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Abstract—As a promising solution to boost the performance
of distance-related algorithms (e.g., K-means and KNN), FPGA-
based acceleration attracts lots of attention, but also comes with
numerous challenges. In this work, we propose, STPAcc, an
optimization framework based on structural triangle-inequality
(TI) based pruning (STP) for accelerating distance-related al-
gorithms on CPU-FPGA platforms. STPAcc provides a domain-
specific language to unify distance-related algorithms effectively,
a structural TI-based pruning strategy to remove unnecessary
distance computations, a coarse-grained workload partitioning
and mapping strategy to fully exploit the potentials of the CPU-
FPGA platform, and fine-grained hardware optimizations to fur-
ther improve performance on the FPGA. Intensive experiments
show that STPAcc designs achieve 31.42⇥ speedup and 99.63⇥
better energy efficiency on average over standard CPU-based
implementations.

Keywords: Machine Learning Algorithms; OpenCL Pro-
gramming; FPGA Acceleration.

I. INTRODUCTION

Distance calculations are essential to many algorithms
across various domains: data analytics [37], [51], [4], graph
analysis [24], [14], digital imaging [15], [36], and scientific
simulations [55], [45]. For example, the commonly used
clustering algorithm, K-means [42], is an iterative algorithm
that computes distances between every data point and each
of K cluster centers to find the closest cluster center of each
point. K-Nearest Neighbor (KNN) [25] finds the K points in
a target set that are closest to every point in the query set. N-
body simulation [58] computes the distances between every
particle and all its neighbors in every time step, to simulate
the interplay of particles and their resulting movements. Other
examples include point-to-point shortest path [17] in graph
analysis, 3D image construction [10] for digital imaging, etc.

These distance-based algorithms are indispensable for an-
alyzing data in many scientific and engineering disciplines.
Clustering and N-body simulation, for instance, are announced
as two of “the seven giants of statistical data analysis” by
the National Academy of Sciences [12]. K-means and KNN
are rated among the Top-10 most influential data mining
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algorithms [63]. The need to improve the computing efficiency
of these algorithms has never been satisfied. It is evidenced by
a large number of research papers published in the premium
venues in those domains. For instance, in the recent 10 years
of top machine learning or data mining conferences, there are
more than 20 papers [20], [23], [27], [46], [59], [54] on pure
algorithmic optimization for accelerating only K-means.

However, pure algorithmic optimization is clearly not
enough. Co-optimizations from both algorithmic and hardware
side are expected to offer faster and more energy-efficient solu-
tions. In particular, FPGA-based platforms gain lots of interest
from both industry and research field recently. Compared to
standard CPU and GPU platforms, which often suffer from ei-
ther inferior performance or high-power consumption, FPGA-
based implementations could potentially offer better Pareto-
optimal solutions, especially in terms of energy efficiency,
making them promising solutions for emerging computing
platforms with limited power budgets. This being said, accel-
erating these distance-related algorithms on FPGAs requires
non-trivial efforts, including hardware expertise, time, and
monetary cost. While existing research efforts try to ease this
process [31], [53], [39], [38], [44], [56], they inevitably fall
short in at least one of the following aspects.

Rely on problem-specific designs and optimizations while
missing effective generalization. Most of the previous hard-
ware designs and optimizations [31], [39], [53], [38] are heav-
ily coded for a specific algorithm and some specific inputs.
There is no such unified abstraction to formalize the definition
and optimization of distance algorithms systematically. For
example, work from [31] manually optimizes K-means on a
specific FPGA board towards very small scale bio-microarray
data. This solution can not be adapted to inputs of varying
sizes or shared across different distance-related algorithms.

Lack of algorithm-hardware co-design. Previous algorith-
mic [22], [19] and hardware optimizations [39], [53], [31],
[8], [38] are applied separately instead of being combined
collaboratively. Existing algorithmic optimizations, most of
which are based on a fine-grained triangle-inequality (TI)
based filtering strategy [22], [19], [18], [9], could save many
distance computations, but also incur high computation irreg-
ularity and memory overhead. On the other hand, existing
hardware accelerations rather rely on those standard distance-
related algorithms (w/o any algorithm-level optimization) to
minimize the efforts in the hardware implementations.
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Fig. 1: STPAcc Overview.

Count on FPGAs as the only source of acceleration.
Previous work [56], [44], [29], [35], [31], [38] places the
whole algorithm on the FPGA accelerator without considering
the assists from the computing resource on the host CPU. They
thus miss the full performance benefits from the heterogeneous
CPU-FPGA computing paradigm, for example, using the CPU
for complex logic and control-intensive operations while only
offloading the compute-intensive tasks to the FPGA. As a
result, their designs are usually limited by the on-chip memory
and computing elements of the FPGA boards.

To this end, we build the first optimization framework,
namely STPAcc (Figure 1), that can automatically optimize
and generate high-performance and power-efficient designs
of distance-related algorithms on the CPU-FPGA computing
platform. Specifically, STPAcc takes the distance-related algo-
rithm in our distance-domain specific language as the put, then
apply a a set of optimizations, including structural TI-based
pruning, coarse-grained workload partitioning and mapping,
and fine-grained hardware optimization. Later, STPAcc will
generate the implementation for running on CPU host and
FPGA devices with the corresponding compiler tool chains
(e.g., GCC). In short, STPAcc comes with a 1) library-based,
domain-specific language, with which end users could focus
on the high-level semantics of their applications rather than
low-level implementation details; 2) compiler-based automatic
transformation prototype, which would automatically gener-
ate highly-optimized implementations for different distance-
related algorithms towards various sizes of input datasets. The
following summarizes key technical contributions.

• STPAcc provides a distance domain-specific language
(DDSL), which abstracts the commonalities across dif-
ferent distance-related problems and offers several lan-
guage constructs (e.g., Definition, Operation, and Control
construct) for describing distance-related algorithms. Be-
sides, DDSL follows a concise yet expressive C language
style, offering more flexibility in low-level control and
further FPGA accelerator optimization.

• STPAcc features a novel Structural TI-based Pruning
(STP) scheme to facilitate efficient algorithm-hardware
co-optimization. STP generalizes the traditional, fine-
grained TI-based optimization with two-landmark, trace-
based, and group-level bound computations. These to-
gether eliminate redundant distance computations, while
maintaining the computation regularity for ease of hard-
ware acceleration.

• STPAcc leverages a coarse-grained workload partition-
ing and mapping (WPM) to fully utilize the CPU-FPGA
computing paradigm. Our key observation is that STP
optimization will lead to tasks with different computing
patterns. Thus, we distribute the tasks with complex
operations and execution dependency, such as distance
filtering, to the CPU, while assigning those with simple
and vectorizable operations, such as distance computa-
tions, to the FPGA.

• STPAcc applies a set of fine-grained hardware opti-
mizations (FHO) to further accelerate remaining com-
putations on the FPGA, such as kernel-level memory
optimizations to reduce inter-group and intra-group mem-
ory irregularity, and a parallelized OpenCL kernel archi-
tectural design to support STP-featured workloads and
improve the overall performance.

Intensive experiments on several popular algorithms across a
wide spectrum of datasets show that STPAcc-generated CPU-
FPGA designs achieve 31.42⇥ speedup and 99.63⇥ better
energy-efficiency on average compared with standard CPU-
based implementations.

II. RELATED WORK

A. Structural Pruning

Pruning strategy, as its name suggests, aims to “trim off”
some unnecessary computations without compromising the
functionality of the applications. Previous research in DNN
acceleration has witnessed its success in removing the redun-
dancy computation in NN models [47], [65], [66], [41], [43].
For example, Niu et al. [66] propose a DNN weight pruning
to avoid unnecessary weight computation to facilitate the real-
time execution of DNNs on resource-limited mobile devices.
Liu et al [41] automate the DNN pruning for achieving an
ultra-high compression rate. However, fine-grained pruning
on DNN models would cause severe computation irregularity
problems leading to inferior performance. To leverage the
massive parallelism and pipeline on modern general processors
and accelerators, a structural pruning strategy [47], [65] has
been proposed to maximize the performance gains of pruning
benefits on the modern hardware. While sharing some similari-
ties with these studies on DNN, our work presents a unique set
of challenges. Specifically, traditional DNN is a model-based
learning and its structural pruning mainly focuses on model-
level redundancy, which is static and input-agnostic, and can
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be determined offline before taking any inputs. Distance-
related algorithms, on the other hand, are instance-based
learning. The best pruning strategy would depend on the input
information (e.g., the data size and distribution), thus, making
such pruning more challenging.

B. TI-Optimization
TI-based optimization [22], [19], [18], [9], [62], [50] aims

at pruning computation-expensive distance computations with
cheaper TI-based bound computations, but still guaranteeing
the same final results as the original algorithms. Take K-
means as an example, many previous TI-based optimizations
such as Elkans’ K-means [22] and Yinyang K-means [19],
have validated that their optimizations can always guarantee
the same clustering results (e.g., both point assignments and
final cluster centers) as the standard version (with no distance
computation removed). The key behind such a quality guar-
antee is that distance computations can only be eliminated
when we are 100% sure that they will not change the final
results. Besides such accuracy guarantees, advantages of TI-
based optimizations also include better flexibility and scal-
ability compared to other algorithm-level pruning strategies,
such as KD-tree based methods [16], [53]. In particular, the
performance advancement of these TI-based work [19], [18],
[9] is more robust in general across datasets with a wide range
of input sizes and dimensions. As such, we focus on structural
TI-based pruning optimization at algorithmic optimization.

C. Hardware Acceleration
As a raising technique, FPGA-based acceleration becomes a

popular solution for speeding up data analytics, and numerous
FPGA designs [31], [56], [53], [38] have been proposed
and studied. For example, work from [31], [53], [39] targets
KNN FPGA acceleration, while researchers from [38], [44],
[56] focus on K-means. Despite significant performance im-
provements introduced by these methods, they mostly fail to
incorporate algorithmic optimizations in the hardware design:
they directly port the standard distance-related algorithms to
FPGAs and only apply hardware-level optimization. Even
worse, these previous designs [39], [31] usually assume that
the dataset can be fully fit into the FPGA on-chip memory,
and are only evaluated on a limited number of small datasets.
For example, in [39], K-means is evaluated on a micro-array
dataset with only 2,905 points. These designs often encounter
portability issues when transferring to different settings.

In addition, previous work largely focuses on the traditional
hardware design flow, which requires a long implementation
cycle and huge manual efforts. For example, work from [29],
[31], [8], [53], [57], [35], [28], [30] builds the design based on
VHDL/Verilog design flow, which requires hardware expertise
and over months of arduous development. These “hard-coded”
optimizations also create difficulties for a fair comparison
across different designs, which hamper future studies in this
direction. In contrast, STPAcc design flow brings significant
advantages of programmability and flexibility from its high-
level OpenCL programming model, which minimizes the user
efforts in the tedious hardware design process.

III. DISTANCE DOMAIN-SPECIFIC LANGUAGE

To accommodate various distance-related algorithms while
maintaining sufficient input adaptability, STPAcc defines a
Distance Domain-Specific Language (DDSL). The major ra-
tionale of using DDSL is to combine the algorithm and
hardware optimization in a unified way meanwhile simplifying
design optimization and hardware mapping. Previous high-
level synthesis (HLS)-based solutions exposing more involved
hardware details complicate the algorithm optimizations while
demanding lots of user efforts in design and implementation.

By summarizing different distance-related algorithms, we
make two key observations. First, distance-related algorithms
would differ in their interested distances. For example, the
KNN algorithm focuses on the Top-k closest neighbors of
each point, while the N-body simulation aims at finding the
neighbors within a certain range in 3D space; second, distance
related algorithms would differ in their control flow. For
example, the K-means clustering operates iteratively, while
KNN algorithm only executes once.

Based on these observations, we propose DDSL construct-
based design, which consists of three components (Definition,
Operation, and Control). In particular, the definition construct
(e.g., dVar) defines the input data; the operation construct
defines different operations on data points and distances (e.g.,
STPAcc_Dist_Select handles algorithms with different inter-
ested distances); the control construct (STPAcc_Iter), handles
algorithms with different execution flows. We detail these
constructs in Table I.

A. Examples
In this subsection, we showcase the DDSL effectiveness by

introducing three popular distance-related algorithms and their
corresponding DDSL representations.

K-means [42], [33], [34], [11], [52] clusters a set of points
into several groups in an iterative manner. At each iteration, it
first computes the distances between each point and all clusters
and assigns each point to its closest cluster. Then it updates
the cluster centroids based on the average position of their
inside points. The DDSL of K-means is shown as follow:
STPAcc_Iter(S){

S = false;
STPAcc_Comp_Dist(pSet, cSet, distMat,

D, "unwegL1", null);
STPAcc_Dist_Select(distMat, idPtr, idArr,

TopK, "small");
STPAcc_Update(cSet, pSet, idPtr, idArr, S);

}
where TopK is the Top-K value of interest (here, TopK=1 for

K-means); D is the size of dimension; psize is the number
of points and csize is the number of clusters; pSet is the
point-set; cSet is the cluster-set; disMat is the point-to-cluster
distance matrix; idPtr and idArr is the neighbor-IDs of each
point; S is the status of iteration.

KNN-join [5], [26], [64] finds the Top-K nearest neighbor
points for each point in the source set from the target set. It
first computes the distances between each source point and
all the target points. Then it ranks the K-smallest distances
for each source point and gets its closest Top-K target points.
The DDSL of KNN-join is shown as follow:
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TABLE I: Constructs Details.
Constructs Categories Details

DVar [varName] DType [Initial_Value];
DSet [setName] DType [size] [dim];

Data Construct
It leverages DVar to define a single variable, DSet to
define the dataset, and the DType to notate the type of
the defined variable or dataset.

STPAcc_Comp_Dist(Input p1,
Input p2,
Output disMat,
Dim dim,
Met mtr,
Weg wArr)

Distance-compute
Construct

It measures the exact distance between two different
data points. p1, p2: Input data matrix (n1 ⇥ d, n2 ⇥
d); disMat: Output distance matrix (n1 ⇥ n2); dim:
Dimensionality of data points (d); mtr: Distance metric
(weg | unweg)(L1 | L2); wArr: Weight array for weighted
distance (1⇥ d).

STPAcc_Dist_Select(Input distMat,
Output idPtr,
Output idArr,
Range ran,
Scope scp)

Distance-selection
Construct

It selects the distances and IDs of neighbors of interest
for each point. idPtr: ID pointers (1-D array of point-
ers for indexing neighbor-IDs of each point in IdArr);
idArr: ID array (1-D array with neighbor-IDs for each
point); ran: the number of neighbors of interest (e.g.,
K-means, KNN) or distance threshold (e.g., N-body
Simulation); scp: the Top-K smallest or largest values.

STPAcc_Update(Update upVar,
Input {p1, ..., pm},
Status S)

Data-update Construct
upVar: Input data/dataset to be updated; p1, ..., pm:
Additional information used in update; S: Status of
update operation.

STPAcc_Iter(maxIterNum|exitCond){
subConstruct sc_1;
subConstruct sc_2;
...
subConstruct sc_n;

}

Control Construct

It is used to describe the distance-related algorithms
that require to run multiple iterations. Iteration con-
struct requires users to provide either the maximum
number of iterations or other exit conditions.

STPAcc_Comp_Dist(pSet, cSet, distMat,
D, "unwegL1", null);

STPAcc_Dist_Select(distMat, idPtr, idArr, TopK,
"small");

where TopK is the Top-K value of interest.

N-body Simulation [49], [32] mimics the particle move-
ment within a certain range of 3D space. At each time step,
distances between each particle and its neighbors (within a
radius R) are first computed, and then the acceleration and
the new position of each particle will be updated based on
these distances. While N-body simulation is also iterative, it
has several differences compared with K-means algorithm: 1)
N-body simulation has the same dataset (particles) for source
and target set, whereas K-means operates on the different
source (point) and target (cluster) sets; 2) All points in the
N-body simulation would change their positions according to
the time variation, whereas in K-means only the target set
(cluster) would change their positions during the center update;
3) N-body simulation has the same size of source and target
set, whereas K-means target set (cluster) is much smaller than
source set (point) in general. We describe N-body simulation
in DDSL as follow:

STPAcc_Iter(S){
S = false;
STPAcc_Comp_Dist(pSet, pSet, distMat,

D, "unwegL1", null);
STPAcc_Dist_Select(distMat, idPtr, idArr,

range, null);
STPAcc_Update(pSet, pSet, idPtr, idArr, S);

}

where range defines the value of distance threshold for
selecting the neighbors.

IV. STRUCTURAL TI-BASED PRUNING

This section explains our novel algorithm optimizations,
structural TI-based pruning (STP), tailored for CPU-FPGA
platforms. Further, we introduce an algorithm optimization
flow to select the appropriate STP optimization for input
algorithms. We will first introduce the standard point-based TI
optimization and then illustrate our novel STP optimization.

A. Standard Point-based TI Optimization

As a simple but powerful mathematical concept, TI has
been used to optimize the distance-related algorithm. Figure 2a
gives an illustration. It states that d(A,B)  d(A,Lref ) +
d(Lref , B), where d(A,B) represents the distance between
the point A and B in some metrics (e.g., Euclidean distance).
The assistant point Lref is a landmark point for reference.
Directly from the definition, we could compute both the lower
bound lb(A,B) and upper bound ub(A,B) of the distance
between two points A and B. This is the standard and the
most common usage of TI for deriving bounds of distances
(a.k.a. the “One-landmark” bound computation).

In general, bounds can be used as a substitute for the exact
distances in the distance-related data analysis. Take N-body
simulation as an example. It requires to find target points
that are within R (the radius) from each given query point.
Suppose we get the lb(A,B) = 10 and 10 > R, then we
are 100% confident that source point A is not within R of
query point B. As a result, it is safe to eliminate the exact
distance computation between point A and B. Otherwise, the
exact distance computation will still be carried out for direct
comparison.
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B. Structural TI-based Pruning (STP)

STPAcc highlights the usage of STP by generalizing the
traditional point-to-point bound computation to two-landmark
and trace-based bound computation for various distance-
related algorithms. Further, STP breaks the major performance
hurdles of hardware acceleration of TI-optimized algorithms
by combining group-level bound with the above two-landmark
and trace-based scheme for structural pruning on redundant
distance computations. Note that our STP optimization can
still guarantee the same final results as the standard TI-
optimized versions.

Two-landmark Bound Two-landmark bound is the first
type of bound computation scheme that leverages a pair of
“landmark” points to approximate the distance between two
points. It aims at reducing the memory overhead of TI opti-
mization through effective distance reuse across both source
and target sets. As illustrated in Figure 2b, the distance bound
between a source point A and a target B can be computed
based on d(A,Aref ), d(B,Bref ) and d(Aref , Bref ) through
Equation 1, where Aref and Bref are the landmark points for
point A and B in the source and target sets, correspondingly.

lb(A,B) � d(Aref , Bref )� d(A,Aref )� d(B,Bref )

ub(A,B)  d(Aref , Bref ) + d(A,Aref ) + d(B,Bref )
(1)

One representative application scenario of two-landmark
bound computation is KNN-join, where two disjoint sets of
landmarks are selected for the source (query) and target sets.

Trace-based Bound Trace-based bound (Figure 2c) is sim-
ilar to traditional point-based TI bound (Figure 2a), but differs
in the selection of the reference point. It is specially crafted
for iterative distance-related problems, like K-means and N-
body, where the source/target point-set gets gradually updated
across iterations. In these problems, the “historical” position of
a point in the last iteration would generally be nice proximity
of its position in the current iteration, and thus could be a
nice reference point. The trace-based bound computation can
work collaboratively with the aforementioned two-landmark
cases for N-body simulation (as shown in Figure 2d). In N-
body simulation, the source and target points are essentially
the same dataset and would get updated across iterations. For
simplicity, we denote the source point across iterations with A,
A

0, and the source point with B, B0. Clearly, we can choose

the “old” position of each point from the last iteration (A and
B) as the landmark for the bound computation at the current
iteration (A0 and B

0), due to its closeness towards the current
point position. By further applying the two-landmark bound,
we could then compute the bounds of distances from A

0 and
B

0 in the current iteration.
Group-level Bound Group-level bound is the major driving

force for our STP optimization. Group-level bound approxi-
mates the distances among different groups of points. Based on
group-level bound, we can filter out distance computations for
a group of points, thus, improving the computation regularity
of the remaining distance computations. Note that group-level
bound computation does not work by itself, but rather be
combined with those point-level bound computations which
we have just introduced.

As exemplified by Figure 2e and 2f, we show how group-
level bound can be used accompanied by two-landmark bound
(Figure 2b) and trace-based bound (Figure 2c) for structural
pruning. Due to the space limit, we next give a detailed
explanation of Figure 2e and leave Figure 2f to the reader.
As shown in Figure 2e, we have two groups of points GA

and GB , within which Aref and Bref are the shared refer-
ence points (i.e., landmarks). Then based on d(Aref , Bref )
and the distance between the farthest point within each
group and its group reference point, maxA2GA d(A,Aref )
and maxB2GB d(B,Bref ), we can get the group-level bound
based on Equation 2.

lb(GA, GB) � d(Aref , Bref )� max
A2GA

d(A,Aref )� max
B2GB

d(B,Bref )

ub(GA, GB)  d(Aref , Bref ) + max
A2GA

d(A,Aref ) + max
B2GB

d(B,Bref )
(2)

With these group-level bounds, distance computation could
be filtered out at a relatively coarse granularity for structural
pruning and ensure the regularity of the remaining distance
computations to a larger extent. Take KNN-join as an example
(Figure 2e), suppose GA is a query group, while GB and
GC are two target groups. If we find that lb(GA, GB) >

ub(GA, GC) holds and there are already more then K points in
GC , then we could safely rule out all points in GB , as they can
never be in the Top-K nearest neighbors for any point in GA.
The actual filtering scheme is more complicated, but the high-
level spirit is the same. Since points inside the same source
group will always maintain the same groups of target points
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for distance computations after filtering, such a commonality
in computation would help facilitate efficient parallelization
and acceleration on the underlying hardware.

To build the initial groups, we run standard K-mean for a
few (in general 5) iterations. If the input data dost not have
an obvious group pattern, the distance-bounds would become
less effective for filtering, and more distance computations
would be kept in such case. Moreover, based on our study,
the cluster group center is shifted less drastically compared
with the individual cluster center. Even though it may change
across different iterations, it can still remain effective after
several iterations in the settings of K-means and NBody. For
KNN, group-level bound would remain effective since there
is only one iteration.

C. Algorithm Optimization Workflow
To cover various algorithms and datasets without losing

problem-specific optimization opportunities, STPAcc first de-
cides how various STP optimizations could be applied based
on the DDSL program source provided by users (as shown
in Figure 3). Note that some optimization parameters, e.g.,
the number of groups, would be decided later when more
accurate information about the dataset and underlying hard-
ware is known. The output of this optimization phase thus
is just a raw-optimized design (ROD), which would then
be handed over to the next phase of hardware optimization
(Section VI) Specifically, STPAcc first processes the DDSL
code and extracts the key meta-information for applying STP
optimizations. Three key information would include the num-
ber of the source points (#src), the number of the target points
(#trg), and the iteration property of the algorithm (identified
by the STPAcc_Iter construct). If the size of the target points
is larger than a given threshold, STPAcc framework will
choose to apply the grouping on the target points. Similarly,
STPAcc would also apply grouping on the source point if the
size of the source point is larger than a given threshold. The
threshold for the source and target points are selected based on
the profiling of the distance computation filtering performance
across different datasets.

STPAcc incorporates a two-phases strategy to apply STP
optimization on an input algorithm, as illustrated in Figure 3.
In the first phase, STPAcc decides whether to leverage group-
level bound and two-landmark bound optimization based
on the size of the source and target point-set. Specifically,
STPAcc provides four types of optimizations, including the
Group-level (GL) + Two-landmark (TL) bound (#trg >

trg_th, #src > src_th), Group-level (GL)(t) + One-
landmark (OL) bound (#trg > trg_th, #src < src_th),
Group-level (GL)(s) + One-landmark (OL) bound (#trg <

trg_th, #src > src_th), and One-landmark (OL) bound
(#trg < trg_th, #src < src_th). Note that Group-level
(GL)(t) means applying GL on target point-set, while Group-
level (GL)(s) for GL on source point-set. At the second phase,
STPAcc will combine Trace-based (TB) bound computation
if the users’ algorithm contains iteration, such that more
information (e.g., distance drifting) can be leveraged to remove
redundant distance computations. By using such a two-phase
strategy, STPAcc can match a diverse range of input algorithms
with more appropriate STP optimizations that can benefit their
overall design performance.

V. COARSE-GRAINED WORKLOAD PARTITIONING AND
MAPPING

STPAcc design is built on the CPU-FPGA architecture,
which highlights its significant performance and energy effi-
ciency, and has been widely adopted as the modern data center
solution for high-performance computing and acceleration. To
support the algorithm-level STP optimization on the CPU-
FPGA architecture, STPAcc leverages a coarse-grained work-
load partitioning and mapping (WPM) strategy to manage two
major types of workloads, where the first type (Type I) is com-
posed of control-intensive tasks, including the distance-bound
computation, distance filtering operations and data regrouping.
And the second type (Type II) consists of compute-intensive
workloads for the initial point clustering and the remaining
distance computations.

The operations in Type I workload are complex in their
execution flow (irregular, with much data dependency). There-
fore, we allocate them to the CPU for sequential execution.
The operations in Type II workload, on the other hand, consist
of distance computations with simple execution flow (regular,
with little data dependency). Thus, we assign them to the
FPGA for acceleration due to their potential for more fine-
grained data-level parallelization and computation pipelining.

Depending on the input data and the underlying hardware
properties, the ratio of Type I and Type II workload can be
adjusted to meet the performance requirements and hardware
constraints. STPAcc introduces one major parameter – the
number of groups, to control such ratio, as shown in Figure 4.
In short, with more cluster groups, STP optimization would
remove more distance computations due to its more fine-
grained filtering, thus, leading to more Type I workload at CPU
side and fewer Type II workloads (distance computations)
executed on the FPGA. Conversely, with a fewer number
of cluster groups, STP optimization would spot and remove
fewer redundant distance computations because of lacking
sufficient bounds for fine-grained filtering, therefore, leading
to fewer filtering computations (Type I workload) on the
CPU side, but more remaining distance computations (Type
II workload) on the FPGA. To determine the optimal value
of the number of groups, we leverage a light-weighted ML
model (Regressor) to select the appropriate number of groups
given the input dataset size and dimensionality, hardware
compute and memory resource, and the estimated filtering
performance. Note that we estimate filtering performance of
a given group number through down-sampling based profiling
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Type-I
(CPU)

Type-II
(FPGA)

#groups

d_size
d_dim

Filt.Eff.

hw_comp

hw_mem

ML Model

downsample 
profiling

Fig. 4: Workload partitioning and mapping based on the
number of groups.

on the incoming datasets by running K-means on sampled
small datasets for few iterations.

One more thing to note is that the operations such as the
distance bounds computations and triangle-inequality-based
filtering, which are irregular (lots of condition checking and
execution dependency) are suitable for CPUs. Compared with
CPU-based computation, the data transfer overhead is largely
minor. Based on our profiling, Based on the profiling of our
evaluated datasets, the FPGA side workload (after the filtering)
would take an 83% running time on average, which dominates
the overall execution time. Therefore, putting those distance
computation workloads on FPGAs, we can still benefit from
the high pipeline and parallel execution compared with CPUs
with limited parallelization capability.

VI. FINE-GRAINED HARDWARE OPTIMIZATIONS

While FPGA accelerator features with high computation
capability, the memory bandwidth bottleneck constraints the
overall design performance. Therefore, optimizing data place-
ment and memory architecture is the key to improving memory
performance. In addition, the OpenCL-based programming
model adds a layer of architectural complexity of the kernel
design and management, which is also critical to the design
performance. STPAcc framework distinguishes itself by using
the novel memory and kernel optimization strategies that
are tailored for STP-optimized distance-related algorithms to
benefit CPU-FPGA designs.

A. Memory Optimization
After applying the STP optimization to remove the redun-

dant distance computation, each source point group will have
different target groups as candidates for distance computation,
as shown in Figure 5a, where Source-grp is the ID of the
source group, and Target-grp is ID of the target group.
However, this would raise two performance concerns.

Inter-group memory irregularity It would lead to low data
reuse (Figure 5a). For example, the target group information
(t1, t4, t6) required by source group s1 can not be reused
by s2. Since s2 requires quite different target groups (t8,
t10, and t12) for distance computation, thus, additional costly
memory access has to be carried out. To tackle this problem,
STPAcc places the source groups to the continuous memory

Source-grp Target-grp
s1 t1, t4, t6
s2 t8, t10, t12
... ...
s5 t2, t4, t6
s6 t8, t10, t12

(a)

Source-grp Target-grp
s1 t2, t4, t6
s5 t2, t4, t6
s2 t8, t10, t12
s6 t8, t10, t12
... ...

(b)
Fig. 5: (a) Non-optimized inter-group memory access; (b)
Optimized inter-group memory access.

space to maximize the memory access efficiency, only if these
source groups have the same set of target groups as candidates
for distance computation. An example has been shown in
Figure 5b, where the source group s2 and s6 are placed side
by side in the memory since they have the same list of target
groups (t8, t10, and t12), which can take advantage of the
memory temporal locality without additional memory access.

5
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Fig. 6: Point-group clustering.

To fast organize the source groups, we adopt a locality-
sensitive hashing clustering strategy that operates on the source
groups. as described in Figure 6, we treat the target groups of
each source group as an “attribute” of the source group, which
is essentially a group id-list. We apply Locality-Sensitive
Hashing, which has been widely applied in grouping similar
items [6], [7], [13], to cluster the source groups based on
their list of target groups, where the source group with similar
target group lists will be more likely put to the same hash bin
(cluster). Such a hash-based solution is lightweight with O(m)
time complexity, where m is the number of source groups.

Intra-group memory irregularity It is caused by points
grouping in STP optimization and would result in inefficient
memory access. For example, points from group 1, 2, and 3
have taken up the memory space at intervals, as shown in
Figure 7a. However, a group of points are usually accessed
simultaneously due to STP optimization. This would cause fre-
quent inefficient memory access for fetching individual points
distributed at the discontinuous memory address, as shown
in Figure 7b. To solve this issue, STPAcc offers a second
memory optimization — intra-group node reordering, to re-
organize the target/source points inside the same target/source
group into continuous memory space within the same memory
bank, as illustrated in Figure 7c. This strategy can largely
benefit memory coalescing and external memory bandwidth
while minimizing the access contention, since points inside
the same bank can be accessed efficiently and points inside
different banks can be accessed in parallel.
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Fig. 7: (a) Group-point mapping; (b) Non-aligned intra-group
memory; (c) Aligned intra-group memory.

B. OpenCL Kernel Design

To process the remaining distance computation on the
FPGA, STPAcc customizes OpenCL kernel design in support
of STP optimization. Specifically, for each of those distance
algorithms, our first step is to do structural pruning for re-
ducing the unnecessary computations on CPU host, where we
can apply the aforementioned distance-bound based filtering
depending on the distance application settings. Once we finish
this step, the remaining distance computations that have not
been filtered out will be put to FPGAs for computations. To
make these computations more suitable for massive parallel
FPGA computation, we leverage the memory optimization
discussed in the previous subsection to make the remaining
computation more regularized. This step also carried on CPU
host. Then, those regularized computations workload along
with their involved data (e.g., points, clusters, point/cluster
groups) will be handed over to FPGA for acceleration. To
running the OpenCL-based FPGA kernel, we will first copy
the data from host main memory to FPGA device memory
(get the device memory address pointers) and then call the
OpenCL kernel on CPU host for processing the remaining
distance computations on FPGAs.

The detailed design of our OpenCL-based FPGA kernel
is shown in Figure 8, which consists of a set of parallel
workload queues and parallel kernels. Specifically, parallel
workload queues is the place to hold the distance computation
between source and target groups, while the parallel kernels
would fetch the workload from their corresponding queue and
load it to global memory, then do GEMM-based point-to-
point computation by leverage compute units of the FPGA.
We evenly distribute workload based on the number of parallel
workload queues and the total number workloads considering
that 1) each kernel is short in its execution time and 2) the
number of parallel queues is much smaller than the total
number of workloads. Even though more complicated schedule
strategies exist, such as work stealing that can put all active
kernels fully in use, it will inevitably lead to the additional
time and computation cost that would hurt performance.

VII. EVALUATION

To show the performance and energy efficiency advantage
of the proposed STPAcc framework, we conduct experiments
over various benchmarks, datasets, and hardware platforms.

Global Mem.

Local Mem.

Compute
Units

Trg-Grp

Src-Grp

...

...

Global Mem.

Local Mem.

Compute
Units

Trg-Grp

Src-Grp

...

...

Global Mem.

Local Mem.

Compute
Units

Trg-Grp

Src-Grp

...

...

Parallel Workload 
Queue

Parallel Kernels

Fig. 8: OpenCL kernel design.

TABLE II: CPU-based and STPAcc Implementation.

Name Techniques Description
Sequential
(Baseline)

Standard Algorithm
without any

optimization (CPU).

Naive for-loop based
implementation on
CPU.

TI-opt Point-based
TI-Optimized

Algorithms (CPU).

TI-optimized
distance-related
algorithm [22], [61],
[18] running on CPU.

CBLAS CBLAS library
Accelerated

Algorithms (CPU).

Standard
distance-related
algorithm with
CBLAS [60]
acceleration.

STPAcc Algorithmic-hardware
co-design

(CPU-FPGA).

STP optimization and
FPGA acceleration of
distance
computations.

A. Experiment Setup

Benchmarks We choose three representative benchmarks
(K-means, KNN-join, and N-body Simulation) and cover
popular datasets from machine learning and algorithm opti-
mization domains. The major reason of selecting these three
algorithms is to cover the major types of computation patterns
that are widely existed in different distance-related algorithms.
Specifically, K-means can show the benefits of STPAcc hier-
archy (One-landmark + Trace-based + Group-level) bound
computation optimization on the iterative algorithms with
disjoint source and target set. KNN-join would demonstrate
the effectiveness of STPAcc hybrid (Two-landmark + Group-
level) bound computation optimization on the non-iterative
algorithms. N-body Simulation would show the strength of
STPAcc hybrid bound computation (Two-landmark + Trace-
based + Group-level) on iterative algorithms with the same
source and target set.

Datasets In the evaluation, we use six datasets for each
algorithm. The selected datasets can cover a wide spectrum
of mainstream datasets, including datasets from UCI Machine
Learning Repository [21], and datasets that have been used by
previous papers [18], [19], [9] in the related domains. Details
of these datasets are listed in Table III. Note that the KNN-
join algorithm will find the Top-1,000 closest neighbors of
each query point.

Baselines We build implementations for CPU, FPGA, and
GPU platforms for evaluation and comparison. CPU-based
implementations. We include three CPU-based implemen-
tations for all benchmarks to give a comprehensive demon-
stration of the benefits of our STPAcc (summarized in the



9

TABLE III: Datasets for evaluation.(#G is the number of groups determined by our ML model.)
K-means KNN-join N-body Simulation

Dataset Size Dim. #Cluster #G Dataset Dim. #Source #G Dataset #Particle #G
Poker Hand 25,010 11 158 13 Harddrive1 64 68,411 785 P-1 16,384 384
Smartwatch Sens 58,371 12 242 16 Kegg Net Directed 24 53,413 687 P-2 32,768 543
Healthy Older People 75,128 9 274 17 3D Spatial Network 3 434,874 1,978 P-3 59,049 729
KDD Cup 2004 285,409 74 534 23 KDD Cup 1998 56 95,413 927 P-4 78,125 839
Kegg Net Undirected 65,554 28 256 16 Skin NonSkin 4 245,057 1,485 P-5 177,147 1,263
Ipums 70,187 60 265 15 Protein 11 26,611 489 P-6 262,144 1,536
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Fig. 9: Performance comparison (TI-opt, CBLAS, STPAcc): (a) K-means (b) KNN-Join (c) N-body Simulation.
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Fig. 10: Energy efficiency comparison (TI-opt, CBLAS, STPAcc): (a) K-means. (b) KNN-Join. (c) N-body Simulation.

first three rows in Table II): 1) the naive for-loop sequential
code without any optimization (also used to normalize the
speedup and energy-efficiency of other implementations), 2)
previous TI-based implementations [22], [61], [18], 3) the
CBLAS-based [60] implementations. FPGA-based Imple-
mentations. It is challenging to give a fair comparison with
other FPGA-based implementations since existing FPGA de-
signs are mostly NOT open-sourced and are ONLY customized
for a specific algorithm/input/hardware. We instead use K-
means as a showcase to provide some deeper understanding
of our algorithm-hardware co-design advantages. GPU-based
Implementations. Different from FPGA-based implementa-
tions, which aim at better Pareto-optimal solutions in terms of
both performance and energy efficiency, GPUs mostly offer
better performance at a cost of much higher energy consump-
tion. To further demonstrate the benefits of using CPU-FPGA
platforms, we compare our STPAcc with a manually-optimized
implementation of the standard KNN-join algorithm on the
GPU. Note that the naive for-loop baseline is used to normalize
the speedup and analyze performance benefits. Other CPU-
based (TI-opt and CBLAS) and GPU-based implementations
are the optimized multi-threaded implementations based on
floating-point computation that can represent the state-of-the-
art performance of these algorithms on CPUs and GPUs.

Platforms We use Intel Stratix 10 GX DE10-Pro [3] as
the FPGA accelerator (running at 310MHz) and run the
host side software program on Intel Xeon Silver 4110 pro-
cessor [2] (8-core 16-thread, 2.1GHz base clock frequency,
85W TDP). DE10-Pro FPGA has 378,000 Logic elements
(LEs), 128,160 adaptive logic modules (ALM), 512,640 ALM
registers, 648 DSPs, and 1,537 M20K memory blocks. We im-

plement STPAcc designs on DE10-Pro by using Intel Quartus
Prime Software Suite [1] with Intel FPGA OpenCL SDK in-
cluded. For GPU-comparison, we use NVIDIA Quadro P6000
GPU [48] (3840 CUDA cores, Memory: 24GB GDDR5X,
Peak Memory Bandwidth: 432GB/s, Peak Single Precision
Performance: 12 TFLOPs). Note that for GPU and FPGA
designs, we use PCIe 3.0 x16 for data transferring between
the host CPU and GPU/FPGA.

B. Results

In this section, we compare STPAcc with CPU-based imple-
mentations. We first demonstrate the advantage of STPAcc in
terms of performance and energy efficiency. Then we conduct
a detailed performance benefits breakdown on K-means to
demonstrate the effectiveness of our STP algorithmic opti-
mization and hardware design on the CPU-FPGA platform.

Performance As shown in Figure 9, STPAcc, TI-opt,
and CBLAS achieve 31.42⇥, 9.12⇥, and 9.19⇥ speedup
on average compared to the naive for-loop CPU baselines,
respectively. STPAcc outperforms all three CPU-based imple-
mentations across all benchmarks and datasets of various sizes
and dimensions, especially on those inputs of large sizes and
high dimensionality. For example, on datasets KDD Cup 2004
(n = 285, 409, d = 74) and Ipums (n = 70, 187, d = 60) for
K-means, STPAcc achieves 51.61⇥ and 66.61⇥ speedup over
our baseline, and also significantly higher than both TI-opt
and CBLAS implementations. A similar observation can also
be concluded from KNN-join, such as 88.95⇥ speedup on
dataset KDD Cup 1998 (n = 95, 413, d = 56). The reason
for such performance improvement is that our STPAcc design
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TABLE IV: Comparison with the state-of-the-art.
Dimension [40] (ms) STPAcc (ms) Speedup

54 58.68 21.60 2.72⇥
78 45.36 23.20 1.96⇥

128 158.12 24.09 6.56⇥

can effectively reconcile the benefits from both the STP
optimization and the FPGA acceleration, where the former
provides the opportunity to reduce the distance computation
at the algorithm level (benefiting more on large datasets), and
the latter boosts the performance from hardware acceleration
perspective (more suitable for high-dimensional cases).

Energy efficiency The energy efficiency of STPAcc design
is also significant. Figure 10 shows the energy efficiency
of STPAcc, TI-opt, and CBLAS normalized to the baseline.
STPAcc designs deliver an average 116.85⇥ better energy
efficiency compared with the baseline, which is significantly
higher than TI-opt and CBLAS implementations. There are
two reasons behind these results: 1) much lower power con-
sumption. STPAcc CPU-FPGA design only consumes 5 Watt
to 17.12 Watt across all algorithm and dataset settings, whereas
Intel Xeon CPU consumes at least 20.9 Watt and 42.49
Watt on TI-opt and CBLAS implementations, respectively; 2)
considerable performance. STPAcc design achieves a much
better speedup (more than 3⇥ on average) compared with the
TI-opt and CBLAS, which contributes to the overall design
energy-efficiency. Among these implementations, CBLAS im-
plementation has the lowest energy efficiency, since it relies
on multi-core parallel processing capability of the CPU, which
improves the performance at the cost of much higher power
consumption (average 65.79 Watt). TI-opt only leverages the
single-core processing capability of the CPU and achieves
moderate performance with effective distance computation
reduction, which results in less power consumption (average
25.59 Watt) and higher energy efficiency (average 9.12⇥)
compared with the baseline. Different from the TI-opt and
CBLAS implementations, STPAcc design is built upon a low-
power platform with considerable performance, which shows
a far better energy-performance trade-off.

Compared with the state-of-the-art we also compare our
STPAcc design with the state-of-the-art OpenCL-based CPU-
FPGA design from [40] on KNN algorithm. [40] evaluates its
designs on the dataset with 20,480 samples, 20 clusters with
three different dimension sizes 64, 78, 128. And [40] uses
the same compilation tool and platforms as ours: 1) Intel
OpenCL SDK for FPGA; 2) Intel Stratix series accelerator
card. As shown in Table IV, different dimension settings, our
STPAcc can consistently offer performance speedup with an
average of 3.75⇥. The major reason behind this is that [40]
only incorporate a Bitonic sort to improve the neighbor dis-
tance ordering process, which is largely minor compared with
the high-overhead distance computation process. In contrast,
our STPAcc not only includes the TI-based distance filtering
algorithmic innovation to reduce the unnecessary high-cost
distance computations but also tailors FPGA hardware level
design to exploit such benefits effectively.

Performance-benefits Analysis on K-means To show the
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Fig. 11: Detailed performance comparison on K-means.

performance-gain breakdown of STPAcc, we built four dif-
ferent implementations for K-means: 1) TI-opt K-means on
the CPU; 2) TI-opt K-means on the CPU-FPGA platform; 3)
STPAcc K-means on the CPU; 4) STPAcc K-means on the
CPU-FPGA platform. Note that TI-opt K-means is designed
for sequential-based CPUs and there is no publicly available
TI-opt implementation on CPU-FPGA platforms. For a fair
comparison, we implement TI-opt K-means on the CPU-FPGA
platform with memory optimizations (inter-group and intra-
group memory optimization) and distance computation kernel
optimization (Vector-Matrix multiplication). We normalize the
speedup performance of each implementation w.r.t. the naive
for-loop K-means on CPU. Note that for CPU-based STPAcc,
we just process the workload of the remaining distance com-
putations (after the distance filtering) on the CPU instead of
offloading to FPGAs. Given the same workload, the WPM
framework would generate the same ratio between Type-I and
Type II workload for both CPU-based STPAcc and FPGA-
based STPAcc. Since our STPAcc design is mainly optimized
for FPGA-based implementations, where CPU-based design
is chosen as our baseline for comparison. As shown in
Figure 11, TI-opt K-means (CPU) achieves an average 3.77⇥
speedup, whereas TI-opt K-means (CPU-FPGA) only achieves
an average 2.63⇥ speedup. Although we manage to add
possible optimizations in TI-opt (CPU-FPGA), applying fine-
grained TI optimization would still cause a large divergence
of computation among points, leading to low data reuse
and inefficient memory access. We also notice that the STP
optimization succeeds to achieve good computation/memory
access regularity for better hardware acceleration while main-
taining similar power of computation elimination compared
with the standard TI optimization. Note that STPAcc (CPU)
could lead to lower speedup (average 2.69⇥) compared with
the TI-opt (CPU) (average 3.77⇥), since STPAcc leverages
coarse-grained STP optimization that spots fewer number of
unnecessary distance computations, which is the major source
of performance improvements on the CPU. However, when
combining STPAcc design with the CPU-FPGA platform,
the benefits of STPAcc STP optimization become prominent
(average 37.37⇥), since it can maintain computation regularity
while reducing memory overhead to facilitate the hardware
acceleration on the FPGA. Whereas, TI-opt (CPU-FPGA)
strikes to maximize the algorithm-level benefits while ignoring
hardware-level properties, leading to poor performance.

STPAcc vs. GPU We also compare STPAcc with GPU-
based implementations on all three algorithms (K-means,
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Fig. 12: Speedup and energy-efficiency vs. GPU.

KNN-join, and N-body) and observe a similar pattern in the
results. Note that GPU-based implementation is sharing the
same OpenCL code as our FPGA implementation. As shown
in Figure 12, we observe STPAcc achieves consistently better
energy efficiency performance (5.42⇥ ⇠ 17.81⇥, with average
8.51⇥) compared with GPU across all datasets on three algo-
rithms. Although GPU is faster in its speedup performance due
to its massive number of CUDA cores that can easily launch
more threads for parallelization, it also comes with a huge
cost of power consumption (average 85.72 Watt) compared
with STPAcc (7.14 Watt). This comparison also highlights
the potential of STPAcc for energy saving and application in
power-constraints settings.

VIII. CONCLUSION

In this paper, we present our STPAcc framework to ac-
celerate the distance-related algorithms on the CPU-FPGA
platform. Specifically, STPAcc leverages a simple but ex-
pressive language construct (DDSL) to unify the distance-
related algorithms, and a comprehensive optimizing strategy to
improve the design performance from algorithmic and hard-
ware perspective systematically and automatically. Rigorous
experiments on three popular algorithms (K-means, KNN-join,
and N-body simulation) demonstrate the STPAcc as a powerful
and comprehensive framework for hardware acceleration of
distance-related algorithms on modern CPU-FPGA platforms.
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