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Abstract—Deep learning Recommendation Models (DLRMs)
plays an important role in various application domains. However,
existing DLRM training systems require a large number of
GPUs due to the memory-intensive embedding tables. To this
end, we propose EL-Rec, an efficient computing framework
harnessing the Tensor-train (TT) technique to democratize the
training of large-scale DLRMs with limited GPU resources.
Specifically, EL-Rec optimizes TT decomposition based on key
computation primitives of embedding tables and implements
a high-performance compressed embedding table which is a
drop-in replacement of Pytorch API. EL-Rec introduces an
index reordering technique to harvest the performance gains
from both local and global information of training inputs. EL-
Rec also highlights a pipeline training paradigm to eliminate
the communication overhead between the host memory and the
training worker. Comprehensive experiments demonstrate that
EL-Rec can handle the largest publicly available DLRM dataset
with a single GPU and achieves 3× speedup over the state-of-
the-art DLRM frameworks.

Index Terms—Recommender systems, High performance com-
puting, Deep learning

I. INTRODUCTION

Over the recent years, deep learning recommendation mod-
els (DLRMs) [1]–[5] attract a lot of attention from the re-
search and industry. DLRMs combine sparse input embedding
learning [6], [7] with neural networks and has demonstrated
significant improvement compared with the collaborative filter-
ing based recommendation model [8]. DLRMs have accounted
for a significant proportion of deep learning instances in
the industry, including product recommendations from Ama-
zon [9], personalized advertisements from Google [10], and
e-commerce recommendations from Alibaba [11].

Different from traditional compute-intensive neural net-
work architectures [12], [13], DLRMs consist of not only
the compute-intensive multi-layer perceptron (MLP) but also
the memory-intensive embedding tables. In the industry-scale
DLRM workload, the footprint of embedding tables is on
the order of terabytes [14]–[16] which easily surpasses the
limited High Bandwidth Memory (HBM) of a single GPU

device (several tens of GBs) [17]. To address this challenge,
a hybrid-parallel distributed training system is leveraged by
many industrial companies, such as Nvidia HugeCTR [18] and
Facebook NEO [16]. In these systems, the compute-intensive
MLP layers are replicated across all GPUs and trained in a
data-parallel style, while the memory-intensive embedding ta-
bles are sharded across different GPUs and trained in a model-
parallel style. Yet, due to the huge footprint of embedding
tables and the limited GPU HBM capacity, a large number of
GPUs are often required to handle an industry-scale DLRM,
leading to a very expensive and energy-consuming system
design choice.

Towards efficient DLRM training, embedding table com-
pression is a promising approach to reduce the demand for
large HBM capacity. Two major directions of effort have been
devoted to compressing the embedding tables. The first direc-
tion leverages low-bit quantization to represent the embedding
table [6], [19]. The quantization is feasible for inference, but
training with a quantized embedding table often yields signifi-
cant accuracy losses [19]. The second direction employs a fac-
torization method for memory storage saving like TT-Rec [20].
It leverages Tensor-train (TT) decomposition to replace large
embedding tables in a DLRM with a sequence of small matrix
multiplications. These methods often give negligible accuracy
loss, but they fail to provide efficient DLRM computation
primitives built on top of the compressed embedding tables and
thus introduce significant computation overhead. For example,
the embedding lookup operation of TT-Rec is 2.3× slower
than Pytorch embedding API on uncompressed embedding
tables. In addition, DLRMs often come with a diverse set
of embedding tables (e.g., size, accessing frequency), while
TT-Rec only employs a homogeneous compression scheme to
process all tables without taking into account the distinct index
distribution pattern of the DLRM training input.

Another direction to build an efficient DLRM training
system design [21], [22] capitalizes on the host memory for
maintaining the embedding parameters of large sizes, such
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as Facebook DLRM [23] and FAE [24]. These distributed
DLRM training systems are often built on the Parameter Server
(PS) architecture [25], [26]. Specifically, the servers maintain
embedding table parameters in the host memory and conduct
the highly sparse embedding table operations (e.g., embedding
lookup) on CPUs. While workers hold dense parts of DLRM
(MLP layers) in the GPU HBM and perform the forward and
backward computations. A worker needs to pull its corre-
sponding parameters from the server at the forward phase and
push the gradient back to the server after the backward phase.
Such PS-based DLRM training framework usually suffers
from these two bottlenecks [27]: (1) parameter communication
latency between the servers and the workers; (2) CPU side
embedding table computation and synchronization latency.
This motivates further system-level optimization based on the
PS architecture to address the performance bottlenecks.

To this end, we propose EL-Rec (Figure 1), a more flexible
and economical DLRM training system design, which could
democratize the training of the large-scale DLRMs with lim-
ited GPU resources and lower the training cost of the industry-
scale DLRMs. EL-Rec is also the first framework that system-
atically integrates the benefits from both embedding table com-
pression and utilization of host memory for DLRM training.
In particular, to address the major challenges from previous
individual work [20]–[22], [24], EL-Rec offers a algorithm-
input-system co-design. 1) At the algorithm level, we propose
Efficient TT (Eff-TT) table, a compressed representation of
embedding table, which simultaneously leverages the compu-
tation patterns of both tensorization and other embedding table
related primitives. This new design allows a much smaller
footprint while keeping high embedding lookup throughput.
Our Eff-TT table can be easily integrated into various DLRM
frameworks by directly replacing Pytorch nn.EmbeddingBag()
API with our Eff-TT table API. 2) At the input level, EL-
Rec introduces an Index Reordering technique which not only
takes advantage of the highly skewed access pattern of the
embedding table (global information) but also employs the
index relationship within each batch (local information) to help
TT tables achieve better performance. 3) At the system level,
EL-Rec utilizes the host memory to further extend the memory
capacity. A three-stage training pipeline is designed to largely
hide the communication overhead between CPU and GPUs.
We also implement a low-cost embedding cache to resolve
the read-after-write conflict in pipelined DLRM training. The
comparison between EL-Rec with the most relevant DLRM
frameworks are summarized in Table I.

Overall, we make the following contributions in this paper:
• We optimize TT decomposition based on the key com-

putation pattern of embedding tables and propose Eff-TT
table, a GPU-friendly embedding table representation that
achieves a significantly smaller footprint and maintains
low lookup latency.

• We leverage both local and global information of training
data and propose an index reordering technique that
maximizes the performance of Eff-TT tables.

• A pipeline training paradigm is designed to eliminate
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Fig. 1. EL-Rec Overview.

TABLE I
COMPARISON BETWEEN DIFFERENT FRAMEWORKS.

Framework Host
Memory

Embedding
Compression

CPU-GPU
Comm. Latency

Compression
Overhead

DLRM [23] ✓ ✗ High N/A
FAE [24] ✓ ✗ Moderate N/A
TT-Rec [20] ✗ ✓ N/A High
EL-Rec ✓ ✓ Low Low

the communication overhead between different memory
hierarchies and a low overhead embedding cache is
incorporated to solve the read-after-write conflict.

• Comprehensive experiments show that our model can
handle the largest open-source recommendation model
dataset with limited GPU resources, and achieves 3×
speedup compared to the state-of-the-art DLRM systems.

II. BACKGROUND

In this section, we will introduce the basics of the DLRM
and tensor-train decomposition.

A. Deep Learning Recommendation Model

Figure 2 shows the workflow of a DLRM. There are two
types of inputs in the recommendation model, dense input
and sparse input. Dense inputs typically represent continuous
data (e.g. user’s age, login time) which are processed by a
neural network (Bottom MLP). Sparse inputs are discrete data
(e.g. user’s rating for an item) that are represented as one-
hot or multi-hot binary vectors. The sparse inputs will be
converted to embeddings by looking up corresponding rows
from the embedding tables. After input processing, both dense
inputs and sparse inputs are converted to features with the
same number of dimensions. Then the embedding layer output
will combine with the output from Bottom MLP via feature
interaction layer which computes dot products of all feature
pairs. The results of the dot product are concatenated with the
original embeddings and fed into another neural network (Top
MLP) to get the prediction of users’ click through rate (CTR),
e.g., the probability of a user clicking a recommended item.

In contrast to more traditional DNN layers like Conv and
MLP, the embedding table that demands significant memory
capacity is the key challenge in DLRM training [14], [16].
Many frameworks capitalize on the host memory for main-
taining the embedding parameters of large size [21]–[24]. To
mitigate the communication overhead between host memory
and GPU, pre-fetch embedding parameters for the next few
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Fig. 2. Workflow of deep learning recommendation model.
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Fig. 3. The process of representing an embedding table into a TT table. mi

and ni are factorized embedding table size, Ri is TT rank.

training batches is a promising way. However, embedding ta-
bles are trainable parameters that should be updated after every
training iteration. Simply pre-fetch will incur data consistency
issues caused by read-after-write conflict and slow down
the model convergence [27]. This motivates us to design a
dedicated software-managed embedding cache to synchronize
embedding parameters and guarantee data consistency.

B. Tensor-train Decomposition

Tensor-train (TT) decomposition is widely adapted to com-
press the DNN models and shows a high compression ratio
with low accuracy loss [20], [28], [29]. TT decomposition
decomposes a d-dimension tensor T ∈ Rn1×n2×···×nd to a
multiplication of d lower dimension tensors [30]–[32]. The
elements in T can be computed by:

T (i1, i2, · · · , id) =
R1∑

r1=1

R2∑
r2=1

· · ·
Rd−1∑

rd−1=1

C(1)(i1, r1)

C(2)(r1, i2, r2) · · · C(d)(rd−1, id)

(1)

where the low dimension tensor C(k) ∈ RRk−1×nk×Rk is
called TT core, Rk is so-called TT ranks which are hyperpa-
rameters and R0 = Rd = 1 by definition.

The TT decomposition can also be generalized to compress
the embedding table [33]. We assume that embedding table
T ∈ RM×N . The size M and N can be factorized to
M = m1×m2×· · ·×md and N = n1×n2×· · ·×nd. Then
embedding table T can be converted to a d-dimensional tensor
T ∈ R(m1×n1)×(m2×n2)×···×(md×nd). Now we can apply
TT decomposition to the converted embedding table T . The
element in T which is indexed by [(i1·j1), (i2·j2), · · · , (id·jd)]
can be computed following the equation below:

T [(i1 · j1), (i2 · j2), · · · , (id · jd)] =
C(1)[(i1 · j1), :]C(2)[:, (i2 · j2), :] · · · C(d)[:, (id · jd)]

(2)

Table 1

Batch Size Avazu Terabyte Kaggle

1024 1024 1024 130.045 302.105 321.020

2048 2048 214.552 520.056 547.918

4096 4096 361.918 880.616 920.098

8192 8192 624.373 1468.100 1526.529

16384 16384 1098.255 2415.861 2518.461

32768 32768 32768 1953.269 3888.602 4160.809

65536 65536 3477.284 6306.7825 6918.356
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Fig. 4. Characteristics of DLRM training data: (a) Highly skewed access
pattern of three real-world DLRM datasets (embedding rows are ordered by
access frequency); (b) Large gap between batch size and the average number
of unique indices within each batch.

We name the decomposed embedding table as TT table.
Figure 3 shows the process of converting an embedding table
into a TT table. The key challenge of applying TT tables
in DLRM training is the high computation overhead. TT
table lookup requires several tensor multiplication to get one
element of the original embedding table which makes it much
slower than Pytorch embedding API. This encourages us to
implement a more efficient TT table to make it practical in
large-scale DLRM training.

C. Characteristics of DLRM Training Data

In addition to the model architecture, the training data of
DLRM also exhibits distinct characteristics, which provide
opportunities for optimizing TT table operators. First, the
distribution of activated sparse indices follows a “power-law”
distribution which leads to a highly skewed access pattern of
embedding tables. In Figure 4(a), we illustrate the cumulative
access percentage of three real-world DLRM datasets. The
access pattern indicates that a small proportion of embeddings
accounts for the majority of embedding access. This obser-
vation motivates us to reuse the intermediate result of these
popular embeddings to reduce the additional computation of
the TT table lookup (detailed in Section III-A)

Second, the number of unique indices in a batch is much
smaller than the batch size. As shown in Figure 4(b), there is a
large gap between batch size and the average number of unique
indices within each batch. This implies that many embedding
entries are accessed more than once in a batch which will
bring redundant gradient computation when back propagating
the gradient of TT cores. Such a large gap provides us op-
timization opportunities to aggregate the embedding gradient
in advance to reduce the computation amount in the TT table
backward (detailed in Section III-B).

III. EFFICIENT TT TABLE DESIGN

In this section, we will detail our Eff-TT table design which
includes forward phase intermediate result reuse and backward
phase in-advance gradient aggregation.

A. Two-level Intermediate Result Reuse

The footprint of the TT table is smaller, but it incurs
extra computation when lookup embeddings in the forward
phase and computing gradient in the backward phase. The
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additional computation overhead is non-trivial, resulting in a
significant increase in training time. In this work, we analyze
the computation pattern of the TT table in-depth and explore
the data reuse opportunity in the TT table computation. To
make full use of the reusable intermediate result in the TT table
computation, the main challenge is how to determine which
intermediate result can be reused. To this end, we explore the
intermediate result reuse opportunity at two different levels:

Sample-level Reuse: Figure 5(a) shows the process of em-
bedding table lookup. An input sample in a mini-batch consists
of several indices. Taking Sample2 as an example, first, we
need to get Row0 and Row1 from the embedding table, and
then apply element-wise addition to Row0 and Row1 to get
the embedding of Sample2 : Emb2 = Row0 + Row1. For
TT table lookup, the process is more complicated. It requires
several steps to lookup Sample2 from the TT table. As shown
in Figure 5(b): Step 1 is to convert indices to TT indices:
each TT table has several TT cores each needs an index, so
we need first convert the 1-D embedding table index into a
higher dimensional TT index. Assuming that the embedding
table size is M ×N (where M = m1 ×m2 × · · · ×md and
N = n1 × n2 × · · · × nd) and the original index is iemb, the
TT index of the k-th TT core can be obtained by:

ik =
iemb∏d

i=k+1 mi

mod mk

jk = 0, 1, · · · , nk−1

(3)

In Figure 5(b) with M = 2 × 2 × 2, the original index
[1, 0] is converted to t1 = [(0, :), (0, :), (1, :)] and t2 = [(0, :
), (0, :), (0, :)]. Step 2 is to get TT slices from a TT table:
we need to get the corresponding TT slices from the TT table
according to the TT index for later computation. Here t1 and
t2 have the same indices in the first two dimensions, so they
share the same TT slices from the first two TT cores. Step 3
is to compute TT slice multiplication: the embedding row from
the original embedding table can be computed by multiplying
all TT slices following Equation 2. We define Slice[p,q] as the

TT slice indexed by tp from the q-th TT core, then Row1 =
Slice[0,0] × Slice[0,1] × Slice[0,2] and Row0 = Slice[1,0] ×
Slice[1,1] × Slice[1,2]. Step 4 is to sum up all embedding
rows: to get the final embedding, we obtain Emb2 by adding
Row0 and Row1:

Emb2 = Row0 +Row1 (4)
= (Slice[0,0] × Slice[0,1] × Slice[0,2])+

(Slice[1,0] × Slice[1,1] × Slice[1,2])

To reduce the computation complexity of TT table lookup,
we seek the data reuse opportunity. Taking Sample2 in Fig-
ure 5(b) as an example, the TT indices of Sample2 are t1 =
[(0, :), (0, :), (1, :)] and t2 = [(0, :), (0, :), (0, :)]. The first two
indices of t1 and t2 are the same, so that Slice[0,0] = Slice[1,0]
and Slice[0,1] = Slice[1,1], and the intermediate result of
Slice[:,0] × Slice[:,1] can be reused. Then, the computation
of Emb2 turns into:

Emb2 = Slice[0,0] × Slice[0,1]

×
(
Slice[0,2] + Slice[1,2]

)
(5)

In Equation 5, the times of TT slices multiplication have
been reduced from four to two. Assuming that we represent a
M ×N embedding table into three TT cores. And we assume
that each input sample has k indices, the average TT rank
is R, and the average size of the reshaped embedding table
T in each dimension is (m× n) which means M = m3 and
N = n3. Then the computation complexity of lookup a sample
from the embedding table is Oemb = O((k−1)N) = O(kn3).
However, the computation complexity of lookup a sample from
the TT table is OTT = O(k(2R−1)n2(n+R)+(k−1)N) =
O(kn2R2). In practice, R ≫ n, so that OTT is much larger
than Oemb. Ideally, if all TT indices in a sample are partially
equal in some dimensions, we can reuse the intermediate
results from every embedding row. Then the computation
complexity can be reduced to Oeff TT = O(n2R2). This
result demonstrates that reusing sample-level intermediate
results will significantly reduce the computation amount of
TT table lookup.

Batch-level Reuse: In practice, training data is usually pro-
cessed in batches, which brings more data reuse opportunities.
We generalize the sample level intermediate result reuse to the
batch level. Our key insight is that if the samples within a batch
have partially identical TT indices, then the intermediate result
of the identical part can be reused. The main challenge is how
to identify the reusable intermediate result within an input
batch. To address this challenge, we design a Reuse buffer
to maintain the reusable intermediate result of the first two
TT cores and propose an parallel pointer preparation kernel to
identify the inevitable computation and prepare the pointers
for the batched-GEMM kernel (e.g. cublasGemmBatchedEx())
to compute multiple matrix multiplications simultaneously.

We summarize the process in Algorithm 1. The goal of
Algorithm 1 is to prepare the pointer list Ptr a , Ptr b,
and Ptr c for the batched-GEMM kernel. Ptr a , Ptr b
store the address of the first two TT cores (TT cores[0 ]



Algorithm 1: Parallel Pointer Preparation.
input : Batched input: Batch idx , Reuse buffer: Buf
output: Tensor address pointers Ptr a , Ptr b, Ptr c.
/* Initialize some auxiliary variables. */

1 Buf len = 0, Buf flag = [0]
2 for each Idx ∈ Batch idx do in parallel

/* Compute buffer index of the row. */
3 Buf idx = Idx / length3 ;

/* Check availability of buffer at Buf idx . */
4 if (atomicCAS(Buf flag[Buf idx ], 0, 1) == 0) then

/* Update buffer length. */
5 cur offset = atomicAdd(Buf len, 1);

/* Compute TT index0 and TT index1. */
6 TT idx1 = Buf idx / length2 ;
7 TT idx0 = Buf idx % length2 ;

/* Update Ptr a, Ptr b, Ptr c. */
8 Ptr a[Buf idx ] =

&TT cores[1 ] + TT idx1 ∗ shapes[1];
9 Ptr b[Buf idx ] =

&TT cores[0 ] + TT idx0 ∗ shapes[0];
10 Ptr c[Buf idx ] = &Buf + cur offset ∗ shapes[2];
11 end
12 end

and TT cores[1 ]), and Ptr c should be pointing to some
address in the Reuse Buffer that stores the intermediate result
of TT cores[0 ] multiplying TT cores[1 ]. The number of
threads is equal to the number of indices in the batch. Each
thread processes one embedding table index in the batch
in parallel (Line 2). It will first compute the corresponding
address in Reuse Buffer by dividing the length of the last TT
core length3 (Line 3). Then each thread will check whether
its computation can be skipped (Line 4). This information is
stored in Buf flag . If Buf flag [Buf idx ] == 1, it means the
intermediate result of the first two TT cores will be computed
by other threads. If not, the Ptr a , Ptr b, and Ptr c should
be assigned with corresponding addresses (Line 8 to 10) for
subsequent GEMM computation. Once the pointer preparation
is done, we can call the batched-GEMM kernel with the
address pointers Ptr a , Ptr b, and Ptr c to simultaneously
compute the intermediate results of the first two TT cores and
store them into the Reuse Buffer. Algorithm 1 helps Eff-TT
table determine which computation is inevitable and minimizes
the computation amount of the Eff-TT table lookup.

B. TT-centric Backward Optimization

For TT table backward, the main task is to calculate the
gradient of TT cores and update the parameters of TT cores.
We assume that a TT table has d TT cores, then an embedding
row can be computed by: e = C(1)[i1, :]C(2)[:, i2, :] · · · C(d)[:
, id]. During the backward process, we first obtain the gradient
of embedding ∂L

∂e . Next, we follow the chain rule and compute
the gradient of the k-th TT cores ∂L

∂C(k)[:,ik,:]
:

∂L

∂C(k)[:, ik, :]
=

(
C(1)[i1, :]C(2)[:, i2, :] · · · C(k−1)[:, ik−1, :]

)T

·

∂L

∂e
·
(
C(k+1)[:, ik+1, :] · · · C(d)[:, id]

)T

(6)

Equation 6 indicates that (d−1) times of tensor multiplication
are required to compute one TT core’s gradients. Since there
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are d TT cores in total, the computation complexity is d
times larger than TT table lookup. The process of computing
TT core gradients has been shown in Figure 6(a), for each
embedding row, the corresponding gradients of TT core can
be obtained by multiplying embedding gradients ∂L

∂e with TT
cores following Equation 6, as illustrated in Step 1 . Then we
need to aggregate the obtained gradients to the corresponding
TT cores as illustrated in Step 2 . Finally, the aggregated TT
core gradients will be returned and later used for TT core
update. A large amount of tensor multiplication at Step 1 is
the bottleneck of TT table backward. To minimize redundant
computation and improve the efficiency of TT table backward,
we propose two methods:

In-advance Gradient Aggregation: We follow the insight
that the access pattern of embedding tables is highly skewed
and some popular embeddings may be accessed more than
once in a batch. As shown in Figure 6(b), the gradients
corresponding to the same embedding have the same color,
and some embeddings occurred multiple times in a batch. We
first compute the unique embeddings within a batch, and then
aggregate the gradients of embeddings rows into correspond-
ing unique embedding gradients (Step 1 in Figure 6(b)). The
next step is to multiply the aggregated embedding gradients
with TT cores to get the aggregated TT core gradients (Step
2 in Figure 6(b)). As shown in Figure 6, our in-advance

gradient aggregation method significantly reduces the com-
putation amount of tensor multiplication and also cuts down
the memory consumption for intermediate gradients since we
do not need to compute and store a large amount of non-
aggregated TT core gradients.

Fused TT core Update: In the TT table backward phase,
the gradients of TT cores will be returned to the GPU
global memory and then used by the optimizer. However, the
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gradients of TT cores are the endpoint of backpropagation,
which makes it possible to fuse the TT core parameters update
operation into the TT core backward kernel. TT-Rec [20]
also employs kernel fusion in its backward kernel, but TT-
Rec requires additional TT core gradient aggregation before
the parameter updating which incurs additional data copy. In
contrast, our in-advance gradient aggregation method directly
computes the aggregated gradients so that the TT cores can be
updated by the aggregated gradients without additional data
copy (Step 3 in Figure 6(b)). The fused TT core update
mitigates the CUDA kernel launch overhead and reduces the
data loading amount from GPU global memory.

IV. LOCALITY-BASED INDEX REORDERING

In this section, we will first discuss the global and local
information of embedding tables, then introduce an index
reordering method that improves the performance of Eff-TT
tables.

A. Global and Local Information

Global information represents the data access pattern of the
DLRM embedding tables. For DLRM trained on real-world
data, some rows of embedding tables are significantly more
popular than others, and the access distribution of embedding
tables is highly skewed which generally follows the ”power-
law” distribution. Such global information has been widely
leveraged in various recommendation model frameworks [3],
[4], [24]. However, few frameworks take advantage of the local
information of the training data. Local information, unlike

Algorithm 2: Generate Index Graph.
input : Batched Indices: Batch list [ ],

Frequency Based Ordering: Fre order [ ]
output: Edge List of Index Graph: Edge list [ ]
/* Compute hot embedding threshold. */

1 Hot thre = Table length ∗ Hot ratio;
/* Iterate through all batches. */

2 for each Batch in Batch list do
/* Global Information: get frequency based index. */

3 Fre batch = Fre order [Batch];
/* Keep Hot embeddings’ index. */

4 Fre batch.clamp(min = Hot thre) - Hot thre;
/* Local Information: generate edges for Batch . */

5 Batch edges = Fre batch.self combinations();
/* Append to Edge list [ ]. */

6 Edge list .append(Batch edges);
7 end

the global information which represents the distribution of
the entire dataset, reflects the indices relationship within each
mini-batch. We are driven by the insight that, the local infor-
mation within input batches represents user behaviors during
different periods of time (e.g. users may view more work-
related information during the day and more entertainment
information at night), and such information can be leveraged
to improve the performance of DLRM training.

B. Locality-based Index Reordering

The performance of the Eff-TT table depends on the data
distribution within each data batch. Based on Equation 3, if
the indices within a batch are closer, then more TT indices
will be partially equal which will provides more opportunities
for intermediate result reuse. And higher data locality is also
beneficial for improving the GPU L1/L2 cache hit rate.

An Eff-TT table lookup process without index reordering
has been illustrated in Figure 7(a). There is no intermediate
result that can be reused since indices within a batch are
not closely distributed. Such poor data locality limits the
performance of our TT-based optimization. To improve data
locality within each batch, one solution is to physically reorder
the rows of embedding tables in some order. However, it will
incur a large amount of data movement because of the large
footprint of embedding tables. A better way to achieve our
goal is to reorder the indices. Embedding tables are trainable
parameters that are initialized randomly before training so that
all embedding rows in the embedding table are equivalent
before the training starts. Based on the above observation, we
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propose a locality-based index reordering method to increase
the data locality within each batch and help improve the
performance of our Eff-TT table design. The lookup process
with index reordering has been shown in Figure 7(b), each
batch is a set of indices Batch i = {i1, i2, · · · , in}, all
indices will first be transformed into new indices based on the
index bijection function (detailed in §IV-C) New Batch i =
{̃ij |̃ij = findex(ij), ij ∈ Batch i}. Then the New Batch i
will be used for embedding lookup. The index reordering
significantly improves the data locality of each batch and
provides more opportunities to reuse the intermediate result.

C. Index Bijection Generator
In order to facilitate an effective index reordering, we need

to generate an index bijection that improves data locality in
each batch. To achieve this, we propose an index bijection
generator that leverages both global and local information.
As shown in Figure 8, the workflow of generating an index
bijection has two main steps:

First, we convert the batched indices into an index graph
to capture the local information of the training data. As
described in Algorithm 2, we first sort the indices by the
access frequency in a descending order. Then a hyperparameter
Hot ratio is chosen to define the “hot embeddings” which
means frequently-accessed embeddings, and they will not be
reordered later. Here the global information is leveraged to
gather hot embeddings together. Other non-hot indices are
used to generate the index graph. We treat each index as
a vertex in the graph, if two indices appear in the same
batch simultaneously, then we will add an edge between these
two vertices. Following Algorithm 2, an index graph can be
generated (Step 1 in Figure 8) which represents the locality
information of the indices within each batch.

The next step is to reorder these indices based on the
index graph. We leverage the modularity-based community
detection algorithm [34], [35]. The modularity [36] is defined
as Q = 1

2m

∑
i[eii −

k2
i

2m ], where eij is the total number of
edges between community i and j, ki is the total degree of
vertices in community i, and m is the total number of edges
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in the whole graph. Our goal is to find a graph partition
with high modularity Q. Higher modularity means denser
intra-community edges and sparser inter-community edges.
After dividing the graph into different communities, a new
index bijection can be get by assigning continuous indices to
the vertices in the same community (Step 2 in Figure 8).
Such index bijection is able to take advantage of both global
information and local information and help the TT table gain
better performance. And it is worth noting that the generation
of indexed bijections can be done offline, so it will not bring
additional overhead to the training process at runtime.

V. TT-BASED PIPELINE TRAINING SYSTEM

In this section, we will first detail our TT-based pipeline
training system design, then we will introduce how to solve
the read-after-write conflict in pipeline DLRM training with a
GPU side embedding cache design.

A. TT-based Training System Design

In addition to the TT-based algorithmic innovations, we
propose a hierarchical memory system design to utilize the
host memory and additionally extend the scalability of EL-
Rec. Although TT decomposition can greatly compress the
embedding table, the TT tables may still be too large to fit
into the GPU HBM when training an industry-scale DLRM
model. In this case, we need to rely on the host memory to
maintain some embedding table parameters. Such a hierarchi-
cal memory design often suffers from inferior performance
due to the high communication overhead between CPU and
GPUs. To this end, we propose a TT-based pipeline training
system to mitigate the communication latency.

As shown in Figure 9, our system design follows a Parame-
ter Server (PS) architecture. The MLP layers (including bottom
MLP and top MLP) are replicated to all GPUs and trained in
a data-parallel style. The embedding layers are divided into
two parts, most embedding tables are represented as TT tables



which are also replicated to all GPUs while the remaining
embedding parameters that can not be fit into GPU HBM are
placed in host memory.

The CPU side serves as a parameter server, it will pre-fetch
the embedding parameters for the next a few batches from the
host memory to the Pre-fetch Queue of different GPUs. And
the GPUs act as workers that conduct forward and backward
computation. The workers will first concatenate the embed-
dings from the TT tables and the pre-fetch queue to collect all
embedding parameters for the working batch. And then the
workers will synchronize the concatenated embeddings with
the embedding cache (details in §V-B) to make sure that all
embeddings are updated (Step 1 ). The TT tables are trained
in a data-parallel style. So that after forward and backward
computation, we must AllReduce the gradients of TT tables
and embedding cache before updating the parameters (Step
2 ). Finally, the gradients of embedding parameters from host

memory will be pushed into the Gradient Queue and then
the server will pull the gradients and update the embedding
parameters in the host memory (Step 3 ).

B. Solving RAW Conflict with Embedding Cache

Pipelining is a commonly used technique to accelerate the
training of deep learning on hierarchical memory architecture.
The DLRM workload can also leverage pipeline training by
overlapping the CPU side embedding parameter gathering and
GPU side MLP forward and backward. However, such pipeline
training design will incur a Read-After-Write (RAW) conflict.
As shown in Figure 10(a), when MLP is processing data batch
i, the embeddings of data batch i + 1 will be pre-fetch at
the same time. However, the update stage of batch i have not
finished yet, so the pre-fetched embeddings may contain some
“stale” parameters that have not been updated by the gradients
of batch i.

To tackle this RAW conflict, we design an Embedding
Cache to track the embeddings that will be used for training
in the next few batches and keep the GPU side embeddings
up to date. The process of GPU side embedding synchro-
nization has been shown in Figure 10(b). The pre-fetched
embeddings batch contains the indices and the embedding
parameters. When a new pre-fetched embedding batch comes,
the embedding cache will search the indices from the index
table. If the index is found in the cache, it means that this
embedding has been used by several previous batches and
needs to synchronize like the Emb2 in Figure 10(b). After
embedding synchronization, all embeddings are up to date and
ready to be trained.

To minimize the size of the embedding cache, we use a “life
cycle (LC)” system to manage the embeddings in the cache.
Once the training process of an input batch is finished, the
embeddings will be pushed into the cache and be assigned with
LC values equal to the maximum length of the Requests Queue
(pre-fetch queue and gradient queue). If the CPU pulls a batch
from the gradient queue, the LC value of the corresponding
embeddings will be decremented by 1. And once the LC value
of an embedding is equal to 0, the embedding will be evicted

TABLE II
DATASETS FOR EVALUATION.

Dataset #Input Features Embedding Tables
Dense Sparse #Rows Dim. Size

Avazu [37] 1 20 8.9M 16 0.55 GB
Criteo Terabyte [38] 13 26 242.5M 64 59.2 GB
Criteo Kaggle [39] 13 26 30.8M 16 1.9 GB

TABLE III
COMPARISON OF EMBEDDING TABLE FOOTPRINT.

Dataset DLRM EL-Rec Compression Ratio
Avazu 0.55GB 87.6MB 6.22×
Terabyte 59.2GB 797.9MB 74.19×
Kaggle 1.9GB 258.2MB 7.29×

from the cache. With such a life cycle management system,
we are able to only keep the required embeddings into the
embedding cache, and minimize its memory demand.

VI. EVALUATION

A. Experimental Setup

Implementation To demonstrate the advantages of our
design, we built EL-Rec based on DLRM [23], an open-
source recommendation model training system proposed by
Facebook. The Eff-TT table is implemented with C++/CUDA
and integrated with Pytorch framework by using Pytorch
Wrapper. The Eff-TT table is also highly portable to other
Pytorch-based frameworks by directly replacing the Pytorch
nn.EmbeddingBag() API in with the Eff-TT table API.

Benchmark and Datasets We use three widely adopted
real-world datasets. Avazu [37] is a dataset for click through
rate prediction which consists of 11 days worth of Avazu
data. Each sample in Avazu has 1 numerical feature and
20 categorical features. Criteo Terabyte [38] is the largest
publicly available dataset for DLRM. It contains over four
billion samples spanning 24 days. Each record contains 39
features: 13 numerical features, and 26 categorical features.
Criteo Kaggle [39] is a subset of Criteo Terabyte which
is used for Criteo Kaggle Display Advertising Challenge. It
contains a portion of Criteo’s traffic over a period of 7 days
and the data format is the same as Criteo Terabyte. Table II
shows the details of these datasets. It is worth noting that
the footprint of Criteo Terabytes’s embedding tables is about
59.2 GB, which has exceeded the storage capacity of most
GPUs. In industry, the training data is larger than these public
datasets [15] which highlights the importance of EL-Rec.

Baseline Besides the DLRM framework, we choose four
state-of-the-art DLRM frameworks that are optimized at the
algorithm or system level. 1) TT-Rec [20] is proposed by
Facebook. It highlights an algorithm-level optimization that
leverages TT decomposition to compress large embedding
tables. For a fair comparison, we integrate compressed em-
bedding table API of TT-Rec into the model of DLRM. In
the end-to-end training comparison, both EL-Rec and TT-
Rec decompose the embedding tables that have more than
1 million rows while keeping other small embedding tables
uncompressed. 2) FAE [24] focuses on system-level design.



Table 1

DLRM (CPU+GPU) FAE TT-Rec TT-Pipe
Avazu 1 1.285258559 1.853901224 2.048742392
Terabyte 1 2.004220674 2.106672625 3.306257787
Kaggle 1 2.023764834 2.383933774 3.59276522

1.77108135566667 2.11483587433333 2.98258846633333

1.594031315842031.10509792295169
1.649647581172491.56942172588396
1.775287898890331.50707425650156

Avg 1.672988931968281.3938646351124
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Fig. 11. End-to-end training speedup (×) with limited GPU resources (single GPU).
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Fig. 12. Training throughput under multi-GPU setting.

FAE also utilizes the host memory to maintain the large em-
bedding tables. It offloads the frequently-accessed embedding
to GPU so that most training batches can be trained purely
on GPU which eliminates a large proportion of communica-
tion overhead between CPU and GPUs. 3) HugeCTR [18]
is a highly-optimized industry-level recommendation training
framework proposed by Nvidia. It provides distributed training
with model-parallel embedding tables and data-parallel MLP
across multiple GPUs and nodes for maximum performance.
For the large embedding tables, HugeCTR scales the number
of GPUs to fit the entire embedding table within GPUs’ HBM.
4) TorchRec [40] is recently released by Facebook. It provides
the implementation of “4D Parallelism” [16] that combines
table-wise, row-wise, column-wise, and data parallelism for
training massive embedding operators in DLRMs. Large em-
bedding tables will be split into multiple pieces by either row-
wise or column-wise sharding and be placed on different GPUs
for model-parallel training.

Platform and Tools Our major evaluation platform is
a single AWS p3.8xlarge instance with one Intel Xeon
CPU@2.30GHz, 239 GB CPU memory, and 4× Nvidia Tesla
V100 GPU. We also evaluate end-to-end performance on AWS
g4dn.12xlarge instance which has Intel Xeon CPU@2.50GHz,
192 GB CPU memory and 4× Nvidia Tesla T4 GPU. On
the software side, we employ Nvidia NVTabular [41] for
data preprocessing. Nvidia NVTabular also provides a high-
performance dataloader for loading DLRM training data from
the disk. For a fair comparison, we replace the default Py-
Torch dataloader with the Nvidia NVTabular dataloader in the
baseline frameworks. Our efficient TT table uses cuBLAS [42]
library for batched-GEMM computation in Eff-TT table.

B. Compared with other Frameworks

In this section, we demonstrate the training throughput
of EL-Rec and compare with different baseline models. We
design two main evaluation settings to show the advantages of
EL-Rec in different aspects: 1) DLRM training with limited
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GPU resources, especially under the single GPU setting; 2)
DLRM training with multiple GPUs.

DLRM training with limited GPU resources: To simu-
late a limited GPU resource environment, we use one GPU
on both platforms. DLRM and FAE place embedding table
parameters in host memory, while TT-Rec and EL-Rec use a
compressed format of embedding table and store embedding
table parameters in GPU HBM. The batch size we choose is
4K, and the setting of TT rank is 128 on Tesla V100 GPU
and 64 on Tesla T4 GPU. We compare the end-to-end training
time of EL-Rec to all baseline models, the result has been
shown in Figure 11. EL-Rec consistently shows the best end-
to-end performance on different platforms and datasets. We
observe that EL-Rec achieves 3× speedup on average over
DLRM on Tesla V100 GPU since the small footprint of Eff-
TT table makes it possible to fit all parameters into a single
GPU and avoid the communication overhead between CPU
and GPU. Compared to FAE, EL-Rec achieves 1.5× speedup
on average. FAE caches frequently-accessed embeddings on
GPU but the batches that contain non-frequently-accessed
embeddings (about 25% in our profiling) still have to be
trained on CPU which prevents FAE from getting better
performance. And we also observe that EL-Rec outperforms
TT-Rec with 1.4× speedup on average, the reason is that EL-
Rec leverages multiple optimization techniques to reduce the
computation of TT table and improve the performance of TT
table lookup and backward.

DLRM training on multi-GPU platform: With more
GPU resources, we would like to keep all embedding table
parameters in GPUs. We trained EL-Rec and DLRM on AWS
p3.8xlarge platform with different numbers of GPUs (1 GPU
and 4 GPU), and compare the training throughput of EL-
Rec and DLRM. As shown in Figure 12, EL-Rec (4 GPU)
achieves significant improvement (up to 1.4× on average) in
training throughput compared with DLRM (4 GPU). This is



TABLE IV
COMPARISON OF PREDICTION ACCURACY.

Model
Dataset Avazu Criteo Terabyte Criteo Kaggle

DLRM 83.53 81.96 78.53
TT-Rec 83.51 81.86 78.51
FAE 83.53 81.94 78.52
EL-Rec 83.51 81.90 78.50
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Fig. 14. Eff-TT table optimization breakdown.

because the much smaller footprint of the Eff-TT table makes
it possible to replicate embedding parameters to all GPUs
and train the embedding layer in a data-parallel style. While
the embedding tables of DLRM are stored on different GPUs
and trained in a model-parallel style, which incurs intensive
peer-to-peer communication between GPUs. In the single GPU
setting, the training throughput of DLRM (1 GPU) is slightly
higher than EL-Rec. This is because the tensorization method
of EL-Rec inevitably introduced some additional computation
which is minor compared to the significant memory saving
(Table III). The evaluation result demonstrates the scalability
of EL-Rec and reveals the advantages of EL-Rec in distributed
large-scale DLRM training.

Large embedding table training: To highlight the advan-
tage of EL-Rec when dealing with huge embedding tables, we
construct a very large embedding table that has 40 million rows
and its feature dimension is set to 128. The footprint of this
large embedding table is about 19 GBs which exceeds the sin-
gle GPU HBM capacity (16 GBs) that we use. We trained this
large embedding table using EL-Rec, HugeCTR, and TorchRec
with different numbers of GPUs and compare the training
throughput of this very large embedding table. As shown
in Figure 13, EL-Rec outperforms TorchRec and HugeCTR
with 1.35× and 1.07× speedup, respectively. Due to the
limited single GPU HBM capacity, HugeCTR distributes the
embedding table parameters to multiple GPUs and TorchRec
uses column-wise sharding to split the embedding tables into
multiple smaller embedding shardings for model parallel.
Both solutions introduce intensive inter-GPU communication
since the model parallel embedding table training requires
embedding synchronization in the forward phase and gradi-
ent synchronization in the backward phase. Instead, EL-Rec
leverages the Eff-TT table to reduce the footprint and makes
it possible to train such a large embedding table with a single
GPU. Meanwhile, EL-Rec trains the large embedding table in a
data-parallel style that eliminates embedding synchronization
in the forward phase. The only communication is the gradient
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Table 1

DLRM (CPU&GPU) w/o embedding buffer TT-Pipe (CPU&GPU)
Avazu 1 1.017086707 1.23481873
Terabyte 1 1.56753458 2.555700213
kaggle 1 1.410118402 2.035440536

1.33157989633333 1.941986493
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Table 1-1

DLRM (CPU&GPU) w/o embedding buffer TT-Pipe (CPU&GPU)
Avazu 1 1.12147834891894 1.35207576389303
Terabyte 1 2.28879730236043 3.30333458224054
kaggle 1 2.230128927275 2.67242458380273

1.88013485951812 2.4426116433121
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Fig. 16. Pipeline training speedup (×) over sequential training.

all-reduce in the backward phase.
Accuracy and loss convergence: To demonstrate the im-

pact of tensorization method on model accuracy, we evaluate
the prediction accuracy of EL-Rec on different datasets. We
trained all models on Kaggle and Avazu datasets for 5 epochs,
and on the Terabyte dataset for 100K iterations. As shown in
Table IV, EL-Rec matches the accuracy of its corresponding
baseline models on all three datasets. The accuracy of DLRM
is slightly higher than EL-Rec since EL-Rec compresses large
embedding tables into Eff-TT tables, the tensorization method
slightly affects the accuracy, but the degree is very low (below
0.1%) which is acceptable compared to its high compression
ratio. Additionally, we show the loss convergence curve of
DLRM, TT-Rec, and EL-Rec during the training process on
the Terabyte dataset in Figure 15. Although the computation
pattern of the TT table is more complicated than the embed-
ding table, the convergence curve of the EL-Rec is almost the
same as the DLRM baseline. It means that utilizing the Eff-
TT table will not slow down convergence and we do not need
extra iterations to get EL-Rec converged.

C. Optimization Analysis

Optimization breakdown study: To analyze the impact
of different optimizations separately, we trained three em-
bedding tables with different rows, ranging from 2.5 million
to 10 million, and compared the training throughput of the
embedding table when disabling one of the optimizations. The
result has been shown in Figure 14, the in-advance gradient
aggregation shows the most significant influence on training
throughput. Without the in-advance gradient aggregation, the
training throughput decreases by about 52%, this is because
the TT table backward is much more computationally inten-
sive than TT table forward. Meanwhile, the index reordering
technique and the intermediate result reuse method also show
notable impact on the training throughput. Disabling the
index reordering and the intermediate result reuse causes 13%
and 10% performance decrease on average respectively. With
the embedding table length increasing, the impact of index
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reordering steadily increases. This is because a larger table
length will lead to more scattered input indices which make
more room for index reordering optimization.

Pipeline training system: To demonstrate the advantage of
our TT-based pipeline training system design, we compress
the largest embedding table into Eff-TT table and put it into
GPU HBM. The remaining embedding tables are kept in the
host memory. We compare the training throughput of EL-
Rec with the setting that disables pipeline training by setting
the length of pre-fetch queue to 1. As shown in Figure 16,
EL-Rec (Pipeline) achieves 2.44× speedup on average over
DLRM. This is because our pipeline training design overlaps
CPU-side embedding lookup and parameter updating with
GPU-side MLP layer training. The communication overhead
between CPU and GPU is also mitigated by an embedding
pre-fetch queue and a gradient queue. And compared with EL-
Rec (Sequential), we observe that EL-Rec (Pipeline) achieves
1.30× speedup on average. In EL-Rec (Sequential), the length
of pre-fetch queue is set to 1, so the pipeline training will
degrade to a sequential one. In this case, the GPU-side training
workers can only wait for the CPU side finishing parameter
update and also can not pre-fetch data for the next batch. This
result demonstrates the effectiveness of our embedding cache
design and shows the advantage of pipeline training.

Eff-TT table lookup optimization: We then demonstrate
the effectiveness of our algorithm-level optimization for Eff-
TT table lookup (§III-A) and input-level index reordering
optimization (§IV). We measure the latency of Eff-TT table
lookup operation with different batch sizes, the result has
been shown in Figure 17. Overall, we achieve 1.83× speedup
on average over the TT-Rec implementation of TT table. The
speedup increases as batch size increases since a larger batch
size provides more opportunity to reuse intermediate results
at the batch level. On individual optimizations, we observed
1.75× speedup from intermediate result reuse and 1.05×
speedup from the locality-aware index reordering.

Eff-TT Table Backward Optimization We further show
the benefits of our algorithm-level and input-level optimization
on TT table backward(§III-B and §IV). We evaluate our opti-
mizations with different batch sizes. As shown in Figure 18,
we observe 1.70× speedup on average (from 1.47× to 2.10×)
over the TT-Rec implementation of TT table. As for the
individual optimization, we observe 1.15× from fused TT core
update (§III-B), 1.40× speedup from the in-advance gradient
aggregation (§III-B), and 1.06× speedup from the input-level
index reordering (§IV). It is worth noting that, although index
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Fig. 18. Speedup (×) breakdown of the TT table backward optimization.

reordering does not directly reduce the computation amount of
the TT table backward, it helps improve GPU L1/L2 cache hit
rate since reordering improves data locality. We evaluate the
cache hit rate of the batched-GEMM kernel during training
and observe that the L1 hit rate improves 1.27× and the L2
hit rate improves 1.32×. These results prove the effectiveness
of our optimizations.

VII. RELATED WORK

System Designs for DLRM: The DLRM is one of the
most critical deep learning applications in the industry [43]–
[45]. The training and inference of the recommendation model
come with various challenges due to the compute-intensive
MLP layer and the memory-intensive embedding tables. Work
in [46] accelerates the inference of recommendation model
by leveraging fused embedding lookup, DeepRecSys [4] pro-
posed an inference scheduler that maximizes latency-bounded
throughput. As for DLRM training, NEO [16] and HugeCTR
[18] distribute large embedding tables to different GPUs and
train the embedding table in a model-parallel style which
incurs non-trivial data communication between GPUs. XDL
[47] and FAE [24] leverage CPU memory to handle the large
embedding tables while keeping the MLP layer in GPU, the
non-optimized hybrid CPU-GPU system design makes CPU
side computation becomes a bottleneck. Overall, all of these
techniques have not properly solved the issues of high data
communication overhead.

Embedding Table Compression: The embedding tables
of the DLRMs have large memory footprint [6], [15], [20],
[48], [49]. To cut down memory consumption, there have been
many efforts on embedding table compression. ALBERT [48]
leverages factorized embedding parameterization and cross-
layer parameter sharing to reduce the footprint of parameters.
Kilian et al. propose feature hashing [49] which maps multiple
items to the same embedding vector. Jie et al. [6] and Hui et
al. [19] use fewer bits to represent the embedding vectors.
The above techniques decrease the footprint of embedding
tables but often incur an accuracy tradeoff. Compressed data
direct computing [50]–[54] is a novel processing method that
can also be applied in embedding table compression. TT-
Rec [20] applied Tensor-train (TT) factorization on embedding
tables which achieves a considerable reduction of embedding
table size while keeping a high model accuracy. However, the
TT factorization brings additional computation and increases
training time. This motivates us to optimize the TT-based



solution with system-level designs to capitalize on the benefits
of TT-based embedding compression.

VIII. CONCLUSION

In this work, we propose EL-Rec, a more flexible and
economical DLRM training system design, which could de-
mocratize the training of large-scale DLRMs with limited GPU
resources and lower the training cost of the industry-scale
DLRM training. Specifically, EL-Rec provides an efficient TT
table design which is a compressed representation of embed-
ding table. It achieves a much smaller footprint and maintains
low lookup and backward latency. EL-Rec also incorporates
an index reordering strategy based on both global and local
information to help TT-based embedding computation achieve
better performance. Additionally, EL-Rec introduces a TT-
based pipeline training paradigm to largely hide the data com-
munication overhead between CPU and GPUs. Comprehensive
experiments demonstrate that EL-Rec can handle the largest
publicly available DLRM dataset with limiting GPU HBM.
And EL-Rec achieves significant speedup over the state-of-
the-art DLRM training framework.
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