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Background

Yt = (Y 1
t , . . . ,Y

d
t )

⊤ (t ∈ [0, 1]): d-dimensional semimartingale

Aim Estimating the quadratic covariation matrix

ΣY := [Y ,Y ]1 = ([Y i ,Y j ]1)1≤i ,j≤d

from discrete observation data of Y
▶ The observation data may be noisy and/or non-synchronously observed

ΣY can be considered as a kind of “(conditional) covariance matrix”
and thus plays an important role in financial risk management
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Background

In high-frequency financial econometrics, this subject has been
extensively studied in the past two decades, and a number of
statistical methods have been proposed

▶ Survey: K. & Yoshida (2019) “Covariance estimation and quasi
likelihood analysis”, to appear in Routledge handbook

The R package yuima offers the function cce to implement some of
those methods with a simple command

▶ Cumulative Covariance Estimator
▶ Currently, totally 12 methods (plus various options) have been

implemented
▶ See also the function lmm which implements the local method of

moments estimator from Bibinger et al. (2014), which is theoretically
the best possible (i.e. asymptotically efficient) in some situations
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Background

The aim of this talk is to discuss how we can take account of the
high-dimensionality, i.e. the case with (extremely) large d

Ignoring computational cost, we can use the function cce in any
dimension, but . . .

1. the higher the dimension, the less accurate the estimates
2. the estimated covariance matrices might be singular
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Background

The non-singularity of estimated covariance matrices is particularly
important in financial applications

▶ In the recent years, the “smart beta”, which is a class of the alternative
indices to traditional ones (such as S&P500), has attracted financial
institutions

▶ Some smart beta indices are constructed via solving optimization
problems using covariance matrices as an input

⋆ Ex. The minimum volatility index determines its weight vector
w = (w1, . . . ,wd)

⊤ ∈ Rd by solving the following optimization problem:

min
w

w⊤ΣY w subject to
d∑

j=1

wj = 1

(in practice, we often impose additional constraints such as short
selling constraint wj ≥ 0 (j = 1, . . . , d))

▶ Minimum volatility type indices have already been sold by some index
venders (such as MSCI)
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Factor structure

In financial applications, it is important to take account of the factor
structure of financial data, which also serves as resolving issues of
the high-dimensionality

The factor structure of financial data is suggested by both theory and
empirical results

▶ Theory: CAPM, Arbitrage pricing theory, . . .
▶ Empirical: Fama-French 3-factor model, . . .
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Factor structure

Specifically, suppose that we have a known factor process
X = (X 1, . . . ,X r )⊤ and consider the following continuous-time factor
model:

Y = βX + Z .

▶ β: factor loading (non-random d × r matrix)
▶ Z = (Z 1, . . . ,Z d)⊤: residual process
▶ We suppose that both X and Z are semimartingales and satisfy

[Z j ,X k ] ≡ 0 for j = 1, . . . , d and k = 1, . . . , r

Even if we do not know the factor process, we can (at least formally)
construct a pseudo factor process by PCA

▶ In some situations, this procedure has been formally validated; see
Äıt-Sahalia and Xiu (2017); Dai et al. (2019); Fan and Kim (2018);
Pelger (2019)
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Factor structure

We are interested in estimating ΣY based on observation data for X
and Y with taking account of the factor structure

▶ We can compute traditional estimators Σ̂Y ,n for ΣY := [Y ,Y ]1, Σ̂X ,n

for ΣX := [X ,X ]1 and Σ̂YX ,n for ΣYX := [Y ,X ]1 by e.g. cce

By assumption ΣY is written as follows:

ΣY = βΣXβ
⊤ +ΣZ . (1)

Provided that ΣX is a.s. invertible, we can write β as β = ΣYXΣ
−1
X

Hence we can naturally estimate β by β̂n := Σ̂YX ,nΣ̂
−1
X ,n, provided

that Σ̂X ,n is invertible

▶ The invertibility of Σ̂X ,n is usually not problematic as long as the
number of factors r is sufficiently small compared to the sample size
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Factor structure

Then, from (1), ΣZ is estimated by

Σ̂Z ,n := Σ̂Y ,n − β̂nΣ̂X ,nβ̂
⊤
n

Due to the high-dimensionality, Σ̂Z ,n might be a poor estimator for
ΣZ

▶ In particular, Σ̂Z ,n might NOT be positive definite even when ΣZ is
▶ In contrast, one can show that β̂nΣ̂X ,nβ̂

⊤
n is a “good” estimator for

βΣXβ
⊤ even in high-dimensional situations under appropriate

assumptions

To overcome this issue, we need to “regularize” Σ̂Z ,n in an
appropriate way

▶ In the context of HF econometrics, this approach was first studied in
Fan et al. (2016)
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Factor structure

Given a regularized version Σ̃Z ,n of Σ̂Z ,n, we can estimate ΣY by

Σ̃Y ,n := β̂nΣ̂X ,nβ̂
⊤
n + Σ̃Z ,n

If Σ̃Z ,n is positive definite, Σ̃Y ,n is also positive definite (as long as

Σ̂X ,n is positive semi-definite)

There are a number of approaches on how to regularize a covariance
matrix estimator

Some of them directly regularize estimated covariance matrices and
do not use the particular structure of a model (at least formally),
which are appropriate to our purpose
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Implementation in YUIMA: The function cce.factor

In summary, there are basically three ingredients in the estimation
procedure described above, and each ingredient contain several
options according to situations

1. Covariance estimation: Non-synchronous and/or noisy and/or jumps
2. Factor modeling: No/known/unknown
3. Regularization: How to regularize the residual covariance matrix

The function cce.factor, which will be implemented in future
versions of the package yuima, systematically combines these three
ingredients and provides several options for each one
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Description of cce.factor

cce.factor(yuima, method = "HY", factor = NULL, PCA = FALSE

, nfactor = "interactive", regularize = "tapering",

taper, group = 1:(dim(yuima) - length(factor)),lambda =

"bic", weight = TRUE, nlambda = 10, ratio, N, thr.type =

"soft", thr = NULL, tau = NULL, par.alasso = 1, par.

scad = 3.7, frequency = 300, utime, ...)

method indicates the method used in cce

factor indicates which components of yuima are factors

PCA Use PCA to construct factors?

regularize indicates the regularization method applied to the
residual covariance matrix; four methods are currently available
(tapering, glasso, eigen.cleaning and thresholding)

Other arguments are options for each method
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Description of cce.factor

Brief description of each regularization method

▶ tapering: Taking the entry-wise product of Σ̂Z ,n and some

pre-determined d × d matrix Td : Σ̃Z ,n := Σ̂Z ,n ◦ Td (◦ denotes the
entry-wise product)

▶ glasso: ℓ1-penalized Gaussian MLE for the inverse of ΣZ

▶ eigen.cleaning: shrinking eigenvalues of Σ̂Z ,n; here the procedure
described in Hautsch et al. (2012) is implemented

▶ thresholding: The entries below a pre-determined threshold are set
to 0 (hard thresholding) or shrunk toward 0 (soft thresholding)
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Description of cce.factor

Theoretical validity of each regularization method in the HF context

Factors are known
▶ tapering/thresholding: Fan et al. (2016) for the synchronous &

non-noisy case and Dai et al. (2019) for the non-synchronous & noisy
case

▶ glasso: Brownlees et al. (2018) (see also K. (2019))
▶ eigen.cleaning: No theoretical validity

Factors are unknown
▶ tapering/thresholding: Äıt-Sahalia and Xiu (2017) for the

synchronous & non-noisy case and Dai et al. (2019) for the
non-synchronous & noisy case

▶ glasso: No result is available
▶ eigen.cleaning: No theoretical validity
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What we can do by cce.factor

HY
PHY
MRC
TSCV
GME
RK

cce method

12

No
Known
Unknown

3

factor

QMLE
SIML
THY
PTHY
SRC
SBPC

tapering
glasso
eigen.cleaning
thresholding

4

regularization

× × = 144

Y. Koike (U. of Tokyo) High-dimensional covariance estimation June 27, 2019 16 / 24



Some simulation results

Model for the factor process X : We set r = 3 and

dX j
t = µjdt +

√
v jtdW

j
t ,

dv jt = κj(θj − v jt )dt + ηj

√
v jt

(
ρjdW

j
t +

√
1− ρ2j dW̃

j
t

)
, j = 1, 2, 3,

where W 1,W 2,W 3, W̃ 1, W̃ 2, W̃ 3 are independent standard Wiener
processes

We set κ = (3, 4, 5), θ = (0.09, 0.04, 0.06), η = (0.3, 0.4, 0.3), ρ =
(−0.6,−0.4,−0.25) and µ = (0.05, 0.03, 0.02)

The entries of the loading β are independently drawn as

βi1 i .i .d .∼ U [0.25, 2.25], βi2, βi3 i .i .d .∼ U [−0.5, 0.5]

(U [a, b]: the uniform distribution on [a, b])
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Some simulation results

Model of the residual process Z : d-dimensional Wiener process with
covariance matrix Q

We consider the following two designs for Q

Design 1 Q is a block diagonal matrix with 10 blocks of size
(d/10)× (d/10). Each block has diagonal entries
independently generated from U [0.2, 0.5] and a constant
correlation of 0.25.

Design 2 We simulate a Chung-Lu random graph G and set
Q := (Ed + D − A), where D and A are respectively
the degree and adjacent matrices of the random graph
G. We use the same parameters for the Chung-Lu
random graph as in the simulation study of Barigozzi
et al. (2018).

Y. Koike (U. of Tokyo) High-dimensional covariance estimation June 27, 2019 18 / 24



Some simulation results

d = 500

We observe the process Y at the equi-spaced sampling times ti = i/n
(i = 0, 1, . . . , n) on the interval [0, 1] and the realized covariance
matrices are used as the estimators Σ̂Y ,n, Σ̂X ,n and Σ̂YX ,n

We vary n as n ∈ {78, 130, 195, 390, 780}
Based on 10,000 Monte Carlo iterations for each scenario

Regularization methods

NO No regularization
glasso Graphical Lasso

wglasso Weighted graphical Lasso (graphical Lasso based on the
correlation matrix)

tapering Tapering with Td = (1{Σij
Z ̸=0})1≤i ,j≤d (only for Design 1)

eigen Eigen cleaning method proposed in Hautsch et al.
(2012)
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Some simulation results

Table 1: Estimation accuracy of different methods in Design 1

measure n NO glasso wglasso tapering eigen
78 6.576 3.419 3.420 138.442 23.269
130 6.508 3.193 3.193 28.384 20.187

|||Σ̂−1
Y − Σ−1

Y |||2 195 6.480 3.094 3.097 14.307 18.508
390 203.038 2.133 2.100 6.446 16.545
780 93.354 1.782 1.693 3.562 15.335
78 21.771 21.829 21.829 21.477 21.782
130 16.919 17.184 17.184 16.693 16.914

|||Σ̂Y − ΣY |||2 195 13.844 14.287 14.289 13.656 13.840
390 9.762 9.991 9.959 9.628 9.759
780 6.869 7.031 6.978 6.772 6.867

|||·|||2 denotes the spectral norm. The Moore-Penrose generalized

inverse is used when Σ̂Y is singular.
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Some simulation results

Table 2: Estimation accuracy of different methods in Design 2

measure n NO glasso wglasso eigen
78 17.805 7.857 7.843 16.847
130 17.798 7.954 7.866 16.835

|||Σ̂−1
Y − Σ−1

Y |||2 195 17.752 8.006 7.742 16.832
390 87.239 8.059 7.416 16.823
780 55.619 8.065 6.072 16.809
78 27.907 27.707 27.708 27.729
130 21.552 21.397 21.399 21.413

|||Σ̂Y − ΣY |||2 195 17.569 17.447 17.449 17.462
390 12.368 12.284 12.284 12.298
780 8.722 8.665 8.664 8.678

|||·|||2 denotes the spectral norm. The Moore-Penrose generalized

inverse is used when Σ̂Y is singular.

Y. Koike (U. of Tokyo) High-dimensional covariance estimation June 27, 2019 21 / 24



Conclusions and future work

We overview the recent studies on high-dimensional covariance
estimation in high-frequency data

We introduce the function cce.factor to systematically implement
the methods proposed by those studies in the framework of YUIMA

Future work
1. Simulator for continuous factor models

⋆ The diffusion case is straightforward. It becomes somewhat
complicated when we introduce different types of jumps/hurst
parameters to the factor and residual processes

2. Implementing formal methods to select the number of factors
3. Implementing statistical testing procedures
4. Implementing additional regularization methods
5. (Machine learning approach to select the “best” method)
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