
SGQuant: Squeezing the Last Bit on Graph Neural
Networks with Specialized Quantization

Boyuan Feng*, Yuke Wang*, Xu Li, Shu Yang, Xueqiao Peng, and Yufei Ding
University of California, Santa Barbara, USA

{boyuan,yuke_wang,shuyang1995,yufeiding}@cs.ucsb.edu
{lixu9906,ameliapxq0131}@gmail.com

Abstract—With the increasing popularity of graph-based learn-
ing, Graph Neural Networks (GNNs) win lots of attention from
research and industry field because of their high accuracy.
However, existing GNNs suffer from high memory footprints (e.g.,
node embedding features). This high memory footprint hurdles
the potential applications towards memory-constrained devices,
such as the widely-deployed IoT devices. To this end, we propose
a specialized GNN quantization scheme, SGQuant, to system-
atically reduce the GNN memory consumption. Specifically,
we first propose a GNN-tailored quantization algorithm design
and a GNN quantization fine-tuning scheme to reduce memory
consumption while maintaining accuracy. Then, we investigate
the multi-granularity quantization strategy that operates at
different levels (components, graph topology, and layers) of GNN
computation. Moreover, we offer an automatic bit-selecting (ABS)
to pinpoint the most appropriate quantization bits for the above
multi-granularity quantizations. Intensive experiments show that
SGQuant can effectively reduce the memory footprint from 4.25×
to 31.9× compared with the original full-precision GNNs while
limiting the accuracy drop to 0.4% on average.

I. INTRODUCTION

Recently, Graph Neural Networks (GNNs) emerge as a new
tool to manage various graph-based deep learning tasks (e.g.,
node classification [1]–[3] and link prediction [4]–[6]). In the
comparison with standard methods for graph analytics, such
as random walk [7], [8] and graph laplacians [9]–[11], GNNs
highlight themselves with significantly higher accuracy [12]–
[14] and better generality [15]. In addition, the well-learned
GNNs [12]–[15] can be easily applied towards different types
of graph structures or dynamic graphs without much re-
computing overhead.

However, the GNNs featured with high memory footprint
prevent them from being effectively applied towards the vast
majority of resource-constrained settings, such as embedded
systems and IoT devices, which are essential for many do-
mains. There are two major reasons behind such an awkward
situation. First, the input of GNNs consists of two types
of inputs, graph structures (edge list) and node features
(embeddings), which would easily lead to a dramatic increase
in their storage sizes when the graph becomes large. This
will stress the very limited memory budgets of those small
devices. Second, the larger size of graphs demands more
data operations (e.g., addition and multiplication) and data
movements (e.g., memory transactions), which will consume
lots of energy and drain the limited power budget on those
tiny devices. To tackle these challenges, data quantization
can emerge as an “one-stone-two-bird” solution for resource-
constrained devices that can 1) effectively reduce the memory

*The first two authors contribute equally.

size of both the graph structure and node embeddings, leading
to less memory usage; 2) effectively minimize the size of
manipulated data, leading to less power consumption.

Nevertheless, an efficient approach for GNN quantization
is still missing. Existing approaches may 1) choose a simple
yet aggressive uniform quantization to all data to minimize
memory and power cost, which leads to high accuracy loss;
2) choose a very conservative quantization to maintain ac-
curacy, which leads to sub-optimal memory and energy-
saving performance. While numerous works have been ex-
plored for quantization on CNNs [16]–[19], directly applying
these existing techniques without considering GNN-specific
properties, would easily result in unsatisfactory quantization
performance. To address these problems, we believe that three
critical questions are noteworthy: 1) what types of data (weight
or features) should be quantized? 2) what is the efficient
quantization scheme suitable for GNNs? 3) How to determine
the quantization bits?

98.44%

99.89%

1.56%

0.11%

95.0% 96.0% 97.0% 98.0% 99.0% 100.0%

Citeseer

PubMed

Feature (%) Weight (%)

Fig. 1: GAT Feature/Weight Memory Size Ratio.

To answer these questions, we make the following obser-
vations: a) quantization on node embedding features is more
effective. As shown in Figure 1, the features take up to
99.89% of the overall memory size, which demonstrates their
significant memory impact; b) GNNs computing paradigms are
different across different layers, different graphs nodes, differ-
ent components. And these differences could be leveraged as
the major ”guideline” for enforcing more efficient character-
driven quantization.

Based on these observations, we make the following con-
tributions in this paper to systematically quantize GNNs, as
illustrated in Figure 2.

• We propose a GNN-tailored quantization algorithm de-
sign to reduce memory consumption and a GNN quanti-
zation finetuning to maintain the accuracy.

• We propose a multi-granularity quantization featured with
component-wise, topology-aware, and layer-wise quanti-
zation to meet the diverse data precision demands.

• We propose end-to-end bits selecting in an automatic
manner that makes the most appropriate choice for the
aforementioned different quantization granularities.

SGQuantMulti-Granularity

Layer-wise
Quantization

Topology-Aware
Quantization

Component-wise
Quantization

Auto-bit
Selection

(ABS)

GNN-
tailored
Design

Fig. 2: Overview of SGQuant.

• Rigorous experiments show SGQuant can reduce the
memory up to 31.9× (from 4.25×) compared with the
original full-precision model meanwhile limiting the ac-
curacy to 0.4% on average.

II. BACKGROUNDS AND RELATED WORK

In this section, we will first introduce the basics of Graph
Neural Networks (GNNs), and then give some background
knowledge of applying data quantization on GNNs.

A. Graph Neural Network

Graph Neural Networks (GNNs) are now becoming the
major way of gaining insights from the graph structures. It
generally includes several graph convolutional layers, each of
which consists of two components: an Attention Component
and a Combination Component, as illustrated in Figure 3. For-
mally, given two neighboring nodes u and v (i.e., u ∈ N (v)),
and their node embedding hku ∈ RD and hkv ∈ RD at layer
k, GNNs first use the attention component to measure the
relationship between these two nodes:

αk
u,v = Attention(hk

u, h
k
v ,Wk

att|u ∈ N (v)) (1)

One instantiation of the attention component is a single-layer
neural network that concatenates the node embedding hku and
hkv , and multiplies with the attention weight matrix Wk

att,
as the case in GAT [14]. Note that GCN [12] is a special
case that has the attention weight matrix with all elements
equaling to one. Overall, αk ∈ RN×N is an attention matrix
measuring the pairwise relationship between nodes, whose
memory consumption increases quadratically as the number
of nodes N increases.

Then, GNN computes the node embedding hk+1
v for node

v at layer k + 1 with the combination component:

hk+1
v = Combination(hk

v , h
k
u, a

k
u,v,Wk+1

com |u ∈ N (v)) (2)

One popular instantiation of the combination component is to
1) average over embeddings from neighboring nodes weighted
by the attention matrix alpha; and 2) multiply the averaged
embedding with a combination weight W k+1

com :

hk+1
v =W k+1

com ·
∑

u∈N (v)

αk
u,vh

k
u (3)

For each layer k, GNNs have Nk-dimension embedding vector
for each node and an embedding matrix hk ∈ RN×Nk

when storing all embeddings for N nodes. This embedding
matrix will increase linearly with the number of nodes N
and introduce heavy memory overhead for large graphs (e.g.,
Reddit [20] with 232, 965 nodes).

hu

hv

v1u

= Combination

(, , αu,v, Wcom,k+1) hv
k hv
khu

khu
k

hu
K+1hu
K+1
= Combination

(, , αu,v, Wcom,k+1) hv
khu

k

hu
K+1

hu1

hu2

hu3

Combination Computation

hv

αv,u1

αv,u2

αv,u3
k k

kk

k k

k

k

hv
K+1hv
K+1

 = Attention(hv, hu, Watt, k) αu,v
k = Attention(hv, hu, Watt, k) αu,v
k

hu1

Attention Computation

αv,u1
k

k

k

hu1

Attention Computation

αv,u1
k

k

k

αvu1

u3

u1u2 v
k

Fig. 3: Example illustrating the standard GNNs. v, u1, u2, and
u3 stands for four graph vertices and hkv refers to the feature
vector for node v at the kth layer.

Besides the concepts of Layer and Component, GNNs also
consider the third concept – Topology. The topology of GNNs
characterizes the graph structure based on the properties of
nodes and the edge connections among them.

B. Quantization
Numerous works of quantization mostly focus on data

compression around Convolutional Neural Networks (CNNs).
Song et al. [16] reduces the size of CNNs without accu-
racy loss by network pruning, weight quantization, post-
quantization network fine-tuning. Ron et al. [17] offers a post-
training quantization targeting at weights and activations and
minimizes memory consumption at the tensor level. Z. Chen
et al. [18] proposes ternary-value based weight quantization
to reduce the size of neural networks with minimal accuracy
loss. Darryl [19] introduces a layerwise quantizer for fixed-
point implementation of DNNs.

Despite such great success in CNNs, efficient GNN quanti-
zation is yet to come. And we believe that GNNs have great
potential for quantization. There are several reasons, 1) GNN
architectures display different levels of computation hierarchy,
which allow for more specialized quantization based on their
properties (e.g., different quantization strategies for nodes with
different degrees, or for layers with different hidden dimen-
sions), which facilitates a fine-grained quantization scheme
based on the types of operations, whereas CNNs have fixed
shape of all feature maps that pass through the same set of
NN layers; 2) GNNs are more diverse in their inputs, such
as graph topologies (e.g., edge connections) and node features
(embeddings), which enable quantization based on the cate-
gories of the data. Overall, we are the first to systematically
and comprehensively explore the quantization on GNNs by
exploiting graph properties and GNN architecture.

III. GNN-TAILORED QUANTIZATION

In this section, we introduce our GNN-tailored quantization
to convert a full-precision GNN to a quantized GNN with
reduced memory consumption.

A. Quantization Algorithm Design
Two key designs differentiate our GNN quantization from

existing work on CNN quantizations. First, SGQuant quantizes
both the attention matrix αk ∈ RN×N and the embedding
matrix hk ∈ RN×Dk , while the CNN quantization gener-
ally only considers feature quantization due to the intrinsic
model difference between GNNs and CNNs. Second, when
assigning different quantization bits for the attention matrix

2

and the embedding matrix, SGQuant contains a “rematching”
mechanism that matches their quantization bits and enables
the computation in Equation 3.

Formally, given a quantization bit q and the 32-bit attention
matrix αk ∈ RN×N computed from Equation 1, we quantize
it as a q-bit attention matrix

αk,(q) =

⌊
αk − αmin

scale

⌋
. (4)

where αmin is an empirical lower bound of the attention
matrix values, scale is the ratio between the attention matrix
range and the q-bit representation range, and b·c is the floor
function. Specifically, we evaluate the GNN on large graph
benchmarks and collect the statistics on its attention matrices,
including the minimal value αmin, the maximum value αmax.
Then, we can compute a 32-bit scale parameter on the ratio
as the feature range αmax−αmin over the q-bit representation
range 2q . While Equation 1 generates a 32-bit attention matrix
αk ∈ RN×N requiring 32 × N × N -bit memory space, our
quantized q-bit attention matrix requires only q ×N ×N -bit
memory space. In this way, our quantization on the attention
matrix reduces the memory consumption to q/32 of its full-
precision version. In particular, once we have computed the 32-
bit attention value αku,v , we can immediately quantize it into a
q-bit value and store it in the memory. Similarly, given a quan-
tization bit p and the 32-bit embedding matrix hk ∈ RN×Dk

from Equation 3, we can generate a p-bit embedding matrix
hk,(p) that reduces the memory consumption to p/32 of its
full-precision version.

Suppose we assign different quantization bits p and q to the
attention matrix and the embedding matrix, there would be
an “unmatching bit” problem in Equation 3 that the attention
value αk,(q)u,v and the embedding hk,(p)u have unmatching bits.
To solve this problem, we propose a “rematching” mechanism
that recovers the quantized value to 32-bit value before these
values enter the combination component. Specifically, we
compute the recovered 32-bit attention as αk,(q)

′

u,v = scale ·
α
k,(q)
u,v + αmin. Similarly, we can compute the recovered 32-

bit embedding hk,(p)
′

v . Feeding these recovered values into the
combination component, we can compute the Equation 3 as

hk+1
v =Wk+1

com ·
∑

u∈N (v)

αk,(q)′
u,v hk,(p)′

u (5)

Note that the “rematching” mechanism introduces negligible
memory overhead since, when we compute the node embed-
ding hk+1

v , we only recover a small set of nodes u that have
edge connections with the node v. In addition, the Wk+1

com
here is a 32-bit value since SGQuant only quantizes the GNN
features as discussed in Figure 1. Similarly, we can compute
the attention component at layer k as

αk
u,v = Attention(hk,(p)′

u , hk,(p)′
v ,Wk

att|u ∈ N (v)) (6)

where the αku,v is a 32-bit value and can be quantized into q-
bit values with Equation 4. Due to this similarity, we will
only discuss quantizing the combination component in the
following sections.

B. GNN Quantization Finetuning
One challenge in GNN quantization is that directly applying

the quantization to GNNs during inference usually leads to

high accuracy loss up to 10%. This accuracy loss can be
largely recovered to less than 0.5% when we finetune the
quantized GNNs. Note that this finetuning procedure only
needs to be conducted once for a quantized GNN model.
Overall, SGQuant uses the same loss as the original GNN
model (e.g., negative log-likelihood (NLL) for semi-supervised
node classification task). On the backpropagation related to
GNN quantization, we derive the gradient as follows

∂L

∂α
k,(q)′
u,v

=Wk+1
com · (

∂L

∂hk+1
v

· hk,(p)′
u +

∂L

∂hk+1
u

· hk,(p)′
v)

∂L

∂αk
u,v

=
∂L

∂α
k,(q)′
u,v

· scale · ∂α
k,(q)
u,v

∂αk
u,v

(7)

Note that the computation of αk,(q) uses a floor function
b·c, whose gradient is zero almost-everywhere and hinders
the backpropagation. Our SGQuant uses the straight-through
estimator that assigns the gradient

∂αk,(q)
u,v

∂αk
u,v

to be 1/scale. To

this end, we can rewrite the gradient ∂L
∂αk

u,v
in Equation 7 as

∂L

∂αk
u,v

=
∂L

∂α
k,(q)′
u,v

· scale · ∂α
k,(q)
u,v

∂αk
u,v

=
∂L

∂α
k,(q)′
u,v

(8)

We implement a tailored GNN quantization layer in PyTorch-
Geometric [21] that enables both the quantized inference and
the backpropagation, such that SGQuant can easily conduct
end-to-end finetuning.

IV. MULTI-GRANULARITY QUANTIZATION

When designing our specialized graph quantization
(SGQuant) method, the quantization granularity is an im-
portant aspect to be considered. In this section, we propose
four different types of granularity: component-wise, topology-
aware, layer-wise, and uniform, as illustrated in Figure 4. The
simplest granularity is the uniform quantization, which applies
the same quantization bits to all layers and components in the
GNN. It helps reduce the memory consumption by replacing
the 32-bit values with the corresponding q-bit quantized data
representation. However, when applying the same quantization
bit to all layers, nodes, and components, we ignore their
different sensitivity to quantization bits and the introduced
numerical error, leading to degraded accuracy. To this end, we
need the quantization at finer granularity to cater the different
sensitivity.

A. Component-wise Quantization
Component-wise Quantization (CWQ) considers the quanti-

zation sensitivity at each GNN component and applies differ-
ent quantization bit to different components, as illustrated in
Figure 4(a). In each layer, modern GNNs usually contain the
attention component for measuring the relationship for each
pair of nodes, and the combination component for computing
the embedding hk+1

v for the next layer. While the combination
component is critical for providing fine-grained features for
the next GNN layer, the attention component usually only
provides a coarse-grained hint on the importance of one node
u to another node v. Our key insight is that the attention
component is more robust to the numerical error in the GNN
quantization compared to the combination component. Thus,

3

Layer-2

Layer-1

(a) (d)(c)

Layer-2

Layer-1

(b)

Layer-1

Layer-2
Quantization

hu

hv

hu3

Combination Computation

hv

αv,u1

αv,u2

αv,u3
k

k

k

k

k

k

hv
K+1hv
K+1

hu1

Attention Computation

αv,u1
k

k

k

hu1

Attention Computation

αv,u1
k

k

k

Quantization

Quantization

Quantization

hu2
khu2
k

hu1
khu1
k

Attention

Combination

Quantization
hu

hv

hu3

Combination Computation

hv

αv,u1

αv,u2

αv,u3
k

k

k

k

k

k

hv
K+1

hu1

Attention Computation

αv,u1
k

k

k

Quantization

Quantization

Quantization

hu2
k

hu1
k

Attention

Combination

Fig. 4: Multi-Granularity Quantization: (a) Component-wise, (b) Topology-aware, (c) Layer-wise, and (d) Uniform Quantization.
NOTE: the same color represents the same quantization bit.

we can usually apply a lower quantization bit on the attention
component than the combination component.

Formally, CWQ maintains a quantization configuration

{att : qatt, com : qcom} (9)

for the quantization bits of each GNN component (i.e., att
for the aggregation component and com for the combination
component), where qatt and qcom are the quantization bits
for the attention and the combination component, respectively.
During the quantization, we will check the quantization bits
for each component and conduct quantization correspondingly.
Formally, we compute the quantized attention matrix αk,(qatt)

and the quantized embedding hk,(qcom), as described in Equa-
tion 4. Note that the scale parameter in Equation 4 varies for
components according to the assigned quantization bit qatt
and qcom. While CWQ may lead to multiplying two values
with ”unmatching” bits during the combination component,
we can resolve with the ”rematching” mechanism in Equation
5. In particular, during combination, we first recover the
quantized component values αk,(qatt)

u,v and h
k,(qcom)
u to their

corresponding 32-bit representation α
k,(qatt)

′

u,v and h
k,(qcom)′

u ,
then compute with 32-bit values

hk+1
v =W k+1

com ·
∑

u∈N (v)

αk,(qatt)
′

u,v hk,(qcom)′
u (10)

B. Topology-aware Quantization

Topology-aware Quantization (TAQ) exploits the graph
topology information and applies different quantization bits
for different nodes based on their most essential topology
property – degree, as illustrated in Figure 4(b). In GNN
computation, nodes with higher degrees usually have more
abundant information from their neighboring nodes, which
makes them more robust to low quantization bits since the
random error from quantization can usually be averaged to 0
with a large number of aggregation operation. In particular,
given a quantization bit q, the quantization error Erroru of
each node u is a random variable and follows the uniform
distribution Erroru ∼ U(− range2q , range2q) where range repre-
sents the difference between the maximum embedding value
and the minimum embedding value. For a node with a large
degree, we will aggregate a large number of Erroru and

func Fbit(degree):
 std_qbit = [1, 2, 4, 8]
 split_point = [D1, D2, D3]
 if degree in [0, D1):

return std_qbit[3]
 if degree in [D1, D2):

return std_qbit[2]
 if degree in [D2, D3):

return std_qbit[1]
 if degree in [D3, +inf):

return std_qbit[0]

(a)

(b)

Node ID Degree QBit

Node-1 17 Fbit(17)

Node-2 9 Fbit(9)

Node-3 5 Fbit(5)

Node ID Degree QBit

Node-1 17 Fbit(17)

Node-2 9 Fbit(9)

Node-3 5 Fbit(5)

(b)

1

2

3

Fig. 5: Topology-aware Quantization.

Errorv from the node u and its neighboring nodes v and
the average results will converge to 0 following the law of
large numbers [22]. To this end, nodes with a large degree are
more robust to the quantization error and we can use smaller
quantization bits to these high-degree nodes.

Formally, TAQ maintains a quantization configuration that
are selected according to the node degrees

{[Dj , Dj+1) : qDj | j ∈ [0, 1, 2, 3]} (11)

where the features of a node are assigned the quantization
bit qDj if the node degree falls into [Dj , Dj+1). Here, we
set D0 = 0 and D4 = +∞, as illustrated in Figure 5.
Suppose there are three nodes: node-1, node-2 and node-3,
which have the node degree 17, 9, and 5 respectively. Our
TAQ determines the quantization bits of each node based
on their degrees. To get the appropriate quantization bit for
different nodes, we propose and implement a Fbit function, as
illustrated in Figure 5(b). We first create the most commonly
used quantization bits as a template list (stdqbit), and pre-
define the degree split point list [D1, D2, D3]. Fbit function
maps the nodes with corresponding quantization bits based
on their degrees. The strategy behind such a mapping is to
maintain higher quantization bits for low-degree nodes, while
penalizing high-degree nodes with low bit quantization.

Once we have assigned different quantization bits qu to
different nodes u, there are still “unmatching” bits problem
across nodes, similar to the “unmatching” problem across
components. We can use the “rematching” technique on node

4

embeddings and compute the combination component as

hk+1
v =Wk+1

com ·
∑

u∈N (v)

αk
u,vh

k,(qu)′
u (12)

where αku,v is a 32-bit value. TAQ does not quantize the
attention matrix since we consider only the first-order topology
information and skip second-order topology information that,
for an edge uv, two nodes u and v have different degrees.

C. Layer-wise Quantization

The Layer-wise Quantization (LWQ) exploits the diverse
quantization sensitivity in individual GNN layers and provides
different quantization bits to each layer. Our key motivation is
that leading layers usually take the detailed data and capture
the low-level features while the succeeding layers usually
abstract these low-level details into high-level features. To this
end, leading layers require large quantization bits to represent
the low-level details while the succeeding layers need only
small quantization bits for storing the high-level features. Our
evaluation empirically confirms that, under the same memory
consumption, assigning higher bits to the leading layers gen-
erally leads to higher accuracy, compared to assigning higher
bits to the succeeding layers.

Formally, LWQ maintains a quantization configuration

{k : qk | k ∈ [1, 2, ..., n]} (13)

where qk is the quantization bit at the layer k and n is the
number of GNN layers. In particular, GNN quantized with
LWQ has the same quantization bits qk for both the attention
matrix αk and the embedding matrix hk at the layer k and
computes the combination component hk+1

v at k + 1 as

hk+1
v =W k+1

com ·
∑

u∈N (v)

αk,(qk)
′

u,v hk,(qk)
′

u (14)

D. Combine Multiple Granularities

Besides applying the above granularities stand-alone,
SGQuant can effectively combine them in collaborative ways.
And we detail two major types of combinations as follows.

a) LWQ+CWQ: Note that LWQ and CWQ are comple-
mentary and can be easily combined to provide more fine-
grained quantization configuration

{(k, att):qk,att, (k, com):qk,com|k ∈ [1, 2, ..., n]} (15)

Our evaluation shows that LWQ+CWQ can provide lower
quantization bits at the same accuracy, compared to only
applying LWQ or CWQ alone. The main insight is that
LWQ+CWQ provides more fine-grained granularities and
could potentially generate models with higher accuracy under
the same memory budget. Formally, GNN quantized with
LWQ+CWQ computes the combination component as

hk+1
v =W k+1

com ·
∑

u∈N (v)

α
k,(qk,att)

′

u,v h
k,(qk,com)′

u (16)

We can similarly use LWQ+TAQ and CWQ+TAQ. We omit
the details of these two combinations here due to page limits.

b) LWQ+TAQ+CWQ: We can also combine TAQ, LWQ,
and CWQ to generate quantization configuration

{(k, att):qk,att,(k, com, [Dj , Dj+1)):qk,com,Dj

|k ∈ [1, 2, ..., n], j ∈ [1, .., 4]}
(17)

Note that the quantization bits qk,att on the attention matrix
does not depend on the topology information, as the case in
TAQ. Formally, GNN with LWQ+TAQ+CWQ computes as

hk+1
v =W k+1

com ·
∑

u∈N (v)

α
k,(qk,att)

′

u,v h
k,(qk,com,Dj

)′

u (18)

where Dj is decided by the degree of node u.

V. AUTO-BIT SELECTION

Given the rich set of quantization granularities, one natural
question arises: How can we assign quantization bits for
different granularities to achieve the sweet point between
accuracy and memory saving? Essentially, we need to solve a
combinatorial optimization problem that minimizes the end-
to-end loss by selecting a group of discrete quantization
bits. Suppose we are considering LWQ+TAQ+CWQ, we can
formalize the combinatorial optimization problem as

min
qk,att,

qk,com,Dj

Loss(α
k,(qk,att)
u,v , h

k,(qk,com,Dj
)

u ,W k
com,W

k
att) (19)

where Loss(·, ·, ·, ·) is typically cross-entropy for classification
tasks and L2 norm for regression tasks, qk,att is the quanti-
zation bits for attention matrix at layer k, qi,com,Dj

is the
quantization bits for the node embedding at layer k for node
u. We also include the weight matrices W k

com and W k
att in the

loss function, since we conduct end-to-end finetuning for the
quantized GNN, as discussed in Section III-B.

There are three challenges in solving this combinatorial
optimization problem. First, there is a large design space due to
the abundant quantization granularity. When we apply LWQ,
CWQ, and TAQ simultaneously, the number of possible quan-
tization configurations increases exponentially, leading to huge
manual efforts in exploration. Second, large diversity exists in
the GNN model design in terms of the attention generation
in the aggregation components and the neural network design
in the combination components. This diversity makes it hard
to analytically compute the end-to-end quantization error and
the impact of quantization bits towards the GNN predictions.
Third, graph topology usually varies in terms of the number
of nodes and the degree distribution, making the measurement
of quantization intractable. As we have discussed in Section
IV-B, this topology information usually has a high impact on
the quantization error, requiring the consideration of both the
graph topology and the GNN design during the selection of
quantization bits.

To address these challenges, we build an auto-bit selection
(ABS) with two main components: a machine learning cost
model that predicts the accuracy of the quantized GNN under
a given quantization configuration, and an exploration scheme
to select the promising configurations.

A. Machine Learning Cost Model

Before we dive into our machine learning (ML) cost model,
we will first discuss two baseline approaches. The first one is
the random search with trial-and-error that randomly samples
a large number of quantization configurations and examines
all samples to find the best one. However, this approach
usually requires a large number of samples to find a good
configuration. The second is to build a pre-defined cost model
to analyze the impact of quantization bits over the predictions

5

q1,com,D1 q1,com,D2 … q1,att,D … qN,att,D4

A 16 8 4… 2

B 2 4 3… 2

C 4 16 2… 3

D 4 8 6… 8

95%

92%

89%

???

Accuracy

ML
Model

Feature Extraction Real Measurement

…

…

…

…

Fig. 6: Machine Learning Cost Model.

for a particular GNN model and a graph topology. However,
this approach usually fails to generalize well to various GNN
models and graph inputs.

To this end, we build a ML cost model that learns on the fly
the interaction among quantization bits, GNN models, and the
graph topology. Figure 6 illustrates our ML cost model design.
Given the quantization granularity and the bits to select, we
can randomly generate a set of configurations and extract
the quantization bits as the features. Then, we will train and
evaluate these configurations, and measure the accuracy as true
labels. Finally, we will use the collected features and labels to
train our ML cost model and use it to predict the remaining
configurations. We treat this task as a regression problem and
use a traditional ML model — regression tree [23], as our ML
cost model. We prefer the regression tree over neural networks
since the former one has faster inference speed and does not
require a large amount of training data.

B. Exploration Scheme
Given the ML cost model, a simple exploration scheme

would evaluate all remaining quantization configurations and
select the one with the highest predicted accuracy and the
lowest memory size. However, this approach may fail in two
cases. First, it is time-consuming to evaluate all remaining
quantization configurations, especially when we use LWQ,
CWQ, and TAQ simultaneously for a large GNN. Second, we
may select a small number of quantization configurations for
training the ML cost models to reduce the overhead from auto-
bit selection, such that the trained ML model cannot predict
precise accuracies for all remaining quantization configura-
tions.

To this end, we propose an exploration scheme that it-
eratively trains the ML cost model and selects promising
configurations. In this way, we can balance the low overhead
in training the ML cost model and the precise prediction of
configuration accuracies. In particular, there are five steps in
our exploration scheme.

• Step1: Randomly select a small number Nmea of config-
urations, extract features, and measure their accuracies.

• Step2: Train the ML cost model based on the collected
features and labels.

• Step3: Sample a large number Nsample of configurations,
use the ML cost model to predict their accuracy, and find
the ones with the top-Nmea accuracy.

• Step4: Extract features of the selected configurations and
measure their accuracies.

• Step5: Repeat Step2 - Step4 until reaching Niter itera-
tions.

During this procedure, only configurations with negligible
accuracy drop (< 0.5%) will be kept. Among the remaining
configurations, we select the one with the lowest memory

TABLE I: GNN Architectures.

Arch Specification
GCN hidden=32, #layers=2

AGNN hidden=16, #layers=4
GAT hidden=256, #layers=2

TABLE II: Datasets for Evaluation.

Dataset #Vertex #Edge #Dim #Class
Citeseer 3,327 9,464 3,703 6
Cora 2,708 10,858 1,433 7
Pubmed 19,717 88,676 500 3
Amazon-computer 13,381 245,778 767 10
Reddit 232,965 114,615,892 602 41

consumption. Here, Nmea, Niter, and Nsample are hyper-
parameters in ABS that balance the selection overhead and
the ML cost model accuracy. Smaller Nmeausre and Niter
lead to lower selection overhead by reducing the number
of quantization configurations that are trained and evaluated.
We have experimented with diverse Nmea and Niter on an
extensive collection of GNNs and datasets, and find that a
small Nmeasure = 40 and a small Niter = 5 hit the balance
between selection overhead and the ML cost model accuracy.
The reason is that our cost model is a traditional regression
tree model that can be trained with a small amount of data.
Using a larger Nsample, we can generally select configurations
with lower memory consumption and higher accuracy, since
more configurations are evaluated by our ML cost model. By
default, we set Nsample = 2000 in our evaluation. This leads
to negligible latency (< 0.1 seconds) at each iteration due to
the fast inference speed from the regression tree.

VI. EVALUATION

In this section, we show the strength of our proposed quan-
tization method through intensive experiments over various
GNN models and datasets.

A. Experiment Setup

1) GNN Architectures: Graph Convolutional Network
(GCN) [12] is the most basic and popular GNN architecture.
It has been widely adopted in node classification,
graph classification, and link prediction tasks. Besides,
it is also the key backbone network for many other
GNNs, such as GraphSage [15], and Diffpool [24].
Attention-based Graph Neural Network (AGNN) [13]
aims to reduce the parameter size and computation
by replacing the fully connected layer with specialized
propagation layers. Graph Attention Network (GAT) [14]
is a reference architecture for many other advanced GNNs
with more edge properties, which can provide state-of-the-art
accuracy performance on many GNN tasks. Details of their
configurations are shown in Table I.

2) Datasets: We select two categories of graph datasets
to cover the vast majority of the GNN inputs. The first
type includes the most typical datasets (Citeseer, Cora, and
Pubmed) used by many GNN papers [12], [13], [15]. They
are usually small in the number of nodes and edges, but come
with high-dimensional feature embedding. The second type
(Amazon-computer, and Reddit) are large graphs [12], [20] in

6

TABLE III: Overall Quantization Performance.

Dataset Network Accuracy (%) Average Bits Memory Size (MB) Saving

Cora

GCN (Full-Precision) 82.2 32 15.42 -
GCN (Reduced-Precision) 81.72 1.22 0.59 26.1×
AGNN (Full-Precision) 83.16 32 15.94 -
AGNN (Reduced-Precision) 82.75 2.15 1.07 14.90×
GAT (Full-Precision) 82.50 32 16.21 -
GAT (Reduced-Precision) 82.10 2.58 1.31 12.37×

Citeseer

GCN (Full-Precision) 71.82 32 51.06 -
GCN (Reduced-Precision) 71.54 1.01 1.6 31.9×
AGNN (Full-Precision) 71.58 32 50.01 -
AGNN (Reduced-Precision) 71.18 1.08 1.69 29.59×
GAT (Full-Precision) 71.10 32 59.49 -
GAT (Reduced-Precision) 70.70 2.42 3.82 13.2×

Pubmed

GCN (Full-Precision) 80.36 32 43.71 -
GCN (Reduced-Precision) 80.28 2.9 4.01 10.9×
AGNN (Full-Precision) 80.44 32 43.46 -
AGNN (Reduced-Precision) 80.31 3.07 4.17 10.42×
GAT (Full-Precision) 78.00 32 44.48 -
GAT (Reduced-Precision) 77.30 3.77 5.26 8.47×

Reddit

GCN (Full-Precision) 81.07 32 328.70 -
GCN (Reduced-Precision) 80.36 3.72 38.25 8.59×
AGNN (Full-Precision) 74.63 32 643.92 -
AGNN (Reduced-Precision) 74.40 4 113.92 5.65x
GAT (Full-Precision) 92.66 32 311.85 -
GAT (Reduced-Precision) 92.23 4.07 39.70 7.86×

Amazon-Computer

GCN (Full-Precision) 89.57 32 44.58 -
GCN (Reduced-Precision) 89.39 3.29 4.59 9.72×
AGNN (Full-Precision) 77.69 32 44.16 -
AGNN (Reduced-Precision) 77.33 4 5.99 7.37×
GAT (Full-Precision) 93.10 32 45.71 -
GAT (Reduced-Precision) 92.60 7.53 10.75 4.25×

the number of nodes and edges. Details of the above datasets
are listed in Table II.

B. Overall Performance

In this section, we demonstrate the benefits of SGQuant by
evaluating its impact of accuracy loss and memory saving.
As shown in Table III, our specialized quantization method
can effectively reduce the memory consumption up to 31.9×,
29.59×, and 13.2× on GCN, AGNN, and GAT respectively,
meanwhile limiting the accuracy loss by 0.34%, 0.31%, 0.47%
on average compared with the original full-precision model for
GCN, AGNN, and GAT.

Moreover, there are several noteworthy observations.
Across different datasets: On datasets with smaller sizes, such
as Cora and Citeseer, our specialized quantization method can
reduce the memory size more aggressively while maintaining
accuracy by selecting relatively low average bits, such as 1.22
for GCN on Cora. This is because the smaller datasets with
limited size of nodes and edge connections make the quanti-
zation precision loss less significant. Across different models:
we find that to maintain the accuracy, SGQuant would select
higher average bits for more complex models. For example,
on Amazon-computer dataset, GAT model locates 7.53 as
the average bit, while the AGNN and GCN locate 4 bit
and 3.29 bit, respectively. We observe similar pattern on all
other datasets that we evaluated. The major reason is that
more complex GNN models would involve more intricate
computations that would easily enlarge the accuracy loss of
quantization and require higher bits to offset such loss. For
instance, GAT has to first compute neighbor-specific attention
values and scale them with the number of attention heads

before the combination component. Instead, AGNN and GCN
have simpler combination component that requires much less
effort in computation, getting its loss of quantization well
under-controlled even with lower bits.

What also worth mentioning is that on datasets with large
size, such as Reddit, the absolute memory size saving is
significant, which reduces up to 530MB memory occupation.
This can also demonstrate the potential of SGQuant to make
the GNNs happen on memory-constrained device more easily.

C. Breakdown Analysis of Multi-granularity Quantization

In this experiment, we break down the benefits of multi-
granularity quantization. Specifically, we apply GAT on Cora.
We first evaluate the performance of uniform quantization
(Uniform) and layer-wise quantization (LWQ). Then, we
evaluate more fine-grained granularity by combining LWQ
with component-wise quantization (CWQ) and apply different
quantization bits to individual components at each layer.
For example, for GAT with 2 layers and 2 components of
aggregation and combination at each layer, the quantiza-
tion configuration with LWQ+CWQ has 4 quantization bits
(i.e., q1,agg, q1,com, q2,agg, q2,com). We additionally impose the
topology-aware quantization (TAQ) to study the performance
of SGQuant when considering LWQ, CWQ, and TAQ, simul-
taneously.

Figure 7 shows the error rate of each quantization granu-
larity at each memory size. Specifically, Uniform shows the
highest error rate under each memory size. This error rate
increases significantly when we compress the model to be
smaller a certain size (2.5MB). Compared with Uniform, LWQ
achieves lower error rate, due to the flexibility in selecting

7

16

17

18

19

20

21

22

23

24

25

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0

Er
ro

r
R

at
e

 (
%

)

Memory Size (MB)

Uniform LWQ LWQ+CWQ LWQ+CWQ+TAQ

Fig. 7: Breakdown Analysis of Multi-granularity Quantization.

different bits for different layers. Moreover, we observe that
LWQ+CWQ further mitigates such accuracy degradation when
reducing the model memory footprint aggressively. The reason
is that LWQ+CWQ takes the properties of different layers and
different components in to consideration, which can strike a
good balance between the memory saving and the accuracy.
Finally, this experiment also shows that, by incorporating
the node information (degree) with LWQ+CWQ+TAQ, our
SGQuant can achieve even lower error rate at each memory
size. The major reason is that high-degree nodes would intrin-
sically gather more information from its neighbors compared
with the nodes with limited number of neighbors. In other
words, applying more aggressive quantization on high-degree
nodes would cause minor information loss.

TABLE IV: Optimal Quantization Bit of GAT on Cora.

Quantization
Method

Configuation@Mem-
Size=2MB

Error
Rate

Uniform q = 4 18.90%
LWQ q1 = 4, q2 = 1 18.60%

LWQ + CWQ q1,att = 2, q1,com = 4
q2,att = 2, q2,com = 2

17.90%

LWQ + CWQ
+ TAQ

q1,Dj = [4, 3, 2, 1]
q2,Dj = [1, 1, 1, 1]

16.70%

As a case study, Table IV shows the allocated bit-width
and error rate of GAT on Cora with different granularity, with
the memory size around 2MB. We observe similar trend as
Figure 7 that fine-grained granularities generally lead to lower
error rate at a given memory size. One interesting observation
is that LWQ achieves a lower error rate than Uniform, while
LWQ chooses lower quantization bit than Uniform at layer
2. The insight is that the low quantization bit may introduce
the regularization effect and prevent overfitting in the training
procedure. Also, LWQ usually assigns higher bits to leading
layers, as discussed in Section IV-C. For the LWQ+CWQ, we
assign smaller quantization bits to the attention component,
since attention component is more robust to the numerical
error in the GNN quantization, as discussed in Section IV-A.
The most fine-grained granularity is LWQ+CWQ+TAQ, where
we can reduce error rate by 2.2% under the same memory size,
compared with the uniform quantization.

D. Effectiveness of Auto-Bit Selection

In this experiment, we evaluate auto-bit selection (ABS)
with the machine learning (ML) cost model. As discussed
in Section V, we iteratively select and evaluate quantization

0

5

10

15

20

25

30

1 31 61 91 121 151 181

M
e

m
o

ry
 S

e
tt

in
g

(x
)

Number of Trials

Random Search ML Cost Model

Fig. 8: Benefit of ML Cost Model.
configurations. Among these evaluated quantization configu-
rations, we only select configurations that shows negligible
accuracy drop (< 0.5%) compared to the full-precision GNN.
Among remaining models, we exhibit its memory saving
compared to the full-precision GNN. We compare our ABS
with the random search approach, which randomly picks 200
quantization configurations and selects the one with lowest
memory size while also showing negligible accuracy drop.

Figure 8 exhibits the results on AGNN and Cora dataset,
while similar trend can be observed on other GNNs and
datasets. Overall, our ML cost model converges within 200
trails of quantization configurations and achieves two advan-
tages over the random search approach. First, ML cost model
can locate the appropriate quantization bits more swiftly com-
pared with naive random search solution. Second, for the final
results, ML cost model can pinpoint a more ”optimal” value
for bits that offers higher memory saving (25×) compared
with random search (20×). The major reasons behind such
a success are two folds. First, we build our initial model
based on several key features (configuration parameters) of
SGQuant, which can effectively capture the core relation
between their value and the final quantization performance
(accuracy). Second, the ML cost model are iteratively updated
as it sees more data samples, which helps it refine itself by
providing solution more wisely. Besides, we observe similar
performance between ML cost model and random search at
the first 40 trails. The reason is that, starting with no training
data, our ABS randomly samples and profiles Nsample(=40)
configurations at the beginning, where we can expect similar
performance as the random search approach.

VII. CONCLUSION

In this paper, we propose and implement a specialized GNN
quantization scheme, SGQuant, to resolve the memory over-
head of GNN computing. Specifically, our multi-granularity
quantization incorporates the layer-wise, component-wise, and
topology-aware quantization granularities that can intelligently
compress the GNN features while minimizing the accuracy
drop. To efficiently select the most appropriate bits for all
these quantization granularities, we further offer a ML-based
automatic bit-selecting (ABS) strategy that can minimize the
users’ efforts in design exploration. Rigorous experiments
show that SGQuant can effectively reduce the memory size
up to 31.9× under negligible accuracy drop. In sum, SGQuant
paves a promising way for GNN quantization that can facilitate
their deployment on resource-constraint devices.

8

REFERENCES

[1] R. Kaspar and B. Horst, Graph classification and clustering based on
vector space embedding. World Scientific, 2010, vol. 77.

[2] J. Gibert, E. Valveny, and H. Bunke, “Graph embedding in vector spaces
by node attribute statistics,” Pattern Recognition, vol. 45, no. 9, pp.
3072–3083, 2012.

[3] A. G. Duran and M. Niepert, “Learning graph representations with
embedding propagation,” in Advances in neural information processing
systems (NIPS), 2017, pp. 5119–5130.

[4] H. Chen, X. Li, and Z. Huang, “Link prediction approach to collaborative
filtering,” in Proceedings of the 5th ACM/IEEE-CS Joint Conference on
Digital Libraries (JCDL). IEEE, 2005, pp. 141–142.

[5] J. Kunegis and A. Lommatzsch, “Learning spectral graph transforma-
tions for link prediction,” in Proceedings of the 26th Annual Interna-
tional Conference on Machine Learning (ICML), 2009, pp. 561–568.

[6] T. Tylenda, R. Angelova, and S. Bedathur, “Towards time-aware link
prediction in evolving social networks,” in Proceedings of the 3rd
workshop on social network mining and analysis, 2009, pp. 1–10.

[7] A. Grover and J. Leskovec, “node2vec: Scalable feature learning for
networks,” in Proceedings of the 22nd ACM international conference
on Knowledge discovery and data mining (SIGKDD), 2016, pp. 855–
864.

[8] B. Perozzi, R. Al-Rfou, and S. Skiena, “Deepwalk: Online learning of
social representations,” in Proceedings of the 20th ACM International
Conference on Knowledge Discovery and Data Mining (SIGKDD).
Association for Computing Machinery, 2014, p. 701–710.

[9] D. Luo, F. Nie, H. Huang, and C. H. Ding, “Cauchy graph embed-
ding,” in Proceedings of the 28th International Conference on Machine
Learning (ICML), 2011, pp. 553–560.

[10] D. Luo, C. Ding, H. Huang, and T. Li, “Non-negative laplacian embed-
ding,” in 2009 Ninth IEEE International Conference on Data Mining
(ICDM). IEEE, 2009, pp. 337–346.

[11] D. Cheng, Y. Gong, X. Chang, W. Shi, A. Hauptmann, and N. Zheng,
“Deep feature learning via structured graph laplacian embedding for
person re-identification,” Pattern Recognition, vol. 82, pp. 94–104, 2018.

[12] T. N. Kipf and M. Welling, “Semi-supervised classification with graph
convolutional networks,” International Conference on Learning Repre-
sentations (ICLR), 2017.

[13] K. Xu, W. Hu, J. Leskovec, and S. Jegelka, “How powerful are graph
neural networks?” in International Conference on Learning Represen-
tations (ICLR), 2019.

[14] P. Veličković, G. Cucurull, A. Casanova, A. Romero, P. Liò, and
Y. Bengio, “Graph attention networks,” in International Conference on
Learning Representations (ICLR), 2018.

[15] W. Hamilton, Z. Ying, and J. Leskovec, “Inductive representation
learning on large graphs,” in Advances in neural information processing
systems (NIPS), 2017, pp. 1024–1034.

[16] S. Han, H. Mao, and W. J. Dally, “Deep compression: Compressing
deep neural networks with pruning, trained quantization and huffman
coding,” arXiv preprint arXiv:1510.00149, 2015.

[17] R. Banner, Y. Nahshan, and D. Soudry, “Post training 4-bit quantization
of convolutional networks for rapid-deployment,” in Advances in Neural
Information Processing Systems (NeurIPS), 2019, pp. 7948–7956.

[18] C. Zhu, S. Han, H. Mao, and W. J. Dally, “Trained ternary quantization,”
arXiv preprint arXiv:1612.01064, 2016.

[19] D. Lin, S. Talathi, and S. Annapureddy, “Fixed point quantization of
deep convolutional networks,” in International Conference on Machine
Learning (ICML), 2016, pp. 2849–2858.

[20] J. Leskovec and A. Krevl, “SNAP Datasets: Stanford large network
dataset collection,” http://snap.stanford.edu/data, Jun. 2014.

[21] M. Fey and J. E. Lenssen, “Fast graph representation learning with
PyTorch Geometric,” in ICLR Workshop on Representation Learning
on Graphs and Manifolds (ICLR), 2019.

[22] J. Shao, Mathematical Statistics, ser. Springer Texts in Statistics.
Springer, 2003.

[23] W.-Y. Loh, “Classification and regression trees,” Wiley Interdiscip. Rev.
Data Min. Knowl. Discov., vol. 1, pp. 14–23, 2011.

[24] R. Ying, J. You, C. Morris, X. Ren, W. L. Hamilton, and J. Leskovec,
“Hierarchical graph representation learning with differentiable pooling,”
in Proceedings of the 32nd International Conference on Neural In-
formation Processing Systems (NIPS), Red Hook, NY, USA, 2018, p.
4805–4815.

9

