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Graphs are everywhere, GNNs are useful hammer...
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Background

• Basic computation in GNNs.

• Graph Neural Network Basics.

• Neighbor aggregation (SpMM-like).

• Edge feature computation (SDDMM-like).

Graph Neural Network Basics.

Basic computation in GNNs.



Challenges

• Existing deep-learning frameworks are 
optimized for dense neural network operations.

• Existing major sparse computation kernels 
(e.g., cuSPARSE) leverage CUDA cores.

• Existing Tensor-Core based kernels (e.g., Block-
SpMM) rely on rigid input sparsity pattern (e.g., 
block sparsity).

Lack of efficient support for sparse 
graph neural network computation.

Underutilize the latest GPU with 
new hardware feature that can offer  
high-performance computation.

Limits its applicability towards 
different sparse inputs settings.



Motivations

Dense MM on CUDA core

Sparse MM on CUDA core

GNNs fit GPUs

Apply separate optimization on one 
direction only would hardly work 

GPUs fit GNNs



How could we match the sparse GNN 
workload with GPUs to achieve high 
computation efficiency and better 

utilization of GPU resources?

Question:  



TC-GNN

• The first TC-based GNN 
acceleration design on GPUs. 

• At the input level technique.  

• At the kernel level innovation.

• At the framework level design. 

“Let the input sparse graph fit the 
dense computation of Tensor Core”

Sparse graph translation (SGT) 
technique condense non-zero 
elements from sparse tiles into a 
fewer number of “dense” tiles

TC-GNN exploits the benefits 
of CUDA core and tensor core 
collaboration. 

TC-GNN integrates with the 
popular Pytorch framework.



Overall Design
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Sparse Graph Translation



Sparse Graph Translation
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Sparse Graph Translation 1. Fewer number of iterations for 
Calling TC WMMA primitives.

2. Fewer number of dense row access 
for node embedding vector.

3. Lower Shared Memory Usage due to 
more condensed tiles loading.



TC-aware 
Sparse Graph 
Translation
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TC-optimized Dataflow

TC-Optimized Dataflow Design for (a) Neighbor Aggregation and (b) Edge Feature Computing in GNNs



TC-optimized Dataflow

TC-Optimized Dataflow Design for (a) Neighbor Aggregation and (b) Edge Feature Computing in GNNs



TC-tailored SDDMMTC-tailored SpMM

Warp

Block



Evaluation

• Baseline: 
• Deep Graph Library (DGL)
• PyTorch Geometric (PyG)

• GNN model: 
• GCN (Graph Convolutional Network)
• AGNN (Attention-based GNN)

• Dataset: see right-side table.

• Platform: 
• A desktop server with 8-core 16-thread 

Intel Xeon Silver 4110 CPU (64GB host memory) 
and NVIDIA RTX3090 GPU (24GB device memory)



End-to-end Performance

Speedup over (a) DGL and (b) PyG on GCN and AGNN. Avg: 1.70X



Operator Performance (dgl.op)

• SpMM (dgl.op.copy_u_sum) • SDDMM (dgl.op.u_dot_v)

Avg: 1.50X Avg: 6.98X



Kernel Performance (cuSPARSE)

• SpMM w.r.t cuSPARSE with different embedding dimension. (GFLOPS)

Avg: 1.23X



Future Works

• GPU-accelerated Preprocessing.
• Current version is based on CPU + OpenMP parallel.
• Intra-warp/block sorting for variable length edge list is needed (may use CUB library 

for fixed-length array sorting + padding).

• Support/optimization for multiple precision TC.
• Current version is using TF32 on Ampere with WMMA shape of 16x8x16.
• Adaptive optimization for different inputs settings (graph/dimension) when multiple 

WMMA shape available (e.g., FP16 with 16x8x8 and 16x8x16).

• Kernel Fusion with other layers.
• Current version focuses on training.
• More fusion operation in inference, such as Graphconv+BatchNorm.



Thank You

Paper: https://arxiv.org/pdf/2112.02052.pdf
Code: https://github.com/YukeWang96/TCGNN-Pytorch.git

Email: yuke_wang@cs.ucsb.edu
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