
TiAcc: Triangle-inequality based Hardware
Accelerator for K-means on FPGAs

Yuke Wang1, Boyuan Feng1, Gushu Li2, Georgios Tzimpragos1, Lei Deng2, Yuan Xie2, Yufei Ding1

1Department of Computer Science,
2Department of Electrical and Computer Engineering,

University of California, Santa Barbara.
1{yuke_wang,boyuan,gtzimpragos,yufeiding}@cs.ucsb.edu

2{gushuli,leideng,yuanxie}@ece.ucsb.edu

Abstract—K-means is one of the most important unsuper-
vised learning algorithms. In this paper, we present TiAcc,
a triangle-inequality based K-means hardware accelerator on
FPGAs. TiAcc highlights itself with an algorithm-hardware co-
design strategy tailored for K-means clustering. Specifically,
TiAcc leverages a novel triangle-inequality based filtering to
eliminate unnecessary distance computations without changing
the final clustering results. Meanwhile, it employs a pipeline
decoupling approach to mitigate the irregularity of the remaining
computations, and an efficient hardware architecture design to
fully exploit the pipeline and parallel processing capability of
FPGAs. Moreover, TiAcc provides parameterized configuration
knobs that can minimize the manual efforts in the arduous
hardware design process and provides flexibility to optimize
hardware designs for a variety of datasets with different sizes and
dimensionalities. Intensive experiments show that TiAcc achieves
an average 4.94× speedup and significant energy efficiency
(average 74.22×) compared with an optimized K-means running
on a server-grade Xeon CPU.

I. INTRODUCTION

K-means clustering, one of the most important unsupervised
learning algorithms, has been widely used in many machine
learning applications, such as unlabeled data clustering [1],
[2], image segmentation [3]–[5], and feature learning [6],
[7]. Despite its popularity, K-means usually has unsatisfactory
performance due to its high computation complexity. For an
input dataset with n points and k clusters in d dimensions,
the complexity of the standard K-means algorithm proposed
by Lloyd [8] linearly depends on n, k, and d, making it hard
to handle large datasets with high dimensionalities [9]–[11].

To improve the performance of K-means, two major types
of methods have been explored. The first one focuses on
algorithm optimization (e.g., triangle-inequality based filter-
ing [12]–[14] and KD-tree based methods [9]–[11]) to elim-
inate redundant computations. These methods demonstrate a
striking power of avoiding distance computations from every
pair of data points and cluster centers, and thus reducing the
complexity of n, k, and d. Yet, they introduce tremendous data
dependency across different data points and cluster centers,
which prevents the optimized algorithms being efficiently
deployed on the modern, massively parallel hardware.

The second type of methods concentrates on hardware-
level optimization, which leverages the parallel computation
capability of the modern hardware (e.g., multi-core CPUs,

GPUs, FPGAs, and ASICs) to boost the performance [15]–
[24]. Among these hardware optimizations, accelerating K-
means on the FPGA is one of the most promising directions
due to its considerable performance, and a good balance
between energy efficiency (compared with the CPU/GPU) and
developing flexibility (compared with ASIC). Nevertheless,
most existing FPGA designs [16], [17], [21], [24] fail to
incorporate algorithm innovations, resulting in limited overall
performance improvement. Besides, these FPGA designs are
often optimized and hard-coded for specific datasets, lacking
adaptability for a variety of datasets with different sizes and
dimensionalities.

To address the above issues, we present TiAcc, a triangle-
inequality based K-means hardware accelerator on FPGAs.
TiAcc highlights its algorithm-hardware co-design tailored for
K-means clustering. At the algorithm level, TiAcc general-
izes the triangle-inequality based optimization by introducing
cluster grouping and multi-level filtering to reduce unnec-
essary distance computations while largely maintaining the
computation regularity. At the hardware level, TiAcc leverages
data batch streaming and pipeline decoupling to accelerate the
remaining distance computations efficiently.

Besides, TiAcc offers template-based parameterized designs
and modularized optimizations to tackle the input sensitivity.
K-means is an instance-based learning algorithm and its inputs
generally consist of datasets across a wide range of dimen-
sionalities, sizes and points distributions, which would easily
challenge algorithm optimizations (e.g., triangle-inequality fil-
tering), and the hardware performance (e.g., memory access
and processing pipeline). To this end, as shown in Figure 1,
TiAcc takes the specifications of the devices and datasets
to customize a unified design template. Adjustable design
parameters (e.g., the number of clusters groups, and data batch
size) of algorithm optimizations and hardware designs are
introduced to benefit the design flexibility.

In addition, TiAcc provides an end-to-end workflow to re-
duce manual efforts in the tedious design and implementation
process. It applies algorithm and hardware optimizations at
beginning stages and integrates the modern hardware design
toolchains (Xilinx Vivado [25]) as its backend to generate the
hardware implementations that can be directly deployed on
FPGAs.

We implement TiAcc-generated K-means designs on Xil-



K-means
FPGA

DesignDataset

# Points

Dimension

# Clusters

Device

Computing 
Resources

Memory 
Resources

Design Param.

Hardware 
Design 

Toolchain

Design Optimization

Algorithmic 
Optimization

Multi-level 
Filtering

Cluster 
Grouping

Hardware 
Optimization

Pipeline
Decoupling

Data Batch 
Streaming

TiAcc

TiAcc
Template

Fig. 1: TiAcc Design Workflow.

inx Zynq UltraScale+ ZCU102 [26], an off-the-shelf FPGA
board, and compare its performance with the CPU and GPU
based K-means implementations across various datasets. The
remarkable energy-efficiency, satisfying speedup, as well as its
simplified design and implementation process shape TiAcc a
promising solution for K-means acceleration on FPGAs.

Overall, we have made the following contributions:
• We introduce a novel algorithm-hardware co-design strat-

egy to remove redundant distance computations while
minimizing the extra memory and computation overhead.

• We harness a highly parameterized design methodology
to efficiently support various datasets by offering ad-
justable parameters.

• We offer an end-to-end workflow to reduce users’ efforts
during the arduous process of hardware design and im-
plementation.

• Experiments on a wide range of problem settings show
that TiAcc-generated designs are often superior to highly-
optimized K-means implementations on the CPU and
GPU. For instance, TiAcc consistently excels the highly-
optimized K-means on a server-grade Xeon CPU with an
average 4.94× speedup, and 74.22× energy-efficiency.

II. BACKGROUND AND RELATED WORK

K-means is probably one of the most intuitive and popular
unsupervised learning methods. The standard K-means algo-
rithm [8] is first proposed by Stuart Lloyd in 1957 as a tech-
nique for pulse-coded modulation [8] and remains the dom-
inant choice in practice, exemplified by the implementations
in popular libraries (e.g., Sklearn [27], and OpenCV [28]).

The standard K-means clusters n unlabeled data of d dimen-
sions into k groups in an iterative manner, where each iteration
consists of a point-assignment step and a center-update step.
In the point-assignment step, the algorithm first calculates the
distances between each point and all cluster centers, and then
allocates every data point to the nearest cluster. In the follow-
ing center-update step, the algorithm optimizes the positions of
the centroids by calculating the new mean positions of the data
points assigned to each cluster. The updated cluster centers
will be used in the next point-assignment step. K-means
algorithm will keep iterating through the above two steps until
all cluster centers get stabilized. In the standard K-means, the

point-assignment step dominates the overall computation time
due to its high complexity, i.e., O(n × k × d) for computing
the pairwise distances between each point and centroid, which
leads to a major performance bottleneck when scaling up to
high-dimensional large datasets [9]–[11].

To accelerate K-means, algorithm innovations, including
KD-tree based [13], [29]–[31] and triangle-inequality based
approaches [14], [22], [32], have been proposed to reduce
the number of distance computations in the point-assignment
step. Specifically, KD-tree based optimizations [29]–[31] rely
on storing points in special data structures to enable a fast
closest cluster search. These methods usually bring 3× ∼ 6×
performance improvement [29]–[31] compared with the unop-
timized versions in low-dimension settings. But when handling
large datasets with high dimension (d ≥ 20), their perfor-
mance would heavily suffer because of the exponentially-
increased memory and computation overhead. Annoy [33] and
Barnes–Hut algorithm [34], on the other hand, show better
scalability compared with the standard KD-tree approach, but
raising severe precision issues since they cannot guarantee the
same output results as the original algorithm, and the quality
of such approximation highly relies on the number of trees
and specific application settings.

The second type is triangle-inequality optimization [12],
[14], [32]. Its core idea is to utilize cheaper triangle-inequality
based bound computations to replace the computation-
expensive distance computations, while guaranteeing the out-
put correctness as the original algorithm. Previous triangle-
inequality based optimizations in K-means, such as Elkans’ K-
means [12] and Yinyang K-means [14], have proofed that their
optimizations can always guarantee the same clustering results
(e.g., both point assignments and final cluster centers) as the
standard version (with no distance computation removed).
Such a quality guarantee is based on the idea that we only
remove distance computations if and only if we are 100%
sure that they will not change the final results. In addition,
triangle-inequality based solutions [14], [32] are more robust,
scalable, and flexible towards diverse settings compared to
KD-tree based methods.

In TiAcc, we adopt the triangle-inequality based methods
but amortize its computation irregularity and memory over-
head through multi-level filtering and cluster grouping. It
thus offers a much effective design that could be efficiently
deployed on hardware accelerators like FPGAs. Before in-
troducing the details of TiAcc, we will first briefly review
triangle inequality, and a state-of-the-art K-means algorithm
design based on it, Elkan’s K-means. Finally, we discuss the
challenges when directly applying these algorithm innovations
to FPGAs.

A. Triangle Inequality
Triangle-inequality states that the sum of any two sides

of a triangle must always be greater than the length of the
remaining side. By making use of this property, the clustering
algorithm computes distance bounds to get a ”sense” of the
actual distances, rather than computing the precise distance.
Assume that d(a, b) represents the exact distance between
point a and b. Point c is an aside reference point, and
d(a, c) and d(b, c) are known distances. By applying triangle

2



3APoint p

New Upper Bound
 ≤ 2 + 4 = 6

1A

New Lower Bound
≥ 10 – 1 = 9

1A

3A
4

2

10

1
3APoint p

New Upper Bound
 ≤ 2 + 4 = 6

1A

New Lower Bound
≥ 10 – 1 = 9

1A

3A
4

2

10

1

Current Iter Center

Next Iter Center

Fig. 2: Elkan’s K-means approach.

inequality, the algorithm can estimate the lower and upper
bounds (denoted by lb and ub, respectively) of d(a, b) as
follows:

lb(a, b) ≥ |d(a, c)− d(b, c)|
ub(a, b) ≤ d(a, c) + d(b, c)

(1)

B. Elkan’s K-means

Elkan [12] proposes Elkan’s K-means for accelerating the
K-means algorithm with the triangle inequality. Elkan’s K-
means avoids the exact point-to-cluster distance computation
by using the upper and lower distance bounds, while still
guaranteeing the same final results as the standard K-means.
For clarity, an example illustrating its main steps and func-
tionality is provided in Figure 2. Assume 1A is the closest
center that point p is assigned to in the current iteration. In the
next iteration, we can apply triangle inequality to compute the
upper bound between p and the new 1A, and the lower bounds
between p and other centers, such as 3A. These pairs of upper
bounds and lower bounds compose an array of distance filters,
which could filter out unnecessary distance computations. As
this example indicates, as long as the lower bound of d(p, 3A)
is still larger than the upper bound of d(p, 1A), i.e., 9 > 6,
it is impossible that 3A becomes the new closest cluster
center of p in the next K-means iteration. Therefore, the
exact distance computation between p and 3A can be safely
eliminated. Despite its simplicity, Elkan’s K-means is still the
best known triangle-inequality based K-means on common
sequential CPUs for its full power of removing redundant
distance computations.

C. K-means on FPGAs

Accelerating K-means on FPGAs has been widely stud-
ied [15]–[22], [24] but most of the previous K-means FPGA
designs only count on hardware-level implementations, result-
ing in limited overall performance improvement. In addition,
previous designs are often built for specific datasets, leading
to limited flexibility. For example, Hussain et al. [17] pro-
pose an FPGA design for K-means clustering on biological
microarray data. While their design outperforms the CPU-
based implementation, their design can only handle datasets
with a small number of points (n = 2, 905) and clusters
(k = 8), making it hard to deal with large datasets. Lin et
al. [22] apply K-means on FPGAs with the distance filtering
optimization, and achieve speedup over the CPU K-means on
a small dataset (1/6 of the MNIST dataset with n = 10, 000).
And their designs also suffer from scalability issue on FPGAs,
because 1) it requires lots of extra memory space to maintain
the distance bounds (i.e., k − 1 lower bounds per point),
which limits its applicability on FPGAs with small on-chip

memory; 2) it would introduce non-trivial distance bound
computations under large-dataset settings; 3) it could increase
the computation irregularity due to the fine-grained distance
computation filtering that may largely degrade its performance
on FPGAs.

In contrast, TiAcc highlights itself in reducing the computa-
tion cost, memory overhead, and computation irregularity. And
it overcomes the aforementioned issues through integrating the
algorithm and hardware design optimizations effectively.

III. ALGORITHM-LEVEL DESIGN

TiAcc K-means highlights its algorithm-level design by
taking the hardware limitations (e.g., on-chip memory, and
pipeline processing paradigm) into careful consideration.
Specifically, TiAcc K-means reduces the on-chip memory
overhead by cluster grouping and maintains computation regu-
larity by multi-level filtering (point- and group- level filtering).

Algorithm 1: TiAcc K-means
input : Point set, P = {p1, p2, . . . , pn}
output: Point label, PL = {pl1, pl2, . . . , pln}

1 Initialize C = {c1, c2, . . . , ck} ;
2 CG = {cg1, cg2, . . . , cgkc} = clusterGroup(C);
3 disBound = disComp(P,C,CG) ;
4 while TiAcc K-means not converge do
5 Ppass = pointF ilter(P, disBound) ;
6 CGpass = groupFilter(Ppass, disBound,CG) ;
7 foreach p in Ppass do
8 assignedLabel[p] = argmin(p, CGpass[p]) ;
9 end

10 updateCenter(C, assignedLabel);
11 end

As illustrated in Algorithm 1, TiAcc K-means consists of
several major steps. In the beginning, we create the clusters’
centers at line 1, by using initialization options such as ”K-
means++” [35] and ”random” [36]. At line 2, we group
initial clusters to prepare cluster groups for multi-level
filtering in distance computation reduction. After that, we run
the standard K-means with clusters and points for only one
iteration to build the initial distance bounds for each data point
at line 3. The multi-level filtering optimization starts from
the second iteration, which covers line 4 − 11. It includes
point-level filtering and group-level filtering at different levels
of granularity. Specifically, at line 5, point-level filtering
removes points that will avoid all of their following distance
computations in the current iteration. At line 6, group-level
filtering further prunes the cluster groups of the points which
pass the point-level filtering. At line 8, we calculate the exact
distance between the points and clusters in the cluster groups
that have passed the aforementioned multi-level filtering. Each
point will be assigned to its closest cluster. Last, we update the
clusters’ centers at line 10. If any center has been changed,
we will keep executing the loop until the algorithm converges.
The multi-level filtering optimization accelerates the point-
assignment step and will NOT change the final result.

3



A
C

B

A

C

B

Point p

Max Cluster Shift
max{δ(c)}

lb(p, cg)

Updated lb(p, cg)

Shifted Cluster Group
New cg

Cluster Group
cg

3A

3C

3B

Point p

Cluster Group
cg2

Upper Bound ub(p) 
=  Best Distance

d(p, bc(p))

Cluster Group
cg3

1A
1C

1B

Cluster Group 
cg1

1A
1C

1B

Cluster Group 
cg1

2A

2B

2C

Lower Bound 
lb(p, cg2)

Lower Bound 
lb(p, cg3)

3A

3C

3B

Point p

Cluster Group
cg2

Upper Bound ub(p) 
=  Best Distance

d(p, bc(p))

Cluster Group
cg3

1A
1C

1B

Cluster Group 
cg1

2A

2B

2C

Lower Bound 
lb(p, cg2)

Lower Bound 
lb(p, cg3)

Shifted Best Cluster 
New bc(p)

Point p

Best Cluster
bc(p)

Distance Shift
δ(bc(p))

ub(p)

Updated ub(p)

Shifted Best Cluster 
New bc(p)

Point p

Best Cluster
bc(p)

Distance Shift
δ(bc(p))

ub(p)

Updated ub(p)

(a) Point-cluster Relationship.

Closest Cluster

Shifted Closest Cluster

(b) ub(p)=ub(p)+δ(bc(p)).

A
C

B

A

C

B

Point p

Max Cluster Shift
max{δ(c)}

lb(p, cg)

Updated lb(p, cg)

Shifted Cluster Group
New cg

Cluster Group
cg

3A

3C

3B

Point p

Cluster Group
cg2

Upper Bound ub(p) 
=  Best Distance

d(p, bc(p))

Cluster Group
cg3

1A
1C

1B

Cluster Group 
cg1

1A
1C

1B

Cluster Group 
cg1

2A

2B

2C

Lower Bound 
lb(p, cg2)

Lower Bound 
lb(p, cg3)

3A

3C

3B

Point p

Cluster Group
cg2

Upper Bound ub(p) 
=  Best Distance

d(p, bc(p))

Cluster Group
cg3

1A
1C

1B

Cluster Group 
cg1

2A

2B

2C

Lower Bound 
lb(p, cg2)

Lower Bound 
lb(p, cg3)

Shifted Best Cluster 
New bc(p)

Point p

Best Cluster
bc(p)

Distance Shift
δ(bc(p))

ub(p)

Updated ub(p)

Shifted Best Cluster 
New bc(p)

Point p

Best Cluster
bc(p)

Distance Shift
δ(bc(p))

ub(p)

Updated ub(p)

(c) lb(p, cg)=lb(p, cg)-max
c∈cg

δ(c).

Fig. 3: Point-cluster Relationship; Update of distance upper bound (ub) and lower bound (lb).

A. Cluster Grouping
Cluster grouping gathers a set of clusters that are close to

each other based on their initial centers (an example is depicted
in Figure 3a). Cluster grouping brings two key benefits. First,
TiAcc K-means only needs to store n×kc (kc << k) distance
bounds between each of the n point and all kc cluster groups
for filtering computations, which largely reduces the memory
and computation overhead compared with Elkan’s K-means
(n×(k−1) distance bounds). Second, TiAcc increases memory
efficiency by accessing a group of clusters instead of an
individual cluster each time.

Based on the cluster grouping, TiAcc K-means maintains
two types of distance bounds for each point: distance upper
bound ub and distance lower bound lb, as shown in Figure 3b
and Figure 3c, respectively. The update of the distance upper
bound follows the same process as Elkan’s K-means, where
the new distance upper bound of p for the current iteration is
calculated by applying triangle inequality on previous distance
upper bound ub and the distance shift δ(bc(p)) of p’s closest
cluster bc(p). The distance lower bound lb(p, cg) generalizes
the lower bound of Elkan’s K-means in the sense that it
computes the lower bound from a point p and a set of centers
denoted by cg. By conservatively updating the distance lower
bound (lb(p, cg)) with the maximum distance shift of the
cluster group (max

c∈cg
δ(c)), TiAcc extends the usage of triangle

inequality from the regular point-to-point bound computation
to a more efficient point-to-group bound computation.

However, there are still three challenging questions that
must be addressed before we can exploit the efficiency of
cluster grouping. 1) How to build these cluster groups effi-
ciently? 2) Will the quality of cluster groups affect the final
output results? 3) How many cluster groups should be created
for efficient filtering?

First, to build the cluster groups, we run standard K-means
on initial cluster centers on the CPU through a few iterations
(five iterations is used throughout our evaluations for balancing
filtering performance and runtime overhead).

Second, despite that cluster centers will be updated itera-
tively, the relative adjacency of these centers does not change
much across iterations. Thus TiAcc groups the clusters only
once at the beginning. Cluster regrouping across iterations,
while feasible, does not help in our empirical study. Moreover,
cluster grouping will NOT affect the correctness of the final
results but could impact the efficiency of triangle-inequality
based filtering. Because if groups are not representative, dis-

tance bounds could be relatively loose and fewer distance
computations can be eliminated.

Third, the number of cluster groups (kc) provides a design
knob for our algorithm optimization that controls the trade-off
between the computation elimination and the regularity. With
more cluster groups, TiAcc has the potential to exploit more
redundant distance computations. But it also introduces more
irregularity to the remaining distance computation, along with
extra distance-bound computation and memory overhead. The
best choice of kc could actually differ across different datasets.

B. Multi-level Filtering
As the major algorithm optimization of TiAcc K-means,

multi-level filtering reduces the distance computations at dif-
ferent levels of granularity. Based on the distance bounds from
the cluster grouping, a group-level filtering condition can be
applied to remove cluster groups. Previous algorithm optimiza-
tions (e.g., Elkan’s K-means [12]) uses fine-grained filtering
to directly remove distance computations between points and
clusters. Such a fine-grained approach may eliminate more
redundant distance computations, but it loses flexibility and
efficiency while increasing the memory overhead.

To further improve the filtering performance, we design
point-level filtering placed before the group-level filtering.
Point-level filtering allows us to identify points that would
not change their closest cluster center in the new iteration,
and safely remove all distance computations of such points.
Our empirical study also shows that just applying point-level
filtering can reduce more than 40% distance computations,
which demonstrates its importance.

Point-level Filtering Point-level filtering labels points for
distance computation reduction. If a point does not satisfy the
point-level filtering condition, it will be labeled as PASS. Then
this point will be forwarded to the next stage of the processing
pipeline, where the group-level filtering will be activated to
check all cluster groups of this point. On the other hand, if
the point satisfies the point-level filtering condition, it will be
labeled as NOPASS, then all the following processing stages
of this point will be avoided.

The input of point-level filtering relies on several distance
bounds of an incoming point p: 1) ub(p): the upper bound
distance between p and its closest cluster in the last iteration;
2) lb(p, cg), the lower bound distance between p and cluster
group cg in the last iteration; 3) δ(bc(p)), the distance shift
of the p’s closest cluster in the last center update; 4) δ(c), the

4



distance shift of the clusters other than p’s closest cluster in
the last center update.

At the end of each K-means iteration, the cluster centers
will be updated, and the distance upper bound between p and
the closest cluster of p in the current iteration will be changed
accordingly. As described in Figure 3b, the distance upper
bound of p now becomes

ub(p) + δ(bc(p)). (2)

Similarly, the distance lower bound between p and a cluster
group cg can be updated as

lb(p, cg)−max
c∈cg

δ(c). (3)

where max
c∈cg

δ(c) selects a cluster c from all clusters inside cg

which maintains the maximum value of distance shift in the
last center update. The processing of the cluster group shifting
and the lower bound updating is depicted in Figure 3c.

Based on these distance bounds, the difference between
the minimum of updated lower bounds and the updated
upper bound can be calculated by a simple distance-bound
comparison. Therefore, if we can have

min
cg∈CG

{lb(p, cg)−max
c∈cg

δ(c)} ≥ ub(p) + δ(bc(p)) (4)

where CG is the set of all cluster groups, all following distance
calculations of p will be avoided, and the closest cluster of p
will not change in the current iteration. Otherwise, if the result
of distance bounds comparison satisfies

min
cg∈CG

{lb(p, cg)−max
c∈cg

δ(c)} < ub(p) + δ(bc(p)) (5)

potentially redundant distance computations of p will be
further eliminated in group-level filtering based on the distance
lower bounds of p and all cluster groups.

Group-level Filtering Group-level filtering reduces distance
computations in a more fine-grained way at the cluster-group
level. In group-level filtering, the updated distance lower
bounds of a point p will filter cluster groups. In the distance
bounds comparison, if we can have

lb(p, cg)−max
c∈cg

δ(c) < ub(p) + δ(bc(p)). (6)

then cluster group cg will be kept as the candidate group.
Then all distances between the clusters inside cg and p are
going to be calculated in the next stage of the processing
pipeline. Otherwise, if the updated lower bound is greater
than or equal to the updated upper bound for p and cg, then
distance calculations between p and all clusters inside cg can
be skipped.

IV. ACCELERATOR DESIGN

In this section, we introduce the hardware accelerator de-
sign of TiAcc. We first detail the hardware components of
TiAcc architecture, followed by its relation with the algo-
rithm optimization in the last section. Then we introduce two
key hardware-level optimizations (data batch streaming and
pipeline decoupling), which can largely simplify the FPGA
implementations of the aforementioned algorithm optimiza-
tions while reducing the resource consumption of FPGAs.

A. TiAcc Architecture

As shown in Figure 4, TiAcc K-means accelerator in-
cludes five major components: block RAM (BRAM), point-
level filter, group-level filter, distance calculator, and center
updater. These hardware components can effectively support
the aforementioned upper-level algorithm design. Specifically,
BRAM holds the necessary data (e.g., distance bounds) for
a fast and low-cost memory access; Point-level and group-
level filters implement the functionalities of the multi-level
filtering; Distance calculator provides the high-performance
fully-vectorized point-to-point distance computation; Center
updater updates the clusters’ center positions in each iteration.
More importantly, TiAcc incorporates an efficient data batch
streaming strategy for a high-performance data communication
and a pipeline decoupling approach to reduce the computation
irregularity and workload imbalance. TiAcc also introduces a
tunable parameter – data batch size, to enable hardware design
reconfiguration.

BRAM

Max

…

-
-

-
-

…

...     .   ..

...
...

Min

…

+

-
Min{LBs} < UB

Min{LBs} ≥ UB

Min{LBs} < UB

Min{LBs} ≥ UB

LB Update Module

UB Update Module

δ(c) LBs(p) δ(bc(p)) UB(p)

Updated UB(p)

Updated 
LBs(p)

-
-

-
-
    .   ..

…

Trigger

LB < UB

Cluster 
Groups(p)

...

…

…

Filtered
Cluster 
Groups

...

Point Level Filter

Ungroup 
Module

…

Trigger

Point p

Filtered Clusters

-
-

-
-

-

-
.   .    .

….

...

Min

Group Level Filter

Distance
Calculator ….

Updated bc(p), 
d(p,bc(p)) 

Final bc(p), 
d(p,bc(p)) 

Output
Trigger

Output to 
DMA

12

3

5

6

7

4

BRAM

Distance Shift among 
Clusters

…
…
.

AXI DMA 
Send 

Channel

AXI DMA 
Receive 
Channel

Input of BRAM and 
Accelerator: 

Points 
Clusters and Cluster Groups 

Lower and Upper Bounds 
Distance shift of Clusters

Initial Best Cluster Distances

Output of BRAM:
Best Cluster

Best Cluster Distances
(Final Upper Bounds)

Output of Accelerator: 
Updated Lower Bounds 
Updated Upper Bounds

Updated Best Cluster Distances

Accelerator Update

Cluster 
Group A

Cluster 
Group B

…….

Lower 
Bound 

1B
…….

Lower 
Bound 

1A
Point 1

Upper 
Bound 1

Cluster 
Group A

Cluster 
Group B

…….

Lower 
Bound 

1B
…….

Lower 
Bound 

1A
Point 1

Upper 
Bound 1

BRAM

Distance Shift among 
Clusters

…
…
.

AXI DMA 
Send 

Channel

AXI DMA 
Receive 
Channel

Input of BRAM and 
Accelerator: 

Points 
Clusters and Cluster Groups 

Lower and Upper Bounds 
Distance shift of Clusters

Initial Best Cluster Distances

Output of BRAM:
Best Cluster

Best Cluster Distances
(Final Upper Bounds)

Output of Accelerator: 
Updated Lower Bounds 
Updated Upper Bounds

Updated Best Cluster Distances

Accelerator Update

Cluster 
Group A

Cluster 
Group B

…….

Lower 
Bound 

1B
…….

Lower 
Bound 

1A
Point 1

Upper 
Bound 1

Lower 
Bound 

2B
…….

Lower 
Bound 

2A
Point 2

Upper 
Bound 2

Lower 
Bound 

3B
…….

Lower 
Bound 

3A
Point 3

Upper 
Bound 3

(a) Data Communication. (b) KPynq Accelerator Architecture.

Center Updater New 
Cluster 
Center 

Generator

Old-new 
Cluster 

Comparator

Old bc(p)

9

8

Fig. 4: TiAcc Architecture Design.

Point-level Filter. To implement functionalities of point-level
filtering, TiAcc architecture design includes a UB Update
Module in hardware design for managing the point-to-cluster
distance upper bound, as shown in Figure 4b ( 1 ). Corre-
spondingly, an LB Update Module is integrated to process
the cluster group shifting and the lower bound updating, as
shown in Figure 4b ( 2 ). From the distance bounds (Figure 4b
( 3 )) generated by the previous two modules, the difference
between the minimum of updated lower bounds and the
updated upper bound can be calculated by using our specified
Distance Bounds Comparison Module (Figure 4b ( 4 )).
Based on the distance-bound comparison, the group-level filter
can be triggered to explore the potential redundant distance
computation of a point at cluster-group level (Figure 4b ( 5 )).

Group-level Filter. Group-level filter (Figure 4b ( 6 )) will be
invoked only if it gets the trigger signal sent by the point-
level filter. Group-level filter is used to reduce the distance
computations in a more fine-grained way at the cluster-group
level. Cluster groups that have not been filtered out will be

5



sent to an Ungroup Module, as shown in Figure 4b ( 7 ) for
further computation.

Distance Calculator. Distance calculator, as shown in Fig-
ure 4b ( 8 ), computes the precise distance between points and
clusters’ centers. Distance calculator will only be triggered
if the incoming points and cluster groups have passed the
multi-level filtering at the previous steps. Then the minimum
of these calculated distances becomes the new closest cluster
distance by passing a Minimum Distance Selection Module
(Figure 4b ( 9 )). The new closest cluster distance becomes a
new distance upper bound of this point. Meanwhile, the closest
cluster which corresponds to this new distance upper bound is
updated as well.

Center Updater. Center updater takes the closest cluster dis-
tance and the closest cluster label of each data point from the
distance calculator to generate the new cluster centers. The
old cluster centers will be fetched from the on-chip BRAM.
After the new cluster centers have been generated, the distance
shift between the old cluster centers and the corresponding
new cluster centers will be calculated by an Old-new Cluster
Comparator. Finally, the old clusters will be replaced by the
new clusters. All clusters will be held in BRAM until TiAcc
K-means converges. Compared with updating cluster centers
off-chip, updating cluster centers on the FPGA largely reduces
the time and cost of data transferring between different kinds
of memories.

B. Data Batch Streaming

To efficiently transfer data, we propose a data batch stream-
ing strategy to transfer data between the external DRAM
and the on-chip BRAM. There are several benefits of this
strategy: 1) The on-chip memory of FPGAs is limited (KB to
MB), whereas datasets are large (MB to GB). Compared with
caching all data at on-chip memory, data batch streaming can
minimize the memory overhead by keeping only a small part
of the entire dataset. Most of the previous K-means FPGA-
based designs have to store the whole dataset at on-chip
memory before running K-means. Therefore, their designs
largely depend on the size of FPGA on-chip memory and
datasets; 2) Compared with storing all data in the external
memory, data batch streaming is superior in its minimized data
access latency. The on-chip memory offers high access speed
(sub-nanoseconds to nanoseconds per data access), whereas
the external memory is slow (around 50 nanoseconds per data
access). In addition, the most frequently used data are cached
in the on-chip memory, such as clusters and distance bounds,
thus the frequency and cost of fetching data from the external
memory are reduced as well.

C. Pipeline Decoupling

While the ”point-centered” processing paradigm gives a
clear guideline to handle individual point effectively, K-means
clustering with filtering optimization would cause severe com-
putation irregularity and workload imbalance when the number
of points scales up. As shown in Figure 5a, after the point
and group level filtering, points with fewer distance computa-
tions (i.e., higher filtering ratio) would have lower processing
latency, while points with more distance computations (i.e.,

lower filtering ratio) would have longer processing latency.
The overall latency is usually determined by the longest one.
Therefore, distance computation saving from filtering cannot
be fully capitalized as performance gains because of workload
imbalance from the highly-coupled filtering and distance com-
putation process. Moreover, such a one-point-single-pipeline
hardware design scheme limits the number of points being
processed each time due to on-chip resource constraints.

Point-
level 

Filtering

Group-
level 

Filtering

Distance 
Computation

p1

p2

p3

p4

Point-level 
Filtering

Group-level 
Filtering

Distance 
Computation

pipe1

pipe2

pipe3

pipe4

(a)

…
…
…
…
…

… …
…
…
…

stage 1

…
…

stage 2 stage 3

(b)

Fig. 5: (a) Conventional Pipeline; (b) Decoupled Stages.

Fortunately, TiAcc transforms the above ”point-centered”
processing pipeline to ”task-centered” stages, which have
decoupled filtering and distance computation steps to mitigate
above issues. As shown in Figure 5b, the original lengthy
pipeline is decomposed into three stages, each of which
manages a specific task. There are several benefits of applying
such a transformation: 1) computations of different points can
be well abstracted by using unified processing stages, each
of which manages one processing task for all points and thus
eliminates the computation irregularity in the one-point-single-
pipeline setting; 2) highly-modularized processing stages allow
for further optimizations on each processing stage to maximize
its performance gains (e.g., increasing the number of compu-
tation units, and optimizing the on-chip memory architecture);
3) workload imbalance can be reduced through more evenly
distributed computations. Because distance computation units
can share workloads from all points instead of just sticking to
distance computations from only one point.

V. EVALUATION

This section evaluates and compares the efficiency of TiAcc
K-means FPGA designs against CPU, GPU, and other FPGA
K-means implementations on real-world datasets.

TABLE I: Datasets for Experiments.

Dataset # Points
(n)

# Dimension
(d)

# Clusters
(k)

Parkinsons Updrs 5,875 21 38
Letter Recognition 20,000 16 70

Electronic Board Read 45,781 5 53
KEGG Meta Net 65,554 28 64

Skin NonSkin 245,057 4 62
3D Spatial Network 434,874 3 82

A. Experiment Settings

1) Datasets: We use six real-world datasets obtained from
UCI Machine Learning Repository [37], covering a wide range
of data point size (5,000 ∼ 430,000) and dimensionality (3 ∼
28). These datasets are also used in related work [14], [32],
[38]. Details of datasets are listed in Table I.

6



TABLE II: Performance and Energy Efficiency Comparison.

Dataset. Time.
TiAcc (s)

Power.
TiAcc (W)

Speedup.
vs. ARM

En.Eff.
vs. ARM

Speedup.
vs. Xeon

En.Eff.
vs. Xeon

Speedup.
vs. Titan Xp

En.Eff.
vs. Titan Xp

Parkinsons Updrs 0.001 5.26 28.34× 8.57× 6.90× 65.95× 3.00× 42.43×
Letter Recognition 0.006 4.64 13.17× 5.42× 1.92× 25.10× 0.67× 13.33×
Electr Board Read 0.010 4.06 9.89× 4.99× 1.79× 21.53× 0.70× 13.88×
KEGG Meta Net 0.016 5.52 16.53× 4.91× 2.27× 27.53× 0.31× 6.97×

Skin NonSkin 0.061 3.95 8.91× 2.98× 8.83× 160.06× 0.31× 6.82×
3D Spatial Network 0.143 4.16 6.42× 2.28× 7.93× 145.14× 0.19× 4.31×

2) Baselines: (a) CPU-based Implementations. We use
Sklearn [27] K-means for the CPU comparison. Sklearn [27]
is one of the most popular machine learning libraries devel-
oped and maintained by lots of domain experts and software
engineers, and its highly-optimized K-means implementation
can achieve the state-of-the-art performance with guaran-
teed correctness; (b) GPU-based Implementations. We use
CUDA K-means from the NVIDIA official repository [39]
for the GPU comparison. K-means implementation released
by NVIDIA is a highly-efficient CUDA-based implemen-
tation that leverages the power of cuBLAS [40] library
for acceleration, which maximizes its performance gains on
CUDA-capable GPUs and outperforms other publicly available
GPU implementations based on our experimental studies;
(c) FPGA-based Implementations. It is challenging to give a
fair comparison with other FPGA-based implementations since
existing FPGA designs are mostly NOT publicly available
and are ONLY crafted for specific algorithms/inputs/FPGAs.
Instead we manually implement Elkan’s K-means on FPGAs
as a reference design to demonstrate the algorithm-hardware
co-design benefits of TiAcc (Section V-D).

3) Platforms: We implement and evaluate TiAcc K-means
designs (operating at 300MHz) on ZCU102 (Xilinx Zynq
UltraScale+ MPSoC ZCU102 [26]) by using Xilinx Vi-
vado Design Suite (v2018.3) [25]. ZCU102 is a general-
purpose evaluation FPGA board with -2L speed grade for
rapid-prototyping based on the Zynq UltraScale+ MPSoC
(multiprocessor system-on-chip). ZCU102 has a quad-core
ARM Cortex-A53, dual-core Cortex-R5 real-time processors
based on Xilinx’s 16nm FinFET+ programmable logic fabrics
(Logic Slices: 600,000, DSP: 2,520, LUT: 274,080, Flip-Flops:
548,160, Block RAM: 4,012.5 KB, 512MB off-chip DDR4
memory connected with a 16-bit bus running at 2.4Gbps).
Note that all FPGA designs are evaluated (e.g. power and
performance) based on post-place-and-route results. We also
test our TiAcc framework on PYNQ-Z1 FPGA [41]. The
overall trend of performance improvements is very similar and
only differ in net speedup due to different on-chip resources
and lower clock frequency. We thus only show the results of
ZCU102 considering the page limit.

4) Metrics: To evaluate the performance of the TiAcc K-
means design, the time of each K-means iteration has been
measured, and we define the speedup as:

Speedup =
T ime(Other)

T ime(T iAcc)
. (7)

To measure the ratio of performance versus the power con-
sumption of TiAcc K-means design, we define the energy

efficiency as:

Energy Efficiency = Speedup× Power(Other)

Power(T iAcc)
. (8)

where Other can be one of the implementations (e.g., CPU or
GPU) introduced above.

B. Compared with CPU-based Implementations

Sklearn [27] K-means is running on an 8-core 16-thread
Intel Xeon Silver 4110 Processor [42] (Clock Frequency:
2.1GHz, Memory: 64GB DDR4) with all 8 cores fully uti-
lized. We use the software timer perf counter for measuring
the running time and an off-the-shelf Poniie PN2000 power
meter [43] to evaluate the actual runtime power consumption.
The result in Table II shows TiAcc K-means on ZCU102
FPGA can achieve up to 8.83× speedup on Skin NonSkin
dataset and has an average 4.94× speedup across all six
experimental datasets. We also observe that TiAcc K-means
showcases its speedup advantage on the datasets with the
large point size such as Skin NonSkin (n = 245, 057) and
3D Spatial Network (n = 434, 874), which demonstrates
its algorithm-hardware co-optimization effectiveness in han-
dling relatively large datasets. This considerable performance
comes from the group-level filtering to remove most of the
unnecessary distance computations and accelerating remaining
distance computations through efficient parallelization and
pipelining. Moreover, the significant energy efficiency (up
to 160.06×, 74.22× on average) compared with Xeon CPU
shows the advantage of TiAcc K-means designs in energy-
saving and indicates its potential applications in most of the
power-constrained embedded settings, such as IoT devices.

In the comparison with the embedded processor, we run
Sklearn K-means on Jetson Nano Board [44] (a Quad-Core
ARM Cortex-A57, Clock Frequency: 1.9GHz, Memory: 4GB
LPDDR4) with all 4 cores fully in use. The result in Table II
shows TiAcc K-means on the FPGA is a good alternative
with much better performance (6.42× ∼ 28.34×, average
13.87×) and energy efficiency (2.28× ∼ 8.57×, average
4.84×) compared to the popular ARM-based solution.

C. Compared with GPU-based Implementations

GPU-based computation highlights itself with massive par-
allelization, significant performance, and high power con-
sumption. In this experiment, CUDA K-means is running on
NVIDIA Quadro P6000 GPU [45] (3840 CUDA cores, Mem-
ory: 24GB GDDR5X, Peak Memory Bandwidth: 432GB/s,
Peak Single Precision Performance: 12 TFLOPs). Quadro
P6000 is a high-end GPU in high-performance machine learn-
ing and deep learning domain. We use the NVProf [46] tool

7



from NVIDIA for measuring both GPU runtime power and the
CUDA kernel execution time. As shown in Table II, TiAcc K-
means shows its strength in energy saving, which demonstrates
4.31× ∼ 43.23× better energy efficiency compared with
Quadro P6000. We also notice that the performance superiority
of GPU is more pronounced on large datasets due to its
massive thread-level parallelism. However, such benefit could
fade or even disappear on small datasets, such as Parkinson
Updrs (n = 5, 875, d = 21, k = 38), where TiAcc K-
means is 3× faster. Because in this case most of the data
during K-means iterations can be directly accessed from the
FPGA on-chip memory instead of the external DDR memory,
which can largely reduce memory access latency and energy
consumption. On 3D Spatial Network dataset, however, GPU-
based implementation shows higher performance. Because
this dataset comes with an extreme setting (i.e., the smallest
feature dimension d = 3), which would lower the distance
filtering benefits and under-utilize FPGA resources and lead
to inferior performance. While GPU implementation can still
maximize its performance gains through more active threads
in such a setting, we want to emphasize that even under such
extreme settings, TiAcc can still beat the GPU in terms of
performance/power ratio, as the GPU always comes with much
higher power consumption.

D. Compared with Elkan’s K-means

In this section, we further demonstrate the effectiveness of
TiAcc designs from both algorithm and hardware perspectives
through carefully designed experiments. We choose Elkan’s
K-means for comparison because it is the most representative
optimized K-means algorithm with the state-of-the-art CPU
performance by using the fine-grained distance filtering opti-
mization, while our TiAcc K-means centers around a more
coarse-grained distance filtering strategy. Comparison with
Elkan’s K-means can break down TiAcc K-means benefits in
terms of its algorithm optimization, hardware acceleration, and
the effective co-design of combining these two.

Specifically, we implement four designs, I) Elkan’s K-
means on CPU; II) TiAcc K-means on CPU; III) Elkan’s K-
means on FPGA; IV) TiAcc K-means on FPGA. Considering
that there is no publicly available Elkan’s K-means FPGA-
based implementation ( [22] also does not open-source its
design), we implement Elkan’s K-means on ZCU102 FPGA
by following the design principles from [22] and also apply
optimizations for improving the memory and computation
efficiency to maximize its performance. And we evaluate
above designs on three datasets (Letter Recognition, KEGG
Meta Net dataset, and Skin NonSkin) for demonstration.

As shown in Figure 6, we observe that in the comparison
of CPU-based implementations (Design I and II), TiAcc K-
means is slower compared with the Elkan’s K-means on
higher dimension datasets (KEGG Meta Net: d = 28). The
reason is that the cost of each point-to-point distance com-
putation is expensive in the high-dimension dataset setting,
and Elkan’s K-means applies fine-grained filtering that can
remove more distance computations , whereas TiAcc K-means
uses coarse-grained group-level filtering that removes fewer
distance computations. However, on low-dimension datasets
(Skin NonSKin: d = 4), the cost of each point-to-point

0.24

0.66

2.30

0.21

0.83

1.451.42

0.05
0.19

0.01 0.02
0.06

0.0

0.5

1.0

1.5

2.0

2.5

Letter Recognition KEGG Meta Net Skin NonSkin

L
a

te
n

c
y
 (

s
)

Elkan's-CPU (I) TiAcc-CPU (II)

Elkan's-FPGA (III) TiAcc-FPGA (IV)

Fig. 6: Comparison with Elkan’s K-means.

distance computation is not very expensive, and the extra
bound computation overhead of Elkan’s K-means would offset
the performance benefits from reducing distance computations.

In the evaluation of FPGA-based implementations (Design
III and IV), we observe that TiAcc K-means always maintains
the lowest latency among these four implementations. The
major reason behind its considerable performance is that TiAcc
leverages an effective algorithm-hardware co-design, which
can well combine and balance the benefits from the hardware-
aware algorithm optimization and the FPGA acceleration. This
conclusion can be strengthened through comparing Design
II and IV, where the FPGA acceleration of TiAcc K-means
can add an additional 23.88× ∼ 51.85× speedup on top
of its algorithm optimization. In contrast, Elkan’s K-means
heavily counts on the aggressive hardware-agnostic algorithm
optimization (fine-grained filtering), even though it gets per-
formance gains on the CPU (1.25× faster than TiAcc K-
means CPU implementation) on higher dimension datasets, it
achieves inferior performance on the FPGA due to excessive
computation irregularity and memory overhead.

In addition to performance comparison, we also compare the
resource consumption of TiAcc design with Elkan’s K-means
on Skin NonSkin dataset.

TABLE III: Resource Comparison with Elkan’s K-means.

Design BRAM
18K DSP48E FF LUT

Elkans 19 3 39453 41627
TiAcc 17 3 32488 30641

As shown in Table III, we can see that Elkan’s K-means
consistently takes more computation and memory resources
because more distance bounds are maintained (stored and
updated) during the fine-grained filtering optimization. This
also help to demonstrate the a better resource efficiency of
TiAcc K-means designs.

E. Distance Computation Reduction

In this section, we decompose the optimizations in TiAcc
K-means to show their benefits in detail. We implement two
algorithms (Design I: a standard K-means (Lloyd’s Algo-
rithm); Design II: an optimized K-means with TiAcc algorith-
mic optimizations (applying cluster grouping and multi-level
triangle-inequality optimization). Design I and Design II have
been evaluated in their corresponding distance computation
reduction performance across all six datasets used in the
aforementioned experiments. We record the total number of

8



TABLE IV: Data Type Comparison.
Distance Type Data Type # DSP # FF # LUT Percent Err. Latency (Clock Cycles)

Euclidean Distance
I 51 281 1512 22.29% 35
II 5 758 1370 1.62% 64
III 16 1785 2455 0% 70

Manhattan Distance
I 0 190 981 21.67% 7
II 2 427 2072 0.36% 56
III 6 1231 4503 0% 69

Note: I: Fixed-point; II: Single-precision Floating-point; III: Double-precision Floating-point.

0.47
2.94

5.10
8.81

31.91

74.89

0.13 0.86 0.75 2.58

10.64
13.77

0

10

20

30

40

50

60

70

80

Parkinsons
Updrs

Letter
Recognition

Electronic
Board Read

KEGG Meta
Net

Skin
NonSkin

3D Spatial
Network

N
o

.o
f 

D
is

ta
n

ce
 C

o
m

p
u

ta
ti

o
n

 (
x1

0
0

0
0

0
0

0
)

standard K-means TiAcc K-means

Fig. 7: Distance Computation Reduction.

distance computations within the first twenty iterations of both
TiAcc K-means and standard K-means, as shown in Figure 7.
To measure the distance computation reduction, we define
the reduction ratio as ncstd−ncTiAcc

ncstd
, where the nc stands for

getting the number of distance calculations in each design. We
observe that TiAcc reduces 74.5% distance computations of
standard K-means on average, which indicates that our novel
multi-level triangle-inequality based filtering is able to capture
and remove most unnecessary expensive distance calculations.

F. Study on the Data-Type Selection

TiAcc uses the single-precision floating-point as its major
data type. There are several benefits of this data type: 1)
It maintains accuracy without compromising the final result
of K-means clustering; 2) It is resource-saving and energy-
efficient when implemented on FPGAs; 3) It can cover a wide
range of data value and avoid the data overflow issue during
the computation. To show the performance and accuracy of
the single-precision floating-point data type, we implement
two types of distance calculators: Euclidean distance and
Manhattan distance calculators. For each type of distance
calculator, we apply three different data types: I (Fixed-point:
32 bits in total, 13 bits in fractional part), II (Single-precision
floating point: 32 bits), III (Double-precision floating point: 64
bits). In the evaluation, we compare data types in each distance
calculator in terms of their accuracy, resource consumption,
and performance. All synthesized modules are set to run at
100 MHz. The fractional part of the fixed-point is set to 13
bits, which can accommodate 4 decimal digits for maintaining
enough precision. The Within-Cluster Sum of Square (WCSS)
is used as a metric for evaluating the clustering result of K-
means clustering, which is defined as

WCSS =

n∑
i=1

d(pi, bc(pi)). (9)

We measure the percent error of the fixed-point and single-
precision floating-point solution with respect to the double-

precision floating-point solution in terms of their WCSS.
The result is based on the average resource consumption,
percent error, and latency of the six experimental settings
(d). From Table IV, we can see that in the same type of
distance calculator, II (Single-precision floating point) always
maintains a much lower precision loss (I: 1.62%, II: 0.36% )
compared with I (Fixed-point) (I: 22.29%, II: 21.67%). The
high precision loss of I in distance calculation leads to a sub-
optimal result, which compromises the clustering performance.
We also see that II outperforms III because II uses only 50%
hardware elements of III on average. This helps reduce the
overall power consumption and design complexity. The result
supports our choice of using single-precision floating-point as
the major data type in TiAcc design for the trade-off between
accuracy and performance.

G. Study on the Resource Breakdown
To better understand the resource utilized by TiAcc, we

decompose the resource of each module in TiAcc FPGA-
design on the Skin NonSkin dataset.

TABLE V: Resource Decomposition for Skin NonSkin.

Module Name BRAM
18K DSP48E FF LUT

Point-level Filter 1 0 1147 851
Group-level Filter 1 3 2758 1893
Distance Calculator 0 3 13764 15429
Center Updater 7 3 14509 6544

From Table V, we observe that group-level filter takes
more compute resources than point-level filter because group-
level bound computations are more intensive than point-level
bound computations, and both of them occupy fewer memory
resources because of just caching a small number of distance
bounds. Center updater takes more memory resources due to
caching more intermediate results during updating. Distance
calculators and center updaters consume most of the FFs and
LUTs, since they demand such computing resources to han-
dle regular but intensive distance computations for sufficient
parallelism and overall throughput.

VI. CONCLUSION

In this paper, we present TiAcc that accelerates K-means
on FPGAs with triangle inequality. We highlight TiAcc K-
means in its novel multi-level triangle-inequality based filter-
ing for distance computation reduction, pipeline decoupling
for minimizing irregularity and workload imbalance, data
streaming for efficient large dataset handling, and its unique
way of combining algorithmic optimization and hardware
design in a collaborative manner to fully stretch the design
potentials. Extensive experiments show that TiAcc hardware

9



accelerator design is superior to previous research explorations
and the state-of-the-art machine learning tools in terms of its
considerable speedup, energy-efficiency, configurability, and
adaptability across various datasets. Overall, TiAcc paves a
promising way for efficient K-means acceleration on resource-
constrained systems, such as FPGAs and embedded systems.

REFERENCES

[1] A. K. Jain, “Data clustering: 50 years beyond k-means,” Pattern recog-
nition letters, vol. 31, no. 8, pp. 651–666, 2010.

[2] L. Portnoy, “Intrusion detection with unlabeled data using clustering,”
Ph.D. dissertation, Columbia University, 2000.

[3] S. Ray and R. H. Turi, “Determination of number of clusters in k-means
clustering and application in colour image segmentation,” in Proceedings
of the 4th international conference on advances in pattern recognition
and digital techniques. Calcutta, India, 1999, pp. 137–143.

[4] H. Ng, S. Ong, K. Foong, P. Goh, and W. Nowinski, “Medical image
segmentation using k-means clustering and improved watershed algo-
rithm,” in 2006 IEEE Southwest Symposium on Image Analysis and
Interpretation. IEEE, 2006, pp. 61–65.

[5] N. Dhanachandra, K. Manglem, and Y. J. Chanu, “Image segmentation
using k-means clustering algorithm and subtractive clustering algo-
rithm,” Procedia Computer Science, vol. 54, pp. 764–771, 2015.

[6] A. Coates and A. Y. Ng, “Learning feature representations with k-
means,” in Neural networks: Tricks of the trade. Springer, 2012.

[7] Y. Netzer, T. Wang, A. Coates, A. Bissacco, B. Wu, and A. Y. Ng,
“Reading digits in natural images with unsupervised feature learning,”
2011.

[8] S. Lloyd, “Least squares quantization in pcm,” IEEE transactions on
information theory, vol. 28, no. 2, pp. 129–137, 1982.

[9] M. Shindler, A. Wong, and A. W. Meyerson, “Fast and accurate k-
means for large datasets,” in Advances in Neural Information Processing
Systems 24, J. Shawe-Taylor, R. S. Zemel, P. L. Bartlett, F. Pereira, and
K. Q. Weinberger, Eds. Curran Associates, Inc., 2011, pp. 2375–2383.

[10] P. Nair and K. N. Chaudhury, “Fast high-dimensional bilateral and
nonlocal means filtering,” IEEE Transactions on Image Processing,
vol. 28, no. 3, pp. 1470–1481, March 2019.

[11] L. Jing, M. K. Ng, and J. Z. Huang, “An entropy weighting k-means
algorithm for subspace clustering of high-dimensional sparse data,”
IEEE Transactions on Knowledge & Data Engineering, 2007.

[12] C. Elkan, “Using the triangle inequality to accelerate k-means,” in
Proceedings of the Twentieth International Conference on International
Conference on Machine Learning (ICML), ser. ICML’03, 2003.

[13] G. Hamerly, “Making k-means even faster,” in Proceedings of the 2010
SIAM international conference on data mining (ICDM). SIAM, 2010.

[14] Y. Ding, Y. Zhao, X. Shen, M. Musuvathi, and T. Mytkowicz, “Yinyang
k-means: A drop-in replacement of the classic k-means with consistent
speedup,” in Proceedings of the 32Nd International Conference on
International Conference on Machine Learning, ser. ICML’15, 2015.

[15] J. Canilho, M. Véstias, and H. Neto, “Multi-core for k-means clustering
on fpga,” in 2016 26th International Conference on Field Programmable
Logic and Applications (FPL), Aug 2016, pp. 1–4.

[16] A. G. S. Filho, A. C. Frery, C. C. de Araujo, H. Alice, J. Cerqueira,
J. A. Loureiro, M. E. de Lima, M. G. S. Oliveira, and M. M. Horta,
“Hyperspectral images clustering on reconfigurable hardware using the
k-means algorithm,” in 16th Symposium on Integrated Circuits and
Systems Design, 2003. SBCCI 2003. Proceedings., Sep. 2003.

[17] H. M. Hussain, K. Benkrid, H. Seker, and A. T. Erdogan, “Fpga
implementation of k-means algorithm for bioinformatics application: An
accelerated approach to clustering microarray data,” in 2011 NASA/ESA
Conference on Adaptive Hardware and Systems (AHS), June 2011.

[18] H. M. Hussain, K. Benkrid, A. T. Erdogan, and H. Seker, “Highly
parameterized k-means clustering on fpgas: Comparative results with
gpps and gpus,” in 2011 International Conference on Reconfigurable
Computing and FPGAs, Nov 2011, pp. 475–480.

[19] C. Chung and Y. Wang, “Hadoop cluster with fpga-based hardware ac-
celerators for k-means clustering algorithm,” in 2017 IEEE International
Conference on Consumer Electronics - Taiwan (ICCE-TW), June 2017,
pp. 143–144.

[20] T. Saegusa and T. Maruyama, “An fpga implementation of k-means
clustering for color images based on kd-tree,” in Field Programmable
Logic and Applications, 2006. (FPL). IEEE, 2006, pp. 1–6.

[21] Z. He, D. Sidler, Z. István, and G. Alonso, “A flexible k-means operator
for hybrid databases,” in 2018 28th International Conference on Field
Programmable Logic and Applications (FPL), Aug 2018, pp. 368–3683.

[22] Z. Lin, C. Lo, and P. Chow, “K-means implementation on fpga for
high-dimensional data using triangle inequality,” in 22nd International
Conference on Field Programmable Logic and Applications (FPL).
IEEE, 2012, pp. 437–442.

[23] Q. Y. Tang and M. A. S. Khalid, “Acceleration of k-means algorithm
using altera sdk for opencl,” ACM Trans. Reconfigurable Technol. Syst.,
vol. 10, no. 1, pp. 6:1–6:19, Sep. 2016.

[24] J. S. S. Kutty, F. Boussaid, and A. Amira, “A high speed configurable
fpga architecture for k-mean clustering,” in 2013 IEEE International
Symposium on Circuits and Systems (ISCAS), May 2013.

[25] Xilinx, “Vivado design suite,” www.xilinx.com/products/design-tools/
vivado.html.

[26] ——, “Zynq ultrascale+ mpsoc zcu102 evaluation kit,” xilinx.com/
products/boards-and-kits/ek-u1-zcu102-g.html.

[27] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion,
O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vander-
plas, A. Passos, D. Cournapeau, M. Brucher, M. Perrot, and E. Duch-
esnay, “Scikit-learn: Machine learning in Python,” Journal of Machine
Learning Research, vol. 12, pp. 2825–2830, 2011.

[28] Itseez, “Open source computer vision library,” https://github.com/itseez/
opencv, 2015.

[29] G. Di Fatta and D. Pettinger, “Dynamic load balancing in parallel kd-
tree k-means,” in 2010 10th IEEE International Conference on Computer
and Information Technology (ICCIT), 2010.

[30] T. Kanungo, D. M. Mount, N. S. Netanyahu, C. D. Piatko, R. Silverman,
and A. Y. Wu, “An efficient k-means clustering algorithm: Analysis and
implementation,” IEEE Transactions on Pattern Analysis & Machine
Intelligence (PAMI), 2002.

[31] P. Sirait and A. M. Arymurthy, “Cluster centres determination based
on kd tree in k-means clustering for area change detection,” in 2010
International Conference on Distributed Frameworks for Multimedia
Applications, 2010.

[32] Y. Ding, X. Shen, M. Musuvathi, and T. Mytkowicz, “Top: A framework
for enabling algorithmic optimizations for distance-related problems,”
2015.

[33] Annoy, “Approximate nearest neighbors in c++/python optimized for
memory usage and loading/saving to disk,” https://github.com/spotify/
annoy.git.

[34] J. Barnes and P. Hut, “A hierarchical o (n log n) force-calculation
algorithm,” nature, vol. 324, no. 6096, pp. 446–449, 1986.

[35] D. Arthur and S. Vassilvitskii, “k-means++: The advantages of careful
seeding,” in Proceedings of the eighteenth annual ACM-SIAM sym-
posium on Discrete algorithms. Society for Industrial and Applied
Mathematics, 2007, pp. 1027–1035.

[36] A. Likas, N. Vlassis, and J. J. Verbeek, “The global k-means clustering
algorithm,” Pattern recognition, vol. 36, no. 2, pp. 451–461, 2003.

[37] D. Dheeru and E. K. Taniskidou, “UCI machine learning repository,”
2017. [Online]. Available: http://archive.ics.uci.edu/ml

[38] G. Chen, Y. Ding, and X. Shen, “Sweet knn: An efficient knn on gpu
through reconciliation between redundancy removal and regularity,” in
2017 IEEE 33rd International Conference on Data Engineering (ICDE).
IEEE, 2017, pp. 621–632.

[39] Nvidia, “kmeans clustering with multi-gpu capabilities,” git@github.
com:NVIDIA/kmeans.git.

[40] Nvidia, “Dense linear algebra on gpus,” developer.nvidia.com/cublas.
[Online]. Available: developer.nvidia.com/cublas

[41] Xilinx, “Pynq-z1 (zynq-7000-arm-fpga-soc),” https://store.digilentinc.
com/pynq-z1-python-productivity-for-zynq-7000-arm-fpga-soc/.

[42] Intel, “Xeon sliver 4110,” ark.intel.
com/content/www/us/en/ark/products/123547/
intel-xeon-silver-4110-processor-11m-cache-2-10-ghz.html.

[43] Poniie, “Pn2000 watt meter,” poniie.com/products/6. [Online]. Available:
poniie.com/products/6

[44] Nvidia, “Jetson nano development kit,” www.nvidia.com/en-us/
autonomous-machines/embedded-systems/jetson-nano/.

[45] Nvidia, “Nvidia quardo p6000,” www.nvidia.com/content/dam/en-zz/
Solutions/design-visualization/productspage/quadro/quadro-desktop/
quadro-pascal-p6000-data-sheet-us-nv-704590-r1.pdf.

[46] Nvidia, “Nvprof,” docs.nvidia.com/cuda/profiler-users-guide/index.html.

10

www.xilinx.com/products/design-tools/vivado.html
www.xilinx.com/products/design-tools/vivado.html
xilinx.com/products/boards-and-kits/ek-u1-zcu102-g.html
xilinx.com/products/boards-and-kits/ek-u1-zcu102-g.html
https://github.com/itseez/opencv
https://github.com/itseez/opencv
https://github.com/spotify/annoy.git
https://github.com/spotify/annoy.git
http://archive.ics.uci.edu/ml
git@github.com:NVIDIA/kmeans.git
git@github.com:NVIDIA/kmeans.git
developer.nvidia.com/cublas
developer.nvidia.com/cublas
https://store.digilentinc.com/pynq-z1-python-productivity-for-zynq-7000-arm-fpga-soc/
https://store.digilentinc.com/pynq-z1-python-productivity-for-zynq-7000-arm-fpga-soc/
ark.intel.com/content/www/us/en/ark/products/123547/intel-xeon-silver-4110-processor-11m-cache-2-10-ghz.html
ark.intel.com/content/www/us/en/ark/products/123547/intel-xeon-silver-4110-processor-11m-cache-2-10-ghz.html
ark.intel.com/content/www/us/en/ark/products/123547/intel-xeon-silver-4110-processor-11m-cache-2-10-ghz.html
poniie.com/products/6
poniie.com/products/6
www.nvidia.com/en-us/autonomous-machines/embedded-systems/jetson-nano/
www.nvidia.com/en-us/autonomous-machines/embedded-systems/jetson-nano/
www.nvidia.com/content/dam/en-zz/Solutions/design-visualization/productspage/quadro/quadro-desktop/quadro-pascal-p6000-data-sheet-us-nv-704590-r1.pdf
www.nvidia.com/content/dam/en-zz/Solutions/design-visualization/productspage/quadro/quadro-desktop/quadro-pascal-p6000-data-sheet-us-nv-704590-r1.pdf
www.nvidia.com/content/dam/en-zz/Solutions/design-visualization/productspage/quadro/quadro-desktop/quadro-pascal-p6000-data-sheet-us-nv-704590-r1.pdf
docs.nvidia.com/cuda/profiler-users-guide/index.html

	Introduction
	Background and Related Work
	Triangle Inequality
	Elkan's K-means
	K-means on FPGAs

	Algorithm-level Design
	Cluster Grouping
	Multi-level Filtering

	Accelerator Design
	TiAcc Architecture
	Data Batch Streaming
	Pipeline Decoupling

	Evaluation
	Experiment Settings
	Datasets
	Baselines
	Platforms
	Metrics

	Compared with CPU-based Implementations
	Compared with GPU-based Implementations
	Compared with Elkan's K-means
	Distance Computation Reduction
	Study on the Data-Type Selection
	Study on the Resource Breakdown

	Conclusion
	References

