Faith: An Efficient Framework for Transformer Verification on GPUs

Boyuan Feng, Tianqi Tang, Yuke Wang, Zhaodong Chen, Zheng Wang, Shu Yang, Yuan Xie, Yufei Ding

Motivation: Transformer Applications

Sentiment Analysis

Motivation: Security Concerns

Synonym Substitution Attack

Motivation: Transformer Verification

Performance challenge:

- Second-level latency of transformer verification
- v.s. Millisecond-level latency of standard transformers

Need efficiency!

Challenges: Unique Computation Patterns

Irregular & 50% sparsity

- Heavy redundancy with dense computation
- Too dense for sparse computation (e.g., cuSPARSE)

Computation Patterns

of Synonyms

Computation Patterns

Given a linear layer: $y = 2 * x_1 - x_2$

$$y = 2 * x_1 - x_2$$

Transformer Inference:

$$x_1 = 3$$
, $x_2 = 1$

$$y = 2 * x_1 - x_2 = 5$$

Transformer Verification:

$$1 \le x_1 \le 4$$

$$-2 \le x_2 \le 4$$

$$2 \le 2 * x_1 \le 8
-4 \le -x_2 \le 2
-2 \le y \le 10$$

High Irregularity!

Challenges

- Lack of support for unique computing patterns
 - Existing DL frameworks are designed for standard NN.
 - Verification shows different computing pattern.
- Lack of framework support for verifying diverse NN layers.
 - Transformer verification shows large diversity in the bound computation.
- Lack of verification-specialized adaptability towards modern GPUs.
 - Transformer verification involves memory-intensive operations.
 - Existing DL frameworks only focus on computation-intensive operations.

Overview

Intensive global memory access

Memory Access pattern of transformer verification

Verification-Specialized Kernel Crafter

Diversity across Verification Designs

Adaptive to Input Bounds & Operators

Diversity across Verification Designs

Adaptive to Input Bounds & Operators

Hard to Optimize Individual Operators due to Diversity!

Verification Pattern Categorization

Key Insight:

Optimize **Computation Patterns** instead of concrete **Operator Verification Deigns**

Generalized Vector Reduction

$$y_i = reduction(\vec{x}_i) = \sum_{j=1}^n f(x_{i,j}), i \in \{1, 2, \dots, m\}$$

Generalized Elementwise Multiplication

$$y_{i,j} = f(l_{i,j}, u_{i,j}) * x_{i,j}, i \in \{1, 2, \dots m\}, j \in \{1, 2, \dots, n\}$$

Generalized Scalar-Vector Multiplication

$$\vec{y}_i = f(s_i) * \vec{x}_i = [f(s_i) * x_{i,1}, f(s_i) * x_{i,2}, \cdots, f(s_i) * x_{i,n}],$$

Verification Pattern Categorization

Key Insight:

Optimize **Computation Patterns** instead of concrete **Operator Verification Deigns**

Generalized Elementwise Multiplication

$$y_{i,j} = f(l_{i,j}, u_{i,j}) * x_{i,j}, i \in \{1, 2, \dots m\}, j \in \{1, 2, \dots, n\}$$

Workload Adaptive Reduction

Generalized Vector Reduction

$$y_i = reduction(\vec{x}_i) = \sum_{j=1}^n f(x_{i,j}), i \in \{1, 2, \dots, m\}$$

- Widely exists when verifying various operators
- Naïve approach: Sequential Mode

Sequential Mode

- 1 thread for 32 values
- 32 iterations
- Low parallelism

Workload Adaptive Reduction

Generalized Vector Reduction

$$y_i = reduction(\vec{x}_i) = \sum_{j=1}^n f(x_{i,j}), i \in \{1, 2, \dots, m\}$$

Sequential Mode

- 1 thread for 32 values
- 32 iterations
- Low parallelism

Parallel Mode

- Exploit GPU hardware properties
- 32 threads for 32 values via _shfl_down_sync
- 5 iterations
- High parallelism

Sharing-oriented Workload Scheduling

Problem:

Heavy memory overhead during verification

Key idea:

Exploit GPU memory hierarchies (i.e., register, shared memory, and global memory) to effectively reduce memory access.

Sharing-oriented Workload Scheduling

Expert-guided Autotuning Optimization

Expert-guided Autotuning Optimization

Goal:

Effectively incorporate hardware knowledge to find optimal operator implementations

Idea:

- Generate a metafile for each hardware on its properties
- Incorporate this metafile to a cost model for tuning verification operators

Expert-guided Autotuning Optimization

Rule-based Expert Knowledge Metafile

- Hard rule for hardware limitation (e.g., maximal shared memory size, maximal #register per thread)
- <u>Soft rule</u> for trade-off related to hardware properties (e.g., #SM, #threads per SM)

Expert-guided Cost Model

- **Phase-1**: Estimate shared memory and register usage & skip candidates that violates <u>hard rules</u>.
- Phase-2:
 - Train a cost model
 - Consume both <u>soft rules</u> for hardware properties and tuning knobs (e.g., tiling sizes)
 - Predict best candidates

Evaluation

Evaluation: End-to-End Benefits

We achieve around 2.5x speedup over Pytorch

Evaluation: Per-layer Benefits

Matrix Multiplication

Questions?

The project is open-sourced at:

https://github.com/BoyuanFeng/Faith

