0

� Step 2:

θ̂AdaENet =
(

1 +
λ2

n

)
arg min

θ





||(Y − Xθ)||22 + λ2

p∑

j=1

|θj |2 + λ∗
1

p∑

j=1

ŵj |θj |






Under the assumption that limn→∞
log(p)
log(n) = ν, 0 ≤ ν < 1 choosing γ > 2ν

1−ν guarantees
the oracle property of AdaENet.
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Further, if

b ≤ λmin

(
1
n

X ′X
)

≤ λmax

(
1
n

X ′X
)

≤ B

(with λmin(A) and λmax(A), the smallest and largest eigenvalue of pos. def. A)

E
(

||θ̂(AdaENet) − θ∗||22
)

≤ 4
λ2

2||θ∗||22 + Bpnσ2 + λ2
1E

(∑p
j=1 ŵ2

j

)

(bn + λ2)2

This non-asymptotic bound gives root-(n/p)-consistency of the AdaENet estimator.
Asymptotic normality and oracle properties can be attained as well.
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Further, if

b ≤ λmin

(
1
n

X ′X
)

≤ λmax

(
1
n

X ′X
)

≤ B

(with λmin(A) and λmax(A), the smallest and largest eigenvalue of pos. def. A)

E
(

||θ̂(AdaENet) − θ∗||22
)

≤ 4
λ2

2||θ∗||22 + Bpnσ2 + λ2
1E

(∑p
j=1 ŵ2

j

)

(bn + λ2)2

This non-asymptotic bound gives root-(n/p)-consistency of the AdaENet estimator.
Asymptotic normality and oracle properties can be attained as well.

Application to dynamical systems with small noise, SDE’s with jumps and jump processes: on its
way, joint work with A. De Gregorio and N. Yoshida.

THANKS!
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