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ABSTRACT
With the recent advancement of the Brain-Computer Interface
(BCI), Electroencephalogram (EEG) analytics gain a lot of
research attention from various domains. Understanding the
vulnerabilities of EEG analytics is important for safely apply-
ing this emerging technology in our daily life. Recent studies
show that EEG analytics are vulnerable to adversarial attacks
when adding small perturbations on the EEG data. However,
fewer research efforts have been devoted to the robustness of
EEG analytics under sparse perturbations that attack only small
portions of the data. In this paper, we conduct the first in-depth
study on the robustness of EEG analytics under sparse pertur-
bations and propose the first Sparse Adversarial eeG Attack,
SAGA, to identify weakness of EEG analytics. Specifically,
by viewing EEG data as time series collected from several
channels, we design an adaptive mask to uniformly represent
diverse sparsity in adversarial attacks. We further introduce
a PGD-based iterative solver to automatically select the time
steps and channels under the given sparsity constraints and
effectively identify the adversarial examples on EEG data. Ex-
tensive experiments show that SAGA can effectively generate
sparse perturbations and introduces a 77.02% accuracy drop
on average by only perturbing 5% channels and time steps.

1. INTRODUCTION

With the increasing popularity of Brain-Computer Interface
(BCI), numerous research and industry efforts have been de-
voted to analyze the data and facilitate better designs. One of
the most important designs is Electroencephalography (EEG)
based BCI due to its convenience, which collects the brain
electrical activity by attaching metal electrodes to the scalp. In
particular, given C electrodes and a time period T , it collects
C-channel values at each time step and generate a C × T
matrix as the EEG data. Recent studies [1–4] show that, when
analyzing the EEG data with deep neural networks (DNN), we
can usually achieve high accuracy across various BCI tasks,
such as emotion recognition [5], intention recognition [6, 7],
and epileptic seizure detection [8, 9].

Such wide applications of EEG analytics motivate the
investigation of their robustness and reliability. One initial
study [10] shows that adversarial attacks from the computer
vision domain, such as FGSM [11] and iFGSM [12], can also
dramatically change the outputs of EEG models by introducing
perturbations on the EEG data. This approach assumes a strong

Fig. 1: Overview of SAGA

attack capability that perturbs all time steps and all channels.
However, it ignores the intrinsic channel interaction in EEG
data that each channel represents a brain area and multiple
brain areas interact to perform a specific task. It also ignores
the importance of exploiting temporal propagation in EEG
data, since EEG data from each channel across time steps can
be viewed as time series.

In this paper, we focus on the sparse adversarial attack
on EEG analytics with a weak assumption on attack capabil-
ity that only sparsely attacks a small portion of channels and
time steps. In practice, such sparse perturbations could come
from the failure of a few channels or electrodes (e.g., 3 out
of 64 electrodes) at a small portion of time steps. However,
it is a non-trivial task because of several challenges. First,
we need a uniform optimization framework to formulate the
attacking capability under various sparsity constraints. While
existing works [13] usually rely on regularization techniques
to implicitly introduce sparsity, this framework should be able
to explicitly apply sparsity constraints on both the time- and
channel-dimensions. Second, a sophisticated method is re-
quired to effectively solve the optimization problem under
given sparsity constraints. Existing works with stochastic
gradient descent (SGD) cannot solve the problem under con-
straints and usually require ad-hoc modifications [14, 15] on
gradients to satisfy the constraints.

To tackle these challenges, we propose SAGA to enable
the sparse adversarial attack on EEG analytics, as illustrated
in Figure 1. First, we propose an adaptive mask on the time di-
mension and the channel dimension, which uniformly encodes



diverse sparsity constraints. Second, we propose a projection
gradient descent (PGD) based iterative solver to effectively
generate adversarial examples while satisfying sparsity con-
straints with theoretical support. Extensive experiments on
mainstream EEG datasets and models show that SAGA can
effectively degrade accuracy by 77.02% under 5% sparsity
constraints.

2. BACKGROUND AND RELATED WORK

EEG-based Brain-Computer Interface. EEG plays an im-
portant role in many Brain-Computer Interface (BCI) appli-
cations, such as emotion recognition [5] and epileptic seizure
detection [8, 9]. EEG data is collected across a time period by
a set of electrodes attached to the scalp. At each time step t of
a time period, C electrodes collect C scalar values to describe
the human brain state

X1,t, X2,t, ..., XC,t, t ∈ {1, 2, ..., T} (1)

During this time period, the person under test is asked to
behave in a specific way (e.g., moving hand or foot), which
serves as the ground truth label Y .

In EEG analytics, we usually treat the collected EEG data
X ∈ RC×T as features and build models to predict the behav-
ior Y . Existing works on EEG analytics usually rely on manual
feature extraction [16–18], leading to significant manual ef-
forts. Recent studies [1–4] introduce deep learning into EEG
analytics to automatically learn the features, showing signifi-
cant improvement in accuracy. In this paper, we will provide a
thorough study of the robustness of the deep-learning-based
EEG analytics.

Adversarial Attack. Adversarial attack changes the deep
learning prediction by adding small feature perturbations to
the input data. It widely exists in various deep learning do-
mains [11,12,19] (e.g., computer vision and audio recognition).
One popular attacking method on computer vision models
is the fast gradient sign method (FGSM) [11] that utilizes
gradients to generate feature perturbations. Another method,
iFGSM [12], strengthens the adversarial attack by iteratively
applying the FGSM. One recent study [10] has shown that
these two methods can also attack deep learning models for
EEG analytics. However, it assumes attacking all channels
and all time steps simultaneously and cannot work effectively
under sparsity constraints that attacking only a small portion
of channels and time steps. In this paper, we propose SAGA,
the first sparse adversarial attack on EEG analytics.

3. PROPOSED METHOD

We first define notations in this paper. We consider an input
EEG data X ∈ RC×T , where C is the number of channels
and T is the length of the time period. A single ground truth
label Y exists during this time period, indicating a specific user
behavior (e.g., moving hand or foot). Following the common
practice in EEG analytics, there is a deep learning model fW (·)
that makes a prediction with the EEG data X and the model

parameter W . Here, W is learned by minimizing the cross-
entropy loss `(X,Y ).

3.1. Adaptive Mask
We propose an adaptive mask to uniformly formulate the EEG
attack under diverse sparsity constraints. On the channel di-
mension, we propose the channel mask θ ∈ [0, 1]C to encode
two attack properties. First, a large magnitude of the value
θc for channel c indicates that channel c plays an important
role in attacking EEG analytics. Second, a zero value θc for
a channel c indicates that this channel will not involve in the
adversarial attack under the sparsity constraints. Formally,
given an un-constrained feature perturbation Xδ ∈ RC×T ,
we represent the constrained perturbation X̃ ∈ RC×T under
channel mask θ with left matrix multiplication

X̃ = diag(θ) ·Xδ (2)

Here, the left multiplication provides a row-wise selection in
the channels according to the positions that θc > 0. When
generating adversarial perturbations, we apply a cardinality
constraint card(θ) < εθ on the channel mask to explicitly
encourage channel selection. Here, card(·) is the cardinality
function that counts the number of non-zero values.

On the temporal dimension, we propose the temporal mask
M ∈ [0, 1]T to select the time steps for the attack. Here, we
also apply a cardinality constraint card(M) < εM on the
temporal mask such that only a small portion of time steps are
attacked. Different from the channel mask, we adopt the right
matrix multiplication to provide a column-wise selection in
the time steps according to the positions that Mt > 0

X̃ = Xδ · diag(M) (3)

In SAGA, we uniformly encode both sparsity constraints in
the channel dimension and the temporal dimension as

X̃ = diag(θ) ·Xδ · diag(M) (4)

Here, various sparsity constraints on the time steps and chan-
nels can be uniformly encoded by independently applying
sparsity constraints on θ and M . From an element-wise per-
spective, we have

X̃ij = θiMjXδ,ij (5)

where a perturbation Xδ,ij at channel i and time step j is
allowed only if both θi and Mj are non-zero values.

With the adaptive mask, we formulate the sparse attack
on EEG data as a non-convex optimization problem under
constraints. Formally, during attack, we aim to solve the
following optimization problem

min
θ,M,Xδ

− `(X + diag(θ) ·Xδ · diag(M), Y )

s.t. card(θ) ≤ εθ, card(M) ≤ εM
(6)

Here, θ ∈ RC×T and M ∈ RC×T selects channels and time
steps, respectively. εθ and εM are user-specified attacking



capability on the channel dimension and the temporal dimen-
sion. Our attack method generates sparse perturbations to
degrade the model prediction accuracy while satisfying the
given constraints of εθ and εM .

3.2. PGD-based Iterative Solver
While the adaptive mask effectively encodes the sparsity in
channels and time steps, it is still challenging to solve the
optimization problem 6. While existing approaches usually
attack with stochastic gradient descent (SGD), it cannot be eas-
ily adapted to solve optimization problems under constraints
without ad-hoc modifications on the gradients. In addition,
the cardinality constraints in Equation 6 is non-differentiable,
which makes it even harder to adopt SGD.

To this end, we propose a PGD-based iterative solver to
effectively solve Equation 6, as summarized in Algorithm 1. It
shows merits in automatically selecting the channel mask and
the temporal mask under sparsity constraints while effectively
generating adversarial examples under the selected masks. We
first reformulate the equation 6 as

min
θ,M,Xδ

− `(X + diag(θ) ·Xδ · diag(M), Y )

+ h1(θ) + h2(M)
(7)

where h1(θ) and h2(M) are two indicator functions. In partic-
ular, h1(θ) = 0 if card(θ) ≤ εθ; = ∞, otherwise. Similarly,
we have h2(M) = 0 if card(M) ≤ εM ; = ∞, otherwise.
Then, we iteratively attack one of the variables while keeping
other variables fixed.

At each iteration k, we first attack the channel mask θ while
fixing the temporal mask M and the unconstrained feature
perturbation Xδ

θ(k+1) = ΠS1 [θ(k) + ηkg
(k)
θ ]

g
(k)
θ =

∂

∂θ
`(Y,X + diag(θ)X

(k)
δ diag(M (k)))

(8)

Here, S1 = {θ ∈ [0, 1]C | card(θ) ≤ εθ} and ΠS1
(·) is a

projection operation. Generally, the projection operation is
hard to compute and may involve an additional iterative proce-
dure that is time-consuming. However, S1 shows geometric
properties that restrict the solution to grid points, which can be
exploited to solve analytically. To this end, we introduce the
cardinality projection [20] to efficiently compute the channel
mask θ. In particular, ΠS1

ranks elements in θ(k) + ηkg
(k)
θ by

its magnitude and keeps only the top-εθ elements. Similarly,
we can select the temporal mask with

M (k+1) = ΠS2 [M (k) + ηkg
(k)
M ]

g
(k)
M =

∂

∂M
`(Y,X + diag(θ(k+1))X

(k)
δ diag(M))

(9)

Here, S2 = {M ∈ [0, 1]T | card(M) ≤ εM} and ΠS2(·) is
the cardinality projection operation. Once we have selected
the channel mask θ(k+1) and the temporal mask M (k+1), we

Algorithm 1: Iterative Attack to solve Problem 6.
1 Input: Given X, fixed weight W , learning rate ηk, and

iteration number K
2 Randomly initialize θ(1), M (1), and X(1)

δ .
3 for k = 1, 2, ...,K do
4 Channel Selection on θ:
5 θ(k+1) = ΠS1 [θ(k) + ηkg

(k)
θ ] with Eq 8.

6 Frame Selection on M :
7 M (k+1) = ΠS2 [M (k) + ηkg

(k)
M ] with Eq 9.

8 Perturbation Generation on Xδ:
9 X

(k+1)
δ = X

(k)
δ + ηkg

(k)
X with Eq 10.

10 end
11 Return channel mask θ(K), frame mask M (K), and feature

perturbation X(K)
δ .

update the unconstrained feature perturbation as

X
(k+1)
δ = X

(k)
δ + ηkg

(k)
X

g
(k)
X =

∂

∂Xδ
`(Y,X + diag(θ(k+1))Xδdiag(M (k+1)))

(10)

4. EVALUATION

In this section, we evaluate SAGA on three EEG datasets
and compare SAGA with two attack algorithms to show its
effectiveness.

Dataset. We evaluate on three datasets from the EEG
repository MNE [21] to cover the vast majority of EEG an-
alytics. In particular, we utilize SPM dataset [22] on face
perception, MI dataset [23, 24] on motor imagery, and ERP
dataset [21] on visual-audio stimulus.

Models. We focus on two popular deep learning models
from the open-source arl-eeg repository [25] – EEGNet [1] and
DeepConv [2]. These two models have been widely utilized in
analyzing visual stimulus, movement-related cortical potential,
and sensorimotor rhythm. We use the default parameter setting
in arl-eeg repository.

Baselines and Metrics. To evaluate the effectiveness of
SAGA, we compare it with two state-of-the-art attack methods
on EEG analytics [10] – FGSM [11] and iFGSM [12]. To
enable these attack methods to generate adversarial examples
under sparsity constraints, we uniformly sample the channels
and time steps that allow the attack. By contrast, SAGA auto-
matically selects channels and time steps to attack under the
same sparsity constraints.

During the evaluation, we report the accuracy to show
the effectiveness of adversarial attacks. To measure the per-
ceptibility, we report the L2 norm as a global measurement
and the distortion as a local measurement. Formally, given
the clean EEG data X ∈ RC×T and a sparse perturbation
∆ ∈ RC×T , we have norm = ||∆||2 and Distortion =
maxc,t|∆c,t|/maxc,t|Xc,t|. In addition, we report the time
sparsity on the time dimension, measured by the number of



Dataset Method EEGNet DeepConv
Acc. (%) Norm Acc. (%) Norm

SPM

Clean 94.12 - 85.29 -
FGSM 70.59 112.9 61.76 112.9
iFGSM 70.59 112.8 58.82 112.7
SAGA 0 112.1 0 111.2

MI

Clean 99.4 - 66.67 -
FGSM 88.89 164.3 66.67 164.3
iFGSM 88.89 161.3 55.56 133.3
SAGA 11.11 155.2 11.11 132.3

ERP

Clean 91.67 - 72.22 -
FGSM 54.17 1.94 63.89 1.94
iFGSM 54.17 1.89 63.89 1.89
SAGA 16.67 1.86 8.33 1.84

Table 1: Overall performance under 5% sparsity constraint.
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Fig. 2: Minimum distortion under diverse sparsity to fool
EEGNet on SPM with 0% accuracy.

attacked time steps over the total number of time steps. Simi-
larly, we have the channel sparsity on the channel dimension.
Due to the page limit, we will focus on the same level of time
sparsity and channel sparsity.

4.1. Overall Performance
Table 1 shows the overall performance comparison between
SAGA and existing adversarial attacks under 5% sparsity con-
straint on both the time and channel dimensions. For a fair
comparison, we use the same distortion for all methods. We
observe that SAGA introduces 77.02% accuracy drop on aver-
age. Comparing with baseline methods, SAGA outperforms
FGSM and iFGSM by 59.79% and 57.45%, respectively. The
main benefit comes from the automatic selection of channels
and time steps, indicating that different channels and time
steps play different roles in EEG analytics. In addition, we
observe that SAGA can usually achieve lower accuracy with a
lower norm. This result shows that the adversarial examples
from SAGA is less noticeable.

4.2. Ablation Study
In ablation study, we focus on EEGNet and SPM dataset due to
the similar performance of SAGA across models and datasets.

Minimum Distortion under Diverse Sparsity. Figure 2
shows, under each sparsity, the minimum distortion required
to fool EEGNet on SPM with 0% accuracy. Higher distor-
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Fig. 3: Visualization of selected masks. (a) Channel mask.
Blue and red area indicates the selected channels. (b) Temporal
mask. One indicates selected time steps.

tion usually leads to better attack effect, but also makes the
adversarial example more perceptible. Overall, we observe
that smaller distortions are required to fool the EEGNet on
SPM as the sparsity increases. The reason is that it is easier
to attack the model when perturbing more channels and time
steps. We also observe that, for sparsity larger than 5%, a
small distortion of less than 5% relative to the clean EEG data
is sufficient to attack the model. This result shows that, even
in generating sparse perturbations, we do not need to add large
distortions on individual channels and time steps.

Visualization of Temporal Mask and Channel Mask.
Figure 3 visualizes the selected time steps and channels under
5% sparsity. On the channel dimension, we observe that the
selected channels clusters in a small brain area. This result
shows that nearby brain areas usually collaborate to perform
certain behaviors and sparse perturbations on a small area are
sufficient for attacking EEG analytics. On the time dimension,
we observe that SAGA attacks only on small contiguous time
periods while not attacking on other time periods. The main
reason is that EEG data can be essentially viewed as time series
data and attacking at one time step can effectively propagate
to other time steps.

5. CONCLUSION

This work focuses on the adversarial attack for EEG analytics
under sparsity constraints. We propose SAGA, the first sparse
attack to identify the weakness of the EEG analytics. In partic-
ular, SAGA utilizes an adaptive mask to uniformly formulate
diverse sparsity constraints and a PGD-based iterative solver
to automatically select the time and channels to attack. Exten-
sive evaluations further highlight SAGA’s advantage against
state-of-the-art attacks on a large set of models and datasets.
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