
RAP: Resource-aware Automated GPU Sharing for
Multi-GPU Recommendation Model Training and

Input Preprocessing
Zheng Wang

zhengwang@ucsd.edu
University of California,

San Diego, USA

Yuke Wang
yuke_wang@cs.ucsb.edu
University of California,
Santa Barbara, USA

Jiaqi Deng
jqdeng@ucsb.edu

University of California,
Santa Barbara, USA

Da Zheng
dzzhen@amazon.com

Amazon
USA

Ang Li
ang.li@pnnl.gov

Pacific Northwest National
Laboratory

Richland, Washington, USA

Yufei Ding
yufeiding@ucsd.edu

University of California,
San Diego, USA

Abstract
Ensuring high-quality recommendations for newly onboarded
users requires the continuous retraining of Deep Learning
Recommendation Models (DLRMs) with freshly generated
data. To serve the online DLRM retraining, existing solutions
use hundreds of CPU computing nodes designated for input
preprocessing, causing significant power consumption that
surpasses even the power usage of GPU trainers.

To this end, we propose RAP, an end-to-end DLRM train-
ing framework that supports Resource-aware Automated
GPU sharing for DLRM input Preprocessing and Training.
The core idea of RAP is to accurately capture the remaining
GPU computing resources during DLRM training for input
preprocessing, achieving superior training efficiency with-
out requiring additional resources. Specifically, RAP utilizes
a co-running cost model to efficiently assess the costs of
various input preprocessing operations, and it implements a
resource-aware horizontal fusion technique that adaptively
merges smaller kernels according to GPU availability, circum-
venting any interference with DLRM training. In addition,
RAP leverages a heuristic searching algorithm that jointly
optimizes both the input preprocessing graph mapping and
the co-running schedule to maximize the end-to-end DLRM
training throughput. The comprehensive evaluation shows
that RAP achieves 2.09× speedup on average over the se-
quential GPU-based DLRM input preprocessing baseline. In
addition, the end-to-end training throughput of RAP is only

Permission to make digital or hard copies of part or all of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. Copyrights for third-
party components of this work must be honored. For all other uses, contact
the owner/author(s).
ASPLOS ’24, April 27-May 1, 2024, La Jolla, CA, USA
© 2024 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-0385-0/24/04
https://doi.org/10.1145/3620665.3640406

1.71% lower than the ideal case, which has no input prepro-
cessing overhead.

CCS Concepts: • Information systems→Recommender
systems; • Computer systems organization→ Neural
networks.

Keywords: Deep learning recommendation models, AI train-
ing systems, Input Preprocessing

ACM Reference Format:
Zheng Wang, Yuke Wang, Jiaqi Deng, Da Zheng, Ang Li, and Yufei
Ding. 2024. RAP: Resource-aware Automated GPU Sharing for
Multi-GPU Recommendation Model Training and Input Preprocess-
ing. In 29th ACM International Conference on Architectural Support
for Programming Languages and Operating Systems, Volume 2 (ASP-
LOS ’24), April 27-May 1, 2024, La Jolla, CA, USA. ACM, New York,
NY, USA, 16 pages. https://doi.org/10.1145/3620665.3640406

1 Introduction
Deep learning recommendationmodels (DLRMs) have emerged
as the critical backbone for numerous recommendation tasks,
including advertising [10, 20] and search result ranking [13,
41], making them primary resource consumers in industry
data centers [6, 16]. Contrary to traditional deep learning
models that are typically trained “Offline” using preprocessed
training data [12, 37], industrial DLRMs embrace an “On-
line” training approach, leveraging freshly generated data to
continually update the models [40, 47]. Every second, dur-
ing the serving of a DLRM model, a substantial amount of
user behavior data is generated, collected, and preprocessed,
priming it for immediate use in online DLRM retraining [53].

The online training paradigm empowers DLRMs with the
capability to quickly adapt to dynamic shifts in user behavior
distribution and the continuous generation of new content.
However, this approach also introduces considerable chal-
lenges for designing DLRM training systems, particularly
regarding input preprocessing. According to recent industry

1

https://doi.org/10.1145/3620665.3640406
https://doi.org/10.1145/3620665.3640406

ASPLOS ’24, April 27-May 1, 2024, La Jolla, CA, USA Z. Wang, Y. Wang, J. Deng, D. Zheng, A. Li, and Y. Ding

workload analysis [53], a training job may require a substan-
tial number of dedicated CPU computing nodes to meet its
data consumption needs. Furthermore, it has shown that the
input processing of DLRMs can lead to significant power
and compute usage, even surpassing the power consumption
of GPU trainers [53]. Surprisingly, recent DLRM optimiza-
tion efforts [3, 5, 7, 26, 28, 48] concentrate on enhancing the
training efficiency, seemingly assuming that online data pre-
processing is readily available and does not require special
attention.
In contrast to the conventional approach of using dedi-

cated nodes for preprocessing, our work presents an innova-
tive alternative. We tap into the hidden potential of idle GPU
resources during DLRMs training to perform input prepro-
cessing while maintaining the original training throughput.
Our key design insight is to leverage the unique character-
istics of DLRMs, which integrate compute-intensive neural
network layers with memory-intensive embedding layers,
result in periodic variations in GPU resource utilization. Fig-
ure 1 (a) showcases the profiling results of DRAM bandwidth
and SM utilization during two training iterations. Moreover,
we go beyond resource optimization. By exploring the intri-
cate supplier-consumer relationship between preprocessing
and training workloads in DLRMs, we discover a promising
opportunity for locality optimization to minimize unneces-
sary communication for inputs between GPUs. Our compre-
hensive approach not only maximizes the utilization of idle
GPU resources during training but also fine-tunes the coor-
dination between multi-GPU DLRM input preprocessing and
training, resulting in enhanced overall training performance.

While placing preprocessing on GPUs shows promise, po-
tential resource contention with training may hinder overall
performance. To investigate this, we conduct a case study us-
ing the NGram input preprocessing operation1. Figure 1 (b)
showcases that a larger kernel with more input features leads
to higher GPU resource consumption. Additionally, Figure 1
(c) demonstrates that overlapping a large input preprocess-
ing kernel (e.g., 128 input features) with DLRM training can
cause large increases in training latency due to computing
resource contention. Reflecting on this, we summarized three
key challenges in co-allocating DLRM processing and train-
ing tasks. Spatially, mapping the preprocessing operations
tomultiple trainer GPUs presents a significant challenge. The
optimal mapping strategy should consider both the data de-
pendency to prevent unnecessary inter-GPU communication,
and the disparities in the remaining GPU resources across
GPUs, to minimize resource contention. Temporally, sched-
uling the co-running of input preprocessing with different
DLRM training stages is challenging, due to the fluctuating
GPU resource utilization during DLRM training and diverse
GPU resource consumption patterns across different input

1An important feature generation operation for DLRM [53], which computes
an n-gram across multiple sparse features to generate new input features

0

20

40

60

80

100

U
til

iz
at

io
n

(%
)

Timeline

Chart Title

DRAM
SMs

Iteration 1 Iteration 2

EMB Lookup
MLP FWD

Grad.
Comm.Backward EMB Lookup

MLP FWD Backward Grad.
Comm.

(a) A large amount of GPU resources are underutilized during DLRM train-
ing, which can be leveraged for input preprocessing.

0

20

40

60

80

100

1 16 32 64 128

U
til

iz
at

io
n

(%
)

Number of Features Processed in N-Gram Kernel

Chart Title

DRAM Bandwidth
GPU
SM

(b) DRAM bandwidth utilization, GPU
utilization, and SM utilization of the
NGram input preprocessing kernel
with different input sizes.

(c) Latency comparison when over-
lapping MLP forward with NGram
kernel of different sizes. The la-
tency increases when GPU re-
sources are insufficient.

Figure 1. Opportunities and challenges of DLRM training
and input preprocessing overlapping (each input feature of
NGram kernel in (b) and (c) contains 4096 input samples).

preprocessing operations. Jointly, the interaction between
the spatial input preprocessing operation mapping and the
temporal co-running scheduling necessitates a holistic solu-
tion that co-optimizes both aspects for optimal performance,
resulting in a significant search space.

To address the above challenges, we proposeRAP, an end-
to-end DLRM training framework that supports Resource-
awareAutomatedGPU sharing for DLRM inputPreprocessing
and Training. The key design insight of RAP is to accurately
capture the remaining GPU computing resources during
DLRM training and utilize them for DLRM input preprocess-
ing in a fine-grained, resource-aware manner to achieve high
end-to-end DLRM training efficiency without consuming ad-
ditional computing resources. Firstly, to efficiently evaluate
and select the appropriate spatial mapping plan, RAP of-
fers a unified method for characterizing the cost of different
input preprocessing operations and designs a co-running
cost model (§5) to efficiently predict the performance of a
given co-running plan. Secondly, to achieve optimal tempo-
ral co-running, RAP incorporates a resource-aware horizon-
tal kernel fusion technique (§6). This technique adaptively
fuses smaller preprocessing kernels based on remaining GPU
resources, thereby avoiding interference with DLRM train-
ing. Lastly, RAP investigates the overlapping behaviors and
the data-dependency of training and input preprocessing
in-depth and designs a heuristic algorithm (§7) to jointly
optimize the mapping of the input preprocessing graph and
the co-running of DLRM training and input preprocessing.

2

RAP: Resource-aware Automated GPU Sharing for Multi-GPU ... ASPLOS ’24, April 27-May 1, 2024, La Jolla, CA, USA

…

Dense Input Sparse Input

Input Batches

Bottom MLP E
M
B

All-to-All Communication

Embedding Tables

Top MLP

E
M
B

E
M
B

Data-Parallel
MLP Layers

Model-Parallel
Embedding

Layers

GPUs
1, 2, …, n

GPUs
1, 2, …, n

GPUs
1, 2, …, n

GPUs
1, 2, …, n

Click Through Rate
Predictions

…

Dense Input Sparse Input

Bottom
MLP E

M
B

All-to-All Communication

Embedding Tables

Top MLP

E
M
B

E
M
B

Data-Parallel
MLP Layers Model-Parallel

Embedding Layers

GPUs
1, 2, …, n

GPUs
1, 2, …, n

n input batches

Click Through Rate

❸ DLRM Training Nodes❶ Data Storage Nodes

❷ Preprocessing Nodes

Data Collected from Inference Servers

Data Generation

Raw Training Data with Labels

Batches of Raw Data

Input Preprocessing Graphs

…

Batches of Input Tensor

Sparse Inputs

Dense
Inputs

DLRM Training Power
Consumption Breakdown:

0% 20% 40% 60% 80% 100%

Data Storage Input Preprocessing DLRM Training

Figure 2. Overview of industrial DLRM training pipeline,
including data storage nodes, input preprocessing nodes, and
DLRM model training nodes.

Overall, we make the following contributions:
• To the best of our knowledge, we are the first to explore
the potential of utilizing the leftover GPU resources
from DLRM model training for input preprocessing.

• Wepropose RAP, an end-to-end DLRM training system
that integrates both input preprocessing and DLRM
model training, facilitating efficient online DLRMs
training without consuming any additional computing
resources beyond the trainer GPUs.

• Comprehensive experiments show that RAP achieves
2.09× speedup on average over the sequential GPU-
based DLRM input preprocessing baseline and the end-
to-end training throughput of RAP is only 1.71% lower
than the ideal training throughput that has no input
preprocessing.

2 Background
In this section, we will first provide the background of train-
ing and input preprocessing of DLRMs. Then we will in-
troduce the basic of existing GPU multiplexing techniques.

2.1 Industrial DLRM Training Pipeline
In real-world applications of DLRMs, there is a continuous
influx of new users and content, and the behaviors of ex-
isting users may shift over time [40, 47]. To maintain the
quality of recommendations, it is crucial to continually up-
date the model using new data generated from the inference
servers [40]. To facilitate the online updating requirement
of DLRM, a training pipeline – encompassing data storage,
input preprocessing, and model training – is deployed in
industrial DLRM applications [53, 54]. As shown in Figure 2,
new data are collected from the inference servers, and stored

Table 1. Common DLRM preprocessing operations. (DN/SN:
Dense/Sparse Normalization, FG: Feature Generation)

Type Operator Description

DN
Logit Logit transform for normalization

BoxCox BoxCox transform for normalization
Onehot Apply one hot encoding to normalize dense features

SN
SigridHash Compute hash value to normalize list of sparse features

FirstX List truncation of sparse features for normalization
Clamp Clamp the sparse input based on the upper and lower bound

FG
Bucketize Shard features based on bucket borders
Ngram Compute an n-gram between multiple sparse features
Mapid Maps feature IDs to fixed values

Others FillNull Fill NA/NaN values using the specified value
Cast Cast the data to different type

in the Data Storage Nodes. Subsequently, the Input Preprocess-
ing Nodes receive the raw data from the data storage nodes
and apply a series of preprocessing operations to convert
the raw data batch into input tensors. Lastly, these input
tensors are sent to the DLRM Training Nodes for model re-
training and updating. Distributing the data storage, input
preprocessing, and model training to different computing
nodes ensures the efficiency of each stage, but this results in
higher cost and power consumption. Meta reported that the
data storage and input preprocessing nodes account for over
50% of power consumption in its data centers, surpassing
even the power usage of GPU trainers [53]. This motivates
our design to utilize the remaining GPU resources on the
training node for input preprocessing, instead of employing
additional computing nodes.

2.2 Hybrid Parallelism of DLRM
Different from traditional compute-intensive neural network
architectures [19, 44], DLRMs incorporate not only the compute-
intensive multi-layer perceptron (MLP) but also the memory-
intensive embedding tables. The embedding tables in in-
dustrial DLRMs often contain billions of parameters, easily
exceeding the memory capacity of a single GPU. To sup-
port the distinct architecture of DLRM, the state-of-the-art
DLRM training systems adopt a hybrid parallelism train-
ing paradigm [3, 28, 39, 50, 51]. This method replicates the
compute-intensive MLP layers on all GPUs for data paral-
lelism. Concurrently, the large embedding tables are parti-
tioned across GPUs and trained using model parallelism, as
described in Figure 2 3 . The hybrid parallelism training of
DLRM leads to a unique data consumption flow. Specifically,
each GPU requires the entire set of dense inputs within each
input batch, as all GPUs have a duplication of MLP layers.
Conversely, each GPU only processes a portion of the sparse
input, since each GPU possesses only some of the embedding
tables. This presents challenges when offloading input pre-
processing to GPUs. If the input data needed by a GPU is not
locally preprocessed, then additional input communication is
required which inevitably decreases the throughput of train-
ing. This motivates the optimization for input preprocessing
workload mapping to minimize input communication.

3

ASPLOS ’24, April 27-May 1, 2024, La Jolla, CA, USA Z. Wang, Y. Wang, J. Deng, D. Zheng, A. Li, and Y. Ding

(a) Design Space-1: Mapping input preprocessing graphs to GPUs (b) Design Space-2: Kernel fusion and co-running scheduling
(c) Design Space-3: Joint optimization for graph

mapping and co-running scheduling

EMB-0

GPU-0

Offloading
Graphs to GPUs…

Preprocessing Graph of input batches
Batch-0Batch-n

EMB-1

EMB-2

GPU-1
EMB-1

EMB-2

EMB-0

EMB-1

EMB-2

EMB-0

Different Mapping Strategies

(1) Mapping by batch:
Heavy communication for input

(2) Mapping by data-dependency:
Significant workload unbalance

(3) Ours: light communication with
balanced workload

EMB-1

EMB-2

EMB-0

GPU-0

GPU-1

GPU-0

GPU-1

GPU-0

GPU-1

raw
data

Input preprocessing graph with
diverse operations

Co-running
raw
data

Input
Feature

DLRM training with varying GPU
resource utilization

(1) Sequential Co-running: High preprocessing
latency and GPU resource contention.

Different Co-running Strategies

(2) Resource-aware Kernel Fusion and
Co-running: Fully utilize the GPU without

resource contention

Co-running
Scheduling

OP-1

OP-0 OP-0

OP-2

OP-0

OP-3 OP-3

Fusible

Non-fusible

Fusible

More graphs with similar structures on the
same GPU brings more fusion opportunities

Input Preprocessing
Graph Mapping

Exposed Preprocessing
Latency on GPUs

GPU0 GPU1 GPU2 GPU3

Co-running scheduling determines the
exposed preprocessing latency on GPUs

Guide the graph mapping

GPU
Utilization

time

100%

GPU Resources
Used by DLRM

Training

GPU
Utilization

time

100%

GPU Resources
Used by DLRM

Training

GPU
Utilization

time

100%

GPU Resources
Used by DLRM

Training

Figure 3. The scope and design space of RAP: (a) Design Space-1: The mapping of the input preprocessing graph, which
influences inter-GPU communication and workload balance; (b) Design Space-2: The kernel fusion of input preprocessing
and the co-running scheduling of DLRM training with input preprocessing to avoid resource contention. (c) Design Space-3:
A joint optimization for input preprocessing mapping and co-running scheduling is required towards optimal end-to-end
performance.

2.3 Input Preprocessing Operations of DLRM
As shown in Figure 2, DLRM has two types of input: Dense
Input, which typically denotes continuous data (e.g., a user’s
age or login time) processed by MLPs, and Sparse Input,
which represents discrete data (e.g., the category of an item)
and is represented as one-hot or multi-hot binary vectors
used to look up corresponding embeddings from the embed-
ding tables. An input feature requires multiple preprocessing
operations that can be represented as a directed acyclic graph
(DAG) [53]. Table 1 lists the common input preprocessing
operations of DLRMs. It can be observed that most input
preprocessing operations for DLRM are element-wise and
lightweight. This poses challenges for executing the input
preprocessing operations on GPUs, as GPUs are designed
for large, compute-intensive tasks like matrix multiplica-
tion [24] rather than small, diverse operations. Sequentially
invoking small input preprocessing kernels on GPUs will
result in significant kernel launching overhead and wastage
of GPU computing resources. This motivates our resource-
aware horizontal kernel fusion design to adaptively fuse
small kernels for better resource utilization.

3 Motivation
Different from other traditional GPU sharing tasks [15, 49,
55] which aim to concurrently execute multiple small work-
loads on the same GPU to mitigate the GPU under-utilization
issue, the task of overlapping DLRM training with its input
data preprocessing has a unique objective and distinct pat-
terns which cannot be adequately addressed by existing GPU
sharing techniques. To highlight the unique challenges posed
by the DLRM input preprocessing pipeline and to motivate
the design of RAP, we illustrate the scope and design space
of RAP in Figure 3. Specifically, optimizing the DLRM input
preprocessing pipeline using the GPUs on the training nodes
involves three major design spaces:

The mapping of the input preprocessing graph: As
shown in Figure 3 (a), there are input preprocessing graphs of
several input batches that need to be offloaded to the GPUs.
The output of the input preprocessing graphs serves as the
input data for the embedding tables (indicated by colors).
Given this data-dependency correlation and the multi-GPU
training paradigm inherent to DLRMs, the mapping of in-
put preprocessing graphs could have a significant impact on
end-to-end performance. We first discuss two straightfor-
ward heuristics for input preprocessing graph mapping. (1)
Mapping by batch: This approach follows the input mapping
of data parallel [38], in which the input preprocessing work-
load is divided batch-by-batch, with each GPU processing
one batch of the input in a single iteration. However, this
approach results in additional input data communication, as
the input preprocessing graph and its corresponding embed-
ding table are not co-located on the same GPU. (2) Mapping
by data-dependency: Here, the input preprocessing workload
is divided based on the placement of the embedding tables.
Each GPU processes the corresponding input for its local
embedding tables. Although mapping by data-dependency
eliminates input communication, it leads to an imbalanced
distribution of the input preprocessing workload. This result
implies that the optimal input preprocessing graph mapping
strategy should take into account both the input communi-
cation and the balancing of workloads, which motivates our
data dependency-aware, workload-balance input preprocess-
ing mapping strategy.
The co-running scheduling of DLRM training and

input preprocessing: Following the mapping of the in-
put preprocessing graph to the GPUs, the subsequent step
involves scheduling the concurrent execution of input pre-
processing and DLRM training. The co-running scheduling
is challenging due to two reasons: First, the input preprocess-
ing graphs involve diverse preprocessing operations which

4

RAP: Resource-aware Automated GPU Sharing for Multi-GPU ... ASPLOS ’24, April 27-May 1, 2024, La Jolla, CA, USA

have substantial differences in resource consumption and ex-
ecution latency. For instance, the cost of feature generation
operation is much higher than feature normalization [53].
Second, the remaining GPU resources from DLRM training
vary significantly, which means we can not simply allocate a
fixed amount of resources for input preprocessing. As shown
in Figure 3 (b), the sequential co-running scheduling (e.g.,
Nvidia MPS [31]) will result in GPU resource contention and
high preprocessing latency which inevitably influences the
end-to-end DLRM training performance. To achieve efficient
co-running of DLRM training and input preprocessing, we
must fully explore kernel fusion opportunities to enhance
the execution efficiency of input preprocessing kernels. At
the same time, it is crucial to ensure that the resource con-
sumption of the fused kernel does not exceed the available
GPU resource limit.

Joint optimization for graphmapping and co-running
scheduling: The mapping of preprocessing graphs and co-
running scheduling are not independent of each other, neces-
sitating a holistic approach to jointly optimize both aspects.
As shown in Figure 3 (c), the mapping of input preprocessing
graphs will influence the performance of co-running sched-
uling. If more graphs with similar structures are mapped
onto the same GPU, it creates more opportunities for ker-
nel fusion, thereby boosting input preprocessing efficiency.
At the same time, the outcome of co-running scheduling
determines whether there is exposed input preprocessing
latency on GPUs. This crucial information can be harnessed
to refine the mapping of the input preprocessing graph. The
interaction between input preprocessing graph mapping and
the co-running scheduling necessitates a joint optimization
between them, rather than applying them independently.

4 Overview of RAP
Based on the above observation, we build RAP, which is an
end-to-end DLRM training framework that efficiently elimi-
nates the significant overhead of online data preprocessing
in real-world DLRM training scenarios. This is achieved by
offloading the input preprocessing computation to the DLRM
training servers and pipelining the execution of training and
input preprocessing on the same GPUs. To avoid data stalls
and the interference between training and input preprocess-
ing, RAP coordinates the co-running of DLRM training and
input preprocessing in a resource-aware manner.

Figure 4 illustrates the workflow of RAP, which comprises
two phases, offline and online. In the offline part, RAP gathers
the execution latency data of all DLRM input preprocessing
operations under varying configurations. This data then be
used for training the Preprocessing Latency Predictor (Step
1), which is subsequently utilized for online optimization.
In the online pass, RAP takes the configuration of a given

DLRM trainingworkload (including the computational graph

Figure 4. Overall workflow of RAP.

and the hardware information), along with the computa-
tional graph of data preprocessing as input. An Overlapping
Capacity Estimator is then utilized to profile and evaluate the
overlapping capacity of eachDLRM training operation across
various input preprocessing operations (Step 2). Based on
the estimated overlapping capacity, RAP then employs a
heuristic algorithm to efficiently search for the optimal input
preprocessing graph mapping and co-running scheduling
for DLRM training and input preprocessing. Finally, RAP
translates the searched plan into executable code, which in-
cludes optimized CUDA kernels and a user-friendly Pytorch
frontend implementation (Step 3).

5 Co-running Cost Model
In this section, we will demonstrate our cost model design
for the co-running of DLRM training and input preprocess-
ing. Although actual hardware measurement can be used as
a cost, it will be very time-consuming due to the significant
search space introduced by the joint optimization of prepro-
cessing graph mapping and co-run scheduling. Therefore,
a lightweight cost model that efficiently predicts the per-
formance of a given co-running plan is indispensable. Our
cost model consists two components: Overlapping Capacity
Estimator (§5.1) and Preprocessing Latency Predictor (§5.2).

5.1 Overlapping Capacity Estimator
We first demonstrate our overlapping capacity estimator de-
sign. Assume the standalone DLRM training per-iteration
latency is 𝐿𝑇𝑟𝑎𝑖𝑛 . When overlapping the input preprocessing
pipeline with DLRM training, the end-to-end latency can
be formulated as �̂�𝑇𝑟𝑎𝑖𝑛 = 𝐿𝑇𝑟𝑎𝑖𝑛 + 𝐿Δ. Here, 𝐿Δ represents
the increase in DLRM training latency caused by resource
contention between DLRM training and input preprocess-
ing. 𝐿Δ can be eliminated by strategically coordinating the
co-running of DLRM training and input preprocessing to

5

ASPLOS ’24, April 27-May 1, 2024, La Jolla, CA, USA Z. Wang, Y. Wang, J. Deng, D. Zheng, A. Li, and Y. Ding

(a) Latency-based Preprocessing Overhead Abstraction: using the stan-
dalone execution latency of input preprocessing to bridge the overlapping
capacity as they both measure the area in the utilization-time graph. (𝑈 (𝑡)
is the relationship between GPU utilization and time, 𝑇𝐷𝐿𝑅𝑀 is the exe-
cution latency of DLRM training, and𝑇𝑖𝑛𝑝𝑢𝑡 is the execution latency of a
given input preprocessing operation.)

1.0

1.1

1.2

1.3

1.4

1.5

1.6

0 0.3 0.6 0.9 1.2

O
ve

rla
pp

in
g

La
te

nc
y

(m
s)

Standalone Input Preprocessing Latency (ms)

Ngram
SigridHash
Logit

(b) The correlation between stan-
dalone input preprocessing latency
and overlapping latency. Different
input preprocessing operations ex-
hibit a similar trend.

1.0

1.1

1.2

1.3

1.4

1.5

1.6

1.E+03 1.E+04 1.E+05 1.E+06 1.E+07

O
ve

rla
pp

in
g

La
te

nc
y

(m
s)

#Warps of the Input Preprocessing Kernel

Ngram
SigridHash
Logit

(c) The cost of input preprocess-
ing varies greatly: With the same
#𝑤𝑎𝑟𝑝 , different operations can lead
to significant differences in overlap-
ping latency.

Figure 5. The design insight and correctness verification
of Latency-based Preprocessing Overhead Abstraction. (b)
and (c) depict the correlation between overlapping latency
and (1) standalone input preprocessing latency, and (2) the
number of warps (#𝑤𝑎𝑟𝑝), respectively, for three typical
preprocessing operations (Ngram, SigridHash, and Logit).

avoid resource contention. To achieve a contention-free co-
running schedule, it is crucial to measure the overlapping
capacity of different DLRM training operations (e.g., em-
bedding lookup, MLP forward and backward). This metric
measures the maximum number of input preprocessing op-
erations that can be executed concurrently with the given
DLRM training operation, without extending the total la-
tency.
We propose a Latency-based Preprocessing Overhead Ab-

straction to connect the input preprocessing overhead with
the overlapping capacity of DLRM training operations. As il-
lustrated in Figure 5 (a), the overlapping capacity essentially
represents the integration of the remaining GPU utilization
over time. Similarly, during the standalone execution of the
input preprocessing kernel, the GPU is fully occupied. Hence,
both the overlapping capacity and the standalone input pre-
processing latency measure the area in the utilization-time
graph. To validate the effectiveness of latency-based pre-
processing overhead abstraction, we measure the latency of
embedding table lookup when overlapping with three types

of preprocessing operations. As shown in Figure 5 (b), dif-
ferent input preprocessing operations exhibit a consistent
trend when correlating standalone input preprocessing la-
tency with overlapping latency. These findings suggest that
standalone execution latency could serve as a uniformmetric
for modeling overlapping latency across a variety of input
preprocessing operations. Figure 5 (c) further demonstrates
the relationship between the number of warps (#𝑤𝑎𝑟𝑝) for in-
put preprocessing operations and their overlapping latency.
It can be observed that there is a noticeable misalignment
between different curves, which indicates that the cost of
each input preprocessing operation varies significantly. In
conclusion, these results suggest that despite the signifi-
cant variation in costs among different input preprocessing
operations, the standalone execution latency of the input
preprocessing kernel may reliably serve as a uniform metric
to measure the overlapping latency.

5.2 ML-based Preprocessing Latency Predictor
Section 5.1 demonstrates that the standalone execution la-
tency of input preprocessing operations can be harnessed to
predict the end-to-end performance when co-running with
DLRM training. This poses a new challenge: how can we
efficiently determine the execution latency of input prepro-
cessing kernels when searching for the optimal co-running
plan of input preprocessing and DLRM training? Generally,
the execution latency can be measured by testing the input
preprocessing kernel on real hardware. However, this ap-
proach is not practical as it introduces significant profiling
overhead at runtime. To overcome this challenge, we propose
a ML-based Preprocessing Latency Predictor to efficiently pre-
dict the standalone execution latency of an arbitrary input
preprocessing kernel. We choose XGBoost [9] as our pre-
dictor. It takes the type of the preprocessing operation and
its corresponding configuration (e.g., input data size, output
data size, and performance-related parameters) as input, and
outputs the predicted execution latency. The process of train-
ing data collection and the predictor training are executed
offline, which eliminates the runtime profiling overhead.

5.3 Co-running Cost Model Design
With our overlapping capacity estimator and preprocessing
latency predictor design, the cost model of RAP is able to
predict the performance cost of a given DLRM training and
input preprocessing co-running plan. As depicted in Fig-
ure 6, the cost model takes a candidate co-running schedule
as input. This schedule comprises two main parts: a DLRM
training operation (MLP Forward in Figure 6) and several in-
put preprocessing operations, which are assigned to overlap
with the DLRM training operation. First, the overlapping ca-
pacity estimator profiles and yields the overlapping capacity,
𝑇𝑂𝐶 , of the given DLRM training operation. Given that the
DLRMmodel remains unchanged across different co-running
schedules, 𝑇𝑂𝐶 can be reused for other candidate schedules.

6

RAP: Resource-aware Automated GPU Sharing for Multi-GPU ... ASPLOS ’24, April 27-May 1, 2024, La Jolla, CA, USA

…

…

…
…

CUDA kernel
N threads per block

M blocks
per kernel

GPU

…

SM-0 SM-1 SM-n

…

!·#
$% warps

Dividing

Processing
Block

（a）Low-level warp mapping and execution of CUDA kernel.

（b）Overlapping capacity predictor using the relative per-warp cost.

Offline
Profiling Relative

Per-warp
Cost

Operation Set:
{Logit, SigridHash, …, Ngram}

×Parameter Set:
{#Block, Block Size, …,

Preprocessing Parameters}

MLP Forward Logit+
Online

Profiling
Overlapping
Capacity on

Logit

MLP Forward

×
Operation Set:

Overlapping Capacity
of Arbitrary Pair

DLRM Training Preprocessing
{SigridHash, …,

Ngram}

Prediction

GPU
Utilization

time

100%

TDLRM

time

100%

Tinput

GPU
Utilization

U(t) !
!

"&'(
(# − % &) ()*Overlapping

Capacity =

Latency-based
Preprocessing

Overhead Abstraction
= $ × &#$%&'

Both measures the area in
utilization-time graph

Overlapping
Capacity Estimator+

Preprocessing
Latency Predictor

Candidate Co-running Scheduling

DLRM training
operation: MLP Forward

{ Logit_kernel,
Boxcox_kernel,

…,
Ngram_kernel }

Preprocessing
operations to be

overlapped:

Co-running Cost Model

#!"

+
#()

$
*#

!∆= #!"(+
#()

$
*#)−

Exposed Input
Preprocessing Latency

Figure 6. Workflow of Co-running Cost Model: the cost
model takes the candidate co-running scheduling as input
and outputs the exposed input preprocessing latency as the
cost (𝑇𝑂𝐶 is the overlapping capacity of the given DLRM
training operation, 𝑡𝑖 is the predicted execution latency of
preprocessing operation 𝑖).

Consequently, the latency profiling for each DLRM training
operation only needs to be conducted once. Next, the prepro-
cessing latency predictor predicts the standalone execution
latency of each input preprocessing operation, 𝑡𝑖 , based on
their configurations. It then sums up all execution latencies
to obtain the total input preprocessing overhead, represented
as

∑𝑛
𝑖=1 𝑡𝑖 . Finally, the cost model outputs the estimated cost

of the given co-running schedule, which is calculated as the
exposed input preprocessing latency: 𝐿Δ =

∑𝑛
𝑖=1 𝑡𝑖 − 𝑇𝑂𝐶 .

From Figure 5 (b), it can be observed that, if 𝐿Δ < 0, the total
execution latency will not increase. Therefore, our goal is to
search for the optimal co-running schedule that minimizes
𝐿Δ on all GPUs. Ideally, if the condition 𝐿Δ < 0 holds true
for all GPUs, the performance of end-to-end DLRM training,
encompassing both online input preprocessing and model
training, would be equivalent to that of standalone DLRM
model training.

6 Resource-aware Horizontal Kernel Fusion
In this section, we will first introduce the horizontal kernel
fusion technique that fuses lightweight input preprocessing
kernel to better utilize the remaining GPU resources from
training. We then introduce a MILP formulation to efficiently
search for the optimal horizontal fusion plan.

6.1 Horizontal Fusion for Preprocessing Kernels
DLRM input preprocessing operations are designed at the
granularity of individual features, as different input features
typically require unique preprocessing passes. However, this
fine-grained execution of preprocessing operations will lead
to GPU under-utilization as one single input preprocess-
ing kernel is lightweight. To address this, we introduce a
Horizontal Fusion Technique for input preprocessing kernels.
Different from traditional kernel fusion techniques that com-
bine kernels vertically to reduce the costly data round-trips
to the GPU global memory [22, 46], our horizontal kernel fu-
sion technique integrates multiple small kernels horizontally
by allocating more threads to execute these kernels simulta-
neously. As illustrated in Figure 7, some input preprocessing
operations are applied multiple times in the preprocessing

Feature-0

FX-0

FN-0 FN-1 FN-2

SH-0

SH-1 CP-0

SH-2

NG-0

FX-1

Feature-1

Raw data-0 Raw data-1 Raw data-2

FX-0

FN-0 FN-1 FN-2

SH-0

SH-1 CP-0

SH-2

NG-0

FX-1

FX-0
FN-0 FN-1 FN-2

SH-2
CP-0
SH-0 SH-1

FX-1
NG-0

FX-0

FN-0
FN-1
FN-2

SH-2

CP-0
SH-0
SH-1

FX-1
NG-0

Searching

Original Input Preprocessing Graphs

Timeline

Baseline Execution TimelineHorizontal Fusion of Input Preprocessing

Feature-0

Feature-1

Raw data-0 Raw data-1 Raw data-2

Horizontal Fusion
Opportunity

Data
Dependency

Available GPU
Resources

Time

Kernel-0

Data Prep.-0 Data Prep.-1

Available GPU
Resources

Time

Kernel-0
Data Prep.-0 Data Prep.-1

Kernel-1 Kernel-2

(a) Without inter-batch workload interleaving.

(b) Inter-batch workload interleaving enables more flexible schedule with better GPU utilization.

Due to data dependencies, data preparation must be scheduled
before GPU kernel operations, leading to resource wastage.

GPU kernels for the
current batch Data preparation for the

next batch

Available GPU
Resources

Kernel-0

Data Prep.-0 Data Prep.-1

Available GPU
Resources

Kernel-0

Data Prep.-0

Kernel-1 Kernel-2

(a) Without inter-batch workload interleaving.

(b) Inter-batch workload interleaving enables more flexible schedule with better GPU utilization.

Due to data dependencies, data preparation must be scheduled
before GPU kernel operations, leading to resource wastage.

GPU kernels for the
current batch

Data preparation for the next batch

CPU

Kernel-1

Data Prep.-2
Time

Time

CPU
Data Prep.-1 Data Prep.-2

Feature-0

FX-0

FN-0 FN-1 FN-2

SH-0 CP-0

SH-1OH-0

FX-1 Feature-2

Raw data-0 Raw data-1 Raw data-2

Searching

Original Input Preprocessing Graphs Horizontal Fusion of Input Preprocessing

Feature-0Horizontal
Fusion

OpportunityData
Dependency

Feature-0

FX-0

FN-0

OH-0

FX-1

Raw data-0

FN-1 FN-2

SH-0 CP-0

SH-1

Feature-2

Raw data-1 Raw data-2

Data
Dependency

Feature-1Feature-1

Figure 7. Illustration of the horizontal fusion opportunity.
Different colors represent different input preprocessing op-
erations (FN: FillNull, FX: FirstX, SH: SigridHash, CP: Clamp,
OH: Onehot).

graphs, such as FillNull (FN), SigridHash (SH), and FirstX
(FX). It can be observed that there is no data dependency
between these FN and SH operations, allowing for their hori-
zontal fusion. On the contrary, the two FX operations in this
preprocessing graph exhibit a data dependency, with FX-1
requiring the completion of FX-0. Therefore, these two FirstX
operations cannot be fused. Exploit all possible horizontal
fusion opportunities within the input preprocessing graphs
to maximize the performance gain is not trivial due to two
reasons: (1) Horizontal kernel fusion is constrained by pre-
processing type and data dependency. Only preprocessing
operations of the same typewith no data dependencies can be
fused. (2) Horizontal fusion opportunities for different oper-
ations may conflict. For instance, if the preprocessing graphs
contain both FirstX→SigridHash and SigridHash→FirstX
sequences, a conflict arises when trying to apply horizontal
fusion to both preprocessing operators.

6.2 MILP Formulation for Horizontal Fusion and
Resource-aware Kernel Sharding

To overcome the challenges of searching for the optimal
horizontal fusion plan, RAP formulates the problem as a
mixed integer linear programming (MILP) [45] with qua-
dratic terms in objective. By solving the problem using the
MILP solver [17], RAP globally optimizes the horizontal fu-
sion plan, while ensuring the data dependency constraint
are not violated. Suppose there are 𝑁 input preprocess-
ing operations in total. We use a set 𝑂 = {0, 1, · · · , 𝑁 −
1} to record the indices of all operations and a set 𝑇 =

{FillNull, Logit, · · · ,Ngram} to record all possible prepro-
cessing operation types. The set 𝑂 can be divided into sub-
sets according to the type of operations 𝑂 = 𝑂𝐹𝑖𝑙𝑙𝑁𝑢𝑙𝑙 ∪
𝑂𝐿𝑜𝑔𝑖𝑡 ∪ · · · ∪ 𝑂𝑁𝑔𝑟𝑎𝑚 . We represent all potential horizontal
fusion plans using a 𝑁 × 𝑁 binary matrix 𝑃 . In this matrix,
𝑃 [𝑖] [𝑗] = 1means that preprocessing operation-𝑖 is executed
at time step- 𝑗 . If multiple operations of the same type are
assigned to the same time step, they will be horizontally
fused into a single kernel. A special case arises when 𝑃 is an
identity matrix, which means no horizontal fusion since all
operations are assigned to unique time steps. Based on this

7

ASPLOS ’24, April 27-May 1, 2024, La Jolla, CA, USA Z. Wang, Y. Wang, J. Deng, D. Zheng, A. Li, and Y. Ding

representation, the constraints of MILP can be formulated
as:

𝑁−1∑︁
𝑗=0

𝑃 [𝑖] [𝑗] = 1, ∀𝑖 ∈ {0, 1, · · · , 𝑁 − 1} (1)

𝑁−1∑︁
𝑘=0

(𝑘 + 1) · 𝑃 [𝑖] [𝑘] ≥
𝑁−1∑︁
𝑘=0

(𝑘 + 1) · 𝑃 [𝑗] [𝑘] + 1,

∀𝑖, 𝑗 ∈ {0, 1, · · · , 𝑁 − 1}, and op-𝑖 depends on op- 𝑗
(2)

Equation 1 is a correctness constraint, ensuring that each
input preprocessing operation is executed exactly once. And
Equation 2 is a data-dependency constraint, guaranteeing
that all input preprocessing operations are executed only
after the operations they depend on have been completed.

The objective of the horizontal fusion problem is to maxi-
mize the fusion degree across all operation types within a
given input preprocessing graph. It can be formulated as:

Maximize
∑︁
Type

𝐷Type , ∀Type ∈ 𝑇 (3)

𝐷Type =

𝑁−1∑︁
𝑗=0

(
∑︁
𝑖

𝑃 [𝑖] [𝑗])2, ∀𝑖 ∈ 𝑂Type (4)

In Equation 4,
∑

𝑖 𝑃 [𝑖] [𝑗] quantifies the number of input
preprocessing operations from 𝑂Type are assigned to time
step- 𝑗 . In other words, it measures the degree of horizontal
kernel fusion at time step- 𝑗 . Our goal is to maximize the
largest kernel fusion degree of all input preprocessing types.
This objective can be achieved by maximizing the sum of
the squares of all

∑
𝑖 𝑃 [𝑖] [𝑗] at different time steps, since∑

𝑖 𝑃 [𝑖] [𝑗] ≥ 0 consistently holds.
The fused input preprocessing kernels searched by the

MILP solver may be too large to co-run with a given DLRM
training layer, since our MILP formulation for horizontal
fusion aims solely to maximize the degree of horizontal fu-
sion. To address this problem, we propose a Resource-aware
Fused Kernel Sharding strategy that adaptively shards a fused
kernel according to the available GPU resources. Specifi-
cally, before assigning a fused input preprocessing kernel
to co-run with a particular DLRM training layer, RAP first
leverages the preprocessing latency predictor (§5.2) to predict
the standalone execution latency, 𝑇𝑓 𝑢𝑠𝑒 , of the fused kernel.
If 𝑇𝑓 𝑢𝑠𝑒 is larger than the remaining overlapping capacity of
the given DLRM training layer, RAP shards the kernel and
reduces the kernel fusion degree until the kernel is small
enough to co-run.

6.3 Inter-batch Workload Interleaving
The execution latency of DLRM input preprocessing is com-
prised of two parts: GPU-side kernel execution latency and
CPU-side data preparation latency. Prior to the execution
of the input preprocessing kernel, certain data preparation
operations must be completed, including allocating memory
space on the GPU for storing the result and transferring data

Available GPU
Resources

Time

Kernel-0

Data Prep.-0 Data Prep.-1

Available GPU
Resources

Time

Kernel-0
Data Prep.-0 Data Prep.-1

Kernel-1 Kernel-2

(a) Without inter-batch workload interleaving.

(b) Inter-batch workload interleaving enables more flexible schedule with better GPU utilization.

Due to data dependencies, data preparation must be scheduled
before GPU kernel operations, leading to resource wastage.

GPU kernels for the
current batch Data preparation for the

next batch

Available GPU
Resources

Kernel-0

Data Prep.-0 Data Prep.-1

Available GPU
Resources

Kernel-0

Data Prep.-0

Kernel-1 Kernel-2

(a) Without inter-batch workload interleaving.

(b) Inter-batch workload interleaving enables more flexible schedule with better GPU utilization.

Due to data dependencies, data preparation must be scheduled
before GPU kernel operations, leading to resource wastage.

GPU kernels for the
current batch

Data preparation for the next batch

CPU

Kernel-1

Data Prep.-2
Time

Time

CPU
Data Prep.-1 Data Prep.-2

Available GPU
Resources

Kernel-0

Data Prep.-0 Data Prep.-1

Available GPU
Resources

Kernel-0

Data Prep.-0

Kernel-1 Kernel-2

(a) Without inter-batch workload interleaving.

(b) Inter-batch workload interleaving enables more flexible schedule with better GPU utilization.

Due to data dependencies, data preparation must be scheduled
before GPU kernel operations, leading to resource wastage.

GPU kernels for the
current batch

Data preparation for the next batch

CPU

Kernel-1

Data Prep.-2
Time

Time

CPU

Data Prep.-1

Data Prep.-2

Data Prep.-0 Data Prep.-1

Data Prep.-1 Data Prep.-0 Data Prep.-2

Figure 8. Illustration of inter-batch workload interleaving
method which enables a more flexible co-running schedule
to better utilize the GPU.

from the CPU memory to the GPU memory for kernel execu-
tion. Rather than sequentially executing the data preparation
and the preprocessing kernel, a more efficient solution is to
co-run the preprocessing kernels with DLRM training layers
that have more overlapping capacity and execute the data
preparation concurrently with preprocessing kernels. How-
ever, the execution order of data preparation operations and
the preprocessing kernels can not be changed arbitrarily, as
there are data dependencies between them. To overcome
this limitation, we propose an Inter-batch Workload Interleav-
ing method. This approach separates the data preparation
operations and the preprocessing kernels of different input
batches and executes them in an interleaved manner. Specif-
ically, we schedule the execution of preprocessing kernels
for the current input batch and the data preparation for the
next input batch within the same DLRM training iteration.
Figure 8 shows the inter-batch workload interleaving method,
which enables more flexible co-running scheduling to better
utilize the GPU as it bypasses the data dependency between
data preparation and the GPU kernel within the same data
batch.

7 Heuristic Preprocess Graph Mapping and
Co-run Schedule Search

In this section, we will demonstrate our heuristic algorithm
design to jointly optimize both the inter-GPU level input pre-
processing graph mapping and intra-GPU level co-running
of DLRM training and input preprocessing.

7.1 Resource-aware Co-running Schedule Algorithm
Building on the horizontal fusion technique discussed in
Section 6, which proactively adjusts the GPU resource con-
sumption of input preprocessing operations, we propose a
Resource-aware Co-running Scheduling approach. Thismethod
leverages the adaptability of horizontal fusion to optimize

8

RAP: Resource-aware Automated GPU Sharing for Multi-GPU ... ASPLOS ’24, April 27-May 1, 2024, La Jolla, CA, USA

the co-running of DLRM training and input preprocessing,
targeting optimal end-to-end efficiency. It takes the input
preprocessing graphs and the DLRM model as input and out-
puts the co-running schedule of DLRM training and input
preprocessing. As detailed in Algorithm 1, RAP first employs
the MILP solver [17] to search for the optimal horizontal
fusion plan (Line 1). Secondly, RAP estimates the total input
preprocessing latency of the fused kernels using the prepro-
cessing latency predictor (Line 2-5). Based on the total input
preprocessing latency, RAP selects the DLRM training lay-
ers based on their overlapping capacity, starting from the
highest to the lowest, until the total overlapping capacity
is sufficient for the input preprocessing kernels (Line 6-12).
RAP then schedules the co-running in a greedy manner,
following the order determined by the MILP solver (Line
13-29). Before assigning each kernel, RAP shards the kernel
according to the available GPU resources to avoid potential
resource contention between DLRM training and input pre-
processing operations (Line 21-26). Following Algorithm 1,
RAP can generate a co-running schedule for an arbitrary
preprocessing graph assigned to each GPU, which avoids
potential resource contention between input preprocessing
and DLRM training.

7.2 Joint Optimization for Preprocessing Graph
Mapping and Co-run Schedule

Algorithm 1 addresses the intra-GPU level scheduling prob-
lem, offering an efficient method to search for the co-running
schedule when input preprocessing graphs are mapped to
a specific GPU. The remaining problem is determining the
mapping of input preprocessing graphs acrossmultiple GPUs.
As described in Section 3, themapping of input preprocessing
graphs has a significant impact on the end-to-end perfor-
mance as it influences both inter-GPU communication vol-
ume and workload balance. In addition, the mapping process
at the inter-GPU level interacts intricately with the sched-
uling at the intra-GPU level, making the search for optimal
input preprocessing graph mapping more challenging.

To address this problem, we propose a heuristic searching
algorithm that jointly optimizes both the inter-GPU level
input preprocessing graph mapping and the intra-GPU level
co-running scheduling. The algorithm can be outlined in
four steps: First, we use a data-locality-based approach for
initial input preprocessing graph mapping. We map the in-
put preprocessing graph based solely on the location of its
data consumer. When a specific input feature is required
by multiple GPUs (e.g., the input feature of the row-wise
parallel embedding table), we duplicate the input preprocess-
ing graph across all GPUs that require the data. This initial
data-locality-based approach is optimal in input communi-
cation, as all input features are processed locally. Second, we
evaluate the mapping based on the intra-GPU co-running
schedule. Using Algorithm 1, we obtain the intra-GPU level
co-running schedule based on the initial input preprocessing

Algorithm 1: Resource-aware Co-running Schedul-
ing Algorithm.
input : Input Preprocessing Graphs: 𝑃𝐺 ,

DLRM Training Model: DLRM
output :Co-running schedule: 𝑆
/* Obtain optimal horizontal fusion using MILP solver. */

1 Fused_Kernels = MILP_Solver (𝑃𝐺) ;
/* Predict Input Preprocessing Latency. */

2 L = 0;
3 for kernel in Fused_Kernels do
4 L += Latency_Predictor (kernel) ;
5 end
/* Sort the layer of 𝐷𝐿𝑅𝑀 by the overlapping capacity. */

6 Sorted_DLRM = DLRM .sort_by_capacity ()
/* Select enough DLRM layers for kernel overlapping. */

7 Layer_List = [];
8 for layer in Sorted_DLRM do
9 if Layer_List .total_capacity () < L then
10 Layer_List .append(layer);
11 end
12 end

/* Schedule the co-running in a greedy manner. */
13 for layer in DLRM do
14 if layer in Layer_List then
15 while Fused_Kernels.𝑠𝑖𝑧𝑒 > 0 do
16 next_kernel = Fused_Kernels.𝑝𝑜𝑝();
17 Capacity = layer .capacity -

𝑆 [layer] .total_latency () ;
/* If there is sufficient overlapping capacity. */

18 if Capacity > Latency_Predictor (next_kernel) then
19 𝑆 [layer].append(next_kernel);
20 end
21 else

/* Resource-ware kernel sharding. */
22 k_1, k_2 = next_kernel.shard(Capacity);
23 𝑆 [layer].append(k_1);
24 Fused_Kernel.push_front(k_2);
25 Break;
26 end
27 end
28 end
29 end
30 return 𝑆 ;

graph mapping. Then we evaluate the co-running schedule
using our co-running cost model. Third, we generate a sub-
stitution mapping based on the estimated cost. This involves
transferring a preprocessing graph from the GPU with the
highest cost to the one with the lowest cost. Before making
the transfer, we evaluate whether the move will enhance
overall performance by weighing the benefits of improved
workload balance against the potential increase in input com-
munication costs. Lastly, we repeat the processes from the
second and third steps until no further substitution mapping
plan can be found.

9

ASPLOS ’24, April 27-May 1, 2024, La Jolla, CA, USA Z. Wang, Y. Wang, J. Deng, D. Zheng, A. Li, and Y. Ding

Table 2. Detail of dataset and model architecture.
Dataset Total Hash Size Dimension Dense Arch Top Arch

Criteo Kaggle 33.7M 64 512-256 512-512-256
Criteo Terabyte 177.9M 128 512-256 1024-1024-512-256

Table 3. Detail of DLRM input preprocessing plan.
Plan Dataset #Dense Feature #Sparse Feature #Op per Feature Total #Op
Plan 0 Kaggle 13 26 2.67 104
Plan 1 Terabyte 13 26 2.67 104
Plan 2 Terabyte 26 52 4.92 384
Plan 3 Terabyte 52 104 9.80 1548

8 Evaluation
In this section, we comprehensively evaluate RAP regarding
the input preprocessing efficiency and the resulting benefits
for online DLRM training.

8.1 Evaluation Setup
CPU-based Baseline:We compare RAP with 1 TorchAr-
row [35, 36], which is a CPU-based Python DataFrame library
designed for data preprocessing in deep learning. Notably,
TorchArrow is currently the only data preprocessing frame-
work that supports online input preprocessing for DLRMs.
It has been employed in production-scale DLRM training of
leading corporations such as Meta[35, 53]. In the evaluation,
we use 8 input preprocessing workers per GPU to achieve
higher input preprocessing throughput.

Handcrafted GPU-based Baseline: To demonstrate the
advantages of RAP, we also implemented two GPU-based
baselines utilizing two widely adopted GPU-sharing tech-
niques, 2 CUDA stream [32] and 3 Nvidia Multi-processing
Service (MPS) [31]. For CUDA stream, we initialize an addi-
tional stream with lower priority than DLRM training and
assign the input preprocessing kernels to this stream. For
MPS, we allocate two processes to each GPU: one for DLRM
training and the other for input preprocessing. With MPS
enabled, these two processes on the same GPU share the
same CUDA context, enabling the overlapping execution of
CUDA kernels.
Dataset: We choose two widely adopted DLRM datasets

Criteo Terabyte [4] andCriteo Kaggle [1] for evaluation.Criteo
Terabyte is the largest publicly available DLRM dataset. It
has over four billion training samples that consist of feature
values and click feedback of display ads. Each training sam-
ple contains 26 sparse features and 13 numerical features.
Criteo Kaggle is the dataset for Criteo Kaggle Display Ad-
vertising Challenge which contains the records of Criteo’s
traffic spanning 7 days. The details of both the dataset and
the corresponding model architecture are given in Table 2.
The raw data is stored as column-based Apache Parquet
files [34] in the disk and is loaded onto the GPU at runtime.

Input Preprocessing Plan: To comprehensively test the
performance of RAP with different DLRM input preprocess-
ing operations, we choose four input preprocessing plans.

The detail of these three input preprocessing plans have
been given in Table 3. For Plan 0 and Plan 1, we follow the
default input preprocessing plan for Criteo Terabyte dataset
provided by TorchArrow. This default input preprocessing
plan has a relatively low preprocessing density (number of
operations per feature), consisting of FillNull operations ap-
plied to all input features, followed by certain normalization
steps (e.g., SigridHash). To test RAP on larger datasets with
more complicated input preprocessing graphs, we generate
two additional preprocessing plans, Plan 2 and Plan 3, by
randomly applying different input preprocessing operations.
These two plans have 2× and 4× more input features than
Plan 0 and Plan 1, respectively. Furthermore, these plans also
have more preprocessing operations for each input feature.
Platform & Tools:We leverage TorchRec (v0.3.2) [5], a

PyTorch-based DLRM training framework, to implement the
DLRM training component. The input preprocessing part
of RAP is implemented using C++ and CUDA (v11.6). RAP
automatically generates front-end Python code to call our
optimized input preprocessing CUDA kernels and injects
them into the TorchRec-based DLRM training program, mak-
ing it user-friendly. To load raw data efficiently, we leverage
CuDF (v21.8) which provides the API to directly load data
from disk to GPU memory. Our major evaluation platform is
Nvidia DGX-A100 [30], which incorporates 2× AMD EPYC
7742 64-Core Processor and 8× Nvidia A100 GPUs. Each
GPU has 40GB memory and the GPUs are fully connected
through NVSwitch and NVLink.

8.2 End-to-end Performance
In end-to-end performance comparison, we run RAP and all
baseline methods on diverse numbers of GPUs (from 2 to 8)
with different input preprocessing plans and batch sizes.

Compared to TorchArrow: As shown in Figure 9, RAP
consistently outperforms the CPU-based input preprocessing
baseline TorchArrow significantly. On average, RAP achieves
18.4× speedup over TorchArrow. From the perspective of the
number of GPUs, TorchArrow shows limited improvement
when the number of GPUs increases. This is because the
training pipeline is bottlenecked by the limited data pre-
processing throughput on the CPU side. When CPUs have
been fully utilized for input preprocessing, continuing to
increase the number of GPUs will not bring improvement
in the training throughput. In contrast, RAP demonstrates
nearly linear improvement when scaling up to more GPUs.
This is because the newly incorporated GPUs also have avail-
able resources for input preprocessing, which avoids data
stalls when scaling to a larger number of GPUs.

Compared to Handcrafted GPU-based Baselines: Uti-
lizing remaining GPU resources from DLRM training for
input preprocessing is not a trivial task. Handcrafted GPU-
based baselines offload input preprocessing workloads to

10

RAP: Resource-aware Automated GPU Sharing for Multi-GPU ... ASPLOS ’24, April 27-May 1, 2024, La Jolla, CA, USA

28
.2

14
.7

4.
7

1.
8 15

.4

3.
7

2.
8

1.
2

13
5.

1

10
1.

9

76
.5

24
.5

97
.5

75
.1

53
.6

18
.5

21
4.

2

15
7.

1

89
.0

28
.6

21
5.

4

11
0.

1

61
.0

21
.3

23
5.

2

17
9.

8

13
9.

1

64
.5

15
7.

2

12
0.

4

77
.6

34
.4

0.0
50.0

100.0
150.0
200.0
250.0
300.0
350.0

Plan 0 Plan 1 Plan 2 Plan 3 Plan 0 Plan 1 Plan 2 Plan 3

Batch Size = 4096 Batch Size = 8192

Th
ro

ug
hp

ut
 (i

te
rs

/s
)

2 GPU

TorchArrow
CUDA Stream
MPS
RAP

(a) End-to-end DLRM training throughput on 2× A100 GPUs.

48
.4

28
.3

17
.6

6.
7 30

.6

8.
8

12
.3

5.
0

24
3.

4

18
8.

5

15
1.

1

57
.2 16

8.
6

13
2.

6

10
6.

0

40
.8

43
0.

7

31
0.

8

18
4.

5

57
.4

29
4.

2

20
1.

7

10
9.

4

41
.4

52
9.

9

36
1.

9

27
3.

9

12
6.

7

33
7.

5

23
8.

4

15
2.

0

67
.5

0.0
100.0
200.0
300.0
400.0
500.0
600.0
700.0
800.0

Plan 0 Plan 1 Plan 2 Plan 3 Plan 0 Plan 1 Plan 2 Plan 3

Batch Size = 4096 Batch Size = 8192

Th
ro

ug
hp

ut
 (i

te
rs

/s
)

4 GPU

TorchArrow
CUDA Stream
MPS
RAP

(b) End-to-end DLRM training throughput on 4× A100 GPUs.

67
.9

54
.9

20
.4

9.
1 43

.7

33
.3

16
.1

6.
8

40
1.

8

31
7.

2

29
1.

2

10
6.

4

13
2.

8

10
3.

9

20
5.

8

75
.4

57
8.

3

57
3.

3

46
2.

6

13
1.

9 32
6.

3

22
2.

9

27
5.

5

89
.7

76
6.

4

67
5.

8

51
3.

3

22
9.

8 44
3.

2

45
7.

2

29
2.

3

12
3.

7

0.0
200.0
400.0
600.0
800.0

1,000.0
1,200.0

Plan 0 Plan 1 Plan 2 Plan 3 Plan 0 Plan 1 Plan 2 Plan 3
Batch Size = 4096 Batch Size = 8192

Th
ro

ug
hp

ut
 (i

te
rs

/s
)

8 GPU

TorchArrow
CUDA Stream
MPS
RAP

(c) End-to-end DLRM training throughput on 8× A100 GPUs.

Figure 9. End-to-end DLRM training performance.

GPUs, employing two widely-adopted GPU sharing tech-
niques, CUDA stream and MPS, to overlap input preprocess-
ing with DLRM training. However, both approaches affect
the throughput of DLRM training, leading to suboptimal end-
to-end performance. Specifically, RAP achieves 2.01× and
1.39× speedup on average over the CUDA stream baseline
and MPS baseline, respectively. The speedup mainly comes
from our inter-GPU input preprocessing graph mapping and
intra-GPU resource-aware overlapping scheduling optimiza-
tion. Firstly, the handcrafted GPU-based baselines leverage
the default data-parallel-based input preprocessing graph
mapping which leads to input communications within the
critical path of DLRM training. Secondly, the handcrafted
GPU-based baselines schedule the execution of input prepro-
cessing kernels sequentially, without considering the GPU
resource constraints. This leads to resource contention be-
tween the DLRM training and the input preprocessing, which
affects the DLRM training efficiency.

8.3 Optimization Analysis
Speedup Breakdown and Optimality Analysis: To bet-
ter understand the benefits of individual optimizations and
evaluate the gap from the optimal performance, we present
a speedup breakdown and optimality analysis of RAP in
Figure 10. Besides the full version of RAP , we create two
additional settings of RAP : one without the inter-GPU input

Figure 10. Speedup breakdown and optimality analysis.

processing graph mapping optimization (RAP w/o mapping),
and another without the intra-GPU horizontal fusion opti-
mization (RAP w/o fusion). We then compare these settings
against three baselines: (1) Sequential, which executes DLRM
training and input preprocessing sequentially, fully exposing
all input preprocessing latency; (2) MPS, which leverages
MPS to overlap input preprocessing with DLRM training; (3)
Ideal, the ideal case with no input preprocessing and input
communication. As shown in Figure 10, RAP w/o mapping
and RAP w/o fusion deliver average speedups of 1.18× and
1.13× overMPS, respectively. This result demonstrates the ef-
fectiveness of each optimization. For the optimality analysis,
it can be observed that the end-to-end performance of RAP
is only 1.71% lower than the Ideal case. This implies that the
input preprocessing are almost perfectly overlapped with
DLRM training without compromising training efficiency.

Horizontal Fusion and Resource-aware Overlapping:
To demonstrate the effectiveness of our horizontal fusion
and resource-aware overlapping scheduling design, we fixed
the DLRM training while gradually increasing the workload
of input preprocessing by adding more Ngram preprocessing
operations. And then we compare the end-to-end latency of
three different settings: (1) Baseline: Offloading input prepro-
cessing computation to GPUs without other optimization;
(2) Horizontal Fusion: Enhancing the baseline by applying
horizontal fusion; (3) Fusion + Scheduling (RAP): The full
implementation of RAP, which integrates both horizontal fu-
sion and resource-aware overlapping. In Figure 11, all three
settings show a similar trend in DLRM training latency. The
latency remains constant initially and then rises once the
amount of preprocessing workload achieves a threshold. We
denoted the turning point (where latency increases by more
than 10%) on each curve using a vertical dashed line. It can
be observed that the turning point of the Baseline arrives
earliest. With horizontal fusion, multiple small preprocess-
ing kernels fused together, reducing kernel launch overhead
but enlarging individual kernels. This leads to higher GPU
resource consumption and potential resource contention,
causing the end-to-end latency to continue to increase even
when the input preprocessing workload is not heavy. RAP
employs a resource-aware overlapping scheduling method
to address the GPU resources contention problem. By adap-
tively scheduling the co-run of DLRM training and input
preprocessing based on their GPU resource consumption,

11

ASPLOS ’24, April 27-May 1, 2024, La Jolla, CA, USA Z. Wang, Y. Wang, J. Deng, D. Zheng, A. Li, and Y. Ding

Figure 11. End-to-end DLRM training latency variation
when input preprocessing workload increased.

Table 4. GPU and SM utilization at the turning point.

Baseline Horizontal Fusion RAP
Avg. GPU Utilization 77.6% 79.3% 92.8%
Avg. SM Utilization 59.0% 66.7% 80.3%

RAP significantly delays the turning point of end-to-end
latency.

GPU and SM Utilization: To demonstrate the advantage
of RAP in better GPU resource utilization, we further profile
the GPU and SM utilization of all three settings (Baseline,
Horizontal Fusion, and RAP in Figure 11) at their respec-
tive latency turning points. The result has been given in
Table 4. Both the GPU and SM utilization of the Baseline
and Horizontal Fusion settings remained relatively low when
the end-to-end DLRM training latency began to increase,
indicating significant wastage of GPU resources under these
settings. The resource-aware overlapping schedulingmethod
employed by RAP helps to prevent potential GPU resource
contention, resulting in significantly higher GPU and SM
utilization.

8.4 Additional Study
Adaptability of Input Preprocessing Graph Mapping:
We measure the exposed input preprocessing latency on
GPUs when using three different input preprocessing graph
mapping strategies on a skewed input preprocessing graph
(embedding tables on GPU 0 has more input preprocess-
ing operations): (1) Data-parallel-based (DP) Mapping: the
input preprocessing workload is divided and mapped batch-
by-batch; (2) Data-locality-based (DL) Mapping: the input
preprocessing graphs are mapped according to the data de-
pendency. Each GPU only processes the input feature it re-
quires. (3) RAP : the input preprocessing graphs mapping
strategy of RAP. As shown in Figure 12, the DP mapping
exhibits the highest exposed latency, as it does not consider
the data dependency of input, leading to input communica-
tion among GPUs. In contrast, DL mapping fully eliminates
the input communication but leads to an imbalance in the
distribution of input preprocessing workload. RAP takes a
comprehensive approach to optimize input preprocessing
graph mapping, considering both data locality and workload

Figure 12. The exposed input communication latency and
input preprocessing latency on GPUs with different input
preprocessing graph mapping strategies.

Table 5.Accuracy ofML-based Processing Latency Predictor.

Operators 1D Ops FirstX Ngram Onehot Bucktize
Acc. (%) 98.0 95.5 92.9 97.3 98.5

balance. It achieves 4.3× and 4.0× exposed latency reduction
compared to DP mapping and DL mapping, respectively.
Accuracy of ML-based Preprocessing Latency Pre-

dictor To train and evaluate our machine learning-based
preprocessing latency predictor, we gathered the execution
latency of about 11K input preprocessing kernels with vary-
ing configurations. The data samples are randomly split into
training and evaluation sets, following a ratio of 9:1. To
achieve accurate latency predictions for various input pre-
processing operators, we categorize these operators into five
types. Specifically, for the Ngram, Onehot, Bucketize, and
FirstX operations, which has unique performance-related
parameters that can influence execution latency, we train a
separate XGBoost model for each of them. In contrast, all
other models are grouped as 1D Ops, based on the obser-
vation that the preprocessing latency for these operators is
primarily determined by the shape of the input data. We then
evaluate the accuracy of our trained models by calculating
the percentage of samples where the predicted latency de-
viates by no more than a 10% absolute gap from the actual
measured latency. As listed in Table 5, all models demon-
strate high prediction accuracy, with values ranging between
92.9% and 98.5%.

9 Related Work
DLRM training systems:Most existing DLRM training sys-
tems concentrate solely on the model training efficiency. For
example, FAE [8] and RecShard [39] focus on minimizing the
data movement between CPU and GPUs by caching the fre-
quently accessed embeddings in GPU memory. TorchRec [5,
26] and HugeCTR [3] concentrate on optimizing the dis-
tributed training of large embedding tables using various em-
bedding sharding techniques. Although these works achieve
significant performance improvement in training through-
put, they are all based on the assumption that the input data
are already preprocessed offline, a scenario that does not

12

RAP: Resource-aware Automated GPU Sharing for Multi-GPU ... ASPLOS ’24, April 27-May 1, 2024, La Jolla, CA, USA

align with the online model updating paradigm in real-world
DLRM applications [40]. In fact, the input preprocessing of
industry-scale DLRMs is very costly, which may consume
more power than training itself [53]. This calls for end-to-end
DLRM training optimizations that incorporate both input
preprocessing and DLRM training.

Data Preprocessing Pipeline for Deep Learning: The
data preprocessing pipeline is a fundamental component in
a variety of deep learning training frameworks [23, 27, 43].
As advancements in hardware and parallelization techniques
continue to drive the rapid growth of deep learning model
sizes and training efficiency [6], there is an increasing de-
mand for higher input preprocessing throughput to meet the
data consumption requirements of large-scale deep learning
model training [21, 25, 43]. Recent efforts to address data
stalls from inefficient input preprocessing pipelines fall into
two broad categories. The first category offloads input pre-
processing to remote nodes [14, 42, 43, 52, 53]. The downside
of this approach is that it requires higher power consumption
and costs as it utilizes additional computing nodes. Another
direction is to offload the input preprocessing workload to
specialized hardware, like FPGAs [11, 33]. However, this
approach requires domain-specific expertise for manually
optimizing input preprocessing operations on the special-
ized hardware. NVIDIA’s Data Loading Library (DALI) [2]
employs the GPUs for the input preprocessing of images and
videoworkloads. However, since the input preprocessing and
model training still operate sequentially, this inevitably leads
to an increase in the end-to-end training latency. RAP con-
currently executes DLRM training and input preprocessing
on GPUs in a resource-aware manner, effectively avoiding
any additional overhead for input preprocessing. Compared
with previous preemption-based GPU sharing frameworks,
like REEF [18], RAP generates an optimal overlapping sched-
ule offline based on the data dependency relationships and
resource requirements of input preprocessing and DLRM
training, thereby eliminating the overhead associated with
runtime preemption.

10 Discussion
Handling Runtime Variability of DLRM: The input dis-
tribution may shift over time [39], potentially affecting the
performance of RAP. To address this issue, RAP could period-
ically generate a new fusion plan and overlapping schedule
based on the current input distribution to maintain high
training throughput. The regeneration process involves two
steps: (1) Profiling the overlapping capacity of the embed-
ding layers based on the new input distribution; (2) Searching
for an optimal kernel fusion and overlapping plan adapted
to the new input distribution. This regeneration process is
lightweight, taking only a few minutes, which is negligible
compared to the typical data shifting interval that spans days
or months [39].

ExtendRAP toHybrid Input PreprocessingApproach:
RAP aims to utilize the unused GPU resources remaining
from DLRM training for input preprocessing. Based on our
evaluation results, even the most costly input preprocess-
ing workload (Plan 3) can be completely overlapped with
DLRM training without increasing the per-iteration training
latency. This result demonstrates that the remaining GPU
resources from DLRM training are typically sufficient for
input preprocessing in most cases. In scenarios where the
input preprocessing workload is exceptionally intensive and
the available GPU resources are limited, RAP can be adapted
into a hybrid input preprocessing framework which employs
both GPUs and CPUs for input preprocessing. This can be
achieved by combining RAP with previous CPU-based input
preprocessing frameworks like GoldMiner [52]. Specifically,
RAP initially segments the input preprocessing graph into
two distinct parts, designated for GPUs and CPUs respec-
tively, taking into account the total capacity for overlapping
on the GPUs. Subsequently, the portion of the graph allocated
for CPUs can be processed by CPU-based input preprocess-
ing frameworks. This strategic offloading will minimize CPU
resource requirements while maintaining high end-to-end
training efficiency.

11 Conclusion
This paper presents RAP, a novel end-to-end DLRM training
framework that supports resource-aware automated GPU
sharing for DLRM input preprocessing and model training.
At the intra-GPU level, RAP proposes a horizontal kernel
fusion technique to fully utilize the varying GPU resources
leftover from DLRM training, and uses the MILP formulation
to efficiently search for the optimal horizontal fusion plan.
At the inter-GPU level, RAP employs a heuristic algorithm
to jointly optimize the mapping of the input preprocessing
graph and the co-running of DLRM training and input pre-
processing. Comprehensive experiments demonstrate that
RAP outperforms the state-of-the-art CPU-based DLRM in-
put preprocessing framework and achieves near-perfect over-
lapping of input preprocessing and DLRM training.

12 Acknowledgment
We would like to express our appreciation for the great help
and invaluable suggestions from the ASPLOS anonymous
reviewers and shepherd. This work was supported in part
by NSF 2124039 and CloudBank [29]. Additionally, this re-
search was supported by the U.S. DOE Office of Science,
Office of Advanced Scientific Computing Research, under
award 66150: "CENATE - Center for Advanced Architecture
Evaluation". The Pacific Northwest National Laboratory is
operated by Battelle for the U.S. Department of Energy un-
der Contract DE-AC05-76RL01830. Also, we would like to
thank the generous help and support from Amazon Faculty
Research Award 2021 for Professor Yufei Ding.

13

ASPLOS ’24, April 27-May 1, 2024, La Jolla, CA, USA Z. Wang, Y. Wang, J. Deng, D. Zheng, A. Li, and Y. Ding

References
[1] Criteo display ad challenge. https://www.kaggle.com/c/criteodisplay-

ad-challenge.
[2] Nvidia data loading library (dali). https://developer.nvidia.com/dali.
[3] Nvidia merlin hugectr. https://developer.nvidia.com/nvidia-merlin/

hugectr.
[4] Terabyte click logs. https://labs.criteo.com/2013/12/downloadterabyte-

click-logs.
[5] Torchrec. github.com/pytorch/torchrec/, 2022.
[6] Bilge Acun, Matthew Murphy, Xiaodong Wang, Jade Nie, Carole-Jean

Wu, and Kim Hazelwood. Understanding training efficiency of deep
learning recommendation models at scale. In 2021 IEEE International
Symposium on High-Performance Computer Architecture (HPCA), pages
802–814. IEEE, 2021. https://doi.org/10.1109/HPCA51647.2021.00072.

[7] Muhammad Adnan, Yassaman EbrahimzadehMaboud, DivyaMahajan,
and Prashant J. Nair. Accelerating recommendation system training
by leveraging popular choices. Proc. VLDB Endow., 15(1):127–140, 2021.
http://www.vldb.org/pvldb/vol15/p127-mahajan.pdf.

[8] Muhammad Adnan, Yassaman EbrahimzadehMaboud, DivyaMahajan,
and Prashant J Nair. Accelerating recommendation system training
by leveraging popular choices. Proceedings of the VLDB Endowment,
15(1):127–140, 2021. http://www.vldb.org/pvldb/vol15/p127-mahajan.
pdf.

[9] Tianqi Chen and Carlos Guestrin. Xgboost: A scalable tree boosting
system. In Balaji Krishnapuram, Mohak Shah, Alexander J. Smola,
Charu C. Aggarwal, Dou Shen, and Rajeev Rastogi, editors, Proceed-
ings of the 22nd ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining, San Francisco, CA, USA, August 13-17, 2016,
pages 785–794. ACM, 2016. https://doi.org/10.1145/2939672.2939785.

[10] Heng-Tze Cheng, Levent Koc, Jeremiah Harmsen, Tal Shaked, Tushar
Chandra, Hrishi Aradhye, Glen Anderson, Greg Corrado, Wei Chai,
Mustafa Ispir, Rohan Anil, Zakaria Haque, Lichan Hong, Vihan Jain, Xi-
aobing Liu, and Hemal Shah. Wide & deep learning for recommender
systems. In Alexandros Karatzoglou, Balázs Hidasi, Domonkos Tikk,
Oren Sar Shalom, Haggai Roitman, Bracha Shapira, and Lior Rokach,
editors, Proceedings of the 1st Workshop on Deep Learning for Recom-
mender Systems, DLRS@RecSys 2016, Boston, MA, USA, September 15,
2016, pages 7–10. ACM, 2016. https://doi.org/10.1145/2988450.2988454.

[11] Yang Cheng, Dan Li, Zhiyuan Guo, Binyao Jiang, Jiaxin Lin, Xi Fan,
Jinkun Geng, Xinyi Yu, Wei Bai, Lei Qu, Ran Shu, Peng Cheng,
Yongqiang Xiong, and Jianping Wu. Dlbooster: Boosting end-to-end
deep learning workflows with offloading data preprocessing pipelines.
In Proceedings of the 48th International Conference on Parallel Processing,
ICPP 2019, Kyoto, Japan, August 05-08, 2019, pages 88:1–88:11. ACM,
2019. https://doi.org/10.1145/3337821.3337892.

[12] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova.
BERT: pre-training of deep bidirectional transformers for language
understanding. In Jill Burstein, Christy Doran, and Thamar Solorio,
editors, Proceedings of the 2019 Conference of the North American Chap-
ter of the Association for Computational Linguistics: Human Language
Technologies, NAACL-HLT 2019, Minneapolis, MN, USA, June 2-7, 2019,
Volume 1 (Long and Short Papers), pages 4171–4186. Association for
Computational Linguistics, 2019. https://doi.org/10.18653/v1/n19-1423.

[13] Carlos A Gomez-Uribe and Neil Hunt. The netflix recommender
system: Algorithms, business value, and innovation. ACM Transactions
on Management Information Systems (TMIS), 6(4):1–19, 2015. https:
//doi.org/10.1145/2843948.

[14] Dan Graur, Damien Aymon, Dan Kluser, Tanguy Albrici, Chandramo-
han A Thekkath, and Ana Klimovic. Cachew: Machine learning input
data processing as a service. In 2022 USENIX Annual Technical Confer-
ence (USENIX ATC 22), pages 689–706, 2022. https://www.usenix.org/
conference/atc22/presentation/graur.

[15] Juncheng Gu, Mosharaf Chowdhury, Kang G Shin, Yibo Zhu, Myeong-
jae Jeon, Junjie Qian, Hongqiang Harry Liu, and Chuanxiong Guo.

Tiresias: A gpu cluster manager for distributed deep learning. In NSDI,
volume 19, pages 485–500, 2019. https://www.usenix.org/conference/
nsdi19/presentation/gu.

[16] Udit Gupta, Carole-Jean Wu, Xiaodong Wang, Maxim Naumov, Bran-
don Reagen, David Brooks, Bradford Cottel, Kim M. Hazelwood, Mark
Hempstead, Bill Jia, Hsien-Hsin S. Lee, Andrey Malevich, Dheevatsa
Mudigere, Mikhail Smelyanskiy, Liang Xiong, and Xuan Zhang. The
architectural implications of facebook’s dnn-based personalized rec-
ommendation. In IEEE International Symposium on High Performance
Computer Architecture, HPCA 2020, San Diego, CA, USA, February 22-26,
2020, pages 488–501. IEEE, 2020. https://doi.org/10.1109/HPCA47549.
2020.00047.

[17] LLC Gurobi Optimization. Gurobi optimizer reference manual,
2021. https://www.gurobi.com/documentation/current/refman/index.
html.

[18] Mingcong Han, Hanze Zhang, Rong Chen, and Haibo Chen.
Microsecond-scale preemption for concurrent gpu-accelerated DNN
inferences. In Marcos K. Aguilera and Hakim Weatherspoon, editors,
16th USENIX Symposium on Operating Systems Design and Implemen-
tation, OSDI 2022, Carlsbad, CA, USA, July 11-13, 2022, pages 539–558.
USENIX Association, 2022. https://www.usenix.org/conference/osdi22/
presentation/han.

[19] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep
residual learning for image recognition. In Proceedings of the IEEE
conference on computer vision and pattern recognition, pages 770–778,
2016. https://doi.org/10.1109/CVPR.2016.90.

[20] Xiangnan He, Lizi Liao, Hanwang Zhang, Liqiang Nie, Xia Hu, and
Tat-Seng Chua. Neural collaborative filtering. In Proceedings of the
26th international conference on world wide web, pages 173–182, 2017.
https://doi.org/10.1145/3038912.3052569.

[21] Alexander Isenko, Ruben Mayer, Jeffrey Jedele, and Hans-Arno Ja-
cobsen. Where is my training bottleneck? hidden trade-offs in deep
learning preprocessing pipelines. In Proceedings of the 2022 Inter-
national Conference on Management of Data, pages 1825–1839, 2022.
https://doi.org/10.1145/3514221.3517848.

[22] Zhihao Jia, Oded Padon, James Thomas, Todd Warszawski, Matei
Zaharia, and Alex Aiken. Taso: optimizing deep learning computation
with automatic generation of graph substitutions. In Proceedings of the
27th ACM Symposium on Operating Systems Principles, pages 47–62,
2019. https://doi.org/10.1145/3341301.3359630.

[23] Daniel Kang, Ankit Mathur, Teja Veeramacheneni, Peter Bailis, and
Matei Zaharia. Jointly optimizing preprocessing and inference for
dnn-based visual analytics. Proc. VLDB Endow., 14(2):87–100, 2020.
http://www.vldb.org/pvldb/vol14/p87-kang.pdf.

[24] Yinan Li, Jack Dongarra, and Stanimire Tomov. A note on auto-tuning
gemm for gpus. In Computational Science–ICCS 2009: 9th International
Conference Baton Rouge, LA, USA, May 25-27, 2009 Proceedings, Part I
9, pages 884–892. Springer, 2009. https://doi.org/10.1007/978-3-642-
01970-8_89.

[25] Jayashree Mohan, Amar Phanishayee, Ashish Raniwala, and Vijay
Chidambaram. Analyzing and mitigating data stalls in DNN training.
Proc. VLDB Endow., 14(5):771–784, 2021. http://www.vldb.org/pvldb/
vol14/p771-mohan.pdf.

[26] Dheevatsa Mudigere, Yuchen Hao, Jianyu Huang, Zhihao Jia, Andrew
Tulloch, Srinivas Sridharan, Xing Liu, Mustafa Ozdal, Jade Nie, Jongsoo
Park, Liang Luo, Jie Amy Yang, Leon Gao, Dmytro Ivchenko, Aarti
Basant, Yuxi Hu, Jiyan Yang, Ehsan K. Ardestani, Xiaodong Wang,
Rakesh Komuravelli, Ching-Hsiang Chu, Serhat Yilmaz, Huayu Li,
Jiyuan Qian, Zhuobo Feng, Yinbin Ma, Junjie Yang, Ellie Wen, Hong
Li, Lin Yang, Chonglin Sun, Whitney Zhao, Dimitry Melts, Krishna
Dhulipala, K. R. Kishore, Tyler Graf, Assaf Eisenman, Kiran Kumar
Matam, Adi Gangidi, Guoqiang Jerry Chen, Manoj Krishnan, Avinash
Nayak, Krishnakumar Nair, Bharath Muthiah, Mahmoud khorashadi,
Pallab Bhattacharya, Petr Lapukhov, Maxim Naumov, Ajit Mathews,

14

https://www.kaggle.com/c/criteodisplay-ad-challenge
https://www.kaggle.com/c/criteodisplay-ad-challenge
https://developer.nvidia.com/dali
https://developer.nvidia.com/nvidia-merlin/hugectr
https://developer.nvidia.com/nvidia-merlin/hugectr
https://labs.criteo.com/2013/12/downloadterabyte-click-logs
https://labs.criteo.com/2013/12/downloadterabyte-click-logs
github.com/pytorch/torchrec/
https://doi.org/10.1109/HPCA51647.2021.00072
http://www.vldb.org/pvldb/vol15/p127-mahajan.pdf
http://www.vldb.org/pvldb/vol15/p127-mahajan.pdf
http://www.vldb.org/pvldb/vol15/p127-mahajan.pdf
https://doi.org/10.1145/2939672.2939785
https://doi.org/10.1145/2988450.2988454
https://doi.org/10.1145/3337821.3337892
https://doi.org/10.18653/v1/n19-1423
https://doi.org/10.1145/2843948
https://doi.org/10.1145/2843948
https://www.usenix.org/conference/atc22/presentation/graur
https://www.usenix.org/conference/atc22/presentation/graur
https://www.usenix.org/conference/nsdi19/presentation/gu
https://www.usenix.org/conference/nsdi19/presentation/gu
https://doi.org/10.1109/HPCA47549.2020.00047
https://doi.org/10.1109/HPCA47549.2020.00047
https://www.gurobi.com/documentation/current/refman/index.html
https://www.gurobi.com/documentation/current/refman/index.html
https://www.usenix.org/conference/osdi22/presentation/han
https://www.usenix.org/conference/osdi22/presentation/han
https://doi.org/10.1109/CVPR.2016.90
https://doi.org/10.1145/3038912.3052569
https://doi.org/10.1145/3514221.3517848
https://doi.org/10.1145/3341301.3359630
http://www.vldb.org/pvldb/vol14/p87-kang.pdf
https://doi.org/10.1007/978-3-642-01970-8_89
https://doi.org/10.1007/978-3-642-01970-8_89
http://www.vldb.org/pvldb/vol14/p771-mohan.pdf
http://www.vldb.org/pvldb/vol14/p771-mohan.pdf

RAP: Resource-aware Automated GPU Sharing for Multi-GPU ... ASPLOS ’24, April 27-May 1, 2024, La Jolla, CA, USA

Lin Qiao, Mikhail Smelyanskiy, Bill Jia, and Vijay Rao. Software-
hardware co-design for fast and scalable training of deep learning
recommendation models. In Valentina Salapura, Mohamed Zahran,
Fred Chong, and Lingjia Tang, editors, ISCA ’22: The 49th Annual
International Symposium on Computer Architecture, New York, New
York, USA, June 18 - 22, 2022, pages 993–1011. ACM, 2022. https:
//doi.org/10.1145/3470496.3533727.

[27] Derek GordonMurray, Jiri Simsa, Ana Klimovic, and Ihor Indyk. tf.data:
A machine learning data processing framework. Proc. VLDB En-
dow., 14(12):2945–2958, 2021. http://www.vldb.org/pvldb/vol14/p2945-
klimovic.pdf.

[28] Maxim Naumov, Dheevatsa Mudigere, Hao-Jun Michael Shi, Jianyu
Huang, Narayanan Sundaraman, Jongsoo Park, Xiaodong Wang, Udit
Gupta, Carole-Jean Wu, Alisson G. Azzolini, Dmytro Dzhulgakov,
Andrey Mallevich, Ilia Cherniavskii, Yinghai Lu, Raghuraman Krish-
namoorthi, Ansha Yu, Volodymyr Kondratenko, Stephanie Pereira,
Xianjie Chen, Wenlin Chen, Vijay Rao, Bill Jia, Liang Xiong, and Misha
Smelyanskiy. Deep learning recommendation model for personal-
ization and recommendation systems. CoRR, abs/1906.00091, 2019.
http://arxiv.org/abs/1906.00091.

[29] Michael Norman, Vince Kellen, Shava Smallen, Brian DeMeulle, Shawn
Strande, Ed Lazowska, Naomi Alterman, Rob Fatland, Sarah Stone,
Amanda Tan, et al. Cloudbank: Managed services to simplify cloud
access for computer science research and education. In Practice and
Experience in Advanced Research Computing, pages 1–4. 2021.

[30] Nvidia. Nvidia dgx a100. www.nvidia.com/content/dam/en-zz/
Solutions/Data-Center/nvidia-dgx-a100-datasheet.pdf.

[31] NVIDIA. Nvidia multi-process service. docs.nvidia.com/deploy/pdf/
CUDA_Multi_Process_Service_Overview.pdf.

[32] Nvidia. Cuda c/c++ streams and concurrency. "http://on-
demand.gputechconf.com/gtcexpress/2011/presentations/
StreamsAndConcurrencyWebinar.pdf", 2011.

[33] Pyeongsu Park, Heetaek Jeong, and Jangwoo Kim. Trainbox: An
extreme-scale neural network training server architecture by system-
atically balancing operations. In 53rd Annual IEEE/ACM International
Symposium on Microarchitecture, MICRO 2020, Athens, Greece, Octo-
ber 17-21, 2020, pages 825–838. IEEE, 2020. https://doi.org/10.1109/
MICRO50266.2020.00072.

[34] Apache Parquet. Apache parquet. https://parquet.apache.org/.
[35] Pedro Pedreira, Orri Erling, Maria Basmanova, Kevin Wilfong, Laith S.

Sakka, Krishna Pai, Wei He, and Biswapesh Chattopadhyay. Velox:
Meta’s unified execution engine. Proc. VLDB Endow., 15(12):3372–3384,
2022. https://www.vldb.org/pvldb/vol15/p3372-pedreira.pdf.

[36] Pytorch. Torcharrow. https://pytorch.org/torcharrow/beta/index.html.
[37] Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario

Amodei, and Ilya Sutskever. Language models are un-
supervised multitask learners. OpenAI blog, 1(8):9, 2019.
https://cdn.openai.com/better-language-models/language_models_
are_unsupervised_multitask_learners.pdf.

[38] Samyam Rajbhandari, Jeff Rasley, Olatunji Ruwase, and Yuxiong He.
Zero:Memory optimizations toward training trillion parametermodels.
In SC20: International Conference for High Performance Computing,
Networking, Storage and Analysis, pages 1–16. IEEE, 2020. https://doi.
org/10.1109/SC41405.2020.00024.

[39] Geet Sethi, Bilge Acun, Niket Agarwal, Christos Kozyrakis, Caroline
Trippel, and Carole-Jean Wu. Recshard: statistical feature-based mem-
ory optimization for industry-scale neural recommendation. In Babak
Falsafi, Michael Ferdman, Shan Lu, and Thomas F. Wenisch, editors,
ASPLOS ’22: 27th ACM International Conference on Architectural Sup-
port for Programming Languages and Operating Systems, Lausanne,
Switzerland, 28 February 2022 - 4 March 2022, pages 344–358. ACM,
2022. https://doi.org/10.1145/3503222.3507777.

[40] Chijun Sima, Yao Fu, Man-Kit Sit, Liyi Guo, Xuri Gong, Feng Lin,
Junyu Wu, Yongsheng Li, Haidong Rong, Pierre-Louis Aublin, and

Luo Mai. Ekko: A large-scale deep learning recommender system
with low-latency model update. In Marcos K. Aguilera and Hakim
Weatherspoon, editors, 16th USENIX Symposium on Operating Systems
Design and Implementation, OSDI 2022, Carlsbad, CA, USA, July 11-13,
2022, pages 821–839. USENIX Association, 2022. https://www.usenix.
org/conference/osdi22/presentation/sima.

[41] Brent Smith and Greg Linden. Two decades of recommender systems
at amazon. com. Ieee internet computing, 21(3):12–18, 2017. https:
//doi.org/10.1109/MIC.2017.72.

[42] TensorFlow. Module: tf.data.experimental.service. https://www.
tensorflow.org/api_docs/python/tf/data/experimental/service.

[43] Taegeon Um, Byungsoo Oh, Byeongchan Seo, Minhyeok Kweun,
Goeun Kim, and Woo-Yeon Lee. Fastflow: Accelerating deep learn-
ing model training with smart offloading of input data pipeline.
Proceedings of the VLDB Endowment, 16(5):1086–1099, 2023. https:
//www.vldb.org/pvldb/vol16/p1086-um.pdf.

[44] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion
Jones, Aidan N. Gomez, Lukasz Kaiser, and Illia Polosukhin. At-
tention is all you need. In Isabelle Guyon, Ulrike von Luxburg,
Samy Bengio, Hanna M. Wallach, Rob Fergus, S. V. N. Vishwanathan,
and Roman Garnett, editors, Advances in Neural Information Process-
ing Systems 30: Annual Conference on Neural Information Process-
ing Systems 2017, December 4-9, 2017, Long Beach, CA, USA, pages
5998–6008, 2017. https://proceedings.neurips.cc/paper/2017/hash/
3f5ee243547dee91fbd053c1c4a845aa-Abstract.html.

[45] Juan Pablo Vielma. Mixed integer linear programming formulation
techniques. Siam Review, 57(1):3–57, 2015. https://doi.org/10.1137/
130915303.

[46] Guibin Wang, YiSong Lin, and Wei Yi. Kernel fusion: An effective
method for better power efficiency on multithreaded gpu. In 2010
IEEE/ACM Int’l Conference on Green Computing and Communications
& Int’l Conference on Cyber, Physical and Social Computing, pages 344–
350. IEEE, 2010. https://doi.org/10.1109/GreenCom-CPSCom.2010.102.

[47] Shoujin Wang, Longbing Cao, Yan Wang, Quan Z Sheng, Mehmet A
Orgun, and Defu Lian. A survey on session-based recommender
systems. ACM Computing Surveys (CSUR), 54(7):1–38, 2021. https:
//doi.org/10.1145/3465401.

[48] ZhengWang, Yuke Wang, Boyuan Feng, Dheevatsa Mudigere, Bharath
Muthiah, and Yufei Ding. El-rec: efficient large-scale recommenda-
tion model training via tensor-train embedding table. In 2022 SC22:
International Conference for High Performance Computing, Networking,
Storage and Analysis (SC), pages 1007–1020. IEEE Computer Society,
2022. https://doi.org/10.1109/SC41404.2022.00075.

[49] Peifeng Yu and Mosharaf Chowdhury. Fine-grained gpu sharing prim-
itives for deep learning applications. Proceedings of Machine Learning
and Systems, 2:98–111, 2020. https://proceedings.mlsys.org/book/294.
pdf.

[50] Daochen Zha, Louis Feng, Bhargav Bhushanam, Dhruv Choudhary,
Jade Nie, Yuandong Tian, Jay Chae, Yinbin Ma, Arun Kejariwal, and
Xia Hu. Autoshard: Automated embedding table sharding for rec-
ommender systems. In Proceedings of the 28th ACM SIGKDD Confer-
ence on Knowledge Discovery and Data Mining, pages 4461–4471, 2022.
https://doi.org/10.1145/3534678.3539034.

[51] Daochen Zha, Louis Feng, Qiaoyu Tan, Zirui Liu, Kwei-
Herng Lai, Bhargav Bhushanam, Yuandong Tian, Arun Ke-
jariwal, and Xia Hu. Dreamshard: Generalizable embed-
ding table placement for recommender systems. In NeurIPS,
2022. http://papers.nips.cc/paper_files/paper/2022/hash/
62302a24b04589f9f9cdd5b02c344b6c-Abstract-Conference.html.

[52] Hanyu Zhao, Zhi Yang, Yu Cheng, Chao Tian, Shiru Ren, Wencong
Xiao, Man Yuan, Langshi Chen, Kaibo Liu, Yang Zhang, Yong Li, and
Wei Lin. Goldminer: Elastic scaling of training data pre-processing
pipelines for deep learning. Proc. ACM Manag. Data, 1(2):193:1–193:25,
2023. https://doi.org/10.1145/3589773.

15

https://doi.org/10.1145/3470496.3533727
https://doi.org/10.1145/3470496.3533727
http://www.vldb.org/pvldb/vol14/p2945-klimovic.pdf
http://www.vldb.org/pvldb/vol14/p2945-klimovic.pdf
http://arxiv.org/abs/1906.00091
www.nvidia.com/content/dam/en-zz/Solutions/Data-Center/nvidia-dgx-a100-datasheet.pdf
www.nvidia.com/content/dam/en-zz/Solutions/Data-Center/nvidia-dgx-a100-datasheet.pdf
docs.nvidia.com/deploy/pdf/CUDA_Multi_Process_Service_Overview.pdf
docs.nvidia.com/deploy/pdf/CUDA_Multi_Process_Service_Overview.pdf
http://on-demand.gputechconf.com/gtcexpress/2011/presentations/StreamsAndConcurrencyWebinar.pdf
http://on-demand.gputechconf.com/gtcexpress/2011/presentations/StreamsAndConcurrencyWebinar.pdf
http://on-demand.gputechconf.com/gtcexpress/2011/presentations/StreamsAndConcurrencyWebinar.pdf
https://doi.org/10.1109/MICRO50266.2020.00072
https://doi.org/10.1109/MICRO50266.2020.00072
https://parquet.apache.org/
https://www.vldb.org/pvldb/vol15/p3372-pedreira.pdf
https://pytorch.org/torcharrow/beta/index.html
https://cdn.openai.com/better-language-models/language_models_are_unsupervised_multitask_learners.pdf
https://cdn.openai.com/better-language-models/language_models_are_unsupervised_multitask_learners.pdf
https://doi.org/10.1109/SC41405.2020.00024
https://doi.org/10.1109/SC41405.2020.00024
https://doi.org/10.1145/3503222.3507777
https://www.usenix.org/conference/osdi22/presentation/sima
https://www.usenix.org/conference/osdi22/presentation/sima
https://doi.org/10.1109/MIC.2017.72
https://doi.org/10.1109/MIC.2017.72
https://www.tensorflow.org/api_docs/python/tf/data/experimental/service
https://www.tensorflow.org/api_docs/python/tf/data/experimental/service
https://www.vldb.org/pvldb/vol16/p1086-um.pdf
https://www.vldb.org/pvldb/vol16/p1086-um.pdf
https://proceedings.neurips.cc/paper/2017/hash/3f5ee243547dee91fbd053c1c4a845aa-Abstract.html
https://proceedings.neurips.cc/paper/2017/hash/3f5ee243547dee91fbd053c1c4a845aa-Abstract.html
https://doi.org/10.1137/130915303
https://doi.org/10.1137/130915303
https://doi.org/10.1109/GreenCom-CPSCom.2010.102
https://doi.org/10.1145/3465401
https://doi.org/10.1145/3465401
https://doi.org/10.1109/SC41404.2022.00075
https://proceedings.mlsys.org/book/294.pdf
https://proceedings.mlsys.org/book/294.pdf
https://doi.org/10.1145/3534678.3539034
http://papers.nips.cc/paper_files/paper/2022/hash/62302a24b04589f9f9cdd5b02c344b6c-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2022/hash/62302a24b04589f9f9cdd5b02c344b6c-Abstract-Conference.html
https://doi.org/10.1145/3589773

ASPLOS ’24, April 27-May 1, 2024, La Jolla, CA, USA Z. Wang, Y. Wang, J. Deng, D. Zheng, A. Li, and Y. Ding

[53] Mark Zhao, Niket Agarwal, Aarti Basant, Bugra Gedik, Satadru Pan,
Mustafa Ozdal, Rakesh Komuravelli, Jerry Pan, Tianshu Bao, Haowei
Lu, Sundaram Narayanan, Jack Langman, Kevin Wilfong, Harsha
Rastogi, Carole-Jean Wu, Christos Kozyrakis, and Parik Pol. Under-
standing data storage and ingestion for large-scale deep recommen-
dation model training: industrial product. In Valentina Salapura, Mo-
hamed Zahran, Fred Chong, and Lingjia Tang, editors, ISCA ’22: The
49th Annual International Symposium on Computer Architecture, New
York, New York, USA, June 18 - 22, 2022, pages 1042–1057. ACM, 2022.
https://doi.org/10.1145/3470496.3533044.

[54] Mark Zhao, Dhruv Choudhary, Devashish Tyagi, Ajay Somani, Max
Kaplan, Sung-Han Lin, Sarunya Pumma, Jongsoo Park, Aarti Basant,
Niket Agarwal, Carole-Jean Wu, and Christos Kozyrakis. Recd: Dedu-
plication for end-to-end deep learning recommendationmodel training
infrastructure. CoRR, abs/2211.05239, 2022. https://doi.org/10.48550/
arXiv.2211.05239.

[55] Yihao Zhao, Xin Liu, Shufan Liu, Xiang Li, Yibo Zhu, Gang Huang,
Xuanzhe Liu, and Xin Jin. Muxflow: Efficient and safe gpu shar-
ing in large-scale production deep learning clusters. arXiv preprint
arXiv:2303.13803, 2023. https://doi.org/10.48550/arXiv.2303.13803.

A Artifact Appendix
A.1 Abstract
RAP represents an advanced end-to-end DLRM online train-
ing framework which enables resource-aware, automated
GPU sharing for DLRM input preprocessing and model train-
ing. RAP automatically generates highly optimized code
tailored for online DLRM training based on the given in-
put preprocessing plan and the DLRM model configuration.
The input preprocessing and DLRM model training will be
seamlessly overlapped and concurrently executed on GPUs.

A.2 Artifact check-list (meta-information)
• Hardware: 8× A100 GPUs
• Experiments: The result of Figure-9 and Figure-10
• How much time is needed to prepare workflow (ap-
proximately)?: 10 minutes

• How much time is needed to complete experiments
(approximately)?: 1 hours

• Publicly available?: Yes

A.3 Description
A.3.1 How to access. The project is open-sourced at Github2.

A.3.2 Hardware dependencies. To reproduce the results
presented in the paper, we recommend to use a machine with
8× NVIDIA A100 GPUs (e.g. AWS p4d.24xlarge instance).

A.3.3 Software dependencies.

• TorchRec (v0.3.2)
• TorchArrow (v0.2.0a0)
• CuDF (v21.8)
• CUDA (v11.6)
• PyTorch (v1.13.1)
• Gurobi Solver

2https://github.com/Ash-Zheng/RAP-artifacts

The required software dependencies have been included in
our GitHub repository and the Docker image we provided.

A.4 Installation
1. To ease the setup process for experiments, we provide

a Docker image.
2. Users can follow the instructions given in the README

in our GitHub repository to pull and launch the Docker
container and install the required dependencies.

A.5 Evaluation and expected results
We provide the scripts to reproduce the results presents in
Figure-9 and Figure-10:

Figure-9: End-to-end DLRM training performance.
1. The codes and scripts needed to reproduce the results

of the baseline (including TorchArrow, CUDA stream,
andMPS) in Figure-9 are available in the ‘𝑅𝐴𝑃/𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒
_𝑒𝑛𝑑_𝑡𝑜_𝑒𝑛𝑑/’ directory.

2. By running the scripts, the results of the training through-
put will be outputted to the ‘ 𝑟𝑒𝑠𝑢𝑙𝑡/’ directory.

Figure-10: Speedup breakdown and optimality anal-
ysis.

1. The codes and scripts needed to reproduce the results
of the baseline (including Sequential, MPS, RAP w/o
Mapping, RAP w/o Fusion) and ideal case in Figure-9
are available in the ‘𝑏𝑟𝑒𝑎𝑘𝑑𝑜𝑤𝑛_𝑠𝑡𝑢𝑑𝑦’ directory.

2. By running the scripts, the results of the training through-
put will be outputted to the ‘ 𝑟𝑒𝑠𝑢𝑙𝑡/’ directory.

RAP: The implementation of RAP can be found in the
directory ‘/𝑅𝐴𝑃/𝑅𝐴𝑃_𝑒𝑛𝑑_𝑡𝑜_𝑒𝑛𝑑’. By running the script,
RAP will automatically generate optimized code for DLRM
training. The output code is located in ‘𝑐𝑜𝑚𝑏𝑖𝑛𝑒𝑑_𝑐𝑜𝑑𝑒/’.

16

https://doi.org/10.1145/3470496.3533044
https://doi.org/10.48550/arXiv.2211.05239
https://doi.org/10.48550/arXiv.2211.05239
https://doi.org/10.48550/arXiv.2303.13803
https://github.com/Ash-Zheng/RAP-artifacts

	Abstract
	1 Introduction
	2 Background
	2.1 Industrial DLRM Training Pipeline
	2.2 Hybrid Parallelism of DLRM
	2.3 Input Preprocessing Operations of DLRM

	3 Motivation
	4 Overview of RAP
	5 Co-running Cost Model
	5.1 Overlapping Capacity Estimator
	5.2 ML-based Preprocessing Latency Predictor
	5.3 Co-running Cost Model Design

	6 Resource-aware Horizontal Kernel Fusion
	6.1 Horizontal Fusion for Preprocessing Kernels
	6.2 MILP Formulation for Horizontal Fusion and Resource-aware Kernel Sharding
	6.3 Inter-batch Workload Interleaving

	7 Heuristic Preprocess Graph Mapping and Co-run Schedule Search
	7.1 Resource-aware Co-running Schedule Algorithm
	7.2 Joint Optimization for Preprocessing Graph Mapping and Co-run Schedule

	8 Evaluation
	8.1 Evaluation Setup
	8.2 End-to-end Performance
	8.3 Optimization Analysis
	8.4 Additional Study

	9 Related Work
	10 Discussion
	11 Conclusion
	12 Acknowledgment
	References
	A Artifact Appendix
	A.1 Abstract
	A.2 Artifact check-list (meta-information)
	A.3 Description
	A.4 Installation
	A.5 Evaluation and expected results

