
APNN-TC: Accelerating Arbitrary Precision
Neural Networks on Ampere GPU Tensor Cores

Boyuan Feng
†♦
, Yuke Wang

†♦
, Tong Geng*, Ang Li*, Yufei Ding

†
†
{boyuan, yuke_wang, yufeiding}@cs.ucsb.edu, *{tong.geng, ang.li}@pnnl.gov

†
University of California, Santa Barbara,

*Pacific Northwest National Laboratory.

ABSTRACT
Over the years, accelerating neural networks with quantization

has been widely studied. Unfortunately, prior efforts with diverse

precisions (e.g., 1-bit weights and 2-bit activations) are usually re-

stricted by limited precision support on GPUs (e.g., int1 and int4).

To break such restrictions, we introduce the first Arbitrary Pre-

cision Neural Network framework (APNN-TC)
1
to fully exploit

quantization benefits on Ampere GPU Tensor Cores. Specifically,

APNN-TC first incorporates a novel emulation algorithm to support

arbitrary short bit-width computation with int1 compute primitives

and XOR/AND Boolean operations. Second, APNN-TC integrates

arbitrary precision layer designs to efficiently map our emulation

algorithm to Tensor Cores with novel batching strategies and spe-

cialized memory organization. Third, APNN-TC embodies a novel

arbitrary precision NN design to minimize memory access across

layers and further improve performance. Extensive evaluations

show that APNN-TC can achieve significant speedup over CUT-

LASS kernels and various NN models, such as ResNet and VGG.

CCS CONCEPTS
•Computingmethodologies→Neural networks; •Computer
systems organization→ Single instruction, multiple data.

KEYWORDS
GPU Tensor Core, Convolutional Neural Networks, Neural Network

Quantization, High-performance Computing

ACM Reference Format:
Boyuan Feng

†♦
, Yuke Wang

†♦
, Tong Geng*, Ang Li*, Yufei Ding

†
. 2021.

APNN-TC: Accelerating Arbitrary Precision Neural Networks on Ampere

GPU Tensor Cores. In The International Conference for High Performance
Computing, Networking, Storage and Analysis (SC ’21), November 14–19, 2021,
St. Louis, MO, USA. ACM, New York, NY, USA, 13 pages. https://doi.org/10.

1145/3458817.3476157

1
The project is open-sourced at https://github.com/BoyuanFeng/APNN-TC

♦
The first two authors contribute equally.

Permission to make digital or hard copies of part or all of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for third-party components of this work must be honored.

For all other uses, contact the owner/author(s).

SC ’21, November 14–19, 2021, St. Louis, MO, USA
© 2021 Copyright held by the owner/author(s).

ACM ISBN 978-1-4503-8442-1/21/11.

https://doi.org/10.1145/3458817.3476157

1 INTRODUCTION
Over the recent years, demands to improve the performance of

deep neural networks (DNNs) have never been satisfied. Prior work

approaches faster and more efficient DNNs from different aspects,

such as model pruning [27, 28, 30], kernel factorization [3, 14, 39],

and data quantization [42, 47]. Among those efforts, quantization-

based DNN acceleration [42, 43, 47] finds its strengths in minimum

modification of the original model architecture, lower memory

consumption, and better runtime performance.

To accelerate quantized DNNs, many specialized cores have

been introduced to support low-precision dense matrix-matrix mul-

tiplications, such as Tensor Processing Units (TPUs) [19], Neural

Network Processors (NNPs) [13], and GPU Tensor Cores [4]. For

example, NVIDIA introduces Tensor Cores in Volta architecture [5]

that support FP16 matrix-matrix multiplication. In Turing architec-

ture, NVIDIA extends architecture support for more precisions (e.g.,
int1 and int4) and bit-level operations (e.g., XOR) [25]. Recently
in the Ampere architecture, we find there is additional support

for more precision and bit-level operations (e.g., AND). However,
these specialized cores still support a limited range of precisions

with only architecture-level efforts, while quantized DNNs usually

require arbitrary precisions (e.g., 1-bit weight and 2-bit activations).
In this paper, our key question is whether we can support arbitrary
precision neural networks with the limited precisions on Tensor Cores.

We identify two major challenges in accelerating arbitrary pre-

cision DNNs on Ampere GPU Tensor Cores.

Lack of mathematical emulation design. To support arbi-

trary precisions (e.g., int1weights and int2 activations), one naive
approach is to represent these low-precision values with the sup-

ported high-precision values (e.g., int4). However, this approach
introduces extra overhead and prevents efficient quantized DNNs

on Tensor Cores. Another approach is to emulate with int1 com-

pute primitives. However, with int1 precision, Tensor Cores only

support two bit-level operations (i.e., XOR and AND) and mathemati-

cal emulation designs are required to support multiplication and

addition in quantized DNNs. Moreover, quantized DNNs may have

diverse input data (e.g., -1/+1 or 0/1), where different data may

require different emulation designs.

Lack of efficient implementation for arbitrary precision
NN layers. To accelerate APNN on Tensor Cores, we need to ef-

ficiently map arbitrary precision NN layers to Tensor Cores with

specialized compute primitives and memory architectures. Existing

works on accelerating binary neural networks simply split NN lay-

ers into small matrix tiles (e.g., 8×8) to match Tensor Core compute

primitives and improve the parallelism. However, naively borrow-

ing these strategies fails to exploit the data locality during NN layer

https://doi.org/10.1145/3458817.3476157
https://doi.org/10.1145/3458817.3476157
https://doi.org/10.1145/3458817.3476157


SC ’21, November 14–19, 2021, St. Louis, MO, USA B. Feng et al.

APNN-TC AP-Layer Design(§ )

AP-Conv (§ )APMM (§ )AP-BIT Emulation
Design (§ )

AP-BIT Operation
Template

Data-Adaptive
Operator Selection

Batch-based 
Double Caching

AP-NN Design 
(§ )

Memory-efficient
Bit Compression

Channel-major 
Data Organization

Input-Aware
Padding Design

Minimal-traffic
Dataflow

Semantic-aware
Kernel FusionPerformance Analysis (§ )

Figure 1: The overview of APNN framework.

computation especially for our emulation workload. Moreover, ar-

bitrary precision computation usually computes at the bit-level

(e.g., int3 or int5) while existing hardware devices such as CPUs

and GPUs usually operate at the word or byte level. Specialized bit

operations and data organization are required to support efficient

bit-level computation and avoid uncoalesced memory access.

Lack of efficient NN framework designs. One standard ap-

proach to build quantized neural networks is to stack a sequence

of NN layers, such as a convolution layer followed by a pooling

layer and a quantization layer. However, this approach ignores the

data reuse opportunity across NN layers and leads to unnecessary

memory overhead. For example, on NNs with 𝑛 2-bit activations,

there are two semantic equivalent implementations – quantization

after reading 32-bit activations from the previous layer or quanti-

zation to 2-bit ones before writing to global memory for the next

layer. While these two implementations provide the same semantic,

the former requires memory access of 32𝑛 bits while the latter only

requires memory access of 2𝑛 bits.

To this end, we propose APNN-TC to accelerate Arbitrary Preci-

sion Neural Networks on Ampere GPU Tensor Cores, as illustrated

in Figure 1. First, we propose an AP-BIT emulation design to support
arbitrary-precision computation with 1-bit compute primitives. Our

AP-BIT algorithm can adaptively select operators (e.g., XOR or AND)
to support diverse input data (e.g., -1/1 or 0/1). Second, we build
efficient AP-Layer design including an arbitrary-precision matrix-

matrix multiplication (APMM) layer for fully connected layers and

an arbitrary-precision convolution (APConv) layer for convolution

layers. We propose a set of memory and computation designs (e.g.,
batch-based double caching and channel-major data organization)

to fully exploit Tensor Core computation and minimize memory

access. We also incorporate a performance analysis to automati-

cally tune the hyper-parameters in APMM and APConv. Third, we

propose an efficient APNN design to improve the performance at the

framework level. It includes a minimal-traffic dataflow to support

various precisions over APNN layers and a semantic-aware kernel

fusion to minimize the data movement across layers.

In summary, we make the following contributions in this paper.

• We develop APNN-TC to accelerate neural network on Am-

pere GPU Tensor Cores with arbitrary precision.

• We propose three novel techniques: a) an AP-BIT emulation

design to support arbitrary-precision computation; b) an

efficient AP-Layer design to achieve high performance at

the layer level; c) an efficient APNN design to minimize the

data movement across layers.

• Extensive experiments show that APNN-TC can achieve up

to 3.78× speedup over CUTLASS kernels and 3.08× speedup

over CUBLAS kernels. APNN-TC can also consistently out-

perform NNs implemented with built-in int8, half, or single

precision. For example, with 2-bit weights and 8-bit activa-

tions,APNN-TC can achieve more than 4× latency reduction

and 3× higher throughput than the single-precision NN with

only 2% accuracy drop.

2 RELATEDWORKS
2.1 APNN algorithm designs
Arbitrary precision (lower than INT8) neural network (APNN) al-

gorithms have been widely studied [6, 10, 11, 22, 25, 35, 41, 44, 46]

to fully explore the spectrum of NN performance and NN accu-

racy and cater to diverse application requirements. In addition to

widely supported precisions on modern GPUs (e.g., int1, int4, and
int8), these APNNs usually utilize more diverse precisions such as

int2, int3, and int5. APNNs may also have different precisions

for weights and activations (e.g., 1-bit weights and 2-bit activations).
Comparing with INT8 quantized neural networks, APNNs provide

better performance and memory efficiency at the cost of (slightly)

degraded accuracy. Popular APNNs include DoReFa-Net [46] for

1-bit weights and 2-bit activations, LQ-Nets [44] for 1-4 bits, HAQ

[41] for 1-8 bits, OLAccel [35] for 4 bits, BSTC [22] and TCBNN

[25] for 1 bits. In this paper, we follow LQ-Nets [44] that starts from

a full-precision NN and adopts the quantization error minimization

(QEM) strategy to generate quantized NNs.

2.2 APNN Hardware Supports
While many APNN algorithms have been designed, the hardware

supports are still limited. One direction is to build FPGA and ASIC

based implementations [35, 41] to demonstrate the performance

benefits of APNNs. However, these implementations usually require

specialized hardware designs to support arbitrary-precision compu-

tation and cannot be applied to GPUs. Another direction is to utilize

built-in precisions on GPUs for quantized neural networks. Taking

the most famous Pytorch [36] framework as an example, it supports

FP32, FP16, and BF16 models on GPUs and int8 quantization on

x86 CPUs with AVX2 support. Recently, BSTC [22] and BTC [25]

accelerates binary neural networks on GPUs by exploiting the int1

compute primitive. However, existing works can only build on the

limited precision supported on GPUs (e.g., int1, int4, and int8)
and cannot fully exploit the performance benefits from APNNs. In

this paper, we build the first generalized framework to accelerate

arbitrary-precision neural networks on Ampere GPU Tensor Cores.

2.3 Tensor Cores
Tensor Cores are specialized cores for accelerating neural networks

in terms of matrix-matrix multiplications. Tensor Cores are intro-

duced in recent NVIDIA GPUs since Volta architecture [33]. Differ-

ent from CUDA Cores that compute scalar values with individual

threads, Tensor Cores compute at the matrix level with all threads

in a warp [37]. For example, the 1-bit Tensor Core compute primi-

tive takes two int1 input matrices A and B of shape 8 × 128 and

generates an int32 output matrix C of shape 8 × 8 [25]. In Volta

architecture, Tensor Cores support only half-precision computation

[18]. To support more quantized neural networks, Tensor Cores add

more precisions including int1, int4, and int8 in Turing archi-

tecture [17]. Regarding int1 precision, Tensor Cores support only

XOR logical operation in Turing architecture and recently add AND



APNN-TC: Accelerating Arbitrary Precision
Neural Networks on Ampere GPU Tensor Cores SC ’21, November 14–19, 2021, St. Louis, MO, USA

logical operation in Ampere architecture [32]. Despite these hard-

ware efforts on supporting more precisions, arbitrary precisions

are still not supported. This is the first work to support arbitrary

precision computation on Ampere GPU Tensor Cores with int1
precision and support for both XOR and AND operations.

3 AP-BIT EMULATION DESIGN
In this section, we design an AP-BIT emulation on Tensor Cores to

support arbitrary-precision computation. We first design an AP-Bit

operation template that supports arbitrary-precision computation

with 1-bit compute primitive on Tensor Cores. Then, we propose a

data adaptive operator selection to automatically support various

input data (e.g., -1/+1 and 0/1) with bitwise XOR and AND on Tensor

Cores. Here, we focus on the algorithm design on small matrices

(i.e., input matrices of 8 × 128 and output matrix of 8 × 8) that can

fit directly on Tensor Core compute primitives. We will discuss the

efficient computation of large matrices in the next section.

3.1 AP-Bit Operation Template Design
The AP-Bit operation template takes a matrix𝑊 with 𝑝-bit ele-

ments and a matrix 𝑋 with 𝑞-bit elements, and computes with

1-bit operations on Tensor Cores to generate a 32-bit output matrix

𝑌 =𝑊𝑋 . Our key observation is that each arbitrary-bit scalar digit

can be decomposed to a sequence of 1-bit scalar digits and the

arbitrary computation can be conducted with only 1-bit operations

and shift operations. Formally, to support scalar-level arbitrary

precision computation𝑤𝑥 of a 1-bit weight𝑤 and a 2-bit feature

𝑥 = 𝑥 (1)𝑥 (0) with 𝑤, 𝑥 (𝑖) ∈ int1, we can first decompose 1-bit

values 𝑥 (1) and 𝑥 (0) from the 2-bit feature 𝑥 as:

𝑥 (1) = (𝑥 ≫ 1)&1, 𝑥 (0) = (𝑥 ≫ 0)&1

Suppose we have an 1-bit operation 𝑂𝑃 (𝑎, 𝑏) (e.g., the bmma API of

Tensor Cores) that takes 1-bit inputs and generate 32-bit outputs,

we can compute𝑤𝑥 as

𝑤𝑥 = 𝑂𝑃 (𝑤, 𝑥 (1) ) ∗ 2 +𝑂𝑃 (𝑤, 𝑥 (0) )

We illustrate our AP-Bit operation template in Figure 2. Here,

we focus on a 1-bit weight matrix𝑊 of shape 8 × 128 and a 2-bit

feature matrix 𝑋 of shape 8× 128 to illustrate our algorithm design.

A naive approach is to use 4-bit integers to represent each 1-bit

element𝑤𝑖, 𝑗 and 2-bit element 𝑥𝑖, 𝑗 , and then use the 𝑖𝑛𝑡4 compute

primitive on Tensor Cores. However, this approach would lead

to unnecessary memory and computation overhead. Instead, we

propose to exploit the 𝑖𝑛𝑡1 compute primitive on Tensor Cores to

support arbitrary-precision computation by dynamically adjusting

the memory and computation requirement. In particular, the first

step is to conduct bit decomposition by splitting a 2-bit 𝑥𝑖, 𝑗 to

two 1-bit elements 𝑥
(0)
𝑖, 𝑗

and 𝑥
(0)
𝑖, 𝑗

:

𝑥
(1)
𝑖, 𝑗

= (𝑥𝑖, 𝑗 ≫ 1)&1, 𝑥
(0)
𝑖, 𝑗

= (𝑥𝑖, 𝑗 ≫ 0)&1

These 1-bit elements are then packed into 1-bit matrix 𝑋 0
and 𝑋 (1)

.

The second step is to conduct batch-based Tensor Core compu-
tation on these 1-bit matrices with the bmma API and generate

32-bit output matrices

𝑌 (0) = bmma(𝑊,𝑋 (0) ), 𝑌 (1) = bmma(𝑊,𝑋 (1) )

These matrices can be computed directly with the bmma API since

all of them have the shape of 8 × 128. We also note that Tensor

Core primitives for int1, int4, and int8 generate 32-bit output

matrices to accumulate a large number of bit-operation outputs

and avoid overflow. The third step is to conduct bit combination
and generate the final output matrix 𝑌

𝑌𝑖,𝑗 = 𝑌
(1)
𝑖,𝑗

∗ 2 +𝑌 (0)
𝑖,𝑗

(1)

Here, 𝑌𝑖, 𝑗 , 𝑌
(1)
𝑖, 𝑗

and 𝑌
(0)
𝑖, 𝑗

refer to the (𝑖, 𝑗)𝑡ℎ scalar elements of

matrix 𝑌 , 𝑌 (1)
and 𝑌 (0)

, respectively. For notation simplicity, we

abbreviate Equation 1 as𝑌 = 𝑌 (1) ∗2+𝑌 (0)
in the following sections

to represent the scalar multiplication and elementwise addition. We

note that 𝑌 =𝑊𝑋 mathematically.

It is not hard to see that this computation can be generalized to

matrices with arbitrary bits 𝑝 and 𝑞. Formally, given a 𝑝-bit weight

matrix𝑊 and a 𝑞-bit weight matrix 𝑋 , we can first decompose into

1-bit matrices𝑊 (𝑠) , 𝑠 ∈ {0, 1, ..., 𝑝 − 1} and 𝑋 (𝑡 ) , 𝑡 ∈ {0, 1, ..., 𝑞 − 1}.
For each element, we have

𝑤
(𝑠 )
𝑖,𝑗

= (𝑤𝑖,𝑗 ≫ 𝑠)&1, 𝑥
(𝑡 )
𝑖,𝑗

= (𝑥𝑖,𝑗 ≫ 𝑡 )&1 (2)

Then, we compute the bmma API for 𝑝𝑞 times for each combination

of 𝑠 and 𝑡 :

𝑌 (𝑠,𝑡 ) = bmma(𝑊 (𝑠) , 𝑋 (𝑡 ) )
Finally, we conduct bit combination to generate the 32-bit output

matrix 𝑌 :

𝑌 =

𝑝−1∑
𝑠=0

𝑞−1∑
𝑡=0

𝑌 (𝑠,𝑡 ) ∗ 2𝑠+𝑡

Cost Analysis. The cost of arbitrary-precision computation

comes from three parts: bit decomposition, tensor core computation,

and bit combination. Given a 𝑝-bit weight matrix and a 𝑞-bit data

matrix of shape𝑛×𝑛, bit decomposition shows complexity of𝑂 ((𝑝+
𝑞)𝑛2) since we need 𝑂 (𝑝𝑛2) operations to split each 𝑝-bit element

from A into 𝑝 1-bit elements and another𝑂 (𝑞𝑛2) operations to split
each𝑞-bit element from B into𝑞 1-bit elements. The bit combination

shows complexity of 𝑂 (𝑝𝑞𝑛2), since we have 𝑝𝑞 matrices 𝑌 (𝑠,𝑡 )

of shape 𝑛 × 𝑛 and need to add elementwisely. This overhead is

negligible compared with the𝑂 (𝑛3) complexity in the Tensor Core

computation. Note that only 1-bit compute primitives are used for

this expensive matrix-matrix multiplication, which significantly

reduces the overall latency.

3.2 Data Adaptive Operator Selection
While we compute with bit-0 and bit-1 in arbitrary-precision com-

putation, these two values may actually encode diverse values. For

example, the 1-bit weight matrix in neural networks may encode

−1 and 1, instead of 0 and 1, in order to improve the accuracy of

neural networks. In this case, bit-0 indicates the value −1 and bit-1

indicates the value 1. To support this diversity in the encoded data,

we introduce data adaptive operator selection by adopting different

bit operations in Tensor Cores (i.e., XOR and AND). In particular, we

support three cases, where we first conduct bit operations and then

accumulate with popc (i.e., population count [34] that counts the

number of set bits). The Case-I is that both𝑊 and 𝑋 encode 0 and

1, where we choose logical AND operation. For example, given a

1-bit vector𝑊 = [0, 1] and a two-bit vector 𝑋 = [1, 1], we use AND



SC ’21, November 14–19, 2021, St. Louis, MO, USA B. Feng et al.

w0,0 w0,1 w0,127

w1,0 w1,1 w1,127

w7,0 w7,1 w7,127

x0,0 x0,1 x0,127

x1,0 x1,1 x1,127

x7,0 x7,1 x7,127

x0,0 x0,1 x0,127

x1,0 x1,1 x1,127

x7,0 x7,1 x7,127

(0) (0) (0)

(0) (0) (0)

(0) (0) (0)

x0,0 x0,1 x0,127

x1,0 x1,1 x1,127

x7,0 x7,1 x7,127

(1) (1) (1)

(1) (1) (1)

(1) (1) (1)

w0,0 w0,1 w0,127

w1,0 w1,1 w1,127

w7,0 w7,1 w7,127
y0,0 y0,1 y0,127

y1,0 y1,1 y1,127

y7,0 y7,1 y7,127

(0) (0) (0)

(0) (0) (0)

(0) (0) (0)

y0,0 y0,1 y0,127

y1,0 y1,1 y1,127

y7,0 y7,1 y7,127

(1) (1) (1)

(1) (1) (1)

(1) (1) (1)

y0,0 y0,1 y0,127

y1,0 y1,1 y1,127

y7,0 y7,1 y7,127

w0,0 w0,1 w0,127

w1,0 w1,1 w1,127

w7,0 w7,1 w7,127

x0,0 x0,1 x0,127

x1,0 x1,1 x1,127

x7,0 x7,1 x7,127

x0,0 x0,1 x0,127

x1,0 x1,1 x1,127

x7,0 x7,1 x7,127

(0) (0) (0)

(0) (0) (0)

(0) (0) (0)

x0,0 x0,1 x0,127

x1,0 x1,1 x1,127

x7,0 x7,1 x7,127

(1) (1) (1)

(1) (1) (1)

(1) (1) (1)

y0,0 y0,1 y0,127

y1,0 y1,1 y1,127

y7,0 y7,1 y7,127

(0) (0) (0)

(0) (0) (0)

(0) (0) (0)

y0,0 y0,1 y0,127

y1,0 y1,1 y1,127

y7,0 y7,1 y7,127

(1) (1) (1)

(1) (1) (1)

(1) (1) (1)

y0,0 y0,1 y0,127

y1,0 y1,1 y1,127

y7,0 y7,1 y7,127

(a) Bit 
Decomposition

(b) Batch-based 
TC Computation

(c) Bit
Combination

+

1-bit W

2-bit X

1-bit X(0)

1-bit X(1)

32-bit Y  = WX(0) (0)

32-bit Y  = WX(1) (1)

32-bit Y

Figure 2: Illustration of AP-Bit Operation Template with 1-bit weight W and 2-bit feature X, which can be generalized to
arbitrary weight bits and feature bits. Note that 𝑋 (0) and 𝑋 (1) in the dashed box are batched into a single large matrix during
computation, which will be discussed in Section 4.1.

operation to compute as

𝑊𝑋 = popc(AND( [0, 1], [1, 1])) = popc( [0, 1]) = 1

The Case-II is that both𝑊 and 𝑋 encodes −1 and +1, where we
select logical XOR operation. For example, given two 1-bit vectors

𝑊 = [−1, 1] and 𝑋 = [1, 1], we first map −1 to 0 and compute as

𝑊𝑋 = 𝑛 − popc(XOR( [0, 1], [1, 1])) = 𝑛 − 2 ∗ popc( [0, 1]) = 0

Here, 𝑛(=2) is the length of the vector.

The Case-III is that𝑊 encodes −1 and +1, while 𝑋 encodes 0

and 1. For example, we may need to compute the multiplication of

two 1-bit vectors𝑊 = [−1, 1] and 𝑋 = [1, 0]. This case happens
frequently in neural networks with a 1-bit weight matrix𝑊 and a

𝑞-bit feature matrix𝑋 with 𝑞 > 1. In this case, naively adopting XOR
or AND does not work, since there are three values −1, 0, and 1 that

cannot be easily encoded with 1 bit. To this end, we incorporate a

linear transformation on𝑊 and compute with only AND operation.

Our key observation is that𝑊 can be transformed into a vector

with only 0 and 1 by adding a constant vector J2 = [1, 1]:

�̂� =
𝑊 + J2

2

= [0, 1]

Then, we compute �̂�𝑋 = 0 with AND operation as Case-II. Finally,

we recover the value𝑊𝑋 by another linear transformation:

𝑊𝑋 = 2�̂�𝑋 − J2𝑋 = 2 ∗ 0 − 1 = −1
Note that J2 is a constant vector that can be cached in Tensor Core

fragment and does not introduce extra memory overhead.

4 ARBITRARY PRECISION LAYER DESIGN
In this section, we propose the Arbitrary-Precision Matrix Multipli-

cation (APMM) for fully connected layers and Arbitrary-Precision

Convolution (APConv) for convolution layers.

4.1 Arbitrary-Precision Matrix Multiplication
Arbitrary-PrecisionMatrixMultiplication (APMM) takes the decom-

posed 1-bit weight matrix𝑊 (𝑠)
, 𝑠 ∈ {0, ..., 𝑝 − 1}, the decomposed

1-bit feature matrix 𝑋 (𝑡 ) , 𝑡 ∈ {0, ..., 𝑞 − 1}, and computes output

matrix 𝑌 =
∑𝑝−1
𝑠=0

∑𝑞−1
𝑡=0

𝑌 (𝑠,𝑡 ) ∗ 2𝑠+𝑡 . By default, APMM generates

32-bit output to avoid data overflow for large matrices and match

the 32-bit output in Tensor Core compute primitives. APMM also

supports arbitrary-precision output (e.g., int2) when APMM is

used as a hidden layer in neural networks (NNs) and the output is

consumed by the next APMM-based NN layer.

Considering that APMM essentially computes an arbitrary pre-

cision GEneral Matrix-Matrix multiplication (GEMM) kernel with

multiple Binary Matrix-MAtrix multiplication (BMMA) kernels,

one naive strategy is to build upon existing BMMA kernels [22, 25].

In particular, we can use existing BMMA kernels to multiply each

pair of𝑊 (𝑠)
and 𝑋 (𝑡 )

and accumulate𝑊 (𝑠)𝑋 (𝑡 )
to the output ma-

trix 𝑌 . However, this approach shows significant inefficiency due

to two reasons. First, this approach ignores the data reuse oppor-

tunity since the same weight matrix tile from𝑊 (𝑠)
can be multi-

plied with different feature matrix tiles from 𝑋𝑡1 and 𝑋𝑡2. Second,

this approach requires extra communication across BMMA ker-

nels, such that reducing𝑊 (𝑠)𝑋 (𝑡 )
into 𝑌 leads to significant global

memory access. We show our efficient APMM design in Figure 3. It

includes a batch-based double caching to facilitate the data reuse and
a memory-efficient bit combination to accelerate the accumulation

and optionally generate the arbitrary-precision output. Here, we

illustrate the design with 1-bit𝑊 and 2-bit𝑋 for notation simplicity

while arbitrary-precision𝑊 and 𝑋 are supported.

(a) Batch-based Double Caching. Batch-based double caching

exploits two GPU memory hierarchies (i.e., shared memory and

fragment located in registers) to cache matrix tiles and facilitate

data reuse in APMM computation, as illustrated in Figure 3(a).

Considering the limited size of shared memory and fragment, we

tile weight matrices𝑊 (𝑠)
and feature matrices 𝑋 (𝑡 )

such that these

tiles can be cached in GPU memory hierarchies. Formally, given

𝑊 (𝑠)
of shape 𝑀 × 𝐾 and 𝑋 (𝑡 )

of shape 𝑁 × 𝐾 , we first tile𝑊 (𝑠)

along the 𝑀 dimension into block matrix tiles of shape 𝑏𝑚 × 𝑏𝑘 .
Similarly, we tile 𝑋 (𝑡 )

along the 𝑁 dimension into block matrix

tiles of shape 𝑏𝑛 × 𝑏𝑘 . Here, each GPU block will multiply one pair

of block matrix tiles and generate an output matrix tile of shape

𝑏𝑚 × 𝑏𝑛 . Considering that Tensor Cores compute at the warp level,

we further tile𝑊 (𝑠)
into warp matrix tiles of shape𝑤𝑚×𝑤𝑘 and𝑋𝑠

into𝑤𝑛 ×𝑤𝑘 such that each warp computes an output tile of shape

𝑤𝑚 ×𝑤𝑛 . To match with the 8× 8× 128 bmma compute primitive of

Tensor Cores, each warp will slide along𝑤𝑚 ,𝑤𝑛 , and 𝐾 dimension



APNN-TC: Accelerating Arbitrary Precision
Neural Networks on Ampere GPU Tensor Cores SC ’21, November 14–19, 2021, St. Louis, MO, USA

w
a

rp
 1

w
a

rp
 2

w
a

rp
 3

w
a

rp
 4

w
arp

 1
w

arp
 2

w
arp

 3
w

arp
 4

W
Tile

X
Tile

X
Tile

W
Tile

W
Tile

X
Tile

X
Tile

W
Tile

Y
Tile

w
arp

 1
w

a
rp

 2
w

a
rp

 3
w

a
rp

 4

Y
Tile

Y
Tile

Global
Memory

Shared
Memory

TC Compute
& Frag Cache

Shared
Memory

Global
Memory

(a) Batch-based Double Caching (b) Memory-efficient Bit Compression

Reduce
& Warp Sync

(0)

(1)

(0)

(1)

(0)

(1)

w
arp

 1
w

arp
 2

w
arp

 3
w

arp
 4

w
arp

 1
w

arp
 2

w
arp

 3
w

arp
 4

W
Tile

X
Tile

X
Tile

W
Tile

W
Tile

X
Tile

X
Tile

W
Tile

Y
Tile

w
arp

 1
w

arp
 2

w
arp

 3
w

arp
 4

Y
Tile

Y
Tile

Global
Memory

Shared
Memory

TC Compute
& Frag Cache

Shared
Memory

Global
Memory

(a) Batch-based Double Caching (b) Memory-efficient Bit Compression

Reduce
& Warp Sync

(0)

(1)

(0)

(1)

(0)

(1)

w
arp

 1
w

arp
 2

w
arp

 3
w

arp
 4

w
arp

 1
w

arp
 2

w
arp

 3
w

arp
 4

W
Tile

X
Tile

X
Tile

W
Tile

W
Tile

X
Tile

X
Tile

W
Tile

Y
Tile

w
arp

 1
w

arp
 2

w
arp

 3
w

arp
 4

Y
Tile

Y
Tile

(a) Batch-based Double Caching (b) Memory-efficient Bit Combination

(0)

(1)

(0)

(1)

(0)

(1)

Weight 
W

Feature
X ,  X(0) (1)

Warps collaboratively load data 
from GL & cache in SHMEM

Warps independently fetch data 
from SHMEM & cache in FRAG

Reduction in SHMEM and Packing in 
Registers with inter-thread communication

GL SHMEM FRAG SHMEM GL

Figure 3: Illustration of APMM. GL: GLobal memory. SHMEM: SHared Memory. FRAG: FRAGment.

during computation. Note that these tiling sizes have a significant

impact on the performance, which will be analyzed in Section 4.3.

Batch-based double caching first adopts a batch strategy to im-

prove inter-thread parallelism and achieve high performance. Ex-

isting works on binary neural networks [22, 25] report that the

GEMM size in NN workload is usually small (e.g., 512×512) and use

small matrix tiling sizes (e.g., 32 × 32) to improve the inter-thread

parallelism. However, this approach leads to low intra-thread paral-

lelism and prevents data reuse. Instead, our batch strategy virtually

transforms multiple small BMMAs into a large BMMA. In particular,

given𝑊 (𝑠) , 𝑠 ∈ {1, ..., 𝑝−1} of shape𝑀×𝐾 and𝑋 (𝑡 ) , 𝑡 ∈ {1, ..., 𝑞−1}
of shape 𝑁 × 𝐾 , we batch these small matrices into𝑊𝐵 of shape

𝑝𝑀 × 𝐾 and 𝑋𝐵 of shape 𝑞𝑁 × 𝐾 and compute using a single large

BMMA. Here, we implement a “virtual" batch strategy during the

data loading procedure by dynamically deciding the global memory

address of the corresponding matrix tile such that no additional

memory movement is involved.

Batch-based double caching then exploits two GPU memory

hierarchies to facilitate data reuse at different levels. The first level

is shared memory caching to reuse matrix tiles from𝑊 (𝑠)
and 𝑋 (𝑡 )

.

Here, a naive strategy is that each warp independently loads a

weight tile and a feature tile for computation. However, we observe

that the same weight tile may be multiplied with feature tiles from

different 1-bit featurematrices𝑋 (0)
and𝑋 (1)

, as illustrated in Figure

3(a). To this end, our design requires all warps to first collaboratively

load 𝑏𝑚 × 𝑏𝑘 weight data and 𝑏𝑛 × 𝑏𝑘 feature data from global

memory to shared memory. Then, each warp fetches its own matrix

tiles from shared memory. In this way, we can significantly reduce

global memory access by exploiting fast shared memory.

The second level is fragment caching to continuously store out-

put tiles in the same Tensor Core fragment. Since Tensor Core

compute primitives require to accumulate in 32-bit Tensor Core

fragments, the output tiles usually consume a large memory space

compared with the 1-bit input data. Moving output tiles between

sharedmemory and Tensor Core fragmentmay lead to heavy shared

memory access. Moreover, existing dissecting works [17, 18] reveal

that fragment is composed of registers and one GPU block of 8

warps can provide up to 256 KB Fragment, which is much larger

than shared memory. To this end, as iterating through the K dimen-

sion during computation, we continuously use multiple fragments

to cache output tiles of shape 𝑏𝑚 × 𝑏𝑛 for reducing shared memory

access and caching more feature and weight tiles in shared memory.

(b) Memory-efficient Bit Combination. Bit combination con-

sumes 32-bit BMMA outputs 𝑌 (𝑠,𝑡 ) ∈ int32𝑀×𝑁
and generates 32-

bit APMM outputs 𝑌 ∈ int32𝑀×𝑁
as 𝑌 =

∑𝑝−1
𝑠=0

∑𝑞−1
𝑡=0

𝑌 (𝑠,𝑡 ) ∗ 2𝑠+𝑡 .
‘Bit combination can also generate arbitrary precision output when

it is utilized as a NN hidden layer and its output is consumed by

the next NN layer. Overall, bit combination takes only 𝑂 (𝑝𝑞𝑀𝑁 )
computation complexity, which is significantly lower than the com-

putation complexity of GEMM operations. However, there are two

potential memory bottlenecks in bit combination, which have a

significant performance impact. The first one is global memory ac-

cess when reducing 32-bit BMMA outputs to 32-bit APMM outputs.

In a naive implementation that independently conducts BMMA

and bit combination, bit combination usually introduces similar

latency as the BMMA kernel. The main reason is that, while Tensor

Cores provide significantly higher computation throughput than

CUDA Cores, the global memory bandwidth remains the same. The

second one is the shared memory access when converting 32-bit

APMM outputs to arbitrary-precision outputs. In this procedure,

we usually need to pack low-bit values (e.g., 2-bit) in registers from

different threads to a single memory-aligned value (e.g., 32-bit) be-
fore storing to global memory. Relying on shared memory for data

exchange across threads may lead to heavy shared memory access.

Memory-efficient bit combination includes two novel designs to

mitigate memory overhead. The first design includes a semantic-

aware workload allocation and an in-shared-memory reduction.

In particular, at the data loading phase of BMMA, we load feature

tiles and weight tiles of the same spatial location such that their

multiplication outputs can be reduced directly. As illustrated in

Figure 3, instead of loading a 𝑏𝑛 ×𝑏𝑘 feature tile of𝑋 (0)
or𝑋 (1)

, we

load two 0.5𝑏𝑛×𝑏𝑘 feature tiles of both𝑋 (0)
and𝑋 (1)

with the same

matrix index. In this way, we can reduce𝑊𝑋 (1)
and𝑊𝑋 (0)

directly

in shared memory and mitigate global memory access while not

degrading the BMMA performance.

The second design incorporates an element-wise routine and

an inter-thread communication to pack low-bit values and miti-

gate shared memory overhead. The element-wise routine is a user-

defined interface to provide diverse support of quantization and



SC ’21, November 14–19, 2021, St. Louis, MO, USA B. Feng et al.

Image 1 Image 2 Image N

Channel 1 Channel 2 Channel C

I1,1,1 I1,1,2 I1,1,W I1,2,1 I1,2,2 I1,H,W

(a) Traditional Data Layout (NCHW)

Image 1 Image 2 Image N

I·,1,1 I·,1,2 I·,H,W

I1,1,1 I2,1,1 IC,1,W

(b) Channel-major Data Organization (NHWC)

Image 1 Image 2 Image N

I·,1,1 I·,1,2 I·,H,W

I1,1,1 I2,1,1 IC,1,W

X X X(0) (1) (p-1)

N

HW

P

C

Image 1 Image 2 Image N

Channel 1 Channel 2 Channel C

I1,1,1 I1,1,2 I1,1,W I1,2,1 I1,2,2 I1,H,W

(a) Traditional Data Layout (NCHW)

(b) Channel-major Data Organization (NPHWC)

N

HW

C

Image 1 Image 2 Image N

I·,1,1 I·,1,2 I·,H,W

I1,1,1 I2,1,1 IC,1,1

X X X(0) (1) (p-1)

N

HW

P

C

Image 1 Image 2 Image N

Channel 1 Channel 2 Channel C

I1,1,1 I1,1,2 I1,1,W I1,2,1 I1,2,2 I1,H,W

(a) Traditional Data Layout (NCHW)

(b) Channel-major Data Organization (NPHWC)

N

HW

C

Unaligned & Uncoalesced 
Memory AccessI1,1,1 I1,1,2 I1,2,1 I1,2,2

I1,1,1 I2,1,1 I3,1,1 I4,1,1
Aligned & Coalesced

Memory Access 

Image 1 Image 2 Image N

I·,1,1 I·,1,2 I·,H,W

I1,1,1 I2,1,1 IC,1,1

X X X(0) (1) (p-1)

N

HW

P

C

Image 1 Image 2 Image N

Channel 1 Channel 2 Channel C

I1,1,1 I1,1,2 I1,1,W I1,2,1 I1,2,2 I1,H,W

(a) Traditional Data Layout (NCHW)

(b) Channel-major Data Organization (NPHWC)

N

HW

C

Unaligned & Uncoalesced 
Memory AccessI1,1,1 I1,1,2 I1,2,1 I1,2,2

I1,1,1 I2,1,1 I3,1,1 I4,1,1
Aligned & Coalesced

Memory Access 

Figure 4: Illustration of Channel Major Data Organization
(NPHWC). P indicates the number of bits. 𝐼𝑐ℎ𝑤 indicates the
image pixel at the 𝑐-th channel, ℎ-th height, and𝑤-th width.

batch normalization across NN layers. This routine applies to indi-

vidual 32-bit reduced values in registers. Given a 32-bit value in a

register, this routine may quantize it into a 𝑝-bit value that is still

stored in the 32-bit register with the first 32 − 𝑝 bits as zeros. This

routine also includes bit decomposition (Equation 2) that splits this

𝑝-bit value in a register to 1-bit values in 𝑝 registers. After that, we

use a __ballot_sync API to enable inter-thread communication

and directly pack the 1-bit values across threads into 32-bit values

that can be stored to the global memory.

4.2 Arbitrary-Precision Convolution (APConv)
APConv takes the decomposed 1-bit weight matrix𝑊 (𝑠)

of shape

𝐶𝑜𝑢𝑡×𝐶𝑖𝑛×𝐾×𝐾 , the decomposed 1-bit featurematrix𝑋 (𝑡 )
of shape

𝐵𝑆 ×𝐶𝑖𝑛 × 𝐻𝑒𝑖𝑔ℎ𝑡 ×𝑊𝑖𝑑𝑡ℎ, and generates output matrix 𝑌 . Here,

𝐶𝑜𝑢𝑡 is the number of output channels, 𝐶𝑖𝑛 is the number of input

channels,𝐾 is the kernel size, 𝐵𝑆 is the batch size. Existing works on

bit-level convolution usually adopt a direct convolution design [22,

25] to improve the GPU utilization. However, these methods ignore

the data reuse opportunity and introduce heavy global memory

access. In addition, APConv on a 𝑝-bit weight and a 𝑞-bit feature

usually has 𝑝𝑞 times workload than the BConv on the same weight

and feature size, which can easily contribute to high GPU utilization.

To this end, APConv incorporates the batch-based double caching

design as APMM to mitigate the global memory access. However,

there are still two key challenges that distinguish APConv from

APMM. The first is the data organization where naively reading the

𝐾 ×𝐾 feature map may easily lead to un-coalesced memory access.

The second is the data padding where simply padding zeros may

lead to erroneous results. To tackle these challenges, we propose

channel-major data organization and input-aware padding design.

(a) Channel-Major Data Organization. Channel-major data

organization transforms un-coalesced and unaligned memory ac-

cess to a coalesced and aligned one for improving performance. Tra-

ditional data organization for 32-bit convolution usually employs a

NCHW design, as illustrated in Figure 4(a). However, naively bor-

rowing this design to APConv leads to un-aligned and un-coalesced

memory access due to two reasons. First, multiple 𝑃-bit (e.g., 3-bit)
elements usually cannot be packed into an aligned 32-bit element,

which is required for valid GPU reads and writes. Using a 32-bit ele-

ment to store a 𝑃-bit element will introduce extra memory overhead.

Second, convolution operations usually read only 𝐾 continuous

elements (or 𝐾𝑃 bits) due to the 𝐾 × 𝐾 kernel size, which may lead

to un-coalesced memory access.

We design a channel-major data organization as illustrated in

Figure 4(b). There are two key design choices. First, we split a 𝑃-bit

feature matrix into 𝑃 1-bit feature matrices and store each 1-bit

feature matrix consecutively. In this way, we can provide aligned

memory access for each 1-bit feature matrix and support arbitrary

precision 𝑃 . Second, we consecutively store all channels of elements

with the same spatial location. Since convolution layers usually

have 128𝐶,𝐶 ∈ N channels, this usually leads to coalesced memory

access during computation.

(b) Input-aware PaddingDesign. Input-aware padding design
adaptively adjusts padding values according to input values. As

mentioned in Section 3.2, when the weight W encodes −1 and 1

with 0 and 1, we cannot naively padding 0 since 0 represents −1.
We propose three padding strategies according to the input data.

First, when both weight and feature encode 0 and 1, we simply pad

zeros for features. In this case, padding 0 for features will only add

extra 0’s for arbitrary weight values, which does not change the

computation result. Second, when both weight and feature encode

−1 and 1, we pad 1 for features and use an extra counter flag

to track the number of 0’s when the convolution weight moves

outside the input image frame. We will subtract counter to amend

the corresponding convolution results. Third, when weight encodes

−1 and 1 and feature encodes 0 and 1, we pad 0 to features and do

not change the convolution results.

4.3 Performance Analysis
In our APNN-TC kernel design, there are six tuning knobs – the

block tiling sizes 𝑏𝑚 , 𝑏𝑛 , 𝑏𝑘 , and the warp tiling sizes𝑤𝑚 ,𝑤𝑛 ,𝑤𝑘 .

These tiling sizes bring a trade-off between the Thread-Level Paral-

lelism (TLP) and the Instruction Level Parallelism (ILP), especially

the compute intensity (CI). Here, we focus on block tiling sizes,

since we empirically observe that utilizing 8 warps per block and

splitting the block workload evenly across warps provide the best

performance (i.e.,𝑤𝑚 = 𝑏𝑚/4,𝑤𝑛 = 𝑏𝑛/2,𝑤𝑘 = 𝑏𝑘 ). In this subsec-

tion, we first analyze the performance impact of individual tuning

knobs. Then, we propose an autotuning strategy to maximize the

performance. Since APMM andAPConv share the same batch-based

double caching strategy, we use the same autotuning strategy for

these two kernels.

4.3.1 Performance Model. TLP refers to the thread-level paral-

lelism in terms of the number of threads in use. Intuitively, larger

TLP can improve GPU utilization and kernel performance [23, 26].

Formally, given a p-bit weight matrix of shape𝑀×𝐾 , a q-bit feature
matrix of shape 𝐾 ×𝑁 and the matrix tiling size 𝑏𝑚 ×𝑏𝑛 , we define
the TLP as

𝑇𝐿𝑃 =
𝑝𝑀 × 𝑞𝑁

𝑏𝑚 × 𝑏𝑛
(3)



APNN-TC: Accelerating Arbitrary Precision
Neural Networks on Ampere GPU Tensor Cores SC ’21, November 14–19, 2021, St. Louis, MO, USA

We ignore the number of threads for each block since it is a constant

in our evaluation. Intuitively, smaller 𝑏𝑚 × 𝑏𝑛 may improve TLP,

which suggests a small 𝑏𝑚 × 𝑏𝑛 especially for small matrices.

Compute intensity (CI) refers to the ratio of computation over

memory access on each thread block. We aim to improve CI for

two reasons. First, a higher CI indicates less memory access and

better performance. While the amount of computation remains the

same, the amount of memory access may be reduced significantly

by data reusing and hyper-parameter tuning. Second, a higher CI

on a thread block provides more opportunities for latency hiding.

Formally, for a matrix tile, we compute the amount of global mem-

ory access as 𝑏𝑚 ×𝑏𝑘 +𝑏𝑛 ×𝑏𝑘 when reading a 𝑏𝑚 ×𝑏𝑘 weight tile

and a 𝑏𝑚 ×𝑏𝑘 feature tile. We compute the amount of computation

as 2 × 𝑏𝑚 × 𝑏𝑛 × 𝑏𝑘 from the matrix-matrix multiplication. Finally,

we compute CI as

𝐶𝐼 =
2 × 𝑏𝑚 × 𝑏𝑛

𝑏𝑚 + 𝑏𝑛
(4)

Note that CI can be increased when 𝑏𝑚 and 𝑏𝑛 are increased. We

also observe that CI is independent of 𝑏𝑘 such that we can use

smaller 𝑏𝑘 to leave space for larger 𝑏𝑚 and 𝑏𝑛 , especially when the

shared memory size is a limiting factor. In our evaluation, we fix

𝑏𝑘 as 128 by default.

4.3.2 Auto-tuning. During APNN-TC kernel design, there is a large

search space on the complex interaction between matrix size (𝑀 , 𝑁 ,

and 𝐾 ), weight bit 𝑝 , feature bit 𝑞, and block tiling size 𝑏𝑚 and 𝑏𝑛 .

Note that the selected parameters may also be different on various

GPUs according to computation and memory capabilities. To this

end, we propose a heuristic algorithm to provide a faster search

procedure in this large search space. Formally, given the matrix size

𝑀 , 𝑁 , 𝐾 , the weight bit 𝑝 , the feature bit 𝑞, the algorithm selects

𝑏𝑚, 𝑏𝑛 ∈ {16, 32, 64, 128} in two steps. First, we compute the TLP

of each combination of 𝑏𝑚 and 𝑏𝑛 . We put these combinations

in a priority queue, where a higher TLP leads to a high priority.

Second, we pop individual combinations in the priority queue. We

stick to the first combination with the highest TLP if its TLP is

already smaller than a threshold 𝑇 . Otherwise, we continuously

pop and select combinations in the priority queue to improve CI

while ensuring TLP is larger than 𝑇 . We empirically set 𝑇 as 64

in our evaluation. Note that different block tiling sizes share the

same data layout such that there is no overhead when consecutively

executing two layers with different block tiling sizes.

5 ARBITRARY PRECISION NEURAL
NETWORK DESIGN

In this section, we introduce our Arbitrary Precision Neural Net-

work (APNN) design. We first introduce a minimal-traffic dataflow

on supporting various precisions across layers in APNN. Then,

we incorporate a semantic-aware kernel fusion to minimize the

memory access across layers.

5.1 Minimal-Traffic Dataflow
Given an int8 RGB image, APNN computes a sequence of NN

layers with 𝑝-bit weights and 𝑞-bit activations and finally generates

an int32 output logits. Here, all intermediate layers compute at ar-

bitrary precision by taking a 𝑝-bit weights and 𝑞-bit activations and

generate 32-bit outputs. Note that the int1 Tensor Core compute

primitive can only generate 𝑖𝑛𝑡32 outputs and an extra quantization

layer is required to quantizing into 𝑞-bit activations for the next

layer. For performance consideration, during the initialization of

an APNN, we quantize all weights before the model inference com-

putation. To effectively maintain and transfer arbitrary-bit data, we

pack the data bit-by-bit for both weight and feature map, following

the data organization discussed in Section 4.2.

The input layer and the output layer have different precisions

from the intermediate layers. As is the common practice with int8
image inputs, the input layer requires an extra quantization layer

that quantizes 8-bit inputs into 𝑞-bit activations. The output of the

input layer will also be the quantized arbitrary-bit feature map

serving as the input for the following intermediate layers. In the

output layer, Tensor Core computation results will be directly used

for the final softmax logits computation. Thus, we do not apply

quantization after the output layer.

5.2 Semantic-aware Kernel Fusion
Besides APMM and APConv discussed previously, there are still

multiple important layers in APNN, including quantization, Batch

Normalization (BN), pooling, and ReLU. Given all scalars 𝑥𝑖, 𝑗 in the

𝑖𝑡ℎ layer, quantization element-wisely converts int32 values 𝑥𝑖, 𝑗
to q-bit values 𝑦𝑖, 𝑗 :

𝑦𝑖, 𝑗 = ⌊(𝑥𝑖, 𝑗 − 𝑧𝑖 )/𝑠𝑖 ⌋
Here, 𝑧𝑖 is a 32-bit scalar zero-point, 𝑠𝑖 is the scaling scalar, and

⌊·⌋ is the floor function. BN [16] is another major component in

NNs for tackling the covariate shift problem and facilitating NN

training:

𝑦𝑖,𝑗 =
𝑥𝑖,𝑗 − E[𝑥𝑖,∗ ]√
𝑉𝑎𝑟 [𝑥𝑖,∗ + 𝜖 ]

· 𝛾 𝑗 + 𝛽 𝑗 (5)

where E and 𝑉𝑎𝑟 are expectation and variance across the batch, 𝛾 𝑗
and 𝛽 𝑗 are two learned parameters. Pooling splits the feature map

spatially into 𝑘 × 𝑘 grids and generates 1 scalar output for each

grid by computing the average or the maximum value in each grid.

ReLU takes individual input values 𝑥𝑖, 𝑗 and generates output values

𝑦𝑖, 𝑗 =𝑚𝑎𝑥 (𝑥𝑖, 𝑗 , 0).
While these operations have linear time complexity to the size

of feature maps and consume significantly less computation than

APConv and APMM kernels, these operations may still introduce

heavy latency due to the expensive memory access. Indeed, while

Tensor Cores provides significantly improved computation capabil-

ity, Tensor Cores share the same memory bandwidth with CUDA

Cores on GPUs. Moreover, we observe that these values are usually

computed element-wisely and do not require heavy communication

across GPU threads. We propose a semantic-aware kernel fusion

to minimize memory access. We first fuse APMM/APConv with

its following quantization, BN, pooling, and ReLU kernels into a

single kernel to minimize the global memory access. In particular,

these following layers can be seamlessly applied once the convo-

lution results become available at the shared memory. This can

improve the computation intensity for individual convolution ker-

nels meanwhile reducing the global memory access from invoking

an additional batch normalization kernel. Second, considering that

these following layers usually compute at scalar level, we can fur-

ther reduce shared memory access by directly reusing values in

registers [24]. For example, when a APMM layer is followed by a BN



SC ’21, November 14–19, 2021, St. Louis, MO, USA B. Feng et al.

layer, a quantization layer, and a ReLU layer, we directly compute

the output scalar as

⌊𝑚𝑎𝑥 (
𝑥𝑖, 𝑗 − E[𝑥𝑖,∗]√
𝑉𝑎𝑟 [𝑥𝑖,∗ + 𝜖]

· 𝛾 𝑗 + 𝛽 𝑗 − 𝑧𝑖 , 0)/𝑠𝑖 ⌋

Note that we only need to load a scalar once to a register and avoids

unnecessary shared memory access.

6 EVALUATION
In this section, we evaluate APNN-TC under diverse precisions

and show the benefits of arbitrary-precision computation in per-

formance and accuracy. We evaluate on both Nvidia RTX 3090

and Nvidia Tesla A100. The RTX3090 GPU is in a ubuntu 16.04

system with Intel(R) Xeon(R) Silver 4110 CPU @ 2.10GHz, 64 GB

DDR3 DRAM, gcc-7.5.0, and using CUDA-11.1, CUTLASS-2.5, and

CUBLAS-11.1. The A100 GPU is in a Linux 3.10.0 system with AMD

EPYC 7742 64-core CPU, 1TB DDR4, gcc-9.1.0, and using CUDA-

11.1, CUTLASS-2.5, and cuBLAS-11.3. All results reported are the

average of 200 times execution.

6.1 APLayer Evaluation
6.1.1 APMM Performance. We compare our APMM designs with

NVIDIA implementations of low-bit gemm (i.e., int1, int4, and
int8) that are accelerated by Tensor Cores. For int8, we com-

pare with cublas implementation, namely cublass-gemm-int8. Since

int1 and int4 are not supported in cublas, we compare with

cutlass implementation, namely cutlass-gemm-int1 and cutlass-

gemm-int4. Following popular settings in NNs, we compute ma-

trix multiplication of a matrix with shape 𝐵 × 𝐾 and a matrix

with shape 𝐾 × 𝑁 , where 𝐵 = 64 is a popular batch size and

𝐾 = 𝑁 ∈ {128, 256, ..., 1024} covers typical fully connected layer

dimensions. According to the precision of our APMM kernel, we

name it APMM-wxay, where x indicates the weight bit and y indi-

cates the activation bit. For example, APMM-w1a2 indicates 1-bit

weights and 2-bit activations. While our APMM is general to sup-

port arbitrary precision, we show 8 popular bit combinations due

to page limits. If both weight bits and activation bits are less than

4 (e.g., w1a2, w1a3, w1a4, w2a2), we compare it against cutlass-

gemm-int4. If either weight bits or activation bits are larger than 4,

we compare it against cublas-gemm-int8. For each matrix size, we

show a speedup of cutlass-gemm-int1 against cutlass-gemm-int4

and cublas-gemm-int8 as the performance benefit when sticking to

binary neural networks [22, 25]. Since Tensor Core compute prim-

itive supports only 32-bit outputs, all gemm kernels take low-bit

input (e.g., int1, int4, and int8) and generate 32-bit outputs.

Figure 5 shows the results of APMM on RTX 3090. We compare

APMM with cutlass-gemm-int4 in Figure 5(a) and cublas-gemm-

int8 in Figure 5(b). Overall, we have three major observations. First,

APMM can usually achieve significant speedup over baselines. For

example, APMM-w1a2 can achieve up to 2.35× speedup over cutlass-

gemm-int4, while APMM-w5a1 can achieve up to 3× speedup over

cublas-gemm-int8. This result demonstrates the performance bene-

fits of emulating arbitrary-precision with int1 compute primitives

over sticking to int4 or int8 compute primitives. Second, AP-

MMs with various weight and activation bits usually show similar

performance on small matrices. For example, APMM-w1a2, APMM-

w1a3, APMM-w1a4, and APMM-w2a2 achieves almost the same

Table 1: APNN Evaluation Setting. We list the dataset, network, in-
put size, output size, and the model accuracy under precisions of
BNN (i.e., int1), w1a2 (i.e., 1-bit weights with 2-bit activations), and
single-precision floating point.

Dataset Network Input Size Output Size Binary w1a2 Single
ImageNet AlexNet [20] 224x224x3 1000 46.1% 55.7% 57.0%

ImageNet VGG-Variant [2] 224x224x3 1000 53.4% 68.8% 69.8%

ImageNet ResNet-18 [12] 224x224x3 1000 51.2% 62.6% 69.6%

speedup when N=128 and N=256, even if these kernels have dif-

ferent computation overhead (e.g., 2× from APMM-w1a2 and 4×
from APMM-w2a2). This benefit comes from our batch-based dou-

ble caching (Section 4.1(a)), where individual small BMMAs are

batched into a large BMMA and computed simultaneously. Surpris-

ingly, our arbitrary precision computation can even outperform

cutlass-gemm-int1 in such cases due to the improved GPU utiliza-

tion. Third, we observe a smaller speedup over cublas-gemm-int8

on large matrix sizes, when peak int1 performance is achieved. Our

investigation shows that, on RTX 3090, cutlass-gemm-int1 is only

5.9× faster than cublas-gemm-int8, such that emulation is slower

than built-in int8 compute primitives on large matrices when peak

int1 performance is achieved (e.g., 64×1024×1024 for APMM-w2a8).

We argue that NN workload can still benefit significantly from our

APMM since the fully connected layers in NNs usually have small

matrix sizes (e.g., 1 × 512 × 512 in ResNet-18). We also show the

results of APMM on A100 in Figure 6 with similar observations.

6.1.2 APConv Performance. We compare APConv designs with

NVIDIA implementations of low-bit convolution that are acceler-

ated by Tensor Cores. Since cublas does not support int1, int4,
AND int8 convolution, we use kernels from cutlass. We name these

kernels as cutlass-conv-int1, cutlass-conv-int4, and cutlass-conv-

int8. Similar to APMM, we evaluate 8 types of precision with the

name APConv-wxay. Since convolution kernels have much more

hyperparameters than matrix-multiplication kernels, we show the

performance under various input and output channels while fixing

the input size as 16 (medium feature size), filter size as 3 (most fre-

quently used), stride as 1 (most frequently used), and batch as 1 (for

inference). Figure 7 and 8 show the speedup of APConv on RTX 3090

and A100, respectively. APConv can achieve 3.78× speedup over

cutlass-conv-int4 and 3.08× speedup over cutlass-conv-int8. This

result shows the significant performance benefit from emulating

arbitrary precision with int1 over utilizing int4 or int8. Similar

to APMM, we also observe a smaller speedup over cutlass-conv-int8

on larges channels due to the limitation of peak int1 performance.

Since RTX3090 and A100 provide similar performance, we will

focus on RTX3090 in the following evaluations.

6.2 APNN Evaluation
In this section, we evaluate the overall APNN performance on three

mainstream neural network models with ImageNet dataset. The

details of our evaluated NN models and their corresponding bina-

rized neural network, low-bit (1-bit weight with 2-bit activation),

single-precision accuracy precision are listed in Table 1.

We consider two types of configurations for evaluation. In the

first setting, we focus on a specific low-bit configuration (1-bit

weights and 2-bit activations, i.e., w1a2) across different neural
network models. We choose several baselines including neural net-

works built with single-precision floating-point implementation



APNN-TC: Accelerating Arbitrary Precision
Neural Networks on Ampere GPU Tensor Cores SC ’21, November 14–19, 2021, St. Louis, MO, USA

0

1

2

3

128 256 384 512 640 768 896 1024

Sp
ee

du
p

Matrix Size 

APMM-w1a2 APMM-w1a3

APMM-w1a4 APMM-w2a2

cutlass-gemm-int1 cutlass-gemm-int4

(a) Over CUTLASS-GEMM-INT4

0

1

2

3

128 256 384 512 640 768 896 1024

Sp
ee

d
u

p

Matrix Size

APMM-w5a1 APMM-w1a8

APMM-w6a2 APMM-w2a8

cutlass-gemm-int1 cublas-gemm-int8

(b) Over CUBLAS-GEMM-INT8.

Figure 5: APMM Performance on RTX 3090.

0

1

2

128 256 384 512 640 768 896 1024

Sp
ee

d
u

p

Matrix Size

APMM-w1a2 APMM-w1a3

APMM-w1a4 APMM-w2a2

cutlass-gemm-int1 cutlass-gemm-int4

(a) Over CUTLASS-GEMM-INT4.

0

1

2

3

4

128 256 384 512 640 768 896 1024

Sp
ee

d
u

p

Matrix Size

APMM-w5a1 APMM-w1a8

APMM-w6a2 APMM-w2a8

cutlass-gemm-int1 cublas-gemm-int8

(b) Over CUBLAS-GEMM-INT8.

Figure 6: APMM Performance on A100.

0

1

2

3

128 256 384 512 640 768 896 1024

Sp
e

ed
u

p

Input & Output Channel Size

APConv-w1a2
APConv-w1a3
APConv-w1a4
APConv-w2a2
cutlass-conv-int4
cutlass-conv-int1

(a) Over CUTLASS-Conv-INT4.

0

1

2

3

4

128 256 384 512 640 768 896 1024

Sp
ee

d
u

p

Input & Output Channel Size

APConv-w1a5 APConv-w1a8

APConv-w2a6 APConv-w2a8

cutlass-conv-int8 cutlass-conv-int1

(b) Over CUTLASS-Conv-INT8.

Figure 7: APConv Performance on RTX 3090.

from CUTLASS [31] running on CUDA Cores, half-precision imple-

mentation fromCUTLASS running on Tensor Cores, INT8 precision

implementation from CUTLASS running on Tensor Cores, and the

1-bit binarized neural network running on Tensor Cores based on

the state-of-the-art design from [25]. As shown in Table 2, our

APNN design running on Tensor Cores can achieve a significant

speedup compared with CUTLASS INT8, half and single precision

implementations. This indicates the practical usage of our APNN

design in latency-sensitive applications. Meanwhile, on large batch

sizes for throughput performance evaluation, our APNN design also

demonstrates its high throughput advantage over these “standard-

ized” bit (e.g., 8-bit and half) precision baselines. Compared with the

1-bit binarized neural network running on Tensor Cores, our APNN

design would demonstrate its significant accuracy improvement



SC ’21, November 14–19, 2021, St. Louis, MO, USA B. Feng et al.

0

1

2

3

4

128 256 384 512 640 768 896 1024

Sp
ee

du
p

Input & Output Channel Size

APConv-w1a2
APConv-w1a3
APConv-w1a4
APConv-w2a2
cutlass-conv-int4
cutlass-conv-int1

Sp
ee

du
p

(a) Over CUTLASS-Conv-INT4.

0

1

2

3

4

128 256 384 512 640 768 896 1024

Sp
ee

du
p

Input & Output Channel Size

APConv-w1a5 APConv-w1a8

APConv-w2a6 APConv-w2a8

cutlass-conv-int8 cutlass-conv-int1

(b) Over CUTLASS-Conv-INT8.

Figure 8: APConv Performance on A100.

Table 2: APNN Inference Performance on NVIDIA Ampere
RTX3090 GPU. Note that latency is measured under a batch of 8
images, throughput is measured under a batch of 128.

ImageNet-AlexNet ImageNet-VGG_Variant ImageNet-ResNet18
Schemes 8 Latency Throughput 8 Latency Throughput 8 Latency Throughput

CUTLASS-Single 4.43ms 2.89×104fps 25.24ms 3.89×102fps 60.96ms 1.51×102fps
CUTLASS-Half-TC 3.79ms 3.38×104fps 24.19ms 4.67×102fps 57.33ms 1.89×103fps
CUTLASS-INT8-TC 13.10ms 9.77×103fps 25.77ms 6.52×102fps 57.09ms 2.85×103fps

BNN 0.69ms 1.37×104fps 2.17ms 3.91×103fps 0.68ms 1.89×104fps
APNN-w1a2 0.36ms 2.85×104fps 1.66ms 5.32×103fps 0.64ms 1.70×104fps

Table 3: Case Study: APNN of VGG on ImageNet.
Scheme 8 Latency (ms) Throughput (fps)
Float 25.24 3.89×102
Half 24.19 4.66×102
INT8 25.77 6.52×102
BNN 2.17 3.91×103

APNN-w1a2 1.66 5.32×103
APNN-w2a2 3.08 2.59×103
APNN-w2a8 14.14 5.65×102

(an average 11.67%) as listed in Table 1. This can demonstrate the

application of our APNN design in some application settings, where

the BNN model accuracy performance fails to meet the demands.

Overall, from the study, we can see that using our APNN design for

arbitrary-bit precision computation is a potential way for balancing

NN model accuracy and runtime performance.

In the second setting, we shift our focus towards model run-

time performance tradeoff on the VGG network. We select several

low-bit settings for comparison, including the 1-bit weight with

2-bit activation, 2-bit weight with 2-bit activation, and 2-bit weight

with 8-bit activation. As shown in Table 3, APNN-TC significantly

reduces latency and improves throughput for w1a2 and w2a2 than

INT8 which shows that APNN-TC can bring benefits for many

arbitrary-precision computations. Comparing with INT8, APNN-

TC with w2a8 shows lower throughput since we need to compute

16 (=2*8) 1-bit matrices to emulate arbitrary-precision computation,

which require more computation than w1a2 with 2 1-bit matrices

and w2a2 with 4 1-bit matrices. This also matches the performance

on individual kernels (e.g., Figure 5, 6, 7, 8). This result indicates

that APNN-TC can bring benefits for latency-sensitive applications.

6.3 Additional Studies
We perform several additional studies in this subsection, including

the latency breakdown from individual NN layers and the benefit

Figure 9: Per-layer latency breakdown of APNN models.

0

10

20

30

40

128 256 384 512 640 768 896 1024

La
te

n
cy

 (
μ

s)

Input & Output Channel Size

w/o Fusion w/ Fusion

Figure 10: Speedup from APNN Kernel Fusion.

from kernel fusion. We show results from RTX 3090 and skip results

from A100 since we observe similar trend on these two GPUs.

Latency Breakdown. Figure 9 illustrates the percentage break-
down of the latency for the inference of 8 images over three NNs

on RTX-3090 GPU. Clearly, the first layer introduces the most delay

since the input feature size for this layer is significantly larger than

other layers. This percentage can be as high as 80.4% for AlexNet

and 47.5% for VGG_Variant. On other layers, we observe a roughly

balanced latency.

Benefits from Kernel Fusion. Figure 10 investigates the per-
formance benefits from fusing APConv-w1a2, pooling, and quan-

tization into one kernel. Specifically, in the "w/o Fusion" imple-

mentation, we implement three global functions for APConv-w1a2

with 32-bit output, 2 × 2 pooling, and quantizing into 2-bit outputs,

respectively. Here, each function read and write data to the global

memory. In the "w/ Fusion" implementation, we conduct the same

workload in a single kernel. Overall, we observe a latency reduction

of 1.77× on average. The main reason is that, in "w/ Fusion", data



APNN-TC: Accelerating Arbitrary Precision
Neural Networks on Ampere GPU Tensor Cores SC ’21, November 14–19, 2021, St. Louis, MO, USA

0

1

2

3

4

5

128 256 384 512 640 768 896 1024

O
ve

rh
ea

d
 (

%
)

Input & Output Channel Size

Only TC Computation
 +Bit Combination
 +Bit Combination & Decomposition

Figure 11: Overhead from bit combination and bit decompo-
sition, relative to TC Computation.

0

1

2

128 256 384 512 640 768 896 1024

Sp
e

ed
u

p

Matrix Size

cutlass-gemm-int4 APMM-w4a4
cutlass-gemm-int1 APMM-w1a1

Figure 12: Comparing APMM and CUTLASS-GEMM.

across APConv, pooling, and quantization can be cached in shared

memory and global memory access is significantly reduced.

Overhead from bit combination and bit decomposition.
We show the overhead from bit combination and bit decompo-

sition in Figure 11. We profile the overhead on APConv designs

following the same setting as Section 6.1.2. We show results from

APConv-w1a2 since we observe similar overhead across bit set-

tings. On average, we empirically observe 1.16% overhead from

bit combination and another 2.02% overhead from bit decomposi-

tion, compared to only TC computation. The main reason is that

bit combination and bit decomposition introduce only quadratic

time complexity, which is significantly smaller than the cubic time

complexity from TC computation. Due to this difference in time

complexity, the overhead from bit combination decreases from 2.4%

to 0.12% as the channel size increases from 128 to 1024. We also

observe similar trend for bit decomposition.

Comparing APMM and cutlass GEM under the same bits.
Figure 12 shows the performance comparison between APMM and

cutlass-gemm when using the same bits. Overall, we observe that

APMM-w4a4 can achieve 1.3× speedup over cutlass-gemm-int4.

The main reason is that APMM-w4a4 can achieve better parallelism

by using 16 int1 computations to emulate 1 int4 computation and

achieving better GPU utilization, especially for small matrix sizes.

We note that this speedup of APMM-w4a4 over cutlass-gemm-int4

decreases as the matrix size increases where more int1 computa-

tion resources are required for emulation. We also observe that

APMM-w1a1 can achieve 1.35× speedup over cutlass-gemm-int1.

This shows the benefit from our kernel-level optimizations.

Raw latency of a typical fully-connected layer.Table 4 shows
the raw latency of a typical fully-connected layer with batch size

𝑀 = 64, input dimension𝐾 = 1024, and output dimension𝑁 = 1024.

Overall, we observe that we require only around 7 microsecond for

such a layer. Comparing with cutlass-gemm-int4, we can achieve

Table 4: Raw latency of a typical fully-connected layer with
batch size 𝑀 = 64, input dimension 𝐾 = 1024, and output
dimension 𝑁 = 1024. Unit: microsecond.

w1a2 w1a3 w1a4 w2a2 cutlass-gemm-int4 cutlass-gemm-int1
6.67 6.81 7.06 7.15 15.61 7.92

2.27× speedup on average by using arbitrary-precision computa-

tion. We also note that the arbitrary-precision computation is even

slightly faster than the cutlass-gemm-int1, which matches the result

in Section 6.1.1.

7 DISCUSSION
Practical usage of APNN. Arbitrary-precision neural networks

have been widely studied to provide diverse tradeoffs between

precision and efficiency [6, 11, 22, 25, 35, 41, 44, 46]. While arbitrary-

precision may slightly reduce the precision, it shows merit in many

practical usages such as smart sensors [21, 29, 38], mask detection

[8], and intelligent agriculture [9]. In these usages, when a certain

accuracy bar is surpassed, other essential metrics such as real-time

processing and resource consumption are more important. For

example, BinaryCoP [8] utilizes low-power binary neural networks

to detect facial-mask wear at entrances to corporate buildings and

airports. Another example is XpulpNN [9] that uses quantized

neural network on energy-efficient IoT devices.

Generality to other NNs. This paper reports the results of

APNN-TC on two most time-consuming kernels, GEMM and Con-

volution, from the computer vision domain and showcases the

performance on popular vision models (e.g., AlexNet, VGG, and

ResNet). Yet, we expect that APNN-TC applies to NNs from various

domains such as natural language processing (NLP). Intuitively,

APNN-TC accelerates GEMM and dot products which is the build-

ing block of many NLP NNs [7, 40, 45], such as the attention layer

and the feed-forward layer.

Generality to other processors. APNN-TC utilizes popula-

tion count (i.e., popc()) and two logical operations (i.e., XOR and

AND) to support arbitrary-precision computation on Nvidia GPUs.

Considering the wide support for popc() and logical operations,

APNN-TC can be easily adapted to diverse processors. For example,

AMD GPUs [1] supports population count (i.e. popcnt() on AMD

GPUs) and logical operations (e.g., bitwise XOR). Xeon phi [15] also

supports population count and logical operations.

8 CONCLUSION
In this paper, we design and implement APNN-TC that accelerates

arbitrary-precision neural networks on Ampere GPU Tensor Cores.

Specifically, APNN-TC contains an int1-based emulation design on

Tensor Cores to enable arbitrary-precision computation, an efficient

AP-Layer design for efficiently mapping NN layers towards Tensor

Cores, and an APNN design to minimize the memory access across

NN layers. Extensive evaluations on two Ampere GPUs show that

APNN-TC can achieve significant speedup over CUTLASS kernels

and various mainstream NN models, such as ResNet and VGG.

9 ACKNOWLEDGEMENTS
We thank all anonymous reviewers for their valuable comments.

This work was supported in part by NSF 1925717 and 2124039.



SC ’21, November 14–19, 2021, St. Louis, MO, USA B. Feng et al.

This work was supported in part by the U.S. DOE Office of Sci-

ence, Office of Advanced Scientific Computing Research, under

award 66150: "CENATE - Center for Advanced Architecture Eval-

uation" and PNNL’s Data-Model-Convergence (DMC) LDRD Ini-

tiative Computation-Flow-Architecture (CFA) project. The Pacific

Northwest National Laboratory is operated by Battelle for the U.S.

Department of Energy under contract DE-AC05-76RL01830.

REFERENCES
[1] AMD. 2013. AMD Accelerated Parallel Processing OpenCL Programming Guide.

http://developer.amd.com/wordpress/media/2013/07/AMD_Accelerated_Parallel

_Processing_OpenCL_Programming_Guide-rev-2.7.pdf.

[2] Zhaowei Cai, Xiaodong He, Jian Sun, and Nuno Vasconcelos. 2017. Deep learning

with low precision by half-wave gaussian quantization. In Proceedings of the IEEE
conference on computer vision and pattern recognition. 5918–5926.

[3] François Chollet. 2017. Xception: Deep learning with depthwise separable con-

volutions. In Proceedings of the IEEE conference on computer vision and pattern
recognition (CVPR).

[4] Jack Choquette, Wishwesh Gandhi, Olivier Giroux, Nick Stam, and Ronny

Krashinsky. 2021. NVIDIA A100 Tensor Core GPU: Performance and Innovation.

IEEE Micro 41, 2 (2021), 29–35.
[5] Jack Choquette, Olivier Giroux, and Denis Foley. 2018. Volta: Performance and

programmability. Ieee Micro 38, 2 (2018), 42–52.
[6] Matthieu Courbariaux, Yoshua Bengio, and Jean-Pierre David. 2015. BinaryCon-

nect: Training Deep Neural Networks with binary weights during propagations.

In NIPS. 3123–3131.
[7] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. 2019. BERT:

Pre-training of Deep Bidirectional Transformers for Language Understanding. In

NAACL-HLT (1). Association for Computational Linguistics, 4171–4186.

[8] Nael Fasfous, Manoj Rohit Vemparala, Alexander Frickenstein, Lukas Fricken-

stein, and Walter Stechele. 2021. BinaryCoP: Binary Neural Network-based

COVID-19 Face-Mask Wear and Positioning Predictor on Edge Devices. CoRR
abs/2102.03456 (2021).

[9] Angelo Garofalo, Giuseppe Tagliavini, Francesco Conti, Davide Rossi, and Luca

Benini. 2020. XpulpNN: Accelerating Quantized Neural Networks on RISC-V

Processors Through ISA Extensions. In DATE. IEEE, 186–191.
[10] Tong Geng, Ang Li, Tianqi Wang, Chunshu Wu, Yanfei Li, Runbin Shi, Wei

Wu, and Martin Herbordt. [n.d.]. O3BNN-R: An out-of-order architecture for

high-performance and regularized BNN inference. TPDS’20 ([n. d.]).
[11] Song Han, Huizi Mao, and William J. Dally. 2016. Deep Compression: Compress-

ing Deep Neural Network with Pruning, Trained Quantization and Huffman

Coding. In ICLR.
[12] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. 2016. Deep residual

learning for image recognition. In Proceedings of the IEEE conference on computer
vision and pattern recognition. 770–778.

[13] Brian Hickmann, Jieasheng Chen, Michael Rotzin, Andrew Yang, Maciej Urbanski,

and Sasikanth Avancha. 2020. Intel Nervana Neural Network Processor-T (NNP-

T) Fused Floating Point Many-Term Dot Product. In 2020 IEEE 27th Symposium
on Computer Arithmetic (ARITH). IEEE, 133–136.

[14] Andrew G. Howard, Menglong Zhu, Bo Chen, Dmitry Kalenichenko, Weijun

Wang, Tobias Weyand, Marco Andreetto, and Hartwig Adam. 2017. MobileNets:

Efficient Convolutional Neural Networks for Mobile Vision Applications. arXiv
e-prints (April 2017).

[15] Intel. 2012. Intel Xeon Phi Coprocessor Instruction Set Architecture Reference

Manual. https://software.intel.com /content/dam/develop/external/us/en/docu-

ments/327364001en.pdf.

[16] Sergey Ioffe and Christian Szegedy. 2015. Batch normalization: Accelerating deep

network training by reducing internal covariate shift. In International conference
on machine learning. PMLR, 448–456.

[17] Zhe Jia, Marco Maggioni, Jeffrey Smith, and Daniele Paolo Scarpazza. 2019. Dis-

secting the NVidia Turing T4 GPU via microbenchmarking. arXiv (2019).

[18] Zhe Jia, Marco Maggioni, Benjamin Staiger, and Daniele P Scarpazza. 2018. Dis-

secting the NVIDIA volta GPU architecture via microbenchmarking. arXiv
preprint arXiv:1804.06826 (2018).

[19] Norman P Jouppi, Cliff Young, Nishant Patil, David Patterson, Gaurav Agrawal,

Raminder Bajwa, Sarah Bates, Suresh Bhatia, Nan Boden, Al Borchers, et al. 2017.

In-datacenter performance analysis of a tensor processing unit. In Proceedings of
the 44th Annual International Symposium on Computer Architecture. ACM, 1–12.

[20] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. 2012. Imagenet classifi-

cation with deep convolutional neural networks. Advances in neural information
processing systems 25 (2012), 1097–1105.

[21] Jaeha Kung, David C. Zhang, Gooitzen S. van der Wal, Sek M. Chai, and Saibal

Mukhopadhyay. 2018. Efficient Object Detection Using Embedded Binarized

Neural Networks. J. Signal Process. Syst. 90, 6 (2018), 877–890.

[22] Ang Li, Tong Geng, Tianqi Wang, Martin Herbordt, Shuaiwen Leon Song, and

Kevin Barker. 2019. BSTC: A novel binarized-soft-tensor-core design for accel-

erating bit-based approximated neural nets. In Proceedings of the International
Conference for High Performance Computing, Networking, Storage and Analysis.

[23] Ang Li, Shuaiwen Leon Song, Eric Brugel, Akash Kumar, Daniel Chavarria-

Miranda, and Henk Corporaal. 2016. X: A comprehensive analytic model for

parallel machines. In 2016 IEEE International Parallel and Distributed Processing
Symposium (IPDPS). IEEE, 242–252.

[24] Ang Li, Shuaiwen Leon Song, Akash Kumar, Eddy Z Zhang, Daniel Chavarría-

Miranda, and Henk Corporaal. 2016. Critical points based register-concurrency

autotuning for GPUs. In 2016 Design, Automation & Test in Europe Conference &
Exhibition (DATE). IEEE, 1273–1278.

[25] Ang Li and Simon Su. 2020. Accelerating Binarized Neural Networks via Bit-

Tensor-Cores in Turing GPUs. IEEE Transactions on Parallel and Distributed
Systems 32, 7 (2020), 1878–1891.

[26] Ang Li, YC Tay, Akash Kumar, and Henk Corporaal. 2015. Transit: A visual ana-

lytical model for multithreaded machines. In Proceedings of the 24th international
symposium on high-performance parallel and distributed computing. 101–106.

[27] Ning Liu, Xiaolong Ma, Zhiyuan Xu, Yanzhi Wang, Jian Tang, and Jieping Ye.

2020. AutoCompress: An automatic DNN structured pruning framework for

ultra-high compression rates. In Proceedings of the AAAI Conference on Artificial
Intelligence, Vol. 34. 4876–4883.

[28] Xiaolong Ma, Fu-Ming Guo, Wei Niu, Xue Lin, Jian Tang, Kaisheng Ma, Bin Ren,

and Yanzhi Wang. 2020. Pconv: The missing but desirable sparsity in dnn weight

pruning for real-time execution on mobile devices. In Proceedings of the AAAI
Conference on Artificial Intelligence, Vol. 34. 5117–5124.

[29] Bradley McDanel, Surat Teerapittayanon, and H. T. Kung. 2017. Embedded

Binarized Neural Networks. In EWSN. Junction Publishing, Canada / ACM.

[30] Wei Niu, Pu Zhao, Zheng Zhan, Xue Lin, Yanzhi Wang, and Bin Ren. 2020.

Towards Real-Time DNN Inference on Mobile Platforms with Model Pruning

and Compiler Optimization. IJCAI (2020).
[31] NVIDIA. [n.d.]. CUDA Template Library for Dense Linear Algebra at All Levels

and Scales (CUTLASS).

[32] Nvidia. [n.d.]. NVIDIA A100 Tensor Core GPU Architecture. https:

//www.nvidia.com/content/dam/en-zz/Solutions/Data-Center/nvidia-ampere-

architecture-whitepaper.pdf.

[33] Nvidia. [n.d.]. NVIDIA TESLA V100 GPU ARCHITECTURE. https://images.

nvidia.com/content/volta-architecture/pdf/volta-architecture-whitepaper.pdf.

[34] NVIDIA. 2021. CUDA Programming Guide: Sub-byte Operations.

https://docs.nvidia.com/cuda/cuda-c-programming-guide/#wmma-subbyte.

[35] Eunhyeok Park, Dongyoung Kim, and Sungjoo Yoo. 2018. Energy-Efficient Neural

Network Accelerator Based on Outlier-Aware Low-Precision Computation. In

ISCA. IEEE Computer Society, 688–698.

[36] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory

Chanan, Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, Alban Des-

maison, Andreas Kopf, Edward Yang, Zachary DeVito, Martin Raison, Alykhan

Tejani, Sasank Chilamkurthy, Benoit Steiner, Lu Fang, Junjie Bai, and Soumith

Chintala. 2019. PyTorch: An Imperative Style, High-Performance Deep Learning

Library. In NeurIPS’19, H. Wallach, H. Larochelle, A. Beygelzimer, F. d Alch’e-Buc,

E. Fox, and R. Garnett (Eds.).

[37] Md Aamir Raihan, Negar Goli, and Tor M Aamodt. 2019. Modeling deep learning

accelerator enabled gpus. In 2019 IEEE International Symposium on Performance
Analysis of Systems and Software (ISPASS). IEEE, 79–92.

[38] Advanced Grid Research. [n.d.]. Sesor Technologies and Data Analytics.

https://www.smartgrid.gov/files/Sensor_Technologies_MYPP_12_19_18_final.pdf.

[39] Mark Sandler, Andrew Howard, Menglong Zhu, Andrey Zhmoginov, and Liang-

Chieh Chen. 2018. Mobilenetv2: Inverted residuals and linear bottlenecks. In

CVPR.
[40] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones,

Aidan N. Gomez, Lukasz Kaiser, and Illia Polosukhin. 2017. Attention is All

you Need. In NIPS. 5998–6008.
[41] Kuan Wang, Zhijian Liu, Yujun Lin, Ji Lin, and Song Han. 2019. HAQ: Hardware-

Aware Automated QuantizationWithMixed Precision. In CVPR. Computer Vision

Foundation / IEEE, 8612–8620.

[42] J. Wu, C. Leng, Y. Wang, Q. Hu, and J. Cheng. [n.d.]. Quantized Convolutional

Neural Networks for Mobile Devices. In CVPR’16.
[43] Zhaohui Yang, Yunhe Wang, Kai Han, Chunjing Xu, Chao Xu, Dacheng Tao, and

Chang Xu. 2020. Searching for Low-Bit Weights in Quantized Neural Networks.

In Advances in Neural Information Processing Systems 33: Annual Conference on
Neural Information Processing Systems 2020, NeurIPS 2020, December 6-12, 2020,
virtual, Hugo Larochelle, Marc’Aurelio Ranzato, Raia Hadsell, Maria-Florina

Balcan, and Hsuan-Tien Lin (Eds.).

[44] Dongqing Zhang, Jiaolong Yang, Dongqiangzi Ye, and Gang Hua. 2018. Lq-nets:

Learned quantization for highly accurate and compact deep neural networks. In

Proceedings of the European conference on computer vision (ECCV). 365–382.
[45] Shiyue Zhang, Benjamin Frey, andMohit Bansal. [n.d.]. ChrEn: Cherokee-English

Machine Translation for Endangered Language Revitalization. In EMNLP’20.

https://www.nvidia.com/content/dam/en-zz/Solutions/Data-Center/nvidia-ampere-architecture-whitepaper.pdf
https://www.nvidia.com/content/dam/en-zz/Solutions/Data-Center/nvidia-ampere-architecture-whitepaper.pdf
https://www.nvidia.com/content/dam/en-zz/Solutions/Data-Center/nvidia-ampere-architecture-whitepaper.pdf
https://images.nvidia.com/content/volta-architecture/pdf/volta-architecture-whitepaper.pdf
https://images.nvidia.com/content/volta-architecture/pdf/volta-architecture-whitepaper.pdf


APNN-TC: Accelerating Arbitrary Precision
Neural Networks on Ampere GPU Tensor Cores SC ’21, November 14–19, 2021, St. Louis, MO, USA

[46] Shuchang Zhou, Zekun Ni, Xinyu Zhou, He Wen, Yuxin Wu, and Yuheng Zou.

2016. DoReFa-Net: Training Low Bitwidth Convolutional Neural Networks with

Low Bitwidth Gradients. CoRR abs/1606.06160 (2016).

[47] B. Zhuang, L. Liu, M. Tan, C. Shen, and I. Reid. [n.d.]. Training Quantized Neural

Networks With a Full-Precision Auxiliary Module. In CVPR’20.


	Abstract
	1 Introduction
	2 Related Works
	2.1 APNN algorithm designs
	2.2 APNN Hardware Supports
	2.3 Tensor Cores

	3 AP-Bit Emulation Design
	3.1 AP-Bit Operation Template Design
	3.2 Data Adaptive Operator Selection

	4 Arbitrary Precision Layer Design
	4.1 Arbitrary-Precision Matrix Multiplication
	4.2 Arbitrary-Precision Convolution (APConv)
	4.3 Performance Analysis

	5 Arbitrary Precision Neural Network Design
	5.1 Minimal-Traffic Dataflow
	5.2 Semantic-aware Kernel Fusion

	6 Evaluation
	6.1 APLayer Evaluation
	6.2 APNN Evaluation
	6.3 Additional Studies

	7 Discussion
	8 Conclusion
	9 Acknowledgements
	References

