
EGEMM-TC: Accelerating Scientific Computing
on Tensor Cores with Extended Precision

Boyuan Feng
†
, Yuke Wang

†
, Guoyang Chen*, Weifeng Zhang*, Yuan Xie

†
, Yufei Ding

†
†
{boyuan, yuke_wang, yuanxie, yufeiding}@ucsb.edu, *{g.chen, weifeng.z}@alibaba-inc.com

†
University of California, Santa Barbara, *Alibaba Group US Inc.

Abstract
Nvidia Tensor Cores achieve high performance with half-

precision matrix inputs tailored towards deep learning work-

loads. However, this limits the application of Tensor Cores

especially in the area of scientific computing with high preci-

sion requirements. In this paper, we build Emulated GEMM

on Tensor Cores (EGEMM-TC) to extend the usage of Tensor

Cores to accelerate scientific computing applications without

compromising the precision requirements. First, EGEMM-

TC employs an extendable workflow of hardware profiling

and operation design to generate a lightweight emulation

algorithm on Tensor Cores with extended-precision. Second,

EGEMM-TC exploits a set of Tensor Core kernel optimiza-

tions to achieve high performance, including the highly-

efficient tensorization to exploit the Tensor Core memory

architecture and the instruction-level optimizations to co-

ordinate the emulation computation and memory access.

Third, EGEMM-TC incorporates a hardware-aware analytic

model to offer large flexibility for automatic performance

tuning across various scientific computing workloads and

input datasets. Extensive evaluations show that EGEMM-

TC can achieve on average 3.13× and 11.18× speedup over

the cuBLAS kernels and the CUDA-SDK kernels on CUDA

Cores, respectively. Our case study on several scientific com-

puting applications further confirms that EGEMM-TC can

generalize the usage of Tensor Cores and achieve about 1.8×
speedup compared to the hand-tuned, highly-optimized im-

plementations running on CUDA Cores.

CCS Concepts • Theory of computation→Massively
parallel algorithms.

Keywords Emulation, GEMM, Tensor Core

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies are not

made or distributed for profit or commercial advantage and that copies bear

this notice and the full citation on the first page. Copyrights for components

of this work owned by others than ACMmust be honored. Abstracting with

credit is permitted. To copy otherwise, or republish, to post on servers or to

redistribute to lists, requires prior specific permission and/or a fee. Request

permissions from permissions@acm.org.

PPoPP ’21, February 27–March 3, 2021, Virtual Event, Republic of Korea
© 2021 Association for Computing Machinery.

ACM ISBN 978-1-4503-8294-6/21/02. . . $15.00

https://doi.org/10.1145/3437801.3441599

Table 1. Precision Specifications. Unit: Number of Bits.

Data Type Sign Exponent Mantissa
Half-Precision [30] 1 5 10

Single-Precision [30] 1 8 23

Markidis-Precision [20] 1 5 20

Extended-Precision [7] 1 5 21

1 Introduction
Recently, many specialized cores and hardware accelerators

have been built to speed up the general matrix multiply

(GEMM) in deep learning applications. These specialized

cores typically exploit low-precision matrix computation

(e.g., half-precision) to achieve high performance, based on

the fact that deep learning workloads involve many matrix

operations and are usually robust to low-precision computa-

tion [4, 11, 21]. One example is the Tensor Core on Nvidia

Volta GPUs that conduct half-precision matrix-matrix com-

putation, achieving 8× higher throughput over the CUDA

Cores [22]. Since GEMM is also one essential building block

of many scientific computing applications, we will bring this

performance benefit to the scientific computing domain. For

example, GEMM operations take 85% and 67% of the total

time in popular implementations of kNN [9] and kMeans [2],

respectively. We refer to these applications as GEMM-based
scientific computing. However, many scientific computing ap-

plications (e.g., kNN and kMeans in large-scale physical sim-

ulations [8] and mathematical computations [3]) are rather

sensitive to computation precision to generate valid results.

Such a restriction on precision prevents them from exploiting

powerful Tensor Cores for performance enhancement.

Several approaches have been proposed for extended-

precision computation [7, 14, 34, 36] on limited-precision

hardware, which utilizes multiple low-precision computing

instructions to emulate a single extended-precision comput-

ing instruction. Table 1 summarizes these precision types. For

example, the popular extended-precision technique, Dekker

[7], can utilize 16 half-precision instructions for an extended-

precision instruction. One key problem is that these tech-

niques are developed and optimized on CPUs. It requires a

significant amount of manual effort to transfer them to Ten-

sor Cores without hurting performance. In particular, Dekker

[7] requires serialized execution of the 16 instructions, lead-

ing to high overhead. Considering that half-precision compu-

tation on Tensor Cores is only 8× faster than single-precision

https://doi.org/10.1145/3437801.3441599

PPoPP ’21, February 27–March 3, 2021, Virtual Event, Republic of Korea B. Feng et al.

Scientific
Computing

Applications

Em
u

latio
n

A

lgo
rith

m
 D

esign

Tensor-Core
Kernel

Optimization

Data
(e.g. Matrix)

Tensor-Core
Centric

Tensorization

SASS-level
Optimization

H
ard

w
are

-aw
are

A

n
alytical M

o
d

el

Efficient
Execution

Figure 1. Overview of EGEMM-TC.

computation on CUDA Cores, this 16× overhead can eas-

ily make emulation inappropriate. Markidis [20] proposes a

simple algorithm for emulation on Tensor Cores but utilizes

a truncate-based strategy with 1-bit precision loss. It fails to

achieve extended-precision and shows high overhead.

In this work, we design Emulated GEMM on Tensor Cores

(EGEMM-TC) to accelerate GEMM-based scientific comput-

ing on Tensor Coreswith both high performance and extended-

precision computation. We identify several key challenges

in the design and the development of EGEMM-TC. First,

Tensor Cores require half-precision input matrices, leading

to degraded computing precision. Naively borrowing exist-

ing emulation algorithms may lead to unsatisfactory perfor-

mance. Second, the newly designed Tensor Cores bring new

computing primitives and memory hierarchies, leading to

unexplored optimizations. While Tensor Cores provide high

computation performance, memory access speed remains

the same as previous CUDA Cores and can easily become

the bottleneck. Third, there is a large hyper-parameter de-

sign space on mapping scientific computing towards Tensor

Cores. Experimenting with new hyper-parameters usually

requires manual implementation [15, 17, 38], making the

trial-and-error strategy not suitable.

To this end, we propose three techniques to tackle the

above challenges, as shown in Figure 1. First, EGEMM-TC

contains a lightweight emulation algorithm design with

only 4 Tensor Core instructions. It achieves both extended-

precision and low overhead by exploiting high-precision

intermediate computation results. Second, EGEMM-TC uti-

lizes a set of Tensor Core kernel optimizations that efficiently

tensorize the emulation workload towards Tensor Cores with

low memory overhead. EGEMM-TC also includes SASS-level

optimizations for fully exploiting the instruction-level la-

tency hiding opportunities and the register caching capa-

bility. Third, EGEMM-TC incorporates a hardware-aware

analytic model to automatically explore the design space

and reduce manual effort.

In summary, this paper makes the following contributions.

• We develop EGEMM-TC to accelerate scientific com-

puting on Tensor Cores with extended-precision.

• We propose three novel techniques: a) a lightweight

emulation algorithm to emulate extended-precision

computation; b) a set of Tensor Core kernel optimiza-

tions to achieve high performance; c) a hardware-

aware analytic model to facilitate the fast selection

of hyper-parameters.

• We evaluate EGEMM-TC on Tesla T4 and Nvidia RTX

6000. It achieves 3.13× and 11.18× speedup on average

over single-precision kernels on CUDA Cores from

cuBLAS and CUDA-SDK, respectively. On a set of

GEMM-based scientific computing applications, our

approach achieves 1.8× speedup on average compared

to hand-tuned code on CUDA Cores.

2 Background and Related Work
In this section, we discuss the background and the related

work on Tensor Cores and emulation algorithms.

2.1 Tensor Cores
Tensor Core Computing and Memory Hierarchy. Dif-
ferent from scalar-scalar computation on CUDA Cores, Ten-

sor Cores provide a matrix-matrix compute primitive. In

particular, Tensor Cores support the compute primitive of

𝐷 = 𝐴×𝐵+𝐶 , where𝐴 and 𝐵 are required to be half-precision

matrices, 𝐶 and 𝐷 can be configured to be half-precision or

single-precision matrices. Before calling Tensor Cores, all

registers in a warp need to collaboratively store these ma-

trices into a new memory hierarchy Fragment [21], which
allows data sharing across registers. This intra-warp shar-

ing provides opportunities for fragment-based memory op-

timizations. Existing work [12, 13] reveals that Fragment is

implemented as registers, from the perspective of hardware

implementation.

Tensor Core Programming Interface. There are two pop-
ular programming interfaces for Tensor Cores — CUDA [27]

and SASS [12, 13, 26, 29]. CUDA provides C-style APIs and

enjoys the widest usage since it is easier to program. How-

ever, it provides only limited control over the hardware and

cannot exploit the computing and memory capability. SASS

provides assembly-style instructions that run natively on

NVIDIA GPU hardware [13, 26, 29]. SASS is usually uti-

lized by vendor experts in high-performance libraries (e.g.,
Nvidia’s cuBLAS [25]). In this paper, we will study the in-

sight of Tensor Core related SASS instructions and propose a

set of SASS-level optimizations to support high-performance

GEMM-based scientific computing on Tensor Cores.

High-performance Computing on Tensor Cores. Some

research efforts have been devoted towards accelerating high-

performance computing workloads with Tensor Cores. Yan

[37] utilizes Tensor Cores to accelerate half-precision GEMM.

Dakkak [6] accelerates half-precision scan on Tensor Cores

by transforming scan to a GEMM workload. While showing

performance improvement by utilizing Tensor Cores, these

PPoPP ’21, February 27–March 3, 2021, Virtual Event, Republic of Korea

High-precision
Random Number

Generator

Randomized
Data Input

Probing
Compute
Primitive

Specialized Core
Compute
Primitive

Specialized Core
Results

CPU Results

Bitwise
Comparison

Data Split
Extended
Precision

Input

Low-Precision
Input I

Low-Precision
Input II

Low-Precision
Input N

Specialized Core
Compute
Primitive

Specialized Core
Compute
Primitive

Specialized Core
Compute
Primitive

Intermediate
Result I

Intermediate
Result II

Intermediate
Result N

Data
Combination

Extended
Precision
Output

(a) (b)

Figure 2. Illustration of the generalized emulation design workflow. It first uses (a) precision profiling to validate the precision

of the intermediate results. Then, it uses (b) emulation design to generate a lightweight emulation algorithm based on the

profiled precision from (a).

works focus on half-precision computation and fail to sup-

port extended-precision computation. By contrast, EGEMM-

TC accelerates GEMM-based scientific computing on Tensor

Cores with extended-precision and high performance.

2.2 Emulation Algorithms
There have been several emulation algorithms [7, 10, 14, 34,

36] that improve computation precision on low-precision

hardware (e.g., IoT devices) and may be extended to Ten-

sor Cores. One traditional emulation algorithm, Dekker [7],

utilizes 16 half-precision instructions to emulate an extended-

precision instruction. One recent work, Markidis [20], pro-

poses a simple algorithm for emulation on Tensor Cores but

utilizes a truncate-based strategy with 1-bit precision loss.

By contrast, EGEMM-TC enjoys a lightweight emulation

algorithm with 4 instructions, whose overhead is much re-

duced from Dekker. EGEMM-TC also employs a round-split

algorithm that achieves higher precision by 1 extra mantissa

bits, compared to Markidis [20]. In addition, EGEMM-TC

achieves high performance by tailoring towards the Tensor

Core architecture and incorporating a set of Tensor Core

kernel optimizations.

3 Emulation Algorithm Design
As discussed in previous sections, existing emulation algo-

rithms usually introduce high computation overhead. These

algorithms assume that the hardware has the same input

and output precision, thus utilizing a large number of low-

precision instructions in the emulation. However, specialized

cores usually have higher output precision than the input

precision. For example, Tensor Cores require the input preci-

sion to be half-precision, while allowing the output precision

to be single-precision. Moreover, modern specialized cores

usually fuse multiplication and addition (e.g., 𝐷 = 𝐴×𝐵 +𝐶),
where intermediate results 𝐴 × 𝐵 may also have higher pre-

cision than the input precision. Our key insight is that ex-
ploiting high-precision intermediate results from hardware
computation can effectively mitigate the emulation overhead.
To this end, we first propose an extendable workflow

to generate a lightweight emulation algorithm. Then, we

showcase this workflow on the Tensor Cores and generate

a Tensor-Core-specific emulation algorithm. Note that the

workflow can be generally applied towards various accelera-

tors and specialized cores. Here, we will focus on improving

the precision of small matrices (i.e., 16 × 16) that directly

fit into the Tensor Core compute primitive and leave the

performance consideration and large matrix tensorization

to the next section.

3.1 Generalized Emulation Design Workflow
The emulation design workflow contains a precision profil-

ing and an emulation design, as illustrated in Figure 2.

In precision profiling, the main idea is to simulate the com-

putation results on the CPU and compare it bit-wisely with

the specialized core results. In particular, we first generate a

set of probing compute primitives with diverse intermediate

precisions. Then, we evaluate the probing compute primi-

tives on CPUs to get the corresponding results. Since current

CPUs usually support a large range of precisions, we can get

the ground-truth computation results of the probing com-

pute primitives. Finally, we can get the computation results

on the specialized cores as the ground truth, and compare it

bitwisely with the CPU results. We repeat this procedure for

a large number of randomized high-precision inputs. The

"correct" probing compute primitive is identified if its value

is bitwisely same with the specialized core results for all the

tested inputs.

In emulation design, given the target-precision input, we

first utilize a data split technique to split the target-precision
input into several low-precision inputs following the hard-

ware precision requirement and use each split input for spe-

cialized core computation. Then, we utilize a data combi-
nation technique to combine the intermediate results and

generate the target-precision outputs. In the data combi-

nation technique, we will utilize the profiled intermediate

precision to achieve the minimized overhead. We will pro-

vide concrete code snippets and emulation algorithms on

Tensor Cores in the following sections.

3.2 Emulation Algorithm on Tensor Cores
In this section, we show our emulation algorithm on Tensor

Cores. While it exploits the profiling on Nvidia Tensor Cores

PPoPP ’21, February 27–March 3, 2021, Virtual Event, Republic of Korea B. Feng et al.

to mitigate emulation overhead, its correctness can be eas-

ily verified on other specialized cores with our generalized

emulation design workflow. When the precision is the same

or higher, we can apply the same emulation algorithm as

described below to achieve extended-precision computation.

When the precision is lower (e.g., half-precision), we may

refer to Dekker [7], which assumes the hardware computa-

tion precision to be half-precision and emulates extended-

precision computation at the cost of low performance.

Precision Profiling on Tensor Cores In this section, we

showcase the precision profiling on Tensor Cores. Nvidia

officially documents its specialized core compute primitive as
𝐴×𝐵+𝐶 , where the matrix A and B are half-precision, C and

D can be either half-precision or single-precision. However,

the operation precision during the matrix multiplication

𝐴 × 𝐵 is not officially documented. Without clear profiling,

there are multiple probing compute primitives. One is that
𝐴 × 𝐵 is conducted in half-precision, which is the same as

the data type of 𝐴 and 𝐵. The other is that the half-precision

matrices 𝐴 and 𝐵 are first converted to single-precision and

𝐴 × 𝐵 is conducted with single-precision or the extended-

precision. Operation precision is important for the design

and implementation of the emulation algorithm. Assuming

both the operation and data are half-precision, Dekker shows

that 16 instructions are required to emulate a single-precision

instruction, which leads to high overhead.

Figure 3. Code Snippet for Tensor-Core Precision Profiling.

We use the following code (Figure 3) for profiling the op-

eration precision in Tensor Cores. We randomly initialize

the Tensor Core input matrices with half-precision data and

use the wmma::mma_sync() CUDA API to call the special-

ized core compute primitive for computing d_TC. As refer-
ence values, we compute two probing compute primitives

d_HALF and d_FLOAT of the above mentioned two possible

operation precisions on CUDA Cores. Finally, we compare

d_TC with d_HALF and d_FLOAT in a bit-wise manner. We

randomly generate 10, 000 groups of data and empirically

observe that all d_TCs are identical to d_FLOAT bit-wisely

up to 21 mantissa bits, which is required by the extended-

precision computation. Thus we assume that the operation in

Tensor Cores natively supports extended-precision and the

Algorithm 1 Lightweight GEMM Emulation Design.

1: function Emulation(D, A, B, C)

2: Alo, Ahi = Round-Split(A)

3: Blo, Bhi = Round-Split(B)

4: ⊲ Tensor Core natively supports single-precision C and D

5: D = wmma::mma_sync(Alo, Blo, C)

6: D = wmma::mma_sync(Alo, Bhi, D)

7: D = wmma::mma_sync(Ahi, Blo, D)

8: D = wmma::mma_sync(Ahi, Bhi, D)

9: end function

10-bit Mantissa for Xhi 10-bit Mantissa for Xlo

10-bit Mantissa for Xhi 10-bit Mantissa for Xlo

3

s 2

(a) Truncate-Split

(b) Round-Split

Figure 4. Illustration of Round Split Algorithms

only precision loss comes from the half-precision data type

of A and B, enables our lightweight emulation algorithm.

Emulation Design on Tensor Cores In this section, we

showcase the emulation design on Tensor Cores, especially

the data split and the data combination. Based on the profiling
results, we propose a 4-instruction emulation operation for

enabling extended-precision computation on Tensor Cores

with 21mantissa bits. Algorithm 1 summarizes our emulation

algorithm. For simplicity, we illustrate with small matrices

that match with the Tensor Core computing primitives of

shape 16 × 16 and leave the large-matrix computation to the

following sections. Our emulation algorithm takes single-

precision matrices A, B, C, and D as the inputs and generates

the outputs as 𝐷 = 𝐴 × 𝐵 +𝐶 with extended-precision. The

key idea is to first split single-precision matrices 𝐴 and 𝐵

into half-precision matrix 𝐴𝑙𝑜 , 𝐴ℎ𝑖 , 𝐵𝑙𝑜 and 𝐵ℎ𝑖 . Then we can

compute on Tensor Cores and accumulate the intermediate

results for data combination. Since Tensor Cores natively

supports the single-precision C and D, we do not need to

conduct data split on these two matrices.

There are multiple approaches for data split. One approach

is truncate-split from Markidis [20], as illustrated in Fig-

ure 4(a). It truncates the single-precision data 𝑥 to be half-

precision 𝑥ℎ𝑖 and uses the 𝑥𝑙𝑜 to store the remaining value

𝑥 − 𝑥ℎ𝑖 . While this approach is simple to implement, it sup-

ports only 20-bit mantissa from the two 10-bit mantissa of

the half-precision data.

Instead, we propose a round-split approach as illustrated

in Figure 4(b). Besides the two 10-bit mantissa, we encode an

additional s bit in the sign bit (1-bit) from 𝑥𝑙𝑜 . For a positive

𝑥 , the sign-bit of 𝑥𝑙𝑜 from truncate-split is always 0, but it

may be 0 or 1 when round-split is conducted. In particu-

lar, for a positive 𝑥 , we check the 21-th mantissa bit 𝑠 and,

PPoPP ’21, February 27–March 3, 2021, Virtual Event, Republic of Korea

if 𝑠 is positive, we add 1 to the 10-th mantissa bits for 𝑥ℎ𝑖
and recompute the 𝑥𝑙𝑜 . While the round-split method intro-

duces extra overhead, it only needs to be conducted once

on every matrix element with time complexity 𝑂 (𝑁 2). This
overhead is significantly less than the matrix multiplication

time complexity 𝑂 (𝑁 3) and introduces negligible overhead

in emulation. To fully exploit GPU capability, EGEMM-TC

conducts data split on CUDACores and computes the GEMM

on Tensor Cores.

EmulationOverhead.Our emulation algorithm introduces

4× computation overhead, which is significantly small than

the Dekker [7] method with 16× overhead. A naive imple-

mentation may also introduce 4× memory overhead when

independently reading the split matrices for each compu-

tation instruction. However, this memory overhead can be

reduced to 2× when the data reuse is carefully designed. We

leave this memory optimization to Section 4.

4 Tensor-Core-Centric Tensorization
EGEMM-TC has a carefully designed tensorization to effi-

ciently map the GEMM-based scientific computing to Ten-

sor Cores that require specialized matrix inputs. While our

tensorization shares some similarities with existing ones,

there are two challenges to be addressed before fully ex-

ploiting the Tensor Core computing capability. First, existing

techniques usually independently assign tasks to individual

warps, failing to exploit the collaboration cross warps and

within warps. Second, Tensor Cores provide a new mem-

ory architecture of fragment (FRAG), which is composed of

registers across threads within a warp. This FRAG provides

intra-warp caching opportunities that have not been well

explored. To this end, we provide two novel optimizations.

Tensorization and Warp Collaboration Different from

previous CUDA Cores on the scalar level, Tensor Cores com-

putes at the matrix level, requiring the tensorization design.

Matching with the GPU hierarchy, our tensorization recur-

sively divides the matrices into sub-matrices and assign them

to GPU blocks, warps, and threads, in a hierarchy-style. For-

mally, given input matrices A, B, and C, of shape (𝑚,𝑘),
(𝑘, 𝑛), (𝑚,𝑛), respectively, we split these matrices into block
matrices of size (𝑏𝑚, 𝑏𝑘), (𝑏𝑘 , 𝑏𝑛), and (𝑏𝑚, 𝑏𝑛). During execu-
tion, each GPU block computes a block matrix of C based on

the corresponding block matrices of 𝐴 and 𝐵. Here, the sizes

of block matrices are typically larger than the Tensor Core

compute primitive size, requiring further dividing the block

matrices to warp matrices with size (𝑤𝑚,𝑤𝑘), (𝑤𝑘 ,𝑤𝑛), and
(𝑤𝑚,𝑤𝑛). These warp matrices will be assigned to individual

warps for Tensor Core execution, where warp matrices will

be further divided to TC matrices for matching the Tensor

Core compute primitives with size 𝑡𝑚 ,𝑡𝑛 and 𝑡𝑘 .

EGEMM-TC split the workload into two phases and adopts

a warp collaboration strategy as illustrated in Figure 5. The

main difference from previous CUDA Cores is that Tensor

Warp1 Warp2 Warp3 Warp4

Data1 Data2 Data3 Data4 Data5 Data6 Data7 Data8
Global

Memory

Data1 Data2 Data3 Data4 Data5 Data6 Data7 Data8
Shared

Memory

Data Loading
Phase

Computation
Phase

Warp1 Warp2 Warp3 Warp4

Warp1 Warp2 Warp3 Warp4

Data1 Data2 Data3 Data4 Data5 Data6 Data7 Data8
Global

Memory

Data1 Data2 Data3 Data4 Data5 Data6 Data7 Data8
Shared

Memory

Data Loading
Phase

Computation
Phase

Warp1 Warp2 Warp3 Warp4

Figure 5.Warp Collaboration Illustration. During data load-

ing phase, all warps collaboratively loads all data fragments.

During computation phase, a data fragment may be used by

multiple warps, indicated by the colors.

Table 2.Memory access on each GPU warp in GEMM work-

load. We skip the memory access of Ahi, Blo, and Bhi, since

these matrices have similar memory access as the Alo.

Type Size w/o FRAG Caching w/ FRAG Caching
Alo 2𝑤𝑚𝑤𝑘 4𝑤𝑘𝑤𝑚 ·𝑤𝑘/𝑡𝑘 2𝑤𝑚𝑤𝑘

C 4𝑤𝑚𝑤𝑛 4𝑤𝑚𝑤𝑛 ·𝑤𝑘/𝑡𝑘 4𝑤𝑚𝑤𝑛

Cores require 32 threads in a warp to collaboratively load

matrices into the FRAG memory architecture and jointly

compute the matrix multiplication and addition. Catering

to the Tensor Core property, we assign different thread or-

ganization (𝑡ℎ𝑟𝑒𝑎𝑑𝐷𝑖𝑚.𝑥, 𝑡ℎ𝑟𝑒𝑎𝑑𝐷𝑖𝑚.𝑦) to the same warp

during these two phases. During the computation phase, we

utilize the default (32,1) thread layout for collaboratively call-

ing Tensor Cores, as required by the CUDA programming

guide [27]. During the data loading phase, we reorganize the

warp threads to 2D layout for assigning non-overlapping

memory access workload to each thread. For example, when

loading a 16 × 16 block of data, it is much easier to program

with the 16 × 2 thread configuration than with the default

32 × 1 one.

Intra-Warp FRAG Caching. Data caching is an effective

strategy to reduce the memory overhead in the GEMM-based

workload. Existing techniques usually utilize shared memory

to cache a portion of the matrices A, B, and C but ignore

the FRAG caching opportunity. We name it as the w/o FRAG
caching strategy. With this strategy, data is still loaded mul-

tiple times from the shared memory to the register. Table 2

summarizes the memory access on a single GPUwarp. When

a warp matrix C of shape (𝑤𝑚,𝑤𝑛) are assigned to a GPU

warp and stored in the shared memory, the memory access

between shared memory and FRAG/register is

4𝑡𝑛𝑡𝑚 · 𝑤𝑘

𝑡𝑘
· 𝑤𝑚

𝑡𝑚
· 𝑤𝑛

𝑡𝑛
= 4𝑤𝑚𝑤𝑛 · 𝑤𝑘

𝑡𝑘
(1)

where the warp matrix C is divided into𝑤𝑚/𝑡𝑚 ·𝑤𝑛/𝑡𝑛 TC

matrices,𝑤𝑘/𝑡𝑘 times data loading when iterating over the

PPoPP ’21, February 27–March 3, 2021, Virtual Event, Republic of Korea B. Feng et al.

LDS

LDG

STS

HMMA

LDS LDS LDS

LDG LDG LDG

HMMA HMMA HMMA

LDS

LDG

STS

HMMA

LDS LDS LDS

LDG LDG LDG

HMMA HMMA HMMA

LDS

LDG

STS

HMMA

LDS LDS

LDG LDG

HMMA HMMA

LDS

LDG

STS

HMMA

LDS LDS

LDG LDG

HMMA HMMA

LDS

LDG

STS

HMMA

LDS LDS

LDG LDG

HMMA HMMA

LDS

LDG

STS

HMMA

LDS LDS

LDG LDG

HMMA HMMA

Memory
Access

Computation

LDS

LDG

STS

HMMA

LDS LDS

LDG LDG

HMMA HMMA

LDS

LDG

STS

HMMA

LDS LDS

LDG LDG

HMMA HMMA

Memory
Access

Computation

Register

Shared
Memory

LDS LDG STS

HMMA

LDS LDSLDG LDG

HMMA HMMA

LDS LDG STS

HMMA

LDS LDSLDG LDG

HMMA HMMA

Memory
Access

Computation

LDS LDG

STS: Register to SHMEM

: SHMEM to Register : GL to Register STS : Register to SHMEM

LDS LDG STS

HMMA

LDS LDSLDG LDG

HMMA HMMA

LDS LDG STS

HMMA

LDS LDSLDG LDG

HMMA HMMA

Memory
Access

Computation

LDS LDG: SHMEM to Register : GL to Register STS : Register to SHMEM

t

iteration

Figure 6. Illustration of Register-Enhanced Instruction

Scheduling for Latency Hiding.

k-dimension, and each single-precision data requires 4 bytes.

Similarly, we can compute the memory access of the warp

matrix𝐴𝑙𝑜 as 2∗2𝑤𝑘𝑤𝑚 ·𝑤𝑘/𝑡𝑘 , where the first 2 comes from

the emulation algorithm where 𝐴𝑙𝑜 is used for two times.

We observe that the memory access in the w/o FRAG caching
strategy is significantly larger than the data size of 𝐴𝑙𝑜 and

𝐶 , leading to extra memory overhead.

Instead, we propose an intra-warp FRAG caching strategy,

that effectively mitigates the memory overhead. The key

observations are: 1) FRAG allows registers from multiple

threads within a warp to collaboratively access a TC matrix,

making it possible to reuse matrix data within warps; 2)

FRAG has 256 KBwhich is much larger than the 64𝐾𝐵 shared

memory. EGEMM-TC will track whether a TC matrix has

been stored in the FRAG and skip the data loading when

possible. In particular, the TC matrix C is cached in FRAG

during the whole computation and the 𝐴𝑙𝑜 is read once to

the FRAG. In total, this strategy leads to 4𝑤𝑚𝑤𝑛 + 4 ∗ 2𝑤𝑚𝑤𝑛

bytes consumption in register/FRAG. While this strategy

may increase the register pressure, we will carefully select

hyperparameters to avoid register spilling in Section 6.

5 Instruction-Level Optimizations
In this section, we propose two instruction-level optimiza-

tions to fully exploit Tensor Core computing capability and

memory hierarchies.

5.1 Register-Enhanced Instruction Scheduling for
Latency Hiding

The first optimization at the SASS level is a register-enhanced

instruction scheduling for latency hiding. While latency hid-

ing has been discussed in existing works [5, 16] and can be

implemented at the CUDA-level (e.g., with streams), EGEMM-

TC has two distinguishing designs. First, to mitigate the limi-

tation on the shared memory size (e.g., 64 KB per SM on Tesla

T4), EGEMM-TC intentionally utilizes registers (e.g., with 256
KB per SM on Tesla T4) to exploiting more latency hiding op-

portunities. Second, EGEMM-TC supports fine-grained data

access latency hiding at the instruction-level by breaking

down the KB-level data access into a sequence of Byte-level

data access and interleaving with individual Tensor Core

computation instructions.

On the SASS instructions, we utilize 4 instructions that

are widely used in many generations of Nvidia GPUs [12,

13, 26, 29]. In particular, we use the LDS instruction to load

data from shared memory to registers, the LDG instruction

for loading data from global memory to registers, the STS
instruction for storing data from registers to shared mem-

ory, and the HMMA instruction for computation on Tensor

Cores. Note that existing works [15, 39] demystify that the

memory instructions (e.g., LDS, LDG, and STS) are executed
sequentially and cannot be further paralleled.

Figure 6 illustrates the register-enhanced instruction sched-

uling for latency hiding. At a high level, EGEMM-TC ten-

sorizes the input matrices into several sub-matrices and pro-

cesses one sub-matrix at each iteration. Before the first iter-

ation, EGEMM-TC has a "cold-start" that loads the data for

the first iteration from global memory to shared memory. On

the following iterations, EGEMM-TC simultaneously con-

ducts the computation for the current iteration and the data

loading for the next iteration. Assuming that the data for

the current iteration has been stored in the shared memory,

EGEMM-TC uses LDS to load data from shared memory to

registers for computation. Meanwhile, EGEMM-TC loads the

data for the next iteration. Noting that Nvidia GPUs usually

do not support loading data directly from global memory to

shared memory, we first load data from global memory to

registers and then store to shared memory with LDG and

STS, respectively. Considering that the shared memory stores

the data for the current iteration, we delay STS to the end

of the current iteration to avoid undesired data overwriting.

This design enables caching large matrices in registers and

provides more latency hiding opportunities for improving

performance.

5.2 Register Allocation Design
The second optimization at the SASS level is a manual reg-

ister allocation to avoid register spilling [33, 35]. To fully

exploit the fast register access, we heavily utilize registers for

a set of memory-related optimizations. While this register-

caching can improve performance theoretically, it also in-

creases the register pressure. Indeed, implementing these

optimizations at the CUDA level can easily introduce register

spilling, leading to heavy slow down.

While the optimal register allocation has been shown as an

NP-problem [32], we propose a heuristic register allocation

design for the Tensor-Core centric workload. Our key obser-

vation is that these workloads usually contain four stages

with different register usage. During the first stage, a large

number of registers are utilized on the context information

(e.g., threadIdx, blockIdx, and block matrix size) to locate the

block matrix for computation. During the following three

stages, registers are utilized to load the C matrix from global

memory, conducting computation, and saving the Cmatrix to

the global memory. Register allocations across these stages

are usually non-overlapping and only utilized in a single

PPoPP ’21, February 27–March 3, 2021, Virtual Event, Republic of Korea

stage. Based on this observation, we manually reuse most

registers across stages to reduce the register pressure. In

total, we utilize 232 out of 256 registers on each thread for

all optimizations mentioned above.

6 Hardware-aware Analytic Model
In this section, we propose an analytic model to facilitate the

hyper-parameter selection for achieving high performance.

There are 6 hyper-parameters (𝑏𝑚, 𝑏𝑛, 𝑏𝑘 ,𝑤𝑚,𝑤𝑛,𝑤𝑘) that
have a significant influence on the performance. Selecting

larger hyper-parameters generally leads to higher data reuse

and lowermemory overhead. However, larger hyper-parameters

also increase the pressure on the shared memory and the

register/FRAG. Moreover, when the value exceeds the ca-

pability of FRAG, register spilling will happen, leading to

degraded performance.

Existing works [17, 38, 39] usually utilize a trial-and-error

strategy to select these hyper-parameters. There are two

drawbacks of this strategy. First, experimenting with new

tiling sizes usually requires extra manual effort, making it a

time-consuming task. Second, there is a large design space of

6 parameters, making it infeasible to enumerate all settings.

To this end, we propose a hardware-aware analytic model

that takes the small set of hardware resource budgets and

selects the parameters without trial-and-error.

6.1 Resource Consumption
At each iteration, each GPU block needs to do two tasks. First,

it reads 2 matrices (Alo, Ahi) of size (𝑏𝑚, 𝑏𝑘) and 2 matrices

(Blo, Bhi) of size (𝑏𝑘 , 𝑏𝑛). This step introduces global memory

access of

(𝑏𝑚 + 𝑏𝑚 + 𝑏𝑛 + 𝑏𝑛) × 𝑏𝑘 × 2 = 4(𝑏𝑚 + 𝑏𝑛)𝑏𝑘 (2)

Here, the last two comes from half data type (2 bytes). We

skip the memory access for block matrices of C since it is

only loaded once for every 𝑘/𝑏𝑘 times reading of the split

matrices and accounts for a negligible portion of memory

overhead. Second, EGEMM-TC conducts the computation

with FLOPs of

2 × 𝑏𝑚 × 𝑏𝑛 × 𝑏𝑘 × 4 = 8𝑏𝑚𝑏𝑛𝑏𝑘 (3)

There is a constant 4 since EGEMM takes 4 Tensor Core calls

for one extended-precision computation. To this end, the

ratio of computation to global memory access is

8 × 𝑏𝑚 × 𝑏𝑛 × 𝑏𝑘
4 × (𝑏𝑚 + 𝑏𝑛) × 𝑏𝑘

=
2𝑏𝑚 × 𝑏𝑛
𝑏𝑚 + 𝑏𝑛

(4)

We want to improve this ratio to fully exploit GPU com-

pute capability and achieve compute-bound. Noting that the

numerator uses multiplication and the denominator uses ad-

dition, we can improve the ratio by choosing a larger 𝑏𝑚 and

𝑏𝑛 . We surprisingly observe that the ratio is independent of

𝑏𝑘 , indicating that we can select a smaller 𝑏𝑘 to leave space

for storing larger 𝑏𝑚 and 𝑏𝑛 .

Table 3. Resource Budget on T4 GPU.

Shared Memory Size 64 KB

FRAG/Register Size 256 KB

Peak Computation 2
6
TFLOPS

L2 Cache Speed 750 GB/s

Table 4. Design Choice on T4 GPU

(𝑏𝑚, 𝑏𝑛, 𝑏𝑘) (128, 128, 32)

(𝑤𝑚,𝑤𝑛,𝑤𝑘) (64, 32, 8)

Shared memory/block 36 KB

Active Blocks/SM 1

Active Warps / Block 8

On the memory space, we store a block matrix C of size

(𝑏𝑚, 𝑏𝑛) in the FRAG following the intra-warp FRAG caching
design. This would consume 𝑏𝑚×𝑏𝑛×4+2×(𝑏𝑚+𝑏𝑛)×𝑏𝑘×2
bytes in registers. For reducing register pressure, we store the

Alo, Ahi, Blo, and Bhi blocks in the shared memory, leading

to 2 × (𝑏𝑚 + 𝑏𝑛) × 𝑏𝑘 × 2 bytes shared memory usage.

Inside each warp, we also have the computation and the

memory access, determined by thewarp tiling size (𝑤𝑚,𝑤𝑛,𝑤𝑘)
and the block tiling size (𝑏𝑚, 𝑏𝑛, 𝑏𝑘). Our design goal is to ad-

just warp tiling size such that the computation time is larger

than the memory access time to achieve the compute-bound.

Assuming that each Tensor Core execution takes 𝑇𝐻𝑀𝑀𝐴

time, the computation time for a block matrix is

𝑇𝐶𝑜𝑚𝑝 =
2𝑏𝑚𝑏𝑛𝑏𝑘 × 4

2 × 16 × 8 × 8 × 4

×𝑇𝐻𝑀𝑀𝐴 (5)

where 4 in the numerator represents the 4 Tensor Core calls

in the emulation, 2× 16× 8× 8 is the computation done with

a HMMA.1688.F32 Tensor Core instruction, and each block

can call 4 tensor cores simultaneously from the hardware

perspective [12, 13]. On the memory access time, there are

two steps, as described in the register-caching-based warp
collaboration. First, all warps collaboratively load data from

global memory to the shared memory. Denoting 𝑇𝐿𝐷𝐺.128 as

the time for reading 128-bit data from the global memory

and 𝑇𝑆𝑇𝑆.128 the time for writing 128-bit data to the shared

memory, the memory access time is

𝑇𝑀𝑒𝑚1 =
(𝑏𝑚 + 𝑏𝑚 + 𝑏𝑛 + 𝑏𝑛)𝑏𝑘 × 2

32 × 16

× (𝑇𝐿𝐷𝐺.128 +𝑇𝑆𝑇𝑆.128) (6)

where 𝑏𝑚 and 𝑏𝑛 are repeated for reading both Alo, Ahi, and

Blo, Bhi, 32 is the warp size, and 16 stands for 16 bytes (128

bits). The second step is to load the Alo, Ahi, Blo, and Bhi

from shared memory to the FRAG for computing. Denoting

𝑇𝐿𝐷𝑆.32 as the time for reading 32-bit data from the shared

memory, the memory access time is

𝑇𝑀𝑒𝑚2 =
𝑏𝑚𝑏𝑛𝑏𝑘

𝑤𝑚𝑤𝑛𝑤𝑘

× (𝑤𝑚

8

+ 𝑤𝑚

8

+ 𝑤𝑛

8

+ 𝑤𝑛

8

) ×𝑇𝐿𝐷𝑆.32 (7)

6.2 Analytic Solver
Our analytic model matches the theoretical resource con-

sumptionwith the resource budget and transforms the design

PPoPP ’21, February 27–March 3, 2021, Virtual Event, Republic of Korea B. Feng et al.

Table 5. Baseline Kernels.

Name Source Precision Description

cuBLAS-CUDA-FP32 cuBLAS single cublasSgemm on CUDA Cores

cuBLAS-TC-Half cuBLAS half cublasGemmEx on Tensor Cores

cuBLAS-TC-Emulation cuBLAS extended

implement with cublasGemmEx
on Tensor Cores

SDK-CUDA-FP32 SDK single matrixMul on CUDA Cores

Markidis [20] extended*

implemented Markidis method

on Tensor Cores

kMeans [9] single

open-source implementation with

cublasSgemm on CUDA Cores

kNN [2] single

open-source implementation with

cublasSgemm on CUDA Cores

space exploration to an optimization problem, which can be

solved analytically with existing optimization solvers [1].

To support different GPUs, the user only needs to provide a

small set of resource budgets. Table 3 shows the budget on

Tesla T4 GPU.

Formally, we have the following optimization problem

𝑚𝑎𝑥
2𝑏𝑚 × 𝑏𝑛
𝑏𝑚 + 𝑏𝑛

𝑠 .𝑡 . 4𝑏𝑚𝑏𝑛 + 4(𝑏𝑚 + 𝑏𝑛)𝑏𝑘 ≤ 𝑆𝑖𝑧𝑒𝑅𝑒𝑔𝑖𝑠𝑡𝑒𝑟
2 × (𝑏𝑚 + 𝑏𝑛) × (𝑏𝑘 + 8) × 2 ≤ 𝑆𝑖𝑧𝑒𝑆𝐻𝑀𝐸𝑀

𝑇𝑀𝑒𝑚1 +𝑇𝑀𝑒𝑚2 ≤ 𝑇𝐶𝑜𝑚𝑝

(8)

Our goal is to maximize the ratio of computation to global

memory access (Equation 4) to fully exploit the computing

capability. Meanwhile, we need to make sure that the usage

of registers and shared memory does not exceed the corre-

sponding resource budget. In addition, we aim to increase

(𝑤𝑚,𝑤𝑛) for ensuring that each warp spends more time on

computation than memory access, leaving space for latency

hiding. Table 4 details our design choice for Tesla T4.

7 Evaluation
In this section, we compare EGEMM-TCwith various GEMM

kernels and show the benefit of accelerating GEMM-based

scientific computing on Tensor Cores.

7.1 Experiment Setup

Baseline Kernels. We compare EGEMM-TC with a diverse

set of GEMM kernels and GEMM-based scientific computing

benchmarks shown in Table 5. These kernels include cuBLAS

kernels running onCUDACores and Tensor Cores.We utilize

cuBLAS kernel cublasGemmEx to implement Algorithm 1 on

Tensor Cores, namely cuBLAS-TC-Emulation, and compare

with EGEMM-TC on the performance benefit of EGEMM-TC

optimizations. We also compare the performance with open-

source code from CUDA-SDK. Besides, we compare against

Markidis [20], the most recent emulation work on Tensor

Cores. Note that Markidis has 1-bit lower precision than

EGEMM-TC due to the truncate-split, as detailed previously

0.008

0.01

0.017

0.02

0.029

0.043

0.055

0.0000086

0.00003

0.0001

0.00023

0.00046

0.0011

0.002

0.000008

0.000019

0.000053

0.000089

0.000187

0.0003

0.00067

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07

128

256

512

1024

2048

4096

8192

Max Error

M
at

ri
x

Si
ze

 (
N

xN
xN

)

EGEMM-TC Markidis cuBLAS-TC-Half

Figure 7. Emulation Precision.

in Table 1. We evaluate on diverse matrix sizes from 1024

to 16384 and report the performance averaged over 10 runs,

measured with Trillion Floating Point Operations per Second

𝑇𝐹𝐿𝑂𝑃𝑆 = 2 ×𝑀 × 𝑁 × 𝐾/(𝑇 × 10
9) (9)

𝑇 is the time in milliseconds measured by cuda event [28].
We also experiment on two popular scientific computing

workloads, kMeans and kNN, that have wide applications

in diverse domains (e.g., gene analysis [31], environmental

science [19], and astronomy [18]). In particular, we compare

with two open-source kernels (kNN [9] and kMeans [2]) on

CUDA Cores that implement with cuBLAS-CUDA-FP32.

Environments. We evaluate on both Nvidia T4 and Nvidia

RTX6000. T4 [24] has 320 Tensor Cores and 16 GB GDDR6

memory. RTX6000 [23] has 576 Tensor Cores and 24 GB

GDDR6 memory. The host server has a 32-core Intel Xeon

CPUE5-2620 processor and 126GBmemory and runs Ubuntu

18.04 with CUDA 10.1 and cuBLAS 10.1.

7.2 Precision Improvement
Figure 7 compares the precision of EGEMM-TC and baseline

GEMM kernels. We present the max error relative to the

single-precision computation

𝑀𝑎𝑥𝐸𝑟𝑟𝑜𝑟 (𝑝) = |𝑉𝑝 −𝑉𝑆𝑖𝑛𝑔𝑙𝑒 | (10)

Here, 𝑉𝑝 is the computation results under the precision

𝑝 , which could be one of the extended-precision, the half-

precision, and the single-precision. During the computation,

we generate square matrices of size 𝑁 × 𝑁 × 𝑁 with values

sampled from [-1,+1]. On average, EGEMM-TC effectively

reduces the max error by 350× compared to cuBLAS-TC-

Half. This result shows the effectiveness of our emulation

algorithm in improving the computation precision on Tensor

Cores. As the matrix size increases, we observe a slow in-

crease in the max error. The reason is that, a single element

in the output matrix involves 𝑁 additions and 𝑁 multiplica-

tions and the emulation error accumulates as 𝑁 increases.

However, EGEMM-TC still achieves 82× reduction in max

PPoPP ’21, February 27–March 3, 2021, Virtual Event, Republic of Korea

0

2

4

6

8

10

12

14

P
e

rf
o

rm
an

ce
 (

TF
LO

P
S)

Matrix Size (NxNxN)

cuBLAS-CUDA-FP32 cuBLAS-TC-Emulation EGEMM-TC

(a) on T4.

0

5

10

15

20

25

30

P
e

rf
o

rm
an

ce
 (

TF
LO

P
S)

Matrix Size (NxNxN)

cuBLAS-CUDA-FP32 cuBLAS-TC-Emulation EGEMM-TC

(b) on RTX6000.

Figure 8. Comparison with Vendor Kernels on Square Matrices.

0

2

4

6

8

10

12

14

P
e

rf
o

rm
an

ce
 (

TF
LO

P
S)

Matrix Size (NxNx2N)

cuBLAS-CUDA-FP32 cuBLAS-TC-Emulation EGEMM-TC

(a) Set matrix shape (𝑀, 𝑁,𝐾) as (𝑁, 𝑁, 2𝑁).

0

2

4

6

8

10

12

14

P
e

rf
o

rm
an

ce
 (

TF
LO

P
S)

Matrix Size (4NxNxN)

cuBLAS-CUDA-FP32 cuBLAS-TC-Emulation EGEMM-TC

(b) Set matrix shape (𝑀, 𝑁,𝐾) as (4𝑁, 𝑁, 𝑁).
Figure 9. Comparison with Vendor Kernels on Skewed Matrices.

0

2

4

6

8

10

12

14

P
e

rf
o

rm
an

ce
 (

TF
LO

P
S)

Matrix Size (NxNxN)

SDK-CUDA-FP32 Markidis EGEMM-TC

Figure 10. Comparison with Open-Source Kernels.

0

2

4

6

8

10

12

14

P
e

rf
o

rm
an

ce
 (

TF
LO

P
S)

Matrix Size (NxNxN)

w/o Latency Hiding w/ Latency Hiding

Figure 11. Benefit of Latency Hiding.

error, when computing a large matrix of 8192 × 8192 with

extended-precision. In addition, EGEMM-TC reduces the

max error by 2.33× over Markidis, thanks to the round-split

algorithm.

7.3 Overall Speedup
Comparison with Vendor Kernels. Figure 8a shows the
performance comparison with vendor kernels on Tesla T4.

Comparing with cuBLAS-CUDA-FP32, EGEMM-TC is faster

PPoPP ’21, February 27–March 3, 2021, Virtual Event, Republic of Korea B. Feng et al.

0.8

1

1.2

1.4

1.6

1.8

2

2048 4096 8192 12288 16384

Sp
e

e
d

u
p

Number of Data Points

cuBLAS-CUDA-FP32 EGEMM-TC

(a) kMeans

0.8

1

1.2

1.4

1.6

1.8

2

2.2

2.4

2.6

2048 4096 8192 12288 16384

Sp
e

e
d

u
p

Number of Data Points

cuBLAS-CUDA-FP32 EGEMM-TC

(b) kNN

Figure 12. GEMM-based Scientific Computing Acceleration with EGEMM-TC.

by 3.13× on average. This result shows that EGEMM-TC on

Tensor Cores can effectively outperform the single-precision

GEMMonCUDACores by a largemargin. This benefit comes

from the high-performance half-precision computation on

Tensor Cores and our kernel optimizations. Comparing with

cuBLAS-TC-Emulation, we still observe 1.35× speedup on

average. This result shows the effectiveness of our kernel

optimizations, considering that cuBLAS provides highly-

optimized vendor GEMM kernel. Comparing across matrix

sizes, we can see that EGEMM-TC shows a larger speedup

at large matrix sizes. The reason is that the GPU capability

is not fully utilized at small matrix sizes and the compute-

bound has not been achieved. As the matrix size increases,

the Tensor Core occupancy also increases and optimizations

for reducing memory movement start to show benefit. We

show the performance comparison on Nvidia RTX6000 in

Figure 8b, where EGEMM-TC has similar benefits as the case

on Tesla T4. Since similar patterns show on Telta T4 and

RTX6000, we will only show the results on Tesla T4 in the

following experiments.

Figure 9 shows the performance comparison on skewed

matrices, where dimensions 𝐾 and 𝑀 are larger than the

remaining dimensions by 2× and 4×, respectively. We skip

dimension 𝑁 since it can be viewed as dimension 𝑀 un-

der matrix transpose. When dimension 𝐾 is enlarged, we

observe that the cuBLAS-TC-Emulation exhibits significant

slowdown when the matrix size exceeds 4096 × 4096 × 8192.

Instead, EGEMM-TC consistently provides high performance

across different matrix sizes. In this case, EGEMM-TC pro-

vides 1.33× speedup over cuBLAS-TC-Emulation and 2.89×
speedup over cuBLAS-CUDA-FP32. When dimension𝑀 is en-

larged, cuBLAS-TC-Emulation achieves higher performance

but is still much slower than EGEMM-TC. Under this setting,

our GEMM are 1.40× faster than cuBLAS-TC-Emulation and

2.9× faster than cuBLAS-CUDA-FP32 on average.

ComparisonwithOpen-SourceKernels. Figure 10 shows
the performance comparison with the open-source kernels.

Comparing with SDK-CUDA-FP32, EGEMM-TC is faster by

11.18× on average. This result shows the significant per-

formance improvement from EGEMM-TC on Tensor Cores.

EGEMM-TC is also faster than Markidis by 3.0× on average.

We manually tune Markidis performance with our optimiza-

tions on the hand-written CUDA code, but the performance

remains similar. The reason is that the CUDA programming

interface provides limited control over the GPU hardware

while our implementation-level optimizations with the SASS

programming interface can utilize GPU capability to much

larger extent (e.g., register-enhanced instruction scheduling).

7.4 Benefit of Instruction Scheduling
Figure 11 shows the performance benefits of instruction

scheduling in latency hiding. In this optimization, we focus

on the SASS programming interface and switch orders of

computation and memory access instructions for latency hid-

ing. The instruction scheduling can achieve 1.14× speedup

on average. Comparing with the latency hiding on the CUDA

programming interface, we can achieve more fine-grained

latency hiding with the SASS programming interface. For ex-

ample, loading data from global memory to shared memory

is a single instruction with the CUDA programming interface

but two instructions with the SASS programming interface

(i.e., loading to register from global memory and storing from

registers to shared memory). This provides more opportuni-

ties to interleave the memory access instructions with the

compute instructions.

7.5 Scientific Computing Acceleration
Figure 12 shows the speedup of scientific computing based

on EGEMM-TC over cuBLAS-CUDA-FP32. We observe an

average speedup of 1.9× on kMeans and an average speedup

of 1.7× on kNN. These speedups show that EGEMM-TC can

be effectively utilized to accelerate GEMM-based scientific

computing. Comparing across data sizes, EGEMM-TC ac-

celerates kMeans by 1.3× when there are 2048 data points

and accelerates kMeans by 1.82× when there are 16384 data

points, as shown in Figure 12a. There are two reasons. First,

PPoPP ’21, February 27–March 3, 2021, Virtual Event, Republic of Korea

EGEMM-TC shows a larger speedup than cuBLAS-CUDA-

FP32 when the data size increases, as shown previously in

Figure 8. Second, when data size increases, GEMM accounts

for more running time and the acceleration on GEMM shows

more benefits. We also observe similar trends on the kNN

workload (Figure 12b).

8 Conclusion
In this paper, we design and implement EGEMM-TC that

accelerates general-purpose scientific computing on Tensor

Cores with extended-precision. Specifically, EGEMM-TC con-

tains a lightweight emulation algorithm on Tensor Cores to

achieve the extended-precision computation, a set of Tensor

Core kernel optimizations to efficientlymap the workloads to

Tensor Cores, and a hardware-aware analytic model to facil-

itate the selection of performance-related hyper-parameters.

Overall, EGEMM-TC achieves 3.13× and 11.18× speedup on

average over the single-precision kernels on CUDA Cores

from cuBLAS and CUDA-SDK, respectively. EGEMM-TC

also achieves 1.8× speedup on a set of popular GEMM-based

scientific computing workloads and diverse input sizes.

References
[1] Martin S. Andersen, Joachim Dahl, and Lieven Vandenberghe. 2020.

Convex Optimization Solver. https://cvxopt.org/.

[2] angelhof. 2017. Hipeac GPUs K-means. https://github.com/angelhof/

gpus-kmeans.git.

[3] D. H. Bailey. 2005. High-precision floating-point arithmetic in scientific

computation. Computing in Science Engineering 7, 3 (2005), 54–61.

[4] Ron Banner, Yury Nahshan, and Daniel Soudry. 2019. Post training

4-bit quantization of convolutional networks for rapid-deployment.

In Advances in Neural Information Processing Systems, H. Wallach,

H. Larochelle, A. Beygelzimer, F. d'Alché-Buc, E. Fox, and R. Garnett

(Eds.), Vol. 32. Curran Associates, Inc., Vancouver, 7950–7958.

[5] Tianqi Chen, Thierry Moreau, Ziheng Jiang, Lianmin Zheng, Eddie

Yan, Meghan Cowan, Haichen Shen, Leyuan Wang, Yuwei Hu, Luis

Ceze, Carlos Guestrin, and Arvind Krishnamurthy. 2018. TVM: An

Automated End-to-End Optimizing Compiler for Deep Learning. In

Proceedings of the 13th USENIX Conference on Operating Systems Design
and Implementation (OSDI’18). USENIX Association, USA, 579–594.

[6] Abdul Dakkak, Cheng Li, Jinjun Xiong, Isaac Gelado, and Wen-mei

Hwu. 2019. Accelerating Reduction and Scan Using Tensor Core Units.

In Proceedings of the ACM International Conference on Supercomputing
(ICS ’19). Association for Computing Machinery, New York, NY, USA,

46–57. https://doi.org/10.1145/3330345.3331057
[7] T.J. Dekker. 1971/72. A Floating-Point Technique for Extending the

Available Precision. Numer. Math. 18 (1971/72), 224–242. http://eudml.
org/doc/132105

[8] F. D. Dinechin and G. Villard. 2006. High precision numerical accu-

racy in physics research. Nuclear Instruments and Methods in Physics
Research Section A-accelerators Spectrometers Detectors and Associated
Equipment 559 (2006), 207–210.

[9] Vincent Garcia, Eric Debreuve, Frank Nielsen, and Michel Barlaud.

2010. K-nearest neighbor search: Fast GPU-based implementations

and application to high-dimensional feature matching. In Proceedings
of the International Conference on Image Processing 2010. IEEE, Hong
Kong, China, 3757–3760. https://doi.org/10.1109/ICIP.2010.5654017

[10] Sridhar Gopinath, Nikhil Ghanathe, Vivek Seshadri, and Rahul Sharma.

2019. Compiling KB-Sized Machine Learning Models to Tiny IoT

Devices. In Proceedings of the 40th ACM SIGPLAN Conference on
Programming Language Design and Implementation (PLDI 2019). As-
sociation for Computing Machinery, New York, NY, USA, 79–95.

https://doi.org/10.1145/3314221.3314597
[11] Benoit Jacob, Skirmantas Kligys, Bo Chen, Menglong Zhu, Matthew

Tang, Andrew Howard, Hartwig Adam, and Dmitry Kalenichenko.

2018. Quantization and training of neural networks for efficient integer-

arithmetic-only inference. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition. CVPR, Salt Lake City, Utah,
2704–2713.

[12] Zhe Jia, Marco Maggioni, Jeffrey Smith, and Daniele Paolo Scarpazza.

2019. Dissecting the NVidia Turing T4 GPU via Microbenchmarking.

arXiv:1903.07486 http://arxiv.org/abs/1903.07486
[13] Zhe Jia, Marco Maggioni, Benjamin Staiger, and Daniele Scarpazza.

2018. Dissecting the NVIDIA Volta GPU Architecture via Microbench-

marking.

[14] Donald E. Knuth. 1997. The Art of Computer Programming, Volume 2:
Seminumerical Algorithms (third ed.). Addison-Wesley, Boston.

[15] Junjie Lai and André Seznec. 2013. Performance upper bound analysis

and optimization of SGEMM on Fermi and Kepler GPUs. In Proceedings
of the 2013 IEEE/ACM International Symposium on Code Generation
and Optimization. IEEE Computer Society, Shenzhen, China, 4:1–4:10.

https://doi.org/10.1109/CGO.2013.6494986
[16] Shin-Ying Lee and Carole-Jean Wu. 2014. Characterizing the latency

hiding ability of GPUs. In 2014 IEEE International Symposium on Perfor-
mance Analysis of Systems and Software, ISPASS 2014. IEEE Computer

Society, Monterey, CA, USA, 145–146. https://doi.org/10.1109/ISPASS.
2014.6844477

[17] Xiuhong Li, Yun Liang, Shengen Yan, Liancheng Jia, and Yinghan

Li. 2019. A Coordinated Tiling and Batching Framework for Ef-

ficient GEMM on GPUs. In Proceedings of the 24th Symposium on
Principles and Practice of Parallel Programming (PPoPP ’19). Asso-
ciation for Computing Machinery, New York, NY, USA, 229–241.

https://doi.org/10.1145/3293883.3295734
[18] Yanxia Zhang LiLi Li and YongHeng Zhao. 2008. k-Nearest Neighbors

for automated classification of celestial objects. In Sci. China Ser. G-
Phys. Mech. Astron., Vol. 51. Springer, China, 916–922.

[19] K. Lin, L. Jing, M. Wang, M. Qiu, and Z. Ji. 2017. A novel long-term air

quality forecasting algorithm based on kNN and NARX. In 2017 12th
International Conference on Computer Science and Education (ICCSE).
IEEE, Beijing, China, 343–348.

[20] S. Markidis, S. W. D. Chien, E. Laure, I. B. Peng, and J. S. Vetter. 2018.

NVIDIA Tensor Core Programmability, Performance Precision. In 2018
IEEE International Parallel and Distributed Processing SymposiumWork-
shops (IPDPSW). IEEE Computer Society, Vancouver, British Columbia,

CANADA, 522–531.

[21] NVIDIA. 2017. Programming Tensor Cores in CUDA 9. https://

devblogs.nvidia.com/programming-tensor-cores-cuda-9/.

[22] NVIDIA. 2017. Tensor Core Performance. https://www.nvidia.com/en-

us/data-center/volta-gpu-architecture/.

[23] NVIDIA. 2018. Nvidia RTX 6000. https://www.nvidia.com/en-

us/design-visualization/quadro/rtx-6000/.

[24] NVIDIA. 2018. Nvidia T4. https://www.nvidia.com/en-us/data-

center/tesla-t4/.

[25] NVIDIA. 2020. cuBLAS: CUDA Toolkit Documentation. https://docs.

nvidia.com/cuda/cublas/index.html.

[26] NVIDIA. 2020. CUDA Binary Utilities. https://docs.nvidia.com/cuda

/cuda-binary-utilities/index.html#instruction-set-ref.

[27] NVIDIA. 2020. CUDA C++ Programming Guide. https://docs.nvidia.

com/cuda/cuda-c-programming-guide/index.html.

[28] NVIDIA. 2020. CUDA Event. https://devblogs.nvidia.com/how-

implement-performance-metrics-cuda-cc/.

https://doi.org/10.1145/3330345.3331057
http://eudml.org/doc/132105
http://eudml.org/doc/132105
https://doi.org/10.1109/ICIP.2010.5654017
https://doi.org/10.1145/3314221.3314597
http://arxiv.org/abs/1903.07486
http://arxiv.org/abs/1903.07486
https://doi.org/10.1109/CGO.2013.6494986
https://doi.org/10.1109/ISPASS.2014.6844477
https://doi.org/10.1109/ISPASS.2014.6844477
https://doi.org/10.1145/3293883.3295734

PPoPP ’21, February 27–March 3, 2021, Virtual Event, Republic of Korea B. Feng et al.

[29] NVIDIA. 2020. PTX and SASS Assembly Debugging.

https://docs.nvidia.com/gameworks/content/developerto-

ols/desktop/ptx_sass_assembly_debugging.htm.

[30] Institute of Electrical and Electronics Engineers. 1985. IEEE Standard

for Binary Floating Point Arithmetic.

[31] et al. Parry, R.M. 2010. k-Nearest neighbor models for microarray gene

expression analysis and clinical outcome prediction. The Pharmacoge-
nomics Journal 10, 4 (2010), 292.

[32] Fernando Magno Quintão Pereira and Jens Palsberg. 2006. Register

Allocation after Classical SSA Elimination is NP-Complete. In Proceed-
ings of the 9th European Joint Conference on Foundations of Software
Science and Computation Structures (FOSSACS’06). Springer-Verlag,
Berlin, Heidelberg, 79–93. https://doi.org/10.1007/11690634_6

[33] Shlomit S. Pinter. 1993. Register Allocation with Instruction Sched-

uling. In Proceedings of the ACM SIGPLAN 1993 Conference on Pro-
gramming Language Design and Implementation (PLDI ’93). Asso-
ciation for Computing Machinery, New York, NY, USA, 248–257.

https://doi.org/10.1145/155090.155114
[34] Douglas M. Priest. 1992. On Properties of Floating Point Arithmetics:

Numerical Stability and the Cost of Accurate Computations. Technical
Report. University of California, Berkeley.

[35] Fernando Magno Quintão Pereira and Jens Palsberg. 2008. Register

Allocation by Puzzle Solving. In Proceedings of the 29th ACM SIG-
PLAN Conference on Programming Language Design and Implementa-
tion (PLDI ’08). Association for Computing Machinery, New York, NY,

USA, 216–226. https://doi.org/10.1145/1375581.1375609
[36] Jonathan Richard Shewchuk. 1997. Adaptive Precision Floating-Point

Arithmetic and Fast Robust Geometric Predicates. Discrete & Compu-
tational Geometry 18, 3 (Oct. 1997), 305–363.

[37] Da Yan, Wei Wang, and Xiaowen Chu. 2020. Demystifying Tensor

Cores to Optimize Half-Precision Matrix Multiply. In 2020 IEEE Inter-
national Parallel and Distributed Processing Symposium (IPDPS). IEEE,
New Orleans, LA, USA, 634–643. https://doi.org/10.1109/IPDPS47924.
2020.00071

[38] Xiuxia Zhang, Guangming Tan, Shuangbai Xue, Jiajia Li, Keren Zhou,

and Mingyu Chen. 2017. Understanding the GPU Microarchitecture

to Achieve Bare-Metal Performance Tuning. In Proceedings of the 22nd
ACM SIGPLAN Symposium on Principles and Practice of Parallel Pro-
gramming (PPoPP ’17). Association for Computing Machinery, New

York, NY, USA, 31–43. https://doi.org/10.1145/3018743.3018755
[39] Xiuxia Zhang, Guangming Tan, Shuangbai Xue, Jiajia Li, Keren Zhou,

and Mingyu Chen. 2017. Understanding the GPU Microarchitecture

to Achieve Bare-Metal Performance Tuning. SIGPLAN Not. 52, 8 (Jan.
2017), 31–43. https://doi.org/10.1145/3155284.3018755

https://doi.org/10.1007/11690634_6
https://doi.org/10.1145/155090.155114
https://doi.org/10.1145/1375581.1375609
https://doi.org/10.1109/IPDPS47924.2020.00071
https://doi.org/10.1109/IPDPS47924.2020.00071
https://doi.org/10.1145/3018743.3018755
https://doi.org/10.1145/3155284.3018755

PPoPP ’21, February 27–March 3, 2021, Virtual Event, Republic of Korea

A Artifact Evaluation Appendix
A.1 Abstract
EGEMM-TC extends the usage of Tensor Cores to acceler-

ate scientific computing applications without compromising

the precision requirement. We provide artifacts to support

following claims:

• Profiling: We have designed an extendable workflow

of hardware profiling. It shows that the intermediate

results of Tensor Core computation are identical to

floating-point results bit-wisely up to 21 mantissa bits,

which is required by the extended-precision computa-

tion.

• Precision: We have designed a lightweight emulation

algorithm to achieve both extended-precision and low

overhead by exploiting high-precision intermediate

computation results.

• Performance: We achieve high performance with a

set of Tensor Core kernel optimizations and a hardware-

aware analytic model, compared with the cuBLAS ker-

nel and the CUDA-SDK kernel on CUDA Cores.

A.2 Getting Started Guide
Our artifacts include the related CUDA code, SASS code,

python code for SASS compilation, and a Makefile.

GPURequirement. Due to the setting of the SASS compiler,

currently Nvidia GPUs with Turing architecture are required

to compile and evaluate the SASS code. We suggest the T4

GPU following our evaluation setting. While the code can

also run on other Nvidia GPUs with Turing architecture,

there would be slightly different performance due to the

different peak performance across GPUs. However, we can

still expect similar precision improvement and performance

improvement compared with the baseline methods.

Environment Setting. We compile the artifacts on Ubuntu

16.04.6 LTS machine with nvcc 10.1 and Python 3.7.3. To

compile the SASS code, a SASS assembler, namely TuringAs
is required. TuringAs is a python package that takes SASS

code and generates the compiled executable code.We suggest

to use Anaconda to install TuringAs and related python

packages. All the installations can be conducted at the user

level and do not need root privilege. The first step is to install

Anaconda. Please download Anaconda3 with the following

command "wget

https://repo.anaconda.com/archive/Anaconda3-2019.03-Linux-

x86_64.sh". Anaconda3 can be installed with

𝑠ℎ Anaconda3-2019.03-Linux-x86_64.sh

It also needs to be specified in the bash shell

𝑒𝑣𝑎𝑙 "$($ANACONDA_PATH/bin/conda shell.bash hook)"

The second step is to install the python package setuptools
with the following command

𝑐𝑜𝑛𝑑𝑎 𝑖𝑛𝑠𝑡𝑎𝑙𝑙 𝑠𝑒𝑡𝑢𝑝𝑡𝑜𝑜𝑙𝑠

Finally, we can install the TuringAs. To install the TuringAs,

please git clone from the following repository

ℎ𝑡𝑡𝑝𝑠 : //𝑔𝑖𝑡ℎ𝑢𝑏.𝑐𝑜𝑚/𝑑𝑎𝑎𝑑𝑎𝑎𝑑𝑎/𝑡𝑢𝑟𝑖𝑛𝑔𝑎𝑠.𝑔𝑖𝑡
Then please change into the turingas directory.

𝑐𝑑 𝑡𝑢𝑟𝑖𝑛𝑔𝑎𝑠

The TuringAs can be installed with the following command

𝑝𝑦𝑡ℎ𝑜𝑛3 𝑠𝑒𝑡𝑢𝑝.𝑝𝑦 𝑖𝑛𝑠𝑡𝑎𝑙𝑙

Compilation and Evaluation. We provide a Makefile to
simplify the compilation procedure. The Makefile contains
five options to support our claims.

• precision_profiling: compiling the code for profiling.

• precision_test: compiling the code for precision im-

provementwith the emulation algorithm. The TuringAs
is required.

• main_emulation: compiling the code for SASS emula-

tion. The TuringAs is required.
• cublas_CUDA_FP32: compiling the baseline for the

single-precision cuBLAS kernel on CUDA Cores.

• SDK_CUDA_FP32: compiling the baseline for the single-

precision CUDA-SDK kernel on CUDA Cores.

• clean: remove compiled programs.

A simple test for the environment setting and the SASS

compilation is to run the following command:

𝑚𝑎𝑘𝑒 𝑚𝑎𝑖𝑛_𝑒𝑚𝑢𝑙𝑎𝑡𝑖𝑜𝑛; ./𝑒𝑚𝑢𝑙𝑎𝑡𝑖𝑜𝑛
A successful compilation and run should provide the through-

put of the SASS emulation code on 8192×8192×8192 square

matrices. We will detail the commands and expected outputs

for individual claims in the following section.

Typical Errors One typical error comes from compilation.

There would be an error message during compilation

/𝑢𝑠𝑟/𝑏𝑖𝑛/𝑝𝑦𝑡ℎ𝑜𝑛 : 𝑁𝑜 𝑚𝑜𝑑𝑢𝑙𝑒 𝑛𝑎𝑚𝑒𝑑 𝑡𝑢𝑟𝑖𝑛𝑔𝑎𝑠

This error indicates the TuringAS is not installed successfully.

Please refer to the Environment Setting paragraph for more

details.

If the SASS code can be compiled correctly, one possible

error is

𝑆𝑒𝑔𝑚𝑒𝑛𝑡𝑎𝑡𝑖𝑜𝑛 𝑓 𝑎𝑢𝑙𝑡 (𝑐𝑜𝑟𝑒 𝑑𝑢𝑚𝑝𝑒𝑑)
This error may be encountered when compiling and running

the SASS code on GPUs without Turing architecture (e.g.,
V100 and Titan Xp). Please refer to the GPU Requirement
paragraph for more details.

PPoPP ’21, February 27–March 3, 2021, Virtual Event, Republic of Korea B. Feng et al.

A.3 Step-by-Step Instructions
On Profiling, please run the following commands:

𝑚𝑎𝑘𝑒 𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛_𝑝𝑟𝑜 𝑓 𝑖𝑙𝑖𝑛𝑔; ./𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛_𝑝𝑟𝑜 𝑓 𝑖𝑙𝑖𝑛𝑔
This program provides a precision profiling on Tensor Cores

to support our claim on the precision of intermediate results.

Typical outputs are

half_result: 926.00000000, 0x00806744

single_result: 934.40637207, 0x029a6944

Tensor Core : 934.40631104, 0x019a6944

This program takes randomly generated half-precision

data and prints the intermediate results and their hex rep-

resentation. "half_result" indicates the computation results

with half precision. "single_result" indicates the computa-

tion results with single precision. "Tensor Core" indicates

the computation results on Tensor Cores. In this example,

the "Tensor Core" and "single_result" differ with only 1 bit.

By repeating the profiling for 10, 000 times, we empirically

observe that the "Tensor Core" and "single_result" are bit-

wisely identical for upto 21 mantissa bits.

On Precision, please run the following commands:

𝑚𝑎𝑘𝑒 𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛_𝑡𝑒𝑠𝑡 ; ./𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛_𝑡𝑒𝑠𝑡
This program shows the emulation error and the half-precision

cuBLAS error. In particular, we the max error relative to the

single precision computation Typical outputs are

m*n*k: 1024.

max Emulation Error: 0.00025177

max Half cuBLAS Error: 0.13489914

Ratio (Max_Emulation_Error/Max_Half_cuBLAS_Error):

0.00186636

In this example, we evaluate a matrix of size 1024. The

half-precision cuBLAS kernel shows an error of 0.13489914.

Our kernel shows a significantly reduced error of 0.00025177.

The ratio shows that the error is reduced by more than 500×.
For the same matrix size, the absolute error may be different

across runs due to the randomness in matrix initialization

while the ratio should be similar. For different matrix sizes,

we observe a slightly larger error for large matrix sizes due

to the error accumulation, as discussed in Section 7.2.

On Performance, please run the following commands:

𝑚𝑎𝑘𝑒 𝑚𝑎𝑖𝑛_𝑒𝑚𝑢𝑙𝑎𝑡𝑖𝑜𝑛; ./𝑒𝑚𝑢𝑙𝑎𝑡𝑖𝑜𝑛
This program runs our SASS emulation code on a square

matrix of size 8192×8192×8192. Then, please run the baseline
for the single precision (FP32) cuBLAS kernel on CUDA

Cores with the following commands:

𝑚𝑎𝑘𝑒 𝑐𝑢𝑏𝑙𝑎𝑠_𝐶𝑈𝐷𝐴_𝐹𝑃32; ./𝑐𝑢𝑏𝑙𝑎𝑠_𝐶𝑈𝐷𝐴_𝐹𝑃32
Finally, please run the baseline for the single precision (FP32)

CUDA-SDK kernel on CUDA Cores with the following com-

mands:

𝑚𝑎𝑘𝑒 𝑆𝐷𝐾_𝐶𝑈𝐷𝐴_𝐹𝑃32; ./𝑆𝐷𝐾_𝐶𝑈𝐷𝐴_𝐹𝑃32
On T4 GPU, the performance of the emulation code, the

cublas_CUDA_FP32 code, the SDK_CUDA_FP32 code are

around 12 TFLOPs, 4 TFLOPs, and 1 TFLOPs, repectively.

This results show the significant performance improvement

compared with the single precision cuBLAS kernel and the

single-precision CUDA SDK kernel on CUDA Cores, sup-

porting our claim on the performance.

	Abstract
	1 Introduction
	2 Background and Related Work
	2.1 Tensor Cores
	2.2 Emulation Algorithms

	3 Emulation Algorithm Design
	3.1 Generalized Emulation Design Workflow
	3.2 Emulation Algorithm on Tensor Cores

	4 Tensor-Core-Centric Tensorization
	5 Instruction-Level Optimizations
	5.1 Register-Enhanced Instruction Scheduling for Latency Hiding
	5.2 Register Allocation Design

	6 Hardware-aware Analytic Model
	6.1 Resource Consumption
	6.2 Analytic Solver

	7 Evaluation
	7.1 Experiment Setup
	7.2 Precision Improvement
	7.3 Overall Speedup
	7.4 Benefit of Instruction Scheduling
	7.5 Scientific Computing Acceleration

	8 Conclusion
	References
	A Artifact Evaluation Appendix
	A.1 Abstract
	A.2 Getting Started Guide
	A.3 Step-by-Step Instructions

