TiAcc: Triangle-inequality based Hardware Accelerator for K-means on FPGAs

Yuke Wang, Boyuan Feng, Gushu Li, Georgios Tzimpragos, Lei Deng, Yuan Xie, Yufei Ding

University of California, Santa Barbara

Yuke Wang is a third-year PhD in the department of computer science at the UCSB.

K-means Algorithm

• Unsupervised Learning. Unlabeled data clustering Image segmentation Feature learning

- Important but time-consuming on real-world datasets.
- Unsatisfactory performance.
 O(N×K×D)
 N: number of points
 K: number of clusters
 D: dimensionality

Optimization Exploration

Algorithm-level Optimization

Reduce redundant computations, such as triangle-inequality based filtering and KD-tree based methods.

Hardware-level Implementation

- Modern general purpose processor such as CPU, GPU or hardware accelerators such as FPGA and ASIC.
- FPGA solution: Energy efficiency and developing flexibility.

Shortcomings of Previous Work

- Mostly count on hardware-level design and optimizations.
- Built and optimized for specific datasets, lacking configurability and adaptability.

Evaluated on high-end FPGAs or simulated under ideal on-chip resource assumption.

Focus

✓ It must be able to leverage both algorithm-level optimization and hardware-level design.

Multimust have the adaptability for handling datasets of varying size and dimensionality. Contributions

A novel multi-level triangle-inequality based filtering.

> A highly parameterized FPGA design.

➤ A data batch streaming approach.

> A pipeline decoupling technique.

M It must have the flexibility to be implemented on the majority of off-the-shelf FPGA.

Low-cost commodity-level FPGA, such as Pynq.

Overview

Fig. 1: TiAcc Design Workflow.

Background

Triangle Inequality

$$lb(a,b) = d(a,c) - d(b,c)$$
$$ub(a,b) = d(a,c) + d(b,c)$$

Elkan's K-means

Shortcomings of Elkan's K-means

- Extra computations required.
- Extra memory space required.
- Calculation irregularity increased.

TiAcc Design

Algorithmic Optimization

Cluster Grouping

- Group the initial clusters by classic K-means.
- Fewer distance lower bounds.
- Less computation and memory overhead.

Distance Bounds

Upper bound update

The distance upper bound of the point will be updated if the best cluster of point has shifted since the last iteration.

Lower bound update

The distance lower bound between a point and cluster group will be updated based on the maximum distance shifts of the clusters inside the cluster group

Architecture Design

Fig. 4: TiAcc Architecture Design.

Other Optimizations

a. Data Batch Streaming

Fig. 5: (a) Conventional Pipeline; (b) Decoupled Stages.

b. Pipeline Decoupling

Experiment

Experimental Setup

- 1) Xilinx Vivado Design Suite v2018.2.
- 2) Pynq-Z1
 - ARM Cortex-A9 processor (PS).
 - Artix-7 family programmable logic (PL).

Datasets for Evaluation

- 1) Six real-life datasets from [1], Num of Points $(5,000 \sim 430,000)$ and dimensionality $(3 \sim 28)$.
- 2) $cluster_size = \left\lfloor \frac{\sqrt{dataset_size}}{t} \right\rfloor$,
- 3) $cluster_group_size = \left\lfloor \frac{cluster_size}{10} \right\rfloor$.

Dataset	# points (n)	# dimension (d)	# clusters (k)
Parkinsons Updrs	5875	21	38
Letter Recognition	20000	16	70
Electronic Board Reading	45781	5	53
Kegg Shuffled Normal	65554	28	64
Skin NonSkin	245057	4	62
3D Spatial Network	434874	3	82

[1]: Dua, D. and Karra Taniskidou, E. (2017). UCI Machine Learning Repository [http://archive.ics.uci.edu/ml]. Irvine, CA: University of California, School of Information and Computer Science.

Credit: Xilinx Vivado

HLx Editions

VQ-Z1

DIGILENT

Credit: Digilent FPGA

Experiments: Performance & Energy

Time. En.Eff. Power. En.Eff. En.Eff. Speedup. Speedup. Speedup. Dataset. vs. ARM vs. Titan Xp TiAcc (s) TiAcc (W) vs. ARM vs. Xeon vs. Xeon vs. Titan Xp $28.34\times$ Parkinsons Updrs 0.001 5.26 8.57× $6.90 \times$ 65.95× $3.00\times$ $42.43\times$ 0.006 25.10× 13.33× Letter Recognition 4.64 $13.17\times$ $5.42\times$ $1.92 \times$ $0.67 \times$ Electr Board Read 0.010 4.06 $9.89\times$ **4.99**× $1.79 \times$ $21.53\times$ $0.70 \times$ **13.88**× $27.53\times$ 6.97× KEGG Meta Net 0.016 5.52 $16.53\times$ **4.91**× $2.27 \times$ $0.31 \times$ Skin NonSkin $8.91 \times$ 2.98× $8.83 \times$ 160.06× $0.31 \times$ 6.82× 0.061 3.95 3D Spatial Network 0.143 4.16 $6.42\times$ $2.28 \times$ $7.93 \times$ 145.14× $0.19 \times$ 4.31×

TABLE II: Performance and Energy Efficiency Comparison.

Experiments: Additional Studies

TABLE III: Resource Comparison with Elkan's K-means.

Design	BRAM _18K	DSP48E	FF	LUT
Elkans	19	3	39453	41627
TiAcc	17	3	32488	30641

Experiments: Additional Studies (Con'd)

Distance Type	Data Type	# DSP	# FF	# LUT	Percent Err.	Latency (Clock Cycles)
Euclidean Distance	Ι	51	281	1512	22.29%	35
	II	5	758	1370	1.62%	64
	III	16	1785	2455	0%	70
Manhattan Distance	Ι	0	190	981	21.67%	7
	II	2	427	2072	0.36%	56
	III	6	1231	4503	0%	69

TABLE IV: Data Type Comparison.

Note: I: Fixed-point; II: Single-precision Floating-point; III: Double-precision Floating-point.

Fig. 7: Distance Computation Reduction.

Thank You

Q & A