
This paper is included in the Proceedings of the
2021 USENIX Annual Technical Conference.

July 14–16, 2021
978-1-939133-23-6

Open access to the Proceedings of the
2021 USENIX Annual Technical Conference

is sponsored by USENIX.

Palleon: A Runtime System for Efficient Video
Processing toward Dynamic Class Skew
Boyuan Feng, Yuke Wang, Gushu Li, Yuan Xie, and Yufei Ding,

University of California, Santa Barbara
https://www.usenix.org/conference/atc21/presentation/feng-boyuan

Palleon: A Runtime System for Efficient Video Processing
toward Dynamic Class Skew

Boyuan Feng, Yuke Wang, Gushu Li, Yuan Xie, and Yufei Ding
University of California, Santa Barbara

{boyuan,yuke_wang,gushuli,yuanxie,yufeiding}@ucsb.edu

Abstract
On par with the human classification accuracy, convolutional
neural networks (CNNs) have fueled the deployment of many
video processing systems on cloud-backed mobile platforms
(e.g., cell phones and robotics). Nevertheless, these video pro-
cessing systems often face a tension between intensive energy
consumption from CNNs and limited resources on mobile
platforms. To address this tension, we propose to accelerate
video processing with a widely-available, but not yet well-
explored runtime input-level information, namely class skew.
Through such runtime-profiled information, it strives to au-
tomatically optimize CNNs toward the time-varying video
stream. Specifically, we build Palleon, a runtime system that
dynamically adapts and selects a CNN model with the least
energy consumption based on the automatically detected class
skews, while still achieving the desired accuracy. Extensive
evaluations on state-of-the-art CNNs and real-world videos
demonstrate that Palleon enables efficient video processing
with up to 6.7× energy saving and 7.9× latency reduction.

1 Introduction
Convolutional neural networks (CNNs) based video process-
ing plays an important role in many emerging applications
[3,4,7,9,10,16,31,35] deployed on cloud-backed mobile plat-
forms. Among them, cognitive assistants and robotic visions
are two representative categories. Smart glasses [7, 16, 31],
for example, continuously recognize the surrounding envi-
ronment with CNNs and help the blind person with ordinary
tasks (e.g., reading a handwritten note, navigating the gro-
cery store, and even running the Boston Marathon). Robotic
visions could automatically search specific animals and docu-
ment the secret lives of them in the wild [9], as well as detect
landmines in various environments [35].

While these applications enjoy both the mobility of the
wide deployment in real world and the high accuracy of CNNs,
they also face the tension between the limited resource bud-
get on mobile platforms and the high energy consumption
and latency of CNNs. A popular CNN, VggNet [67], can eas-
ily consume 3.6W and introduce 1.4-second latency, which

makes a large smartphone battery (e.g., 2.7-Ah battery in
iPhone X [36]) out of power within 2 hours on continuous im-
age classification. To improve the execution efficiency, many
techniques have been proposed such as pruning [28, 46, 48]
and quantization [56,76,80] to reduce the size of CNN models.
However, these existing works fail to exploit the special char-
acteristics of video streams; furthermore, the compromised
model accuracy also limits the overall pruning or quantization
ratio.

Complementing existing model compression techniques,
a strong temporal locality in video streams is investigated
here to enable efficient video processing on mobile platforms.
Considering a video stream collected from a continuous cam-
era feed, it is common that only a small number of classes
keep appearing in a large number of consecutive frames. For
example, in a film scenario, only a small number of people
would come to the master shots frequently, generally lasting
for a few minutes, and another group of people will not appear
until the scenario has changed. A study on Youtube videos of
day-to-day life [65] also shows that more than 90% frames
are comprised of less than 10 classes.

We first turn such an abstract concept, temporal locality,
into something concrete and measurable, class skew. Specifi-
cally, class skew is formally defined as an unbalanced class
distribution that flexibly and effectively extracts the scenario
information of both class cardinality and visual separability.
Class cardinality here captures the number of classes in a
class skew. By exploiting this class cardinality, we can tailor a
general CNN, which is usually trained to recognize thousands
of classes, into a specialized model, which only needs to rec-
ognize a small number of classes in the current class skew.
Meanwhile, we notice that class skews show diverse visual
separability under the same class cardinality. For example, a
class skew with two classes (e.g., houses and dogs) is easier to
recognize compared to that with two more subtle classes (e.g.,
Husky and Alaskan). By exploiting visual separability, we
can use a more compact model for computation and energy
saving without loss of accuracy compared with a full model.

We then identify several key challenges that hinder the

USENIX Association 2021 USENIX Annual Technical Conference 427

Figure 1: Overview of the Palleon Runtime System.

successful utilization of class skews. First, new class skews
may appear and disappear suddenly as time goes, namely class
skew switches, making it hard to precisely capture the class
skew and respond fast to class skew switches. Second, a class
skew may last for minutes or even hours between two class
skew switches, but this lasting time varies across different
videos and even scenarios, thus cannot be decided offline.
Third, with the detected class skew, it is still hard to adapt deep
models at runtime, since existing model adaptation techniques
of retraining fully connected layers are computation-intensive
and not affordable on mobile platforms. Forth, a single model
adapted toward various class skews may show a significant
difference in accuracy due to the diverse visual separability.
This difference in accuracy either allows more lightweight
CNNs for more energy saving or requires more computation-
intensive CNNs to achieve a satisfactory accuracy. Finally,
model selection adaptive to class skews may introduce high
overhead, making it infeasible to execute on mobile platforms.

To address these challenges, we build a runtime system,
Palleon, which could not only detect class skews during run-
time, but also dynamically adapt and select a CNN model
with the least energy consumption accordingly. In contrast,
some existing works [32, 42, 43], which share a similar high-
level motivation with us, only target some specific application
scenarios that are already known offline—If you want to, you
could think of these as "static" class skews without dynamic
switches. A recent work, FAST [65], has made some progress
along this research direction. FAST assumes that the exact
set of class skews (and their duration time) in a video stream
are foreknown, and FAST trains a set of compact models for
each known class skew offline. During runtime, FAST only
needs to detect these foreknown class skews with a simple
window-based detector and directly apply those pre-trained
models accordingly. To this end, Palleon adopts a pure run-
time approach and targets a more realistic setting that the
class skews in the video stream are not foreknown.

As illustrated in Figure 1, the Palleon runtime system con-
tinuously takes video frames and efficiently generates video
processing predictions with three novel components. First, we
propose an agile class skew detector, ABLE (Section 2), to
abstract class skews from video streams. ABLE comes with
the static class-skew profiling and the dynamic class-skew

switch detection. The former automatically detects the class
skew and generates a precise Class Skew Profile (CSP) when
a class skew is detected. The latter continuously catches class
skew switches during runtime without the offline information
about the class skew lasting time.

Second, we propose Bayesian Filter (Section 3) to adapt
CNNs toward the detected class skew during runtime. While
Bayesian Filter does not directly lead to energy efficiency, it
improves the accuracy of compact models with low resource
consumption and allows the compact models to replace the
complex model. Bayesian Filter is a lightweight module com-
prised of a Rescaling mode that adapts CNNs towards de-
tected CSP without online finetuning and a Direct Pass mode
that allows the adapted CNNs to still recognize classes out of
the current CSP. This lightweight module resolves the com-
plex trade-off between accuracy improvement and adaptation
overhead in exploiting class skews.

Third, we design a cloud-backed model selection scheme,
namely Separability-Aware Model Selection (Section 4),
to further squeeze system energy consumption. This scheme
exploits visual separability with an efficient online model
selection that identifies the CNN with the least resource con-
sumption while achieving satisfactory accuracy on the de-
tected class skew. Meanwhile, this scheme contains an edge-
cloud duplicated model bank to mitigate the model selection
overhead on mobile platforms and deliberately schedule the
runtime workload between the edge and the cloud.

In summary, we build Palleon, a runtime system that auto-
matically detects input-level information with ABLE and dy-
namically adatps the given CNNs online with Bayesian Filter.
Palleon also controls a set of tuning knobs for balancing the
accuracy and the resource efficiency with separability-aware
model selection. We build Palleon upon TensorFlow [1] and
evaluate it on a cloud-backed mobile platform (with NVIDIA
Jetson Nano [40] as the edge device and Dell Workstation
T7910 [17] as the cloud server). We evaluate Palleon on vari-
ous CNN models and different datasets. In particular, for CNN
models, we use a variety of the state-of-the-art CNNs from
two major domains – object classification (MobileNet [37],
VGGNet [67], ResNet [30], and DenseNet [33]) and face
recognition (VGGFace [57]). For datasets, we take both syn-
thesized videos and several real-world movies. Extensive ex-
periments confirm the effectiveness of Palleon and show that
it could achieve up to 6.7× energy saving and 7.9× latency
reduction while achieving an equivalent or better accuracy.

2 ABLE for Class Skew Detection
We build a class-skew detector, namely ABLE, to detect class
skews during runtime and enable class-skew based optimiza-
tions. Our goal is two-fold: 1) giving a precise class-skew
profile (CSP) in static regions between adjacent class-skew
switches, and 2) detecting when the class-skew switches oc-
cur. To this end, we break down our class-skew detection into
two sub-tasks: Static Class-Skew Profiling and Dynamic

428 2021 USENIX Annual Technical Conference USENIX Association

Class-Skew Switch Detection.

2.1 Static Class-Skew Profiling
A static CSP generates the distribution of classes in a static
region where no class skew switch happens. Palleon approxi-
mates the CSP in each static region with an empirical distri-
bution [64], which enjoys theoretical properties of converging
fast to the ground truth CSP. As illustrated in Figure 2a, given
a time window with rt = 10 frames, we collect the predicted
labels for each frame and count the frequency of each class.
For example, E appears for 4 times out of 10 frames in total,
leading to 0.4 for class E in the estimated CSP.

Formally, at time t, in a given frame window with rt frames
(ranging from the t− rt +1th to the tth frame), the probability
of class j in the CSP is computed as

p(j|rt ,x1:t) =
1
rt

t

∑
i=t−rt+1

1xi= j (1)

where xi is the predicted label for the ith frame, 1xi= j is an
indicator function [62] on whether xi equals j, and x1:t denotes
all t predicted labels in the history. The CSP for the given
frame window (with rt frames ending with the tth frame) is
computed as a probability vector of all classes:

CSPt,rt = {p(1|rt ,x1:t), p(2|rt ,x1:t), ..., p(d|rt ,x1:t)} (2)

where d is the total number of classes.
Early Optimization by Adaptive Waiting Scheme.

Palleon splits each static region as two phases (Figure 2a):
a waiting phase to collect a precise CSP based on the full
model and an optimization phase to apply class-skew based
optimizations. In the optimization phase, we use a compact
model adapted toward CSPs, which saves energy and reduces
latency while achieving an equivalent accuracy to the full
model. By allocating smaller number of frames in the wait-
ing phase, Palleon can start the optimization phase early and
squeeze more optimization opportunities for more frames,
leading to better system performance. However, an imprecise
CSP may be generated when allocating too few frames to the
waiting phase. Hence, we select the frame number carefully
to improve system performance and retain precise CSPs.

We develop an adaptive waiting scheme to determine
whether Palleon has collected a precise CSP and the wait-
ing phase can be terminated. Suppose the waiting phase has
already lasted rt frames and the current class-skew profile is
CSPt,rt , this scheme computes a minimal frame number Fmin
based on CSPt,rt . If Fmin < rt , it terminates the waiting phase.
Otherwise, it continues and repeatedly applies such check.
In principle, Fmin guarantees a negligible profiling error ε be-
tween the true probability p j and the profiled probability p̂ j

max
1≤ j≤d

|p̂ j− p j|/p j ≤ ε (3)

We next discuss how Fmin is computed and why it guar-
antees a negligible profiling error. In addition, we will also

Label Pred. E D E F F E D D F E Class‐Skew Profile:
(A,B,C,D,E,F) = (0,0,0,0.3,0.4,0.3)

Video Stream
Frames

 Window (Size rt =10)

Waiting Phase Optimization Phase

Static Region

Curr.
Time t

(a) Static Class-Skew Profiling.

Video Stream
Frames

Waiting Phase Optimization Phase

Class Skew Switch
154‐th Label:

p(r154=0|x1:154) = 0.8

Waiting Phase

86‐th Label:
p(r86=0|x1:86) = 0.2

(b) Dynamic Class-Skew Switch Detection.
Figure 2: Illustration of ABLE for Class Skew Detection.

propose some practical designs for efficiently computing Fmin.
We start with a theorem, which gives the minimum number
of frames to profile a particular class in the class skew.
Theorem 1. (Asymptotic Error Bound). With n= Zc/(ε

√
p̂ j)

samples (frames), the probability of achieving a negligible
error P(|p̂ j − p j|/p j < ε) > 1− c for class j holds asymp-
totically, where Zc is a Gaussian Distribution Z-score with
confidence level 1− c and ε is a tolerable error bound.
Proof. Due to the property of multinomial distribution, es-
timator p̂ j computed with Equation 1 is a maximum likeli-
hood estimator (MLE). Based on the asymptotic normality of
MLE, we have

√
n(p̂ j− p j)→ N(0,FI−1), where FI is the

Fisher Information matrix FIwh = EX [−
∂2ln fp(Xt)

∂pw∂ph
]. Clearly

FIwh = n/pw if w = h; 0, otherwise. Based on the marginal-
ization property of multivariate normality, we can see that
(p̂ j− p j)→ N(0, p j

n2). Following this asymptotic distribution,
we can derive the required sample number n = Zc/(ε

√
p̂ j).

Considering that CSP is stable only if estimators for most
classes j are stable, we set the minimum number of frames as

Fmin = max
p̂ j>ξ

Zc/(ε
√

p̂(j|rt ,x1:t)) (4)

Here we only consider classes showing significant existence (
p̂ j > ξ, where ξ = 1/(2∗d) is a probability threshold). The
intuition is that CNNs may make wrong predictions randomly
spanning in various classes with significantly low probabil-
ities, leading to an unnecessarily long waiting time. This
strategy can mitigate the effect of prediction errors and focus
on the effect of correct predictions.

For an arbitrary class number d, computing Fmin has a low
time complexity of O(d), where the main computation resides
in iterating through all classes j (Equation 4) and estimating
the probability p̂(j|rt ,x1:t). This estimation can be conducted
efficiently in constant time, based on a computation reuse
technique detailed in the following section.

2.2 Dynamic Class-Skew Switch Detection
Dynamic class-skew switch detection identifies class skew
switches and provides static regions for the static class skew
profiling, as shown in Figure 2b. Specifically, dynamic class-

USENIX Association 2021 USENIX Annual Technical Conference 429

skew switch detection identifies the timestamp t when the
previous class skew ends and a new class skew appears. There
are two standard techniques to detect class skew switches:
Window-based approach [5,65] and Bayesian-based approach
[2, 19, 39, 49, 63, 78]. The former splits video streams into a
sequence of windows with a fixed window size k and periodi-
cally detects the class skew switch at the boundary. The latter
detects class skew switch at each timestamp t by tracking all
historical windows, where the kth ∈ {1,2, ..., t} historical win-
dow contains the t− k+1th frame to the tth frame. However,
the former only detects the class skew switch when a time
window has finished, leading to a detection delay up to the
fixed window size. While the latter reacts fast to class skew
switches by tracking all historical windows, it introduces high
overhead with a quadratic time complexity O((d + t)∗ t), in
the number of frames t and the number of classes d. The latter
shows more than 1500-millisecond latency per frame after
processing a 3-minute video clip. By contrast, Palleon checks
class skew switches at each label prediction xt (Figure 2b)
while introducing low computation complexity of O(d ∗ k),
where k is the number of sampled windows (k� t).

At a high level, we sample a subset of window sizes
rt ∈ {w1,w2, ...,wk} and flag a class skew switch when the
probability p(rt = 0|x1:t) is higher than the probability of the
other rt . We estimate the probability p(rt |x1:t) of each window
size rt when a new predicted label xt comes:

p(rt |x1:t) = p(rt ,x1:t)/
t

∑
rt=0

p(rt ,x1:t), (5)

where p(rt ,x1:t) is the joint possibility of the lasting time rt
and the predicted labels x1:t :

p(rt ,x1:t) =
k

∑
i=1

p(rt |rt−1 = wi) ·

p(xt |rt−1 = wi,x1:t−1) · p(rt−1 = wi,x1:t−1)

(6)

Here, p(rt |rt−1 = wi) is a survival function [44] of the prob-
ability that a class skew of length rt−1 is still alive at rt , and
p(xt |rt−1 = wi,x1:t−1) is the probability that the predicted la-
bel xt comes from the same distribution as last rt−1 labels,
computed by Equation 1.

Overhead Reduction by Window Sampling. Window
sampling selects k windows (i.e., w1,w2, ...,wk) that mini-
mize the mean absolute error between tracking the selected k
windows and all t windows:

min
w1,w2,...,wk

t

∑
rt=1
|p(rt ,x1:t)− p f (rt)|, (7)

where f (rt) maps time window rt to one of the sampled time
window {w1,w2, ...,wk}. A small number of k windows can
approximate all t windows since a window size with low
possibility p(rt−1,x1:t−1) tends to still have low possibility
p(rt = rt−1 +1,x1:t) when new data comes:

p(rt ,x1:t) = p(rt |rt−1)p(xt |rt−1,x1:t−1)p(rt−1,x1:t−1)

≤ p(rt−1,x1:t−1)
(8)

A straightforward approach is to only track the k most pos-
sible windows. However, this approach may not work well
when a large number (> k) of windows have equally high prob-
ability p(rt ,x1:t). To this end, we group all t windows into k
clusters and select a representative window out of each cluster.
To cluster windows, we first sort the possibility p(rt ,x1:t) for
all time windows rt and split into clusters at the top k− 1
gaps in the sorted sequence. Then, we select the windows
with the median probability to represent this cluster and give
this window a weight based on the number of windows in the
cluster. Intuitively, we exclude the top k−1 gaps by splitting
clusters at these gaps to minimize the mean absolute error.

Fast Update by Computation Reuse. Another optimiza-
tion opportunity is the computation reuse in estimating the
conditional distribution p(xt |rt−1,x1:t−1). Since the estima-
tion for each window rt−1 at most traverses all data points
and all classes, the time complexity of the estimation is linear
to the number of data points and classes O(d + t). Since adja-
cent windows differ only by one input, we can reuse the class
frequency in adjacent windows, reducing the time complexity
for each window to be O(d). Specifically, the class frequency
counts in adjacent windows rt−1 = i and rt−1 = i+ 1 differ
only by one in a single class, determined by the label xt−i.
Thus, with the class frequency count [C1,C2, ...,Cd] in win-
dow rt−1 = i, we can update the frequency count in window
size rt−1 = i+1 by C′j =C j +1, if j = xt−i; =C j, o.w.

3 Bayesian Filter for Model Adaptation
In this section, we develop a highly flexible module, namely
Bayesian Filter, to enable class-skew based optimizations.
This module consumes a Class Skew Profile (CSP) detected
by ABLE and has two functionalities: 1) adapting CNNs
toward the detected class skew with low computation over-
head and low latency during runtime; 2) allowing the adapted
CNNs to recognize classes out of the current CSP for enabling
the detection of class skew switches. To this end, we design
a Rescaling mode (Section 3.1) for scenario reference (i.e.,
model adaptation) and a Direct Pass mode (Section 3.2) for
retaining confident predictions.

Figure 3a exhibits two videos with extreme class skews,
which are intentionally made simple for understanding. In
most video frames, the objects are easy to recognize, during
which Palleon extracts a precise CSP based on classes recently
detected with high confidence. This CSP helps for frames in
which objects are hard to recognize (e.g., the animals jump
into the water and turn around).

3.1 Rescaling
Rescaling mode is a lightweight module for model adaptation
with low computation overhead and low latency. This design
avoids the heavy computation overhead and latency in existing
work [27, 32, 43, 65], which retrains fully connected layers
in CNNs during online and may introduce a long latency (up
to 14 seconds) [65]. When considering the energy efficiency,

430 2021 USENIX Annual Technical Conference USENIX Association

Bear Video

Beaver Video

(a) Two videos with extreme class skews

(b) Intuition behind Bayesian Filter.

Figure 3: Overview of Bayesian Filter.

this retraining procedure either introduces heavy computation
overhead when conducted on the edge, or heavy network
communication overhead when retraining is conducted on the
cloud and updated weights are transferred to the edge. By
contrast, Rescaling mode adapts CNNs by appending an extra
layer after the fully connected layer. We stress that Rescaling
mode requires neither weight update nor model retraining.

Rescaling mode adapts CNNs toward the detected class
skew by initializing the extra layer with the CSP generated by
ABLE. Since CSP contains the probability of all d classes, the
extra layer is designed to have the same number of d nodes,
whose weights are initialized by each probability in CSP. In
this way, the magnitude of node weights indicates the fre-
quency of the corresponding class in the CSP. When a frame
comes, the CNN will generate a probability for each class
in the softmax layer and these probabilities will be adjusted
according to the magnitude of corresponding node weights.
Specifically, the extra layer rescales the probability of softmax-
layer predictions (red nodes) toward the current CSP (blue
nodes) when the highest softmax-layer probability does not
pass a pre-defined threshold ω (i.e., not confident enough).
Following the spirit of Bayesian statistics [64], Rescaling
mode updates the probability for each class by considering
both the prior and the posterior information. We tried sev-
eral different designs, and it turns out that a simple rescaling
scheme based on Bayes theorem would already work effec-
tively, as shown in Formula 9.

P(i|X) =
P(i) ·P(X |i)

P(X)
, i ∈ {1,2, ...,d} (9)

where d is the total number of classes.

Formula 9 computes the posterior probability of class i for
a given image X . The prior probability P(i) is the profiled
probability of class i in the current CSP. And the likelihood
P(X |i) describes the possibility that an image X comes from
class i, according to the softmax-layer probability of class
i. P(X) stands for the marginal likelihood for observing the
image X , which is same for all classes and does not change
the rescaling results. Thus, we can avoid computing P(X)
and, instead, use a handy rescaling mechanism as P(i|X) ∝

P(i) ·P(X |i). To the best of our knowledge, we are the first
to design Bayesian rescaling on CNNs for runtime model
adaptation toward class skews.

3.2 Direct Pass
Direct Pass mode selects the original prediction without
rescaling when the predicted probability is higher than a pre-
selected threshold ω (Direct Pass mode in Figure 3b). This
design allows detecting class skew switches by identifying
classes out of the current CSP. This design is inspired by
observations [25, 54] that neural networks usually achieve
higher accuracy when they predict a high probability.

Formally, Bayesian Filter with both Rescaling mode and
Direct Pass mode can be written as

P(i|X) ∝

{
P(i) ·P(X |i) if P(X |i)< ω

P(X |i) if P(X |i)≥ ω
(10)

where P(i) is the prior probability of observing class i pro-
vided by class skew, P(X |i) is the predicted probability from
CNNs. We utilize a hyper-parameter ω as the confidence
threshold deciding whether Bayesian Filter should enter the
direct pass mode. When a model makes a prediction with
high probability (> ω), we believe its prediction is correct and
Bayesian Filter will not interfere with the decision. Note that
two models with different accuracy—for example, a model A
with 70% accuracy and a model B with 95% accuracy—could
predict with similar high probability when they are making
the correct predictions. Their accuracy difference comes from
those frames where the poorer model makes a mistake while
the stronger model is still correct, not from those frames where
both models are correct. Thus, we select the same threshold
ω across different CNNs. In particular, we experiment with
diverse ω on an extensive collection of the state-of-the-art
CNNs and find that a threshold ω between 75% and 95%
exhibits similar performance. By default, we use 90% as the
threshold ω in following sections.

4 Separability-Aware Model Selection
We propose Separability-Aware Model Selection to enable
class-skew based optimizations by exploiting the visual sepa-
rability. The key observation is that, the same model under dif-
ferent class skew profiles (CSP), even with the same number
of classes, may have significantly different accuracy. Figure
4 illustrates two CSPs with different visual separability (i.e.,

USENIX Association 2021 USENIX Annual Technical Conference 431

Figure 4: Class Skews with Different Visual Separability.

one is easy to classify and the other one is hard). To exploit
visual separability, Palleon maintains a set of models with dif-
ferent accuracy and energy consumption, and automatically
switches to compact models for saving energy when the de-
tected CSP is easy to classify. We are inspired by the fact that
people will relax and spend less energy when objects have
significantly different appearance, in contrast to distinguish-
ing similar objects (e.g., cat breeds). To this end, we propose
an Efficient Online Model Selection (Section 4.1) to auto-
matically select models with low resource consumption, and
an Edge-Cloud Duplicated Model Bank (Section 4.2) to
reduce model selection overhead and network overhead.

4.1 Efficient Online Model Selection
We conduct online model selection on the cloud when we
detect class skew switches. There are two baseline strategies.
One approach records an average accuracy for each model on
all classes, and another approach records the accuracy of one
model over all possible CSPs (i.e., multiple accuracy for one
model). Both approaches are unsatisfactory. On the former
approach [27], the selected model may fail to satisfy the accu-
racy requirement during runtime since the same model may
produce significantly different accuracy on different CSPs.
On the latter approach [65], a prohibitive offline profiling
overhead and online memory overhead may be introduced
due to the huge number of CSPs.

By contrast, we propose a hybrid approach that selects mod-
els on the cloud for only class skews detected during runtime.
During offline preparation, we profile a single accuracy for
each model over all classes and store the model in the order of
this accuracy. During online model selection, we use binary
search to profile the CNN accuracy on the detected CSP. This
binary search leads to logarithm time complexity, compared to
the linear time complexity of enumerating all models. Behind
the binary search, our key observation is that, while the model
accuracy on each CSP may change dramatically, the relative
accuracy order of models on all classes stays the same over
various class skews. In particular, if one model performs bet-
ter than another model on all classes, the former one generally
performs still better than the latter model on various CSPs.
Similar observations have also been made in computer vision
area [30,37] that larger models (e.g., ResNet-50) usually give
higher accuracy than smaller ones (e.g., ResNet-18) on the
same task. Figure 5 illustrates the online model selection.
Suppose we have 5 models with decreasing energy consump-

A B C D E

CSP I 97 91 87 84 81

CSP II 90 88 82 79 77

Figure 5: Example of Online Model Selection (Unit:%).
Dashed boxes refer to un-profiled models due to binary search.

tion and recognition accuracy, and target 90% accuracy. For
each CSP, we conduct binary search to find the most compact
model with satisfactory accuracy (> 90%). In this case, we
will select B for CSP I but A for CSP II.

Cache Service to Avoid Redundant Model Selection.
Palleon records the model selection results along with the
CSP and skips model selection for a CSP that have appeared
previously. In particular, Palleon maintains a cache service
between the CSP and the selected model. When a new CSP
comes, Palleon will first retrieve the CSP in the cache. On a
cache hit, Palleon immediately returns the selected model. On
a cache miss, Palleon conducts online profiling and records
the selected model for reuse. In our evaluation, a high cache
hit rate is achieved quickly after less than 5 model selections,
since the same CSP appears frequently in real videos.

4.2 Edge-Cloud Duplicated Model Bank
Palleon’s goal of saving energy and improving accuracy is
affected by the quality of its model bank. We design a dupli-
cated model bank to store only Pareto-Optimal models and
duplicate these models on both the edge and the cloud for re-
ducing network overhead. For each candidate model, Palleon
stores the computation graph, the pre-trained weights, and the
metadata including energy consumption and latency.

Model Bank Generation with Offline Profiling. For each
energy budget, we conduct offline profiling to identify candi-
date models with the highest accuracy. This offline profiling
selects only models on the Pareto-optimal curve to reduce
online search space and runtime overhead. Specifically, we
first generate a large number of candidate models by applying
compression techniques on CNNs. Then, we conduct offline
profiling to select models on the Pareto-optimal curve [55],
defined as the models that we cannot further reduce energy
consumption without worsening the accuracy.

This candidate model generation is conducted once on all
classes, instead of repeating on different CSPs, since good
models on all classes tend to consistently produce good per-
formance over various CSPs. The insight is that unsalient
positions remain similar for all CSPs. For example, when we
repeat a compression technique, Perforation [20], for several
CSPs on Dense-40 [33], the positions in later blocks will
be deleted first while the positions in the leading block re-
main unchanged until all later blocks have been pruned. More
generally, even though the best model (i.e., the one with the
highest accuracy under a given reduction in energy consump-
tion) might change between different CSPs, the set of top-k
best models tends to remain stable over all CSPs. Thus, we
can avoid repeating the selection on all CSPs and, under any

432 2021 USENIX Annual Technical Conference USENIX Association

Table 1: Profiling on selected compact models. Latency and
energy are measured on Jetson Nano.

Compressed From Layer Remove Filter Remove Latency Energy
Ratio (%) Ratio (%) (ms) (J)

ResNet-50 20 10 65.6 0.63
DenseNet-40 30 10 48.4 0.46
MobileNet-128 30 30 34.5 0.35
MobileNet-128 30 40 20.6 0.18
VggNet-19 60 60 10.1 0.07

specific energy-saving requirement, use the best model for all
classes to approximate the best model for a specific CSP.

Our full model is a DenseNet-40 with 40 layers. Start-
ing from 4 base models (i.e., MobileNet-128, VGGNet-19,
ResNet-50, DenseNet-40), we generate 25 compact models
from each of these base models. In particular, we first re-
move {10%, 20%, 30%, 40%, 60%} of layers from the base
model. For the remaining layers, we remove {10%, 20%, 30%,
40%, 60%} of filters. While more sophisticated compression
techniques can be applied, we adopt this simple compression
technique to validate the effectiveness of model selection.
From these pruned models, we select NCW (=5, by default)
compact models and put them into our model bank for online
use in our evaluation. We have experimented with several
numbers and found that 5 compact models can provide a rela-
tively diverse range of accuracy and resource consumption.
We show the profiling data on raw latency and raw energy
consumption in Table 1, measured on Jetson Nano [40]. For
each frame, these models have inference latency from 10.1
ms to 65.6 ms and energy consumption from 0.07J to 0.63J.
Here, all pruned models are retrained over all classes during
offline model bank generation.

Edge/Cloud Duplication to Reduce Network Overhead.
We maintain a duplicated model bank on both the edge and
the cloud to avoid weight transportation from the cloud to the
edge. The duplicated model banks on the edge and the cloud
contain the same deep models and pre-trained weights, while
giving each model an index. During online model selection,
the cloud will select a model from the duplicated model bank
and only send the selected index to the edge. The edge uses
the received index to identify the selected model. This design
avoids the network overhead of frequently transporting model
weights when class skew switches frequently.

4.3 System Overhead Analysis
Model Bank Memory Overhead. The model bank intro-
duces negligible memory overhead compared to the simple
setting with only large CNNs. In the simple setting, the mem-
ory consumption is

MemSimple = MemLW +MemLF (11)

where MemLW and MemLF are the memory for storing
weights and features of the large CNN, respectively. In our

setting with model bank, the memory consumption is

MemBank = MemLW+max(MemLF ,MemCF)

+NCW ·MemCW
(12)

where NCW is the number of compact models, MemCW and
MemCF are the memory for storing weights and features of
compact CNNs. We use max(·, ·) on CNN features since each
input frame is processed by only one CNN. Comparing Equa-
tion 11 and 12, the model bank only introduces overhead
of NCW ·MemCW , which is less than 5MB and is negligible
compared to the GB-level memory in modern edge devices
(GB) (e.g., 1GB in Raspberry Pi 3B+ [59] and 4GB in Jetson
Nano [40]). In particular, we use a small NCW (=5, by default),
since Bayesian Filter can adapt compact models toward the
detected CSPs during runtime with low overhead (Section 3).
The MemCW is usually less than 1MB on compact models
generated with compression techniques, especially when the
base model also consumes negligible memory (e.g., 0.5MB
in SqueezeNet [34] and 2MB in MobileNet [37]).

Runtime Overhead. Palleon’s runtime overhead comes
from three sources. The first is the model selection overhead.
While this overhead is relatively large, model selection is
conducted on the cloud which is powerful and can evaluate
several models concurrently. Also, we have sorted the models
and proposed a binary search for accelerating the model selec-
tion. This procedure introduces negligible runtime overhead
(<1%). The second is the data transfer overhead. Existing
work usually transfers frames (around 100 KB per frame) to
the cloud, which introduces heavy network overhead. Instead,
we summarize the surrounding environment into the CSP
(a short string within 1KB) and only need to transport the
CSP from the edge to the cloud through a wireless network.
This network overhead is low since we only transport CSP
instead of data or CNN weights. Besides these two overhead
from model selection, the third comes from class skew detec-
tion on the edge, which is negligible due to optimizations for
low-overhead detection in Section 2.2.

5 Evaluation
To show the effectiveness of Palleon, we perform extensive
experiments on both synthesized videos and real videos. We
first evaluate Palleon on synthesized videos (Section 5.1) to
study the performance in diverse settings, including varying
class numbers, class types, and lasting time of each class
skew. We then conduct real video experiments (Section 5.2)
to further validate the performance of Palleon for detecting
and exploiting class skews during runtime.

Experiment Platform. We have implemented Palleon in
Tensorflow [1] for our CNNs. For the edge device, we use
NVIDIA Jetson Nano [40] which is a popular mobile GPU
platform with wide deployment in robotics [53], AI glasses
[52], and doorbell cameras [51]. Jetson Nano runs Ubuntu
18.04 with built-in support for Tensorflow. For the cloud
server, we use a Dell Workstation T7910 with an NVIDIA

USENIX Association 2021 USENIX Annual Technical Conference 433

(a) MobileNet with Bayesian Filter. (b) VGGNet with Bayesian Filter.

(c) ResNet with Bayesian Filter. (d) DenseNet with Bayesian Filter.
Figure 6: Accuracy on Fixed Class Skews. Error bars represent the accuracy range for each number of classes.

1080Ti GPU (with 11 GB dedicated memory and a nomi-
nal peak performance of 11.3 TFLOPS), a 6-core Intel Xeon
CPU E5-2603 processor with 32 GB memory running Ubuntu
18.04. All energy measurements mentioned are directly mea-
sured unless otherwise specified, using an Extech EX330
Compact Digital Multimeter [50].

5.1 Synthesized Video Experiments
In this section, we extensively evaluate Palleon on synthesized
videos in diverse settings. We generate synthesized videos
based on ImageNet dataset [18] with diverse class skews. The
ImageNet dataset consists of 1,200,000 images categorized
into 1,000 classes. We generate class skews with varying num-
bers of classes and diverse lasting time. These synthesized
class skews create challenging scenarios and showcase the
robustness of Palleon in challenging settings. We train CNNs
on ImageNet with all classes and conduct offline profiling to
generate a single accuracy over all classes and collect their
latency/energy consumption on mobile devices (e.g., Jetson
Nano). This offline profiling is conducted only once. During
online, we use Bayesian Filter for online model adaptation
and do not use online finetuning (i.e., retraining CNNs on the
detected CSPs). On dynamic class skews, we also have on-
line profiling about the model accuracy on the detected CSP,
which is conducted on the cloud and introduces negligible
overhead.

5.1.1 Bayesian Filter on Fixed Class Skews
Figure 6 shows the accuracy improvement from Bayesian Fil-
ter in an ideal case that the true class skew is known and fixed.
Under this setting, there is no detection delay and Bayesian
Filter can adapt CNNs toward the true class skew. To show
the generality of Bayesian Filter, we use four state-of-the-art
CNNs as base models (i.e., MobileNet [37], VGGNet [67],

ResNet [30], and DenseNet [33]). When synthesizing fixed
class skews, for each N ∈ {10,20, ...,1000} classes, we gener-
ate 100 CSPs. Each CSP contains 1000N images by randomly
selecting N classes and 1000 images from each class follow-
ing a uniform distribution. For each number of classes, we
run the adapted model and present the average, minimum, and
maximum accuracy. We note that we use Bayesian Filter to
adapt the model and do not use online finetuning.

Bayesian Filter provides on average 25% accuracy improve-
ment when there are 10 classes. This accuracy improvement
shows the effectiveness of Bayesian Filter in adapting models.
As the number of classes increases, this accuracy improve-
ment diminishes gradually until all 1,000 classes appear in
the class skew (i.e., no scenario information to exploit). The
reason is that, as the number of classes increases, opportuni-
ties to rule out classes decreases. For example, Bayesian Filter
rules out 990 classes when the CSP contains 10 (out of 1000)
classes, but only rules out 100 classes when the CSP contains
900 (out of 1000) classes. Surprisingly, an accuracy improve-
ment around 2% still exists when there are 900 classes in the
class skew, considering that underlying models can only rec-
ognize 1,000 classes. This result shows that Bayesian Filter
can consistently improve accuracy on challenging class skews
with a large number of classes.

A large accuracy difference exists for each model and each
number of classes, demonstrating the existence of visual sep-
arability. In particular, an accuracy difference of 15% can
be observed for MobileNet when there are 10 classes. This
accuracy difference becomes less significant as the number of
classes increases, since a smaller number of classes indicates
larger variation in the constituent classes. Comparing across
models (e.g., ResNet v.s. MobileNet), we see that a model
tends to perform better than another model on a specific class

434 2021 USENIX Annual Technical Conference USENIX Association

Figure 7: Accuracy with Various Detection Methods.

Figure 8: ABLE Latency relative to Window Detector.

skew, if the former model has higher accuracy on all classes
than the latter model. This observation indicates that the rel-
ative order of model accuracy is invariant over various class
skews and supports our binary profiling.

5.1.2 ABLE on Dynamic Class Skews
In this section, we show the accuracy improvement when the
true class skew is unknown and may switch abruptly, namely
dynamic class skew. Under this setting, the class skew detec-
tor decides the CSP quality and the detection delay, which
has a significant impact on the classification accuracy of the
adapted models. When synthesizing dynamic class skews,
we randomly generate 30 CSPs. For each CSP, we first ran-
domly select a small number (ranging from 10 to 20) of
classes. Among all testing images from a given set of classes,
a CSP uniformly samples lastingTime = 60∗T images. T is
a random variable following the Poisson(λ) distribution and
λ ∈ {2,4,8,16,32} controls the average number of images.
We choose the Poisson distribution, as it outputs positive in-
tegers. We use DenseNet as the original model and elide the
results on other CNNs due to the similar behavior.

Average Accuracy. Figure 7 shows the classification ac-
curacy on dynamic class skews when combining Bayesian
Filter with two class skew detectors (i.e., Window and ABLE).
In the Window detector, we sample a sequence of window
sizes for each synthesized video and present the best accuracy
for a strong baseline. Comparing across λ, we can see a clear
trend that the classification accuracy increases as λ increases.
In particular, “ABLE" can increase accuracy by 13.65% when
the average lasting time λ reaches 32. This trend indicates
that a class skew lasting longer provides more optimization
opportunities to exploit. Comparing across detectors, we can
see that ABLE achieves higher accuracy improvement around

Figure 9: Energy Saving with Model Selection.

5% than the window-based detection. The reason is that the
lasting time for a specific class skew varies even for a fixed av-
erage lasting time λ, such that a fixed window size can hardly
hit the balance between CSP quality and detection delay.

ABLE Detection Latency. Figure 8 shows the ABLE de-
tection latency reduction. This detection latency measures
the computation overhead of incurring ABLE on an incom-
ing CNN prediction. Number of history images is the total
number of images in a synthesized video representing the
video length, ranging from 200 to 4000 images. “ABLE"
represents ABLE with both computation reuse and window
sampling where k = 30 windows are sampled. “ABLE w/o
Win. Sampl." disables window sampling and “ABLE w/o
Comp. Reuse" further disables computation reuse. “ABLE
w/o Comp. Reuse" shows a quadratic increase in the latency
over time, which becomes costly when the number of inputs
increases gradually. By adding computation reuse, “ABLE
w/o Win. Sampl." decreases this quadratic time complexity
to linear time complexity, leading to a much lower computa-
tion overhead. When adding window sampling, we can see
that “ABLE" further reduces the linear time complexity to a
constant complexity, which is similar to the Window detector.

5.1.3 Separability-Aware Model Selection
In this section, we show the energy-saving, runtime speedup,
and the memory overhead from Separability-Aware Model
Selection. To study the impact of lasting time, we adopt the
same setting as dynamic class skew (Section 5.1.2). In each
dynamic class skew, we randomly generate 30 class skews
and report the average energy saving and runtime speedup.

Energy Saving. Figure 9 shows energy saving when tar-
geting the same accuracy as the baseline model. Palleon can
save energy consumption up to 6.2× while maintaining the
accuracy. This benefit comes from automatically replacing the
original large model with small models by separability-aware
model selection. In addition, we can observe that the energy
saving increases as lasting time increases, since a longer last-
ing time indicates less class skew switches and less system
overhead for detecting and exploiting new class skews.

Runtime Speedup. Figure 10 shows the overall runtime
speedup when targeting the same accuracy as the baseline
model. Palleon can achieve up to 5.48× speedup, consider-

USENIX Association 2021 USENIX Annual Technical Conference 435

Figure 10: Runtime Speedup with Model Selection.

ing both the model execution speed and the system latency,
including the model adaptation latency, the model selection
latency on the cloud, and the network latency. Note that the
model selection on cloud only introduces latency and has no
impact on the energy consumption on the edge device. Sim-
ilar to the observation in energy saving, we can observe an
increase in runtime speedup as the lasting time increases, due
to the reduced system overhead.

Memory and data transfer overhead. We observe negli-
gible memory overhead in our current system with 5 compact
models. In particular, these compact models usually consume
less than 1MB memory and Jetson Nano has 4GB memory.
On the data transfer overhead, we only transfer a short CSP
(within 1KB) to the cloud when ABLE detects class skew
switches. This is significantly smaller than alternative system
designs that transfer frames (around 100 KB per frame) or
CNN weights with the cloud.

5.2 Real Video Experiments
We evaluate Palleon on real videos to show the end-to-end
accuracy improvement, runtime speedup, and energy saving,
including the overhead from model adaptation and class skew
detection. We compare Palleon with a state-of-the-art energy-
efficient video processing system, FAST [65]. FAST approach
studies the benefit of class skews in an ideal case, assuming
that all class skews that may appear at runtime are known
offline. In particular, FAST adapts a large number of compact
CNNs towards each class skew during offline preparation
and identifies these foreknown class skews with a window
detector. As such, we denote it as FAST (offline). For a fair
comparison of our online framework, we further extend FAST
(offline) to an online version, namely FAST (online). The only
difference between these two versions is that FAST (online)
does not have the pre-trained CNN models for different class
skews. Instead, it adopts a standard retraining method [68],
which retrains the last few CNN layers toward the online
detected class skews, for online model adaption. To strike a
good balance between accuracy and performance, we man-
ually tune the number of layers for retraining and find that
two is a good number and use it in our experiments. Different
from FAST, we do not foreknow the class skews offline. We
conduct online class skew detection with ABLE, online model
adaptation with Bayesian Filter, and online model selection.

Table 2: Real videos for evaluating Palleon. “#Switch" indi-
cates the number of class skews switches and “#Class" shows
the average number of classes in each class skew.

Video Name Len. (min) #Switch #Class
Friends 24 45 2.8

Good Will Hunting 14 4 3.5
The Departed 9 8 2.4

Ocean’s Eleven / Twelve 6 25 2.0

Real Video Datasets. We evaluate Palleon and FAST on
four real videos [65] depicted in Table 2. These videos come
from several movies for face recognition and have diverse
length ranging from 6 minutes to 24 minutes. “#Switch" in-
dicates the number of class skew switches in each video and
“#Class" represents the average number of classes (faces) in
each class skew between adjacent class skew switches. For
example, “Friends” is a 24-minute video with 45 class skew
switches and each class skew contains 2.8 classes on aver-
age. While the total number of classes in these real videos is
large (> 20), each class skew contains only a small portion of
classes (2 to 3.5). This is a common case in films and Youtube
videos, as we have discussed in introduction. The lasting time
for each class skew varies on videos from 10 seconds to 4 min-
utes (about 1.3 minutes on average), computed by “Len.(min)
/ #Switch". This diversity makes it a challenging setting to
detect and exploite class skews during runtime.

During the detection of faces, we follow the standard two-
phase pipeline in object detection [23, 24, 60] and face recog-
nition [6]. We first use a Viola Jones detector [70] to locate
faces in video frames, which is agnostic to class skews. Then
we crop faces and feed into CNNs for face recognition [57].
Note that this procedure can be easily applied to other object
detection tasks by retraining the face recognition CNNs.

Base Model for Real Video Datasets. For a fair compar-
ison with FAST, we choose the state-of-the-art deep model,
VGGFace [57], as our full model for face recognition. We gen-
erate 5 compact models with diverse resource consumption
and accuracy, following the model bank generation in Section
4.2. We use the same compact models for FAST. We train
these models from scratch following the hyper-parameter set-
ting in FAST, and achieve comparable accuracy as reported.
This offline training is conducted once on LFW dataset. Dur-
ing online, we use Bayesian Filter for model adaptation and
do not use online finetuning.

Accuracy Improvement. Figure 11 shows the overall clas-
sification accuracy on real videos of the most compact VG-
GFace model, FAST (offline), and our online approach. We
skip the accuracy of FAST (online) since it consistently pro-
vides lower accuracy than the Fast (offline) by around 1%,
since we retrain only the last two layers in Fast (online) to hit
a good balance between accuracy and performance. Palleon
provides 6.2% accuracy improvement on average, compared

436 2021 USENIX Annual Technical Conference USENIX Association

Figure 11: Accuracy Improvement on Various Videos.

to utilizing the compact model without adaptation. This ac-
curacy improvement comes from Bayesian Filter that dynam-
ically adapts models to class skews detected in real videos,
containing only 2 to 4 people on average (’#Class’ in Table 2).
This reduced number of faces greatly eases the task compared
to recognizing thousands of faces in un-adapted models.

Comparing to FAST (offline) relying on offline adapted
models, Palleon provides 1.3% accuracy improvement due to
the faster class skew switch detection in ABLE. When a class
skew switches, Window detector in FAST (offline) leads to a
detection delay up to 10 seconds, during which the accuracy
suffers from a dramatic drop. Moreover, ABLE can effectively
detect 98% class skew switches while Window detector can
only detect 86% class skew switches, since Window detector
fails to detect class skews that exist for only a few seconds.

Runtime Speedup. Figure 12 shows the end-to-end run-
time speedup on real videos when targeting the same accuracy
as the full model. Palleon achieves on average 5.43× speedup
(up to 7.9× speedup on Good) compared to the full model.
This speedup comes from automated model selection by re-
placing the full model with a compact model. When both
assuming that the class skews are not foreknown and adapting
models at runtime, Palleon achieves 26.9× speedup over the
FAST (online) approach. Indeed, FAST (online) shows a 5×
slow down due to heavy overhead from online model adapta-
tion. This comparison demonstrates the efficiency of Palleon
in online class skew detection and online model adaptation.
For FAST (offline) with strong assumption that true class
skews are foreknown and models are adapted during offline
preparation, Palleon can still achieve a higher speedup, due to
the early optimization strategy in ABLE. Comparing across
videos, the speedup becomes more significant when class
skews have longer lasting time (Good Will Hunting), showing
the same pattern as evaluations on synthesized videos (Sec-
tion 5.1.3). We note that Palleon takes 14.2 ms latency on
average to process one frame, which is significantly faster
than the real-time requirement of 30 ms per frame.

We also observe negligible overhead from model switches
(<1%) due to several reasons. First, the number of model
switches is much smaller than the number of class skew
switches, since class skew switches can usually be handled by
the Bayesian Filter without model switches. In particular, only
20% class skew switches lead to model switches. Second, the

Figure 12: Runtime Speedup on Various Videos.

Figure 13: Energy Saving on Various Videos.

model selection is conducted on the cloud and we cache all
models in the memory to avoid the repeatedly loading models,
which introduces negligible memory overhead.

Energy Saving. Figure 13 shows the end-to-end energy
saving on real videos when targeting the same accuracy as the
full model. Palleon achieves on average 4.9× energy saving
(up to 6.7× on Good) compared to the full model. Palleon
achieves a higher energy saving compared to “FAST (offline)"
(i.e., without counting the energy consumption in retraining)
due to the early optimization strategy in ABLE. FAST (on-
line) conducts model adaptation on the cloud and transfers the
adapted model weights (in megabytes) to the edge through the
network, leading to extra energy consumption from network
communication. This network overhead becomes intensive
when class skew switches frequently (Ocean and Friends),
leading to more energy consumption in FAST (online) com-
pared to the full model. This overhead reduces when class
skews have longer lasting time (Departed and Good), lead-
ing to energy saving. By contrast, Palleon shows a consistent
benefit on all four videos due to Palleon’s low overhead.

Workload Distribution over Models. We observe that
most frames are processed by the most compact model. For
eaxmple, on “Friends” dataset, the most compact model pro-
cesses 85% frames. While workload distribution varies for
different CSPs, we observe similar trends across datasets. The
reason is that CSPs usually only contain a few classes (Ta-
ble 2) and the most compact model with Bayesian Filter can
provide high accuracy.

6 Discussion

Comparison with alternative design that trains a model
for each CSP. One alternative design to exploit class skews
is to train many small models to recognize only a small set of

USENIX Association 2021 USENIX Annual Technical Conference 437

classes for individual class skews. This alternative design has
two intrinsic drawbacks. First, we usually do not foreknow
the class skew in an online video such that we can hardly train
compact models for each class skew offline. Second, even if
we assume that all class skews are foreknown (as the case in
FAST), we may need to train a large number of models due to
the large number of class skews. By contrast, Palleon does not
assume that class skews are foreknown and trains the model
on all classes offline. During online video analytics, we use
ABLE to conduct online class skew detection, Bayesian Filter
for efficient online model adaptation, and separability-aware
model selection to automatically select CNNs for balancing
the accuracy and resource efficiency.

Generality to other CNNs. Palleon can accelerate a large
number of workloads on mobile devices with the temporal
locality that a small number of classes keep appearing in a
large number of consecutive frames. We have shown the per-
formance benefits of Palleon on object classification and face
recognition. Palleon can be generalized to 2D object detec-
tion [15] and 3D point cloud analytics [29] which share a sim-
ilar pipeline as face recognition. We also note that Palleon can
benefit from more compact models and pruning techniques
designed for mobile systems. In particular, these compact
models can be incorporated during model bank generation
to provide Pareto-optimal boundary with reduced resource
consumption and equivalent accuracy.

7 Related Work
Model Compression. Model compression has been widely
explored for accelerating video processing. The popular com-
pression techniques include resolution reduction [21, 37, 45,
58], matrix factorization [38, 61, 77], matrix pruning [14, 28],
and distillation [8, 11, 13, 47]. Model compression is orthog-
onal to our work in exploiting class skews and usually leads
to accuracy drop. By contrast, Palleon exploits class skews in
video streams and maintains accuracy while reducing energy
consumption and processing latency. Meanwhile, Palleon can
integrate these compression techniques into our Separability-
Aware Model Selection for generating compact models.

Video Processing with Low-Level Temporal Informa-
tion. Using low-level temporal information can improve ac-
curacy or reduce energy consumption. From the perspective
of system design, existing work exploits low-level temporal
information by caching processing results of the most recent
frames for future computation reuse [26,74] or adjusting sam-
pling rate [41, 79]. From the perspective of algorithm design,
existing work often augments the traditional 2D-CNN with
optical flow [66,71,72] for explicitly capturing object motions
across frames. A new CNN design, 3D-CNNs [12, 22, 69],
has also been proposed to implicitly learn object motions
by stacking several 2D-CNNs and processing adjacent video
frames in a combined way. These works are orthogonal to
our work because we focus on exploiting high-level temporal
information across minutes, not on low-level temporal infor-

mation in a few seconds. Palleon could be integrated with one
of these approaches for further performance improvement.

Video Processing with High-Level Temporal Informa-
tion. Several video processing systems [27, 32, 43, 65, 73, 75]
have been proposed to exploit high-level temporal informa-
tion across minutes, in terms of scenario information. Several
early work [27, 32, 43, 75] simplifies processing tasks by tar-
geting a specific scenario and only recognizing a specific
object, e.g., buses at a crosswalk. Recent work [65] conducts
offline-profiling over a few scenarios and only reduces energy
consumption when these offline-profiled scenarios appear,
which would be in-effective for more realistic settings that
class skews may switch during runtime. By contrast, Palleon
abstracts these specific scenarios to a more general class skew
of unbalanced distributions and enables online class skew
detection and online model adaptation.

8 Conclusion
Efficient video processing on mobile platforms is an impor-
tant workload. We present Palleon, a runtime system for ef-
ficient video processing, by detecting and exploiting class
skews in video streams. We propose ABLE to detect class
skews in video streams. Based on these detected class skews,
Palleon uses Bayesian Filter for online model adaptation and
Separability-Aware Model Selection to select the most energy-
efficient model during runtime. Evaluations on both synthe-
sized videos and real videos demonstrate that Palleon achieves
up to 6.7× energy saving and up to 7.9× latency reduction.
We conclude that Palleon is a highly practical and effective
approach for efficiently processing video streams.

9 Acknowledgements
We would like to thank our shepherd, Swami Sundararaman,
and the anonymous ATC reviewers. This work was supported
in part by NSF 1925717 and 1725447.

References

[1] Martín Abadi, Paul Barham, Jianmin Chen, Zhifeng
Chen, Andy Davis, Jeffrey Dean, Matthieu Devin, San-
jay Ghemawat, Geoffrey Irving, and Michael Isard. Ten-
sorflow: A system for large-scale machine learning. In
OSDI, 2016.

[2] Ryan Prescott Adams and David JC MacKay. Bayesian
online changepoint detection. arXiv preprint
arXiv:0710.3742, 2007.

[3] Awais Ahmad, Marco Anisetti, Ernesto Damiani, and
Gwanggil Jeon. Special issue on real-time image and
video processing in mobile embedded systems. Journal
of Real-Time Image Processing, 16(1):1–4, Feb 2019.

438 2021 USENIX Annual Technical Conference USENIX Association

[4] Advancing ai for video. https://phys.org/news/2019-06-
advancing-ai-video-startup-powerful.html. Accessed:
2019-11-29.

[5] Samaneh Aminikhanghahi and Diane J Cook. A sur-
vey of methods for time series change point detection.
Knowledge and information systems, 2017.

[6] Brandon Amos, Bartosz Ludwiczuk, and Mahadev
Satyanarayanan. Openface: A general-purpose face
recognition library with mobile applications. Techni-
cal report, CMU-CS-16-118, CMU School of Computer
Science, 2016.

[7] Aria. The wearables giving computer vision to the
blind. https://www.wired.com/story/wearables-for-the-
blind/, 2018. Accessed: 2018-07-16.

[8] Jimmy Ba and Rich Caruana. Do deep nets really need
to be deep? In NeurIPS, 2014.

[9] BBC. Bbc series uses robot crea-
tures to document secret lives of animals.
https://www.theguardian.com/media/2016/dec/31/bbc-
robot-creatures-spy-secret-lives-animals.-wildlife-
series, 2018. Accessed: 2018-07-16.

[10] K. M. bin Saipullah, A. Anuar, N. A. binti Ismail, and
Y. Soo. Real-time video processing using native pro-
gramming on android platform. In 2012 IEEE 8th In-
ternational Colloquium on Signal Processing and its
Applications, pages 276–281, March 2012.

[11] Cristian Buciluǎ, Rich Caruana, and Alexandru
Niculescu-Mizil. Model compression. In SIGKDD,
2006.

[12] J. Carreira and A. Zisserman. Quo vadis, action recog-
nition? a new model and the kinetics dataset. In CVPR,
2017.

[13] Guobin Chen, Wongun Choi, Xiang Yu, Tony Han, and
Manmohan Chandraker. Learning efficient object detec-
tion models with knowledge distillation. In NeurIPS,
2017.

[14] Wenlin Chen, James Wilson, Stephen Tyree, Kilian
Weinberger, and Yixin Chen. Compressing neural net-
works with the hashing trick. In ICML, 2015.

[15] Jifeng Dai, Yi Li, Kaiming He, and Jian Sun. R-FCN:
object detection via region-based fully convolutional
networks. In NIPS, pages 379–387, 2016.

[16] Dimitrios Dakopoulos and Nikolaos G Bourbakis. Wear-
able obstacle avoidance electronic travel aids for blind:
a survey. IEEE Transactions on Systems, Man, and
Cybernetics, Part C (Applications and Reviews), 2009.

[17] Dell workstation t7910.
https://i.dell.com/sites/doccontent/shared-content/data-
sheets/en/Documents/Dell_Precision_Tower_7910_Spec
_Sheet.pdf. Accessed: 2018-04-20.

[18] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li,
and Li Fei-Fei. Imagenet: A large-scale hierarchical
image database. In CVPR, 2009.

[19] Paul Fearnhead and Zhen Liu. On-line inference for
multiple changepoint problems. Journal of the Royal
Statistical Society: Series B (Statistical Methodology),
2007.

[20] Mikhail Figurnov, Aizhan Ibraimova, Dmitry P Vetrov,
and Pushmeet Kohli. Perforatedcnns: Acceleration
through elimination of redundant convolutions. In
NeurIPS, 2016.

[21] Jianlong Fu, Heliang Zheng, and Tao Mei. Look closer
to see better: Recurrent attention convolutional neural
network for fine-grained image recognition. In CVPR,
2017.

[22] L. Ge, H. Liang, J. Yuan, and D. Thalmann. 3d convolu-
tional neural networks for efficient and robust hand pose
estimation from single depth images. In CVPR, 2017.

[23] Ross Girshick. Fast r-cnn. In Proceedings of the 2015
IEEE International Conference on Computer Vision
(ICCV), ICCV ’15, page 1440–1448, USA, 2015. IEEE
Computer Society.

[24] Ross Girshick, Jeff Donahue, Trevor Darrell, and Jiten-
dra Malik. Rich feature hierarchies for accurate object
detection and semantic segmentation. In Proceedings
of the 2014 IEEE Conference on Computer Vision and
Pattern Recognition, CVPR ’14, page 580–587, USA,
2014. IEEE Computer Society.

[25] Chuan Guo, Geoff Pleiss, Yu Sun, and Kilian Q. Wein-
berger. On calibration of modern neural networks. In
ICML, 2017.

[26] Peizhen Guo and Wenjun Hu. Potluck: Cross-
application approximate deduplication for computation-
intensive mobile applications. In ASPLOS, pages 271–
284, 2018.

[27] Seungyeop Han, Haichen Shen, Matthai Philipose,
Sharad Agarwal, Alec Wolman, and Arvind Krishna-
murthy. Mcdnn: An approximation-based execution
framework for deep stream processing under resource
constraints. In MobiSys, 2016.

[28] Song Han, Jeff Pool, John Tran, and William Dally.
Learning both weights and connections for efficient neu-
ral network. In Advances in neural information process-
ing systems, pages 1135–1143, 2015.

USENIX Association 2021 USENIX Annual Technical Conference 439

[29] Chenhang He, Hui Zeng, Jianqiang Huang, Xian-Sheng
Hua, and Lei Zhang. Structure aware single-stage 3d
object detection from point cloud. In CVPR, pages
11870–11879. IEEE, 2020.

[30] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian
Sun. Deep residual learning for image recognition. In
CVPR, 2016.

[31] Marion Hersh and Michael A Johnson. Assistive tech-
nology for visually impaired and blind people. Springer
Science Business Media, 2010.

[32] Kevin Hsieh, Ganesh Ananthanarayanan, Peter Bodik,
Shivaram Venkataraman, Paramvir Bahl, Matthai Phili-
pose, Phillip B Gibbons, and Onur Mutlu. Focus: Query-
ing large video datasets with low latency and low cost.
In OSDI, 2018.

[33] Gao Huang, Zhuang Liu, Kilian Q Weinberger, and Lau-
rens van der Maaten. Densely connected convolutional
networks. In CVPR, volume 1, page 3, 2017.

[34] Forrest N Iandola, Song Han, Matthew W Moskewicz,
Khalid Ashraf, William J Dally, and Kurt Keutzer.
Squeezenet: Alexnet-level accuracy with 50x fewer pa-
rameters and< 0.5 mb model size, 2016.

[35] Spectrum IEEE. Robot takes on landmine de-
tection while humans stay very very far away.
https://spectrum.ieee.org/automaton/robotics/military-
robots/husky-robot-takes-on-landmine-detection-
while.-humans-stay-very-very-far-away, 2018. Ac-
cessed: 2018-07-16.

[36] iphone x specification.
https://www.gsmarena.com/apple_iphone_x-8858.php.
Accessed: 2019-12-3.

[37] Benoit Jacob, Skirmantas Kligys, Bo Chen, Menglong
Zhu, Matthew Tang, Andrew G. Howard, Hartwig Adam,
and Dmitry Kalenichenko. Quantization and training
of neural networks for efficient integer-arithmetic-only
inference. In CVPR, 2018.

[38] Max Jaderberg, Andrea Vedaldi, and Andrew Zisserman.
Speeding up convolutional neural networks with low
rank expansions. In BMVC, 2014.

[39] Theodoros Damoulas Jeremias Knoblauch. Spatio-
temporal Bayesian on-line changepoint detection with
model selection. In ICML, 2018.

[40] Jetson nano specification.
https://developer.nvidia.com/embedded/buy /jetson-
nano-devkit. Accessed: 2018-04-20.

[41] Angela H. Jiang, Daniel L.-K. Wong, Christopher Canel,
Lilia Tang, Ishan Misra, Michael Kaminsky, Michael A.
Kozuch, Padmanabhan Pillai, David G. Andersen, and
Gregory R. Ganger. Mainstream: Dynamic stem-sharing
for multi-tenant video processing. In ATC, 2018.

[42] Junchen Jiang, Ganesh Ananthanarayanan, Peter Bodik,
Siddhartha Sen, and Ion Stoica. Chameleon: Scalable
adaptation of video analytics. In Proceedings of the
2018 Conference of the ACM Special Interest Group on
Data Communication, SIGCOMM ’18, pages 253–266,
New York, NY, USA, 2018. ACM.

[43] Daniel Kang, John Emmons, Firas Abuzaid, Peter Bailis,
and Matei Zaharia. Noscope: optimizing neural network
queries over video at scale. VLDB, 2017.

[44] David G Kleinbaum and Mitchel Klein. Survival analy-
sis, volume 3. Springer, 2010.

[45] A Krizhevsky and G Hinton. Learning multiple layers of
features from tiny images. Technical report, University
of Toronto, 1, 01 2009.

[46] Ji Lin, Yongming Rao, Jiwen Lu, and Jie Zhou. Runtime
neural pruning. In Advances in Neural Information
Processing Systems, pages 2181–2191, 2017.

[47] D. Lopez-Paz, B. Schölkopf, L. Bottou, and V. Vapnik.
Unifying distillation and privileged information. In
ICLR, 2016.

[48] Jian-Hao Luo, Jianxin Wu, and Weiyao Lin. Thinet:
A filter level pruning method for deep neural network
compression. In Proceedings of the IEEE international
conference on computer vision, pages 5058–5066, 2017.

[49] Othmane Mazhar, Cristian Rojas, Carlo Fischione, and
edit Mohammad Reza Hesamzadeh. Bayesian model
selection for change point detection and clustering. In
ICML, 2018.

[50] Extech multimeter model ex330 manual.
http://www.extech.com/resources/EX330_UM.pdf.
Accessed: 2018-04-20.

[51] Build a hardware-based face recognition system
for $150 with the nvidia jetson nano and python.
https://medium.com/@ageitgey/build-a-hardware-
based-face-recognition-system-for-150-with-the-
nvidia-jetson-nano-and-python-a25cb8c891fd. Ac-
cessed: 2019-06-12.

[52] Home automation at a glance using ai glasses.
https://hackaday.com/2019/08/15/home-automation-at-
a-glance-using-ai-glasses/. Accessed: 2019-06-12.

440 2021 USENIX Annual Technical Conference USENIX Association

[53] Jetbot, a $250 diy autonomous robot
based on jetson nano impresses at gtc.
https://blogs.nvidia.com/blog/2019/03/26/jetbot-
diy-autonomous-robot/. Accessed: 2019-06-12.

[54] Alexandru Niculescu-Mizil and Rich Caruana. Pre-
dicting good probabilities with supervised learning. In
ICML, 2005.

[55] Wikipedia: Pareto efficiency.
https://en.wikipedia.org/wiki/Pareto _efficiency.
Accessed: 2019-06-12.

[56] Eunhyeok Park, Junwhan Ahn, and Sungjoo Yoo.
Weighted-entropy-based quantization for deep neural
networks. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, pages 5456–
5464, 2017.

[57] Omkar M Parkhi, Andrea Vedaldi, and Andrew Zisser-
man. Deep face recognition. In BMVC, 2015.

[58] Matthai Philipose. Efficient object detection via adaptive
online selection of sensor-array elements. In AAAI,
2014.

[59] Raspberry pi 3b+ specification.
https://www.raspberrypi.org/products /raspberry-
pi-3-model-b-plus/. Accessed: 2018-04-20.

[60] Shaoqing Ren, Kaiming He, Ross Girshick, and Jian Sun.
Faster r-cnn: Towards real-time object detection with
region proposal networks. In C. Cortes, N. D. Lawrence,
D. D. Lee, M. Sugiyama, and R. Garnett, editors, Ad-
vances in Neural Information Processing Systems 28,
pages 91–99. Curran Associates, Inc., 2015.

[61] Adriana Romero, Nicolas Ballas, Samira Ebrahimi Ka-
hou, Antoine Chassang, Carlo Gatta, and Yoshua Bengio.
Fitnets: Hints for thin deep nets. In ICLR, 2015.

[62] W. Rudin. Principles of Mathematical Analysis. Interna-
tional series in pure and applied mathematics. McGraw-
Hill, 1976.

[63] Yunus Saatçi, Ryan D Turner, and Carl E Rasmussen.
Gaussian process change point models. In ICML, 2010.

[64] J. Shao. Mathematical Statistics. Springer Texts in
Statistics. Springer, 2003.

[65] Haichen Shen, Seungyeop Han, Matthai Philipose, and
Arvind Krishnamurthy. Fast video classification via
adaptive cascading of deep models. In CVPR, 2017.

[66] Zheng Shou, Xudong Lin, Yannis Kalantidis, Laura
Sevilla-Lara, Marcus Rohrbach, Shih-Fu Chang, and
Zhicheng Yan. Dmc-net: Generating discriminative mo-
tion cues for fast compressed video action recognition.
In CVPR, 2019.

[67] K. Simonyan and A. Zisserman. Very deep convolu-
tional networks for large-scale image recognition. In
ICLR, 2015.

[68] Chuanqi Tan, Fuchun Sun, Tao Kong, Wenchang Zhang,
Chao Yang, and Chunfang Liu. A survey on deep trans-
fer learning, 2018.

[69] Du Tran, Lubomir Bourdev, Rob Fergus, Lorenzo Tor-
resani, and Manohar Paluri. Learning spatiotemporal
features with 3d convolutional networks. In ICCV, 2015.

[70] Paul Viola and Michael Jones. Rapid object detection
using a boosted cascade of simple features. CVPR, 2001.

[71] Limin Wang, Yuanjun Xiong, Zhe Wang, Yu Qiao,
Dahua Lin, Xiaoou Tang, and Luc Val Gool. Tempo-
ral segment networks: Towards good practices for deep
action recognition. In ECCV, 2016.

[72] Chao-Yuan Wu, Manzil Zaheer, Hexiang Hu, R Man-
matha, Alexander J Smola, and Philipp Krähenbühl.
Compressed video action recognition. In CVPR, 2018.

[73] Mengwei Xu, Jiawei Liu, Yuanqiang Liu, Felix Xiaozhu
Lin, Yunxin Liu, and Xuanzhe Liu. A first look at deep
learning apps on smartphones. In WWW, 2019.

[74] Mengwei Xu, Mengze Zhu, Yunxin Liu, Felix Xiaozhu
Lin, and Xuanzhe Liu. Deepcache: Principled cache for
mobile deep vision. In MobiCom, 2018.

[75] Tiantu Xu, Luis Materon Botelho, and Felix Xiaozhu
Lin. Vstore: A data store for analytics on large videos.
In EuroSys, 2019.

[76] Yuhui Xu, Yongzhuang Wang, Aojun Zhou, Weiyao Lin,
and Hongkai Xiong. Deep neural network compres-
sion with single and multiple level quantization. In
Thirty-Second AAAI Conference on Artificial Intelli-
gence, 2018.

[77] Jian Xue, Jinyu Li, Dong Yu, Mike Seltzer, and Yi-
fan Gong. Singular value decomposition based low-
footprint speaker adaptation and personalization for
deep neural network. In ICASSP, 2014.

[78] Aonan Zhang and John Paisley. Deep Bayesian non-
parametric tracking. In ICML, 2018.

[79] Haoyu Zhang, Ganesh Ananthanarayanan, Peter Bodik,
Matthai Philipose, Paramvir Bahl, and Michael J Freed-
man. Live video analytics at scale with approximation
and delay-tolerance. In NSDI, 2017.

[80] Ritchie Zhao, Yuwei Hu, Jordan Dotzel, Chris De Sa,
and Zhiru Zhang. Improving neural network quantiza-
tion without retraining using outlier channel splitting. In
International Conference on Machine Learning, pages
7543–7552, 2019.

USENIX Association 2021 USENIX Annual Technical Conference 441

	Introduction
	ABLE for Class Skew Detection
	Static Class-Skew Profiling
	Dynamic Class-Skew Switch Detection

	Bayesian Filter for Model Adaptation
	Rescaling
	Direct Pass

	Separability-Aware Model Selection
	Efficient Online Model Selection
	Edge-Cloud Duplicated Model Bank
	System Overhead Analysis

	Evaluation
	Synthesized Video Experiments
	Bayesian Filter on Fixed Class Skews
	ABLE on Dynamic Class Skews
	Separability-Aware Model Selection

	Real Video Experiments

	Discussion
	Related Work
	Conclusion
	Acknowledgements

