Faith: An Efficient Framework for Transformer Verification on GPUs

Boyuan Feng, Tianqi Tang, Yuke Wang, Zhaodong Chen, Zheng Wang, Shu Yang, Yuan Xie, Yufei Ding
Motivation: Transformer Applications

- Sentiment Analysis

I am **Happy**

I am **Unhappy**
Motivation: Security Concerns

- Synonym Substitution Attack

Ice is **Frosty**

Ice is **Cold**

Ice is **Frigid**
Motivation: Transformer Verification

Performance challenge:
• Second-level latency of transformer verification
• v.s. Millisecond-level latency of standard transformers

Need efficiency!
Challenges: Unique Computation Patterns

Irregular & 50% sparsity

• Heavy redundancy with dense computation
• Too dense for sparse computation (e.g., cuSPARSE)
Computation Patterns

Word Embeddings of Synonyms

Input linear bound

Output linear bound
Given a linear layer:
\[y = 2 \times x_1 - x_2 \]

Transformer Inference:
\[x_1 = 3, x_2 = 1 \quad \rightarrow \quad y = 2 \times x_1 - x_2 = 5 \]

Transformer Verification:
\[1 \leq x_1 \leq 4 \quad \rightarrow \quad 2 \leq 2 \times x_1 \leq 8 \]
\[-2 \leq x_2 \leq 4 \quad \rightarrow \quad -4 \leq -x_2 \leq 2 \]
\[-2 \leq y \leq 10 \]

High Irregularity!
Challenges

• **Lack of support for unique computing patterns**
 • Existing DL frameworks are designed for standard NN.
 • Verification shows different computing pattern.

• **Lack of framework support for verifying diverse NN layers.**
 • Transformer verification shows large diversity in the bound computation.

• **Lack of verification-specialized adaptability towards modern GPUs.**
 • Transformer verification involves memory-intensive operations.
 • Existing DL frameworks only focus on computation-intensive operations.
Overview

- **Faith Framework**
 - Semantic-aware Computation Graph Transformation (§3)
 - Semantic-aware Kernel Fusion
 - Bound-aware Cross-layer Fusion

- **Verification-specialized Kernel Crafter (§4)**
 - Verification Compute Pattern Categorization
 - Workload-adaptive Reduction
 - Sharing-oriented Workload Scheduling
 - Broadcast-aware Super Threading

- **Expert-guided Autotuning (§5)**
 - Rule-based Expert Knowledge Metafile
 - Expert-guided Cost Model

- **Parameterized Kernel Configuration**
- **GPU Hardware Specification**
Sematic-aware Computation
Graph Transformation
Memory Access pattern of transformer verification

Intensive global memory access
Sematic-aware Computation Graph Transformation
Sematic-aware Computation Graph Transformation
Sematic-aware Computation Graph Transformation
Verification-Specialized Kernel Crafter
Diversity across Verification Designs

• Adaptive to Input Bounds & Operators

ReLU
Diversity across Verification Designs

- Adaptive to Input Bounds & Operators

ReLU

Tanh

Hard to Optimize Individual Operators due to Diversity!
Verification Pattern Categorization

Key Insight: Optimize Computation Patterns instead of concrete Operator Verification Designs

Generalized Vector Reduction

\[y_i = \text{reduction}(\vec{x}_i) = \sum_{j=1}^{n} f(x_{i,j}), \quad i \in \{1, 2, \ldots, m\} \]

Generalized Elementwise Multiplication

\[y_{i,j} = f(l_{i,j}, u_{i,j}) \times x_{i,j}, \quad i \in \{1, 2, \ldots, m\}, j \in \{1, 2, \ldots, n\} \]

Generalized Scalar-Vector Multiplication

\[\vec{y}_i = f(s_i) \times \vec{x}_i = [f(s_i) \times x_{i,1}, f(s_i) \times x_{i,2}, \ldots, f(s_i) \times x_{i,n}], \]
Verification Pattern Categorization

Key Insight:
Optimize **Computation Patterns** instead of concrete **Operator Verification Deigns**

Generalized Elementwise Multiplication

\[y_{i,j} = f(l_{i,j}, u_{i,j}) \times x_{i,j}, \quad i \in \{1, 2, \ldots, m\}, j \in \{1, 2, \ldots, n\} \]

ReLU

- \[y = k \times x + b \]
- \[y = 0 \]
- Input \(x \)
- Output \(y \)

Tanh

- \[y = k_2 \times x + b_2 \]
- \[y = k_1 \times x + b_1 \]
- Input \(x \)
- Output \(y \)
Workload Adaptive Reduction

Generalized Vector Reduction

\[y_i = \text{reduction}(\bar{x}_i) = \sum_{j=1}^{n} f(x_{i,j}), \quad i \in \{1, 2, \ldots, m\} \]

- Widely exists when verifying various operators
- Naïve approach: Sequential Mode

Sequential Mode
- 1 thread for 32 values
- 32 iterations
- Low parallelism
Workload Adaptive Reduction

Generalized Vector Reduction

Sequential Mode
- 1 thread for 32 values
- 32 iterations
- Low parallelism

Parallel Mode
- Exploit GPU hardware properties
- 32 threads for 32 values via _shfl_down_sync
- 5 iterations
- High parallelism

\[y_i = reduction(\bar{x}_i) = \sum_{j=1}^{n} f(x_{i,j}), \quad i \in \{1, 2, \ldots , m\} \]
Sharing-oriented Workload Scheduling

Problem:
Heavy memory overhead during verification

Key idea:
Exploit GPU memory hierarchies (i.e., register, shared memory, and global memory) to effectively reduce memory access.
Sharing-oriented Workload Scheduling
Expert-guided Autotuning Optimization
Expert-guided Autotuning Optimization

Goal:
Effectively incorporate hardware knowledge to find optimal operator implementations

Idea:
• Generate a metafile for each hardware on its properties
• Incorporate this metafile to a cost model for tuning verification operators
Expert-guided Autotuning Optimization

Rule-based Expert Knowledge Metafile

- **Hard rule** for hardware limitation (e.g., maximal shared memory size, maximal #register per thread)
- **Soft rule** for trade-off related to hardware properties (e.g., #SM, #threads per SM)

Expert-guided Cost Model

- **Phase-1**: Estimate shared memory and register usage & skip candidates that violates hard rules.
- **Phase-2**:
 - Train a cost model
 - Consume both soft rules for hardware properties and tuning knobs (e.g., tiling sizes)
 - Predict best candidates
Evaluation
Evaluation: End-to-End Benefits

We achieve around 2.5x speedup over Pytorch
Evaluation: Per-layer Benefits

- Matrix Multiplication
Questions?

The project is open-sourced at:
https://github.com/BoyuanFeng/Faith