
ZENO: A Type-based Optimization Framework for
Zero Knowledge Neural Network Inference

Boyuan Feng, Zheng Wang, Yuke Wang, Shu Yang, Yufei Ding

{boyuan,zheng_wang,yuke_wang,shuyang1995,yufeiding}@ucsb.edu
University of California, Santa Barbara

USA

Abstract
Zero knowledge Neural Networks draw increasing atten-

tion for guaranteeing computation integrity and privacy of

neural networks (NNs) based on zero-knowledge Succinct

Non-interactive ARgument of Knowledge (zkSNARK) secu-

rity scheme. However, the performance of zkSNARK NNs

is far from optimal due to the million-scale circuit computa-

tion with heavy scalar-level dependency. In this paper, we

propose a type-based optimizing framework for efficient

zero-knowledge NN inference, namely ZENO (ZEro knowl-

edge Neural network Optimizer). We first introduce ZENO

language construct to maintain high-level semantics and

the type information (e.g., privacy and tensor) for allowing

more aggressive optimizations. We then propose privacy-

type driven and tensor-type driven optimizations to further

optimize the generated zkSNARK circuit. Finally, we design

a set of NN-centric system optimizations to further acceler-

ate zkSNARK NNs. Experimental results show that ZENO

achieves up to 8.5× end-to-end speedup than state-of-the-art

zkSNARK NNs. We reduce proof time for VGG16 from 6 min-

utes to 48 seconds, which makes zkSNARK NNs practical.

Keywords: ZKP, Neural Networks, Privacy

ACM Reference Format:
Boyuan Feng, ZhengWang, YukeWang, Shu Yang, Yufei Ding. 2024.

ZENO: A Type-based Optimization Framework for Zero Knowledge

Neural Network Inference. In Proceedings of the ACM International
Conference on Architectural Support for Programming Languages
and Operating Systems (ASPLOS’24). ACM, New York, NY, USA,

15 pages. https://doi.org/XXXXXXX.XXXXXXX

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies are not

made or distributed for profit or commercial advantage and that copies bear

this notice and the full citation on the first page. Copyrights for components

of this work owned by others than ACMmust be honored. Abstracting with

credit is permitted. To copy otherwise, or republish, to post on servers or to

redistribute to lists, requires prior specific permission and/or a fee. Request

permissions from permissions@acm.org.

ASPLOS’24, April 27–May 01, 2024, San Diego, CA, USA
© 2024 Association for Computing Machinery.

ACM ISBN 978-x-xxxx-xxxx-x/YY/MM. . . $15.00

https://doi.org/XXXXXXX.XXXXXXX

1 Introduction
Zero Knowledge Neural Networks [24, 25, 28, 44, 46] draw

increasing attention to solving privacy issues of neural net-

works. Leveraging zero-knowledge Succinct Non-interactive

ARgument of Knowledge (zkSNARK) security scheme [2, 7–

9, 13, 14, 48, 52, 56], zkSNARK NNs protect the privacy of

user data and model weights. When protecting data privacy,

zkSNARK NNs allow users to prove their identity without

uploading face images to remote servers. When protecting

model privacy, zkSNARK NNs allow companies to prove the

model accuracy without releasing weights which are usually

treated as important intellectual properties.

zkSNARK is a security scheme where, given an arithmetic

function 𝐹 (®𝑖𝑛) and an output 𝑦, the prover proves the exis-

tence of input ®𝑖𝑛 such that 𝐹 (®𝑖𝑛) = 𝑦 while not revealing its

value. In zkSNARK NNs, arithmetic function is a plaintext

neural network described with multiplication and addition,

while ®𝑖𝑛 = (®𝑤, ®𝑥) includes both weights ®𝑤 and data ®𝑥 . zk-
SNARK NNs allow the prover to specify the privacy type

of inputs. For example, when protecting data privacy, the

prover can set ®𝑥 (e.g., a face image) as private and weight ®𝑤
as public while proving 𝐹 (®𝑤, ®𝑥) = 𝑦 holds for a public 𝑦 (e.g.,

a person name).

To prove such computation, zkSNARK NNs first trans-

form a complex arithmetic function into a simple circuit by

mapping each addition and multiplication operation into an

addition or multiplication gate, as demonstrated in Fig. 1. The

second step is circuit computation which condenses such cir-

cuit into uniform-format constraints (Eq. 1). Finally, security
computation further compresses constraints into a fixed-size

proof (e.g., 192 bytes [30]) which can be used to verify the

computation. While zkSNARK NNs provide privacy prop-

erties, existing works usually cannot scale to large neural

networks. For example, based on a popular zkSNARK frame-

work Arkworks [4], it takes hundreds of seconds to prove

zkSNARK LeNet on a single face image while non-zkSNARK

LeNet usually requires less than 100 ms on the same hard-

ware. We summarize three key challenges that hinder deeper

system optimizations for zkSNARK NNs.

Failing tomaintain high-level semantics during proof
generation. Existing zkSNARK systems [4, 13, 25, 33, 62]

map an arbitrary arithmetic function into a low-level arith-

metic circuit. During this procedure, NN semantics such as

privacy and tensor are not preserved and hard to recover. For

https://doi.org/XXXXXXX.XXXXXXX
https://doi.org/XXXXXXX.XXXXXXX

ASPLOS’24, April 27–May 01, 2024, San Diego, CA, USA Boyuan Feng, Zheng Wang, Yuke Wang, Shu Yang, Yufei Ding

Figure 1. Circuit in zero-knowledge proof for an arithmetic

function 𝑋1 ∗ 𝑋2 ∗ (𝑋2 + 𝑋3). Here, all values are stored in

finite-fields (e.g., 254-bit integer [45]) for privacy.

example, reconstructing tensor semantic by scanning and

parsing the assembly-style circuit would introduce heavy

runtime overhead. Therefore, zkSNARK systems can only

consider individual gates in circuits and fail to exploit high-

level NN-specialized optimization opportunities.

Lack of semantic-aware optimizations during com-
piling zkSNARK NNs. Most zkSNARK optimizations [4,

10, 51]) focus on individual scalar gates and support only

local circuit optimization at small scale. These scalar gates

usually show heavy dependency and prevent parallel compu-

tation. For example, in Fig. 1, parent gates (e.g.,𝐺𝑎𝑡𝑒3) cannot
be computed until all children gates (e.g., 𝐺𝑎𝑡𝑒1 and 𝐺𝑎𝑡𝑒2)
have been computed. However, most NN computations are

conducted at the tensor level (e.g., convolution layers and

fully connected layers) and provide abundant parallelization

opportunities. Moreover, NN computation usually requires

floating-point values (e.g., single-precision or half-precision)

or small integers [20, 55, 57, 58, 61], such as int8 or even

int1, while zkSNARK operates on finite field (e.g., ≈ 2
254

in case of BLS12-381 [11]) to provide security guarantees.

Naively representing these small values from NNs with finite

field elements may lead to extra memory and computation

overhead.

Lack of NN-centric system optimizations. Neural net-
works usually contain abundant computation reuse opportu-

nities. For example, a zkSNARK NN shares the same circuit

when proving on different images. Existing works usually

focus on proving individual images and repeatedly gener-

ate redundant constraints. Moreover, fusing NN layers can

usually save the number of addition and multiplication com-

putation. This can potentially save the number of constraints

in zkSNARK NNs. However, kernel fusion from existing NN

systems usually cannot directly bring benefits to zkSNARK

NNs. For example, ReLU is usually fused with convolution

layer in plaintext NNs but cannot be fused in zkSNARK NNs.

In this paper, we propose a type-based optimizing frame-

work for efficient zero knowledge neural network inference,

namely ZENO (ZEro knowledgeNeural networkOptimizer).

We show the overview of ZENO in Fig. 2. First, we introduce
a ZENO language construct to maintain high-level semantics

(e.g., privacy and tensor) during zkSNARK proof generation.

Our key insight is that, instead of parsing an assembly-style

circuit, we maintain the privacy type and structured tensor

Figure 2. Overview of ZENO.

computation to guide efficient zkSNARK proof generation.

We further propose a set of compute primitives to effectively

express zkSNARK NNs.

Second, we design an optimized circuit generation that

reduces both computation complexity and the number of

computations by exploiting high-level semantics. Our op-

timized circuit generation includes a privacy-type driven

optimization and a tensor-type driven optimization. The

privacy-type driven optimization reduces the number of

constraints while maintaining zkSNARK NN semantics. We

propose a knit encoding to efficiently represent multiple

uint8 NN computation with a single finite field (e.g., 254
bits [11]) to reduce the number of zkSNARK computation.

The tensor-type driven optimization exploits tensor com-

putation semantics in zkSNARK NNs to generate a ZENO

circuit with minimized dependency. We use ZENO circuit

as an in-place replacement for arithmetic circuit to reduce

dependency.

Third, we propose NN-centric system optimizations to fur-
ther accelerate zkSNARK NNs. We first propose NN-inspired
computation reuse to identify the computation reuse oppor-

tunities within images and cross images by exploiting NN

semantics. Then, we propose a zkSNARK-aware NN fusion
to fuse NN layers while considering both NN and zkSNARK

properties. Our zkSNARK-aware NN fusion can save the

number of constraints for reducing zkSNARK NN latency.

Overall, we make the following contributions:

• We propose ZENO, a framework that can deeply op-

timize zero-knowledge NNs with a synergy between

NN semantics and zkSNARK workload properties.

• We propose a set of zkSNARK NN tailored system op-

timizations. In particular, we design ZENO language

construct (§3) to expose high-level semantics, an op-

timized circuit generation by exploiting privacy type

(§4) and tensor type (§5), and NN-centric system opti-

mizations (§6) to further accelerate zkSNARK NNs.

• We extensively evaluate ZENO using six zkSNARK

NNs on multiple datasets. We achieve 8.5× end-to-end

speedup over state-of-the-art systems.

2 Related Work and Motivation
In this section, we will first give an in-depth discussion on

background and related work of zkSNARK Neural Networks

ZENO: A Type-based Optimization Framework for Zero Knowledge Neural Network Inference ASPLOS’24, April 27–May 01, 2024, San Diego, CA, USA

Figure 3.Workflow of generating zero-knowledge proof. All

values are stored in ciphertext for privacy.

(NNs). Then, we will demonstrate the unique optimization

opportunities for zkSNARK NNs.

2.1 zkSNARK
Zero-Knowledge Succinct Non-interactive Argument of Knowl-

edge (zkSNARK) [2, 7–9, 13, 14, 30, 48, 52, 56] is a security

scheme where, given a function 𝐹 (𝑥) and a target output 𝑦,

the prover shows that the prover knows a specific value 𝑥
such that 𝐹 (𝑥) = 𝑦 while not revealing such value 𝑥 . Here,

the function 𝐹 (·) can describe an arbitrary computation.

One specific example is that, given a function 𝐹 (𝑥1, 𝑥2, 𝑥3, 𝑥4
, 𝑥5, 𝑥6) = (𝑥1𝑥2 + 3𝑥3) (2(𝑥4 + 2𝑥5) + 𝑥6), the prover can

generate a proof that the prover knows a set of secrete val-

ues (𝑥1, 𝑥2, 𝑥3, 𝑥4, 𝑥5, 𝑥6) such that 𝐹 (𝑥1, 𝑥2, 𝑥3, 𝑥4 , 𝑥5, 𝑥6) = 𝑦

with a public value 𝑦 while not revealing the exact values of

(𝑥1, 𝑥2, 𝑥3, 𝑥4, 𝑥5, 𝑥6).
zkSNARKWorkflow. zkSNARK involves prover and ver-

ifier as two essential participants. During proof generation,

the prover knows both private data 𝑥 and public data 𝑦 such

that 𝐹 (𝑥) = 𝑦, and generates a proof showing the equality

between 𝐹 (𝑥) and 𝑦. This proof could be shared publicly

since the private data 𝑥 cannot be recovered from the proof

and the public data 𝑦. During proof verification, the verifier

checks if the proof is valid under the public data 𝑦 and is

convinced that the prover knows private data 𝑥 such that

𝐹 (𝑥) = 𝑦. Here, the verifier only knows the public data 𝑦 and

the proof, while not knowing the value of the private data 𝑥 .

Proof verification takes only a few milliseconds which are

several orders of magnitudes faster than proof generation

with second-level latency [30]. To this end, we build ZENO

to accelerate the proof generation.

Zero-knowledge Proof Generation. We illustrate zero-

knowledge proof generation in Fig. 3. There are three steps

in proof generation. The first step is Generate, which takes

a given arithmetic function F(x) 1 and generates a circuit 2 .

In this step, each scalar addition and multiplication in arith-

metic function is mapped to a addition gate (e.g., 𝐺𝑎𝑡𝑒3) and
a multiplication gate (e.g., 𝐺𝑎𝑡𝑒1) in the circuit, respectively.

For a large arithmetic function with millions of computation

(e.g., zkSNARK NNs [24, 25, 28, 44, 46]), the circuit contains

millions of gates. The latency of zkSNARK is proportional to

this number of gates such that million-level gates can easily

lead to hour-level latency.

The second step is Circuit Computation that condenses

the circuit 2 into constraints 3 , which is a specialized math-

ematical format:

(
𝑛∑︁
𝑖=1

𝑎 𝑗,𝑖𝑋𝑖) ∗ (
𝑛∑︁
𝑖=1

𝑏 𝑗,𝑖𝑋𝑖) =𝑊𝑖𝑟𝑒 𝑗 , 𝑗 ∈ {1, 2, ...,𝑚} (1)

Here, 𝑋𝑖 are private input values (e.g., private NN weights)

and𝑊𝑖𝑟𝑒 𝑗 are private output values which can be used in fol-

lowing constraints. 𝑛 is the number of private values includ-

ing both private input values𝑋𝑖 and private output𝑊𝑖𝑟𝑒 𝑗 .𝑚

is the number of multiplication between private values (e.g.,
𝑋1 and 𝑋2) or linear combination (LC) of private values (e.g.,
1 ∗𝑊𝑖𝑟𝑒1 + 3 ∗ 𝑋4 + 2 ∗ 𝑋5). The zkSNARK proof generation

latency is proportional to the number of private values 𝑛

and the number of constraints𝑚. For a realistic arithmetic

function (e.g., a neural network), both 𝑚 and 𝑛 could be

million-level. We note several properties in the constraints.

First, privacy plays an important role where multiplying a

public value and a private value (e.g., 3 ∗ 𝑋4) does not lead

to constraints. Second, the addition is “free" in zkSNARK in

terms of not introducing constraints, since a large number

of additions can be expressed in a single linear combination

(e.g., adding 1∗𝑊𝑖𝑟𝑒1, 3∗𝑋4, and 2∗𝑋5) by incorporating into

the linear combination of private values. Third, in the cir-

cuit computation, children gates (e.g., 𝐺𝑎𝑡𝑒1 to 𝐺𝑎𝑡𝑒4) need
to be computed before parent gates (e.g., 𝐺𝑎𝑡𝑒5). This leads
to heavy dependency in circuits and is major bottleneck in

zkSNARK NNs (see Fig. 4).

The third step is Security Computation. Given a con-

straint system with a large number of 𝑛 private values and

𝑚 constraints, security computation generates a small fixed-

size (e.g., 192 bytes) proof for efficient verification. The key

idea is to add carefully crafted random noises [30] upon 𝑛

private values for generating encrypted values. With these

encrypted values, the𝑚 constraints still holds but you can-

not derive original private value from encrypted values. We

remark that noises could be added only when the format of

constraints follows a simple math formula (Eq. 1). The la-

tency of this step depends on the number of 𝑛 private values

and𝑚 constraints such that we can accelerate this step by

reducing𝑚 and 𝑛.

Bit Size in zkSNARK. zkSNARK relies on well-accepted

cryptography techniques such as finite field and pairing-

friendly elliptic curves to provide cryptographical security.

These cryptography techniques involve computations on

large bit-size integers. Popular elliptic curves for zkSNARK

include BN254 [6, 53] with 254 bits and BLS12-381 [12] with

381 bits. ZENO is generic over diverse elliptic curves since

the choice of elliptic curves does not affect the zkSNARK

computation and optimizations.

ASPLOS’24, April 27–May 01, 2024, San Diego, CA, USA Boyuan Feng, Zheng Wang, Yuke Wang, Shu Yang, Yufei Ding

2.2 zkSNARK Neural Networks
Neural Networks. Neural network (NN) [23, 32, 43, 54]

is a function 𝐹 (𝑊,𝑋) = 𝑌 that maps an input image 𝑋 ∈
𝑢𝑖𝑛𝑡8𝐻×𝑊 ×3

and weights𝑊 to a prediction 𝑌 ∈ R𝑑 , where
𝑑 is the number of labels (e.g., 𝑛 = 2 when only distinguish

cat and dog). NN is usually defined as the composition of

a sequence of NN layers 𝐹 (𝑊,𝑋) = 𝐹1 ◦ 𝐹2 · · · ◦ 𝐹𝑛 (𝑊,𝑋).
Popular layers include convolution, fully connected, pooling,

and ReLU, where each layer computes at tensor level. For

example, the convolution layer and fully connected layer take

two inputs: activation 𝑋 (𝑘)
and weight𝑊 . Then, these two

layers compute the output activation 𝑋 (𝑘+1) =𝑊 · 𝑋 (𝑘) + 𝑏.
zkSNARK NNs and Killer Applications. zkSNARK

NNs [24, 25, 28, 44, 46] draw increasing attention in recent

years by proving certain properties while protecting the

privacy of images or weights. These zkSNARK NNs treat

a NN as a function 𝐹 (𝑊,𝑋) and generate proof following

the workflow in Fig. 3. One popular application isWorld ID
[18] for user identity which protects the privacy of biometric

image 𝑋 . In particular, a user (the prover) generates proof

with her eye iris image to prove that she is a unique and real

person. This proof serves as her digital passport or password

while keeping anonymity. This proof is submitted to servers

where other companies (the verifier) could verify the proof.

Another application is Leela vs the World [40] which allows

users to play against an AI chess model and uses zkSNARK

NNs to prove each move of this model while protecting the

privacy of weight𝑊 and not leaking the model.

To facilitate the development of zkSNARK programs, sev-

eral frameworks have been proposed such as Arkworks

[4, 13], Bellman [62] and Ginger [33]. However, these frame-

works usually focus on scalar computation and ignore opti-

mization opportunities from tensor-level computations, lead-

ing to prohibitive latency. In this paper, we propose ZENO

to exploit tensor-level computation and privacy type for

efficient zkSNARK NN inference.

Diverse Types of zkSNARK NN Layers. Besides addi-
tion and multiplication, zkSNARK NNs could also support

other operations such as Pooling layers and > in ReLU at a

higher cost [25]. Take the ReLU circuit as an example. While

zkSNARK does not directly support comparing two integers,

it efficiently supports checking bit equality. Thus ReLU cir-

cuit first decomposes an integer into n(=254) bits and checks

whether the first bit equals zero, deciding the sign of this

integer and the output of ReLU layer.

In zkSNARK NNs, a NN is first trained with Stochastic

Gradient Descent (SGD) [49] in plaintext and then proofs

are generated for NN inference with zkSNARK. Following

existing zkSNARK NN application scenarios, ZENO focuses

on inference and does not support SGD for training.

2.3 Opportunities and Challenges
In this section, we introduce optimization opportunities and

challenges in enabling efficient zkSNARK NNs.

Figure 4. Proof latency: private images and public weights.

We show the latency of individual proof generation steps

in Fig. 4 for private images and public NN weights. We have

similar observations on other privacy settings (e.g., private
weights and private images, or private weights and public

images). We profile this latency based on state-of-the-art

zkSNARK framework, Arkworks [4], on a single image. Note

that these three steps need to be executed sequentially and

the total time is the sum of individual steps. We have three

major observations. First, the total time of zkSNARK NN can

easily exceed 5000 seconds, while the corresponding non-

zkSNARK NNs usually take less than 1 second to compute.

Second, the latency of circuit computation increases signif-

icantly as NN sizes increase. Third, the latency of security
computation also increases as NN sizes increase.

Opportunities. There are two major opportunities to ac-

celerate zkSNARK NNs. The first opportunity is to exploit

privacy types (e.g., private weights or public weights, as

discussed in §3). Our investigation shows a significant im-

pact from privacy types, which motivates privacy-driven

optimizations. The second opportunity is to exploit tensor

computation in NNs for optimizing circuits and exploiting

parallelism. This opportunity has not been explored in exist-

ing zkSNARK frameworks that focus on scalar operations.

Challenges. Although these ideas sound promising, the

efforts to capitalize on their benefits are non-trivial due

to several challenges. First, while tensor operations may

provide optimization opportunities, it is highly non-trivial

to identify and reconstruct such high-level semantics from

assembly-style circuits. We need a language construct to

maintain these high-level semantics and facilitate optimiza-

tions for zkSNARK NNs. Second, the zkSNARK computation

procedure usually shows complex dependency across Gates

and synergy between privacy types. For example, circuits

(as discussed in Fig. 3) are inherently sequential since ear-

lier computation results (e.g., 𝐺𝑎𝑡𝑒1) may be used by later

computation (e.g.,𝐺𝑎𝑡𝑒3). We need specialized optimizations

based on type information in zkSNARK NNs to reduce the

computation workload and mitigate the dependency.

3 ZENO Language Construct
In this section, we introduce ZENO language construct to

facilitate the zkSNARK NN development and maintain the

semantic information during zkSNARK computation.

ZENO: A Type-based Optimization Framework for Zero Knowledge Neural Network Inference ASPLOS’24, April 27–May 01, 2024, San Diego, CA, USA

Table 1. ZENO Type Information.

Type Description

St
an

da
rd

Const Public constant value in _-bit finite

field.

Variable Private scalar value in circuit for input.

Gate Private scalar value in circuit for inter-

mediate results.

Wire Private scalar value in constraint sys-

tem.

LC Linear Combination of wires in con-

straint system.

ZE
N
O

Privacy ’private’ or ’public’

Tensor A tensor of finite field data.

zkTensor Tuple (T, P) where "T" is a Tensor and

"P" specifies privacy.

Type Information with Tensor and Privacy. The goal
of ZENO type information is to express the two important

information in zkSNARK NN – tensor and privacy. We sum-

marize ZENO type information in Table 1. There are two com-

plications in zkSNARK systems. First, previous zkSNARK

systems contain only scalar-level data types, which make it

complicated to implement zkSNARK NNs with intensive ten-

sor computations. Second, individual scalar data types have

different privacy properties. This makes it challenging to

manually set the privacy type for scalar values in zkSNARK

NNs.

To tackle these challenges, we introduce tensor-level data

types to directly express zkSNARK NN tensor computation

and hide the complexity of privacy selection. zkTensor is

the basic data unit in zkSNARK NNs, which can represent

weight tensors and feature tensors in NNs. When "P" is pub-

lic, "T" is a tensor of Const scalars for public constant values.

When "P" is private, "T" is a tensor of Variable, Gate, Wire,
and LC, where the specific type can be inferred automati-

cally. Our type information abstracts details of zkSNARK

implementations and enables users to focus on complex NN

structures.

Tensor Compute Primitives. We propose a set of tensor-

level compute primitives respecting the privacy and tensor

types. The goal of tensor compute primitives is to maintain

the high-level semantics of zkSNARK NN computation and

maps directly to gate-level circuits. In particular, the tensor

compute primitives hide the complexity of scalar-level oper-

ations and expose tensor computation capability, which is

the building block of many zkSNARK NNs. The tensor com-

pute primitives also allow users to easily specify the privacy

type of images and weights, which mitigates the manual

efforts in specifying the privacy of each scalar. The tensor

compute primitives directly support dotProductwhich con-
sumes most computation in neural networks. This high-level

dotProduct can be directly mapped to gate-level circuits

with optimized circuit generation (discussed in §4 and §5).

We then introduce fullyConnected, convolution, pool,
and ReLU to support popular layers in NNs. We also pro-

vide addTensor and mulTensor to facilitate user-defined

NN operations such as residual connection [32].

4 Privacy-type Driven Optimization
In this section, we propose privacy-type driven optimizations.

Our key insight is that fully exploiting privacy of input data

can significantly reduce the number of constraints (Eq. 1),

which leads to proportional performance improvement for

zkSNARK NNs. To this end, we propose privacy-adaptive
circuit generation and privacy-aware knit encoding to squeeze
the number of constraints.

4.1 Privacy-adaptive Circuit Generation
We propose privacy-adaptive circuit generation to reduce

the number of constraints in zkSNARK NNs. We observe

that many zkSNARK NNs algorithmic designs [24, 25, 28,

44, 46] only require one of features or weights to be private.

For example, ZEN [25] only keeps privacy of NN weights

and use a public dataset to prove the NN accuracy. A naive

implementation usually ignores privacy type of input data

and generate constraints for each multiplication in zkSNARK

NN, which leads to a large number of constraints and high

latency. Our key insight is that privacy comes with costs in

zkSNARK.We should introduce privacy onlywhen necessary

and exploit as many “free” operations as possible to reduce

cost. For example, multiplying a public scalar and a private

scalar are “free” but multiplying two private scalars costs 1

constraint. The number of constraints largely decides the

latency. So, we exploit privacy types of features and weights

to minimize the number of constraints.

We present our privacy-adaptive circuit generation for dot

products which can be easily applied to many zkSNARK NN

layers (e.g., fully-connected, convolution, and average pool-

ing). Formally, we consider aweight vector𝑊 = [𝑤1,𝑤2, ...,𝑤𝑛]
with privacy 𝑝𝑤 and a feature vector 𝑋 = [𝑥1, 𝑥2, ..., 𝑥𝑛] with
privacy 𝑝𝑋 where 𝑝𝑊 and 𝑝𝑋 are user-specified privacy type

("private" or "public"). zkSNARK first computes a reference
value ref in plaintext according to dot product. Then, zk-

SNARK proves in constrains that ref =
∑𝑛

𝑖=1𝑤𝑖 ∗ 𝑥𝑖 . In the

last layer of zkSNARK NN, ref is the NN prediction such as

a "cat" or "dog". We show the mapping from high-level dot

product computation

∑𝑛
𝑖=1 𝑥𝑖 ∗ 𝑤𝑖 to low-level constraints

(∑𝑛
𝑖=1 𝑎 𝑗,𝑖𝑋𝑖) ∗ (

∑𝑛
𝑖=1 𝑏 𝑗,𝑖𝑋𝑖) =𝑊𝑖𝑟𝑒 𝑗 , 𝑗 ∈ {1, 2, ...,𝑚} where

𝑋𝑖 and𝑊𝑖𝑟𝑒 𝑗 are private values, and 𝑎 𝑗,𝑖 and 𝑏 𝑗,𝑖 are public

coefficients (see background in Eq. 1).

Both private feature and private weights. When both

feature and weights are private, we have 𝑛 multiplications

between private scalars𝑤𝑖 and 𝑥𝑖 and 𝑛 − 1 addition to sum

the multiplication output. Since both𝑤𝑖 and 𝑥𝑖 are private

values, we generate one constraint for each multiplication

𝑤𝑖 ∗𝑥𝑖 =𝑊𝑖𝑟𝑒𝑖 . Formally, each multiplication can be written

ASPLOS’24, April 27–May 01, 2024, San Diego, CA, USA Boyuan Feng, Zheng Wang, Yuke Wang, Shu Yang, Yufei Ding

as constraints (1 ∗ 𝑤𝑖) ∗ (1 ∗ 𝑥𝑖) = 𝑊𝑖𝑟𝑒𝑖 . This leads to 𝑛

constraints for multiplying private scalars. Then, we gener-

ate a linear combination 𝐿𝐶 =
∑𝑛

𝑖=1 1 ∗𝑊𝑖𝑟𝑒𝑖 to represent

the computation result in zkSNARK and check the equality

between 𝐿𝐶 and a reference value ref for dot product𝑊 · 𝑋 .

Intuitively, this circuit checks that the dot product of private

input𝑊 and 𝑋 equals to ref without releasing the value of

𝑊 and 𝑋 . Checking equality leads to an extra constraint.

Formally, we have 𝑛 + 1 constraints:

(1 ∗𝑤𝑖) ∗ (1 ∗ 𝑥𝑖) =𝑊𝑖𝑟𝑒𝑖 , 𝑖 ∈ {1, 2, ..., 𝑛}

(
𝑛∑︁
𝑖=1

1 ∗𝑊𝑖𝑟𝑒𝑖 + (−1) ∗ ref) ∗ (1 ∗ 𝐷1) = 𝐷0

(2)

where 𝐷1 = 1, 𝐷0 = 0, and −1 is conducted on finite field.

Either private feature or private weights. We consider

public weight𝑊 and private feature 𝑋 since the design can

be easily applied to the case with public weight and private

feature. When weight𝑊 is private and feature 𝑋 is public,

we have 𝑛 multiplications between private weight scalar𝑤𝑖

and public feature scalar 𝑥𝑖 and 𝑛 − 1 additions to sum the

multiplication output. One naive design is to still generate

one constraint for each multiplication. However, our key

insight is that the public weight scalar𝑤𝑖 can be treated as

public coefficients in Eq. 1 which eliminates unnecessary

constraints. To this end, we can directly generate a linear

combination 𝐿𝐶 =
∑𝑛

𝑖=1𝑤𝑖 ∗ 𝑥𝑖 with public scalars 𝑤𝑖 as

coefficients and check equality with ref . This design requires
only 1 constraint

(
𝑛∑︁
𝑖=1

𝑤𝑖 ∗ 𝑥𝑖 + (−1) ∗ ref) ∗ (1 ∗ 𝐷1) = 𝐷0 (3)

This is significantly smaller than 𝑛 + 1 constraints required

for both private feature and private weights.

4.2 Privacy-aware Knit Encoding
We propose privacy-aware knit encoding to further reduce

the number of constraints when only features or weights are

private. This could significantly reduce the latency of secu-
rity computation phase which is proportional to the number

of constraints. Knit encoding combines multiple low-bit (e.g.,
8-bit) scalars into a high-bit (e.g., 254-bit) scalar to check

equality simultaneously and reduce the number of equality

checks. This leads to a lower number of constraints and bet-

ter performance. The key insight is that the output scalars of

a NN layer are usually low-bit (e.g., 8 bits) while zkSNARK
natively supports large bits (e.g., 254 bits). For example, sup-

pose we prove the computation over two dot products in a

NN layer, naive encoding needs 2 equality checks leading

to 2 constraints. In knit encoding, we can use the “free” ad-

dition to combine the results of these two dot products and

introduce only 1 equality check.

Figure 5. Knit encoding with batch size 𝑠 = 2. 𝐿𝐶1 and 𝐿𝐶2

are two finite fields with leading bits as 0. 𝛿 = 2
2∗𝑏𝑖𝑛+⌈𝑙𝑜𝑔 (𝑐𝑖𝑛) ⌉

is a finite field such that multiplying 𝛿 is equivalent to bit

shifting. ":=" indicates equality check.

Naive encoding. Consider a fully connected layer with

a public weight𝑊 = [𝑊1,𝑊2] ∈ uint82×𝑐𝑖𝑛 , a private fea-
ture 𝑋 = [𝑥1, 𝑥2, ..., 𝑥𝑐𝑖𝑛] ∈ uint8𝑐𝑖𝑛 , and the output 𝑌 =

[𝑦1, 𝑦2] ∈ uint82. The fully-connected layer can be treated

as two dot products 𝑦𝑖 = 𝑊𝑖 · 𝑋, 𝑖 ∈ {1, 2}. One naive ap-

proach is to independently encode individual dot products

following Eq. 3. This approach leads to 1 constraint for each

dot product and require 2 constraints for the fully connected

layer. However, this approach encodes low-bit quantized

neural network values (e.g., uint8) with high-bit finite fields

(e.g., 254-bit), which leads to extra constraints and higher

latency.

Knit encoding with batch size 𝑠 = 2. We propose to

batch multiple low-bit values (e.g., uint8) into one high-bit

finite field (e.g., 254-bit) to reduce the number of constraints,

as illustrated in Fig. 5. We first generate two LCs

𝐿𝐶1 =

𝑐𝑖𝑛∑︁
𝑖=1

𝑤1,𝑖 ∗ 𝑥𝑖 , 𝐿𝐶2 =

𝑐𝑖𝑛∑︁
𝑖=1

𝑤2,𝑖 ∗ 𝑥𝑖

Generating 𝐿𝐶1 and 𝐿𝐶2 does not introduce constraints since

we are multiplying public scalars with private scalars. Here,

both 𝐿𝐶1 and 𝐿𝐶2 are finite fields. We note that only 2 ∗𝑏𝑖𝑛 +
⌈𝑙𝑜𝑔(𝑐𝑖𝑛)⌉ bit of each LC are non-zero values where 𝑏𝑖𝑛(=8)

is the bit width of weights and features.

Instead of naively introducing constraints for checking

equality between 𝐿𝐶𝑖 and 𝑦𝑖 , we further encode these two

LCs into one LC:

𝐿𝐶3 = 𝐿𝐶1 + 𝐿𝐶2 ∗ 𝛿

=

𝑐𝑖𝑛∑︁
𝑖=1

𝑤1,𝑖 ∗ 𝑥𝑖 +
𝑐𝑖𝑛∑︁
𝑖=1

(𝑤2,𝑖 ∗ 𝛿) ∗ 𝑥𝑖

Here, 𝛿 = 2
2∗𝑏𝑖𝑛+⌈𝑙𝑜𝑔 (𝑐𝑖𝑛) ⌉

is sufficiently large to ensure the

correctness of encoding. 𝛿 is also a public scalar such that

generating 𝐿𝐶3 does not introduce constraints.

Finally, we compute the encoded output value ref = 𝑦1 +
𝑦2 ∗ 𝛿 and introduce 1 constraint to check equality of these

two dot products simultaneously

(
𝑐𝑖𝑛∑︁
𝑖=1

𝑤1,𝑖 ∗ 𝑥𝑖 +
𝑐𝑖𝑛∑︁
𝑖=1

(𝑤2,𝑖 ∗ 𝛿) ∗ 𝑥𝑖 + (−1) ∗ ref) ∗ (1 ∗𝐷1) = 𝐷0

ZENO: A Type-based Optimization Framework for Zero Knowledge Neural Network Inference ASPLOS’24, April 27–May 01, 2024, San Diego, CA, USA

Table 2. Comparing knit encoding and stranded encoding.

We consider 8 bits for features and weights and 254 bits for

finite fields.

Knit Encoding Stranded Encoding [25]
Max Constraint Saving 8× 4×
Encoding Overhead 0 Constraint 0 Constraint

Decoding Overhead 0 Constraint 632 Constraints

Privacy One private Both Private

This constraint bitwisely checks equality such that𝑊1 · 𝑋 =

𝑦1 and𝑊2 · 𝑋 = 𝑦2 when 𝛿 is sufficiently large.

Knit encoding for arbitrary batch size s. Knit encod-
ing can be generalized to arbitrary batch size 𝑠 . Formally,

knit encoding takes a public weight𝑊 = [𝑊1,𝑊2, ...,𝑊𝑠] ∈
uint8𝑠×𝑐𝑖𝑛 , a private feature𝑋 = [𝑥1, 𝑥2, ..., 𝑥𝑐𝑖𝑛] ∈ uint8𝑐𝑐𝑖𝑛 ,
and the output 𝑌 = [𝑦1, 𝑦2, ..., 𝑦𝑠] ∈ uint8𝑠 . We first gener-

ates 𝑠 LCs for dot products

𝐿𝐶 𝑗 =

𝑐𝑖𝑛∑︁
𝑖=1

𝑤 𝑗,𝑖 ∗ 𝑥𝑖 , 𝑗 ∈ {0, 1, ..., 𝑠 − 1}

Then, we encode 𝑠 LCs into one LC

𝐿𝐶𝑠 =

𝑠−1∑︁
𝑗=0

𝑐𝑖𝑛∑︁
𝑖=1

(𝑤 𝑗,𝑖 ∗ 𝛿 𝑗) ∗ 𝑥𝑖

Since we only require multiplication between public scalars

and private scalars, we do not introduce constraints when

generating these LCs. Finally, we can compute the encoded

output value ref =
∑𝑠−1

𝑗=0 𝑦 𝑗 ∗ 𝛿 𝑗
and use 1 constraint to

bitwisely check the euqality of 𝑠 dot products:

(
𝑠−1∑︁
𝑗=0

𝑐𝑖𝑛∑︁
𝑖=1

(𝑤 𝑗,𝑖 ∗ 𝛿 𝑗) ∗ 𝑥𝑖 + (−1) ∗ ref) ∗ (1 ∗ 𝐷1) = 𝐷0

Security Analysis. Relying on a well-known “free" ad-

dition property of zkSNARK [30], knit encoding is crypto-

graphically secure if and only if bit overflow is avoided for

all possible input weights and features. Bit overflow happens

when batching too many low-bit values into a high-bit finite

field using a large batch size 𝑠 .

ZENO automatically selects the batch size 𝑠 to maximize

the performance while avoiding bit overflow. Formally, given

the vector length 𝑛, input data bitwidth 𝑏𝑖𝑛 , and finite field

bitwidth 𝑏𝑜𝑢𝑡 , each dot product requires 2 ∗𝑏𝑖𝑛 + ⌈log𝑛⌉ bits
and all 𝑠 dot products require 𝑠∗(2∗𝑏𝑖𝑛+⌈log𝑛⌉) bits. To avoid
bit overflow and maximize benefits, we select a batch size as

the largest integer satisfying 𝑠 ≤ 𝑏𝑜𝑢𝑡/(2 ∗𝑏𝑖𝑛 + ⌈log𝑛⌉). For
example, on dot product with 𝑏𝑖𝑛 = 8-bit data, 𝑏𝑖𝑛 = 8-bit

weight, 𝑏𝑜𝑢𝑡 = 254-bit finite field, and length 𝑛 = 1024, we

select 𝑠 = 9 to maximize benefits while avoiding bit overflow.

Comparing with Stranded Encoding. Existing work

[25] proposed stranded encoding which shares similar high-

level motivation as our knit encoding. It focuses on the case

with private weights and private features by reducing the

number of multiplications. However, stranded encoding and

knit encoding are significantly different in multiple perspec-

tives, as summarized in Table 2. Stranded encoding can be

applied when both features and weights are private while

knit encoding can be applied when only features or weights

is private. By exploiting privacy type, knit encoding can

save more constraints with significantly reduced decoding

overhead.

5 Tensor-type Driven Optimization
In this section, we propose tensor-type driven optimizations.

We first propose ZENO circuit as an efficient intermediate rep-

resentation (IR) between high-level NN layers and low-level

constraints. Then, we propose workload-specialized parallel
scheduler to identify parallel computation opportunities in

ZENO circuit across NN layers. All these optimizations focus

on the system level and do not introduce any cryptographical

changes, thus guaranteeing security.

5.1 ZENO Circuit for Efficient IR
We present our ZENO circuit as an efficient intermediate

representation (IR) from high-level zkSNARK NN arithmetic

function to low-level constraints. Since low-level constraints

require a specialized mathematical format (∑𝑛
𝑖=1 𝑎 𝑗,𝑖𝑋𝑖) ∗

(∑𝑛
𝑖=1 𝑏 𝑗,𝑖𝑋𝑖) =𝑊𝑖𝑟𝑒 𝑗 (see Eq. 1), it is challenging to manu-

ally write constraints for an arbitrary arithmetic function.

Existing work [4] utilizes circuit as an intermediate repre-

sentation to automatically map arithmetic functions into

constraints during the circuit computation phase. However,

it is designed for scalar computations and ignores intrinsic

tensor types in zkSNARN NNs which leads to unsatisfac-

tory performance. We first analyze the bottleneck in circuit

and then propose ZENO circuit as an efficient intermediate

representation.

Circuit. Circuit first breaks an arbitrary arithmetic func-

tion into a sequence of scalar multiplication and scalar ad-

dition operations. Then, it maps each operation to a corre-

sponding multiplication gate and addition gate, as discussed

in §2.1. We show an example of circuit for dot product in

Fig. 6(a).

Consider a weight vector𝑊 = [𝑤1,𝑤2,𝑤3,𝑤4], a feature
vector 𝑋 = [𝑥1, 𝑥2, 𝑥3, 𝑥4], and an arithmetic function

𝐹 (𝑊,𝑋) = 𝑤1 ∗ 𝑥1 +𝑤2 ∗ 𝑥2 +𝑤3 ∗ 𝑥3 +𝑤4 ∗ 𝑥4
Circuit first maps each multiplication to a multiplication gate

(e.g., 𝐺𝑎𝑡𝑒1 and 𝐺𝑎𝑡𝑒2) and maps each addition to an addi-

tion gate (e.g., 𝐺𝑎𝑡𝑒3 and 𝐺𝑎𝑡𝑒5), leading to 4 multiplication

gates and 3 addition gates. Here, all computations related

to private variables are symbolic since the circuit describes

computation in the arithmetic function regardless of specific

values. For example, public weight and private feature indi-

cate that features 𝑋 are symbolic variables but weights𝑊

are numeric coefficients.

ASPLOS’24, April 27–May 01, 2024, San Diego, CA, USA Boyuan Feng, Zheng Wang, Yuke Wang, Shu Yang, Yufei Ding

Figure 6. Illustration of ZENO IR for dot product ofW ·X =

[𝑊1,𝑊2,𝑊3,𝑊4] · [𝑋1, 𝑋2, 𝑋3, 𝑋4].

Given this circuit, we need to conduct circuit computa-
tion which converts individual gates into constraints with

a specialized mathematical format (Eq. 1). Without loss of

generality, we consider public weight and private feature

here. We can first check privacy of each scalar and generate a

tuple where public input𝑤𝑖 is coefficient (i.e., 𝑎 𝑗,𝑖 and 𝑏 𝑗,𝑖 in

constraints Eq. 1) and private input 𝑥𝑖 is a symbolic variable:

(1,𝐺𝑎𝑡𝑒𝑖) = (𝑤𝑖 , 𝑥𝑖), 𝑖 ∈ {1, 2, 4, 6}
(1,𝐺𝑎𝑡𝑒𝑖) = (𝑐𝑖,1,𝐺𝑎𝑡𝑒𝑖−2) + (𝑐𝑖,2,𝐺𝑎𝑡𝑒𝑖−1), 𝑖 ∈ {3, 5, 7}

For addition gates, we have 𝑐𝑖,1 = 𝑐𝑖,2 = 1 as the coefficient

for dot product, which can be an arbitrary integer in general.

Then, we need to recursively expand children gates for an

addition gate, if one of its children gates is still an addition

gate. This recursive expansion from “binary" gates to “multi-

input" format (Eq. 1) leads to 𝑂 (𝑛2) costs where 𝑛 is the

vector length. For example, suppose we have expanded𝐺𝑎𝑡𝑒5
as

(1,𝐺𝑎𝑡𝑒5) = (𝑤1, 𝑥1) + (𝑤2, 𝑥2) + (𝑤3, 𝑥3)
where 𝐺𝑎𝑡𝑒5 has three coefficients 𝑤1, 𝑤2, and 𝑤3. When

expanding𝐺𝑎𝑡𝑒7 = (𝑐7,1,𝐺𝑎𝑡𝑒5)+(𝑐7,2,𝐺𝑎𝑡𝑒6), there are𝑂 (𝑛)
multiplications since we need to multiply the coefficient 𝑐7,1
of 𝐺𝑎𝑡𝑒5 with all expanded coefficients, including 𝑤1, 𝑤2,

and𝑤3. Since we need to repeat for all 𝑛 addition gates, this

expansion costs 𝑂 (𝑛2), leading to prohibitive latency for

zkSNARK NNs with millions of gates in circuit.

ZENO Circuit for Dot Product. To address this problem,

we propose a ZENO circuit to minimize the number of gates

and reduce the computation complexity to 𝑂 (𝑛) where 𝑛
is the vector length, leading to reduced latency during the

circuit computation phase. The core idea is to exploit the

commutative property of addition gates in zkSNARK. In par-

ticular, the order of addition gates can be exchanged while

the order between two multiplication gates and the order be-

tween a multiplication gate and an addition gate need to be

maintained. We show ZENO circuit for dot product of length

4 in Fig. 6(b). We introduce 4 multiplication gatess (𝐺𝑎𝑡𝑒1,

𝐺𝑎𝑡𝑒2,𝐺𝑎𝑡𝑒3, and𝐺𝑎𝑡𝑒4) and only one addition gate (𝐺𝑎𝑡𝑒5).

Note that ZENO circuit has the same number of multipli-

cation gates but a significantly smaller number of addition

gates. This reduced number of addition gates significantly

saves the number of computations during circuit computation.
On ZENO circuit, we can skip circuit computation operation

for addition gates and directly generate constraints. In partic-

ular, we only need 5 operations for converting ZENO circuit

while requiring 12 operations for converting circuit. We also

note that ZENO circuit shows short critical path length (=2)

than conventional circuit with length (=4).

Formally, given two vectors [𝑤1,𝑤2, ...,𝑤𝑛] and [𝑥1, 𝑥2,
..., 𝑥𝑛] of length 𝑛, ZENO circuit contains binary multiplica-

tion gates and multi-child addition gates. The binary multi-

plication gate takes two input gates. To support dot product

on two vectors of length 𝑛, we need 𝑛 multiplication gates

for each𝑤𝑖 ∗ 𝑥𝑖 . The multi-child addition gate takes 𝑛 inputs

where 𝑛 can be arbitrarily large number. This gate efficiently

supports summation over a large number of scalars in dot

product and significantly reduces the number of addition

gates. In comparison, conventional circuit for dot product

requires 𝑛 − 1 binary addition gates. In total, ZENO circuit

for dot product generates 𝑛 + 1 gates while conventional

circuit generates 2𝑛− 1 gates. We also stress that both ZENO

circuit and conventional circuit generate the same constraint

systems. Thus ZENO circuit maintains the semantic and can

be used as an in-place replacement of conventional circuit.

ZENO circuit for fully connected, convolution, and
pooling layers. We propose ZENO circuit for fully con-

nected, convolution, and pooling layers as an extension to

ZENO circuit for dot product. Fully-connected layer takes

two input tensorsW ∈ R𝑚×𝑛
and X ∈ R𝑛 and generates one

output tensor Y = WX ∈ R𝑚 . With the help of img2col algo-
rithm [17], convolution layer can also be transformed into

a matrix-matrix multiplication. It takes two input tensors

W ∈ R𝑚×𝑛
and X ∈ R𝑛×𝑘 and computes an output tensor

Y = WX ∈ R𝑚×𝑘
. Since fully connected and convolution

layer can be viewed as𝑚 and𝑚𝑘 independent dot products,

we simply duplicate dot product circuits for𝑚 and𝑚𝑘 times

as ZENO circuit for fully-connected and convolution layers,

respectively. For the pooling layer, we focus on average pool

following state-of-the-art zkSNARK NN security scheme

[25]. Given an input tensor of shape𝑚 × 𝑛 and a constant 𝑠 ,

average pool splits the tensor into small grids of shape 𝑠 × 𝑠

and computes the average value in each grid. Thus average

pool can be viewed as a dot product between a one vector 1
of length 𝑠2 (i.e., all elements are 1’s) and a vector of all values

in a grid. On the ReLU layer, ZENO shares the same circuit

as scalar-level zkSNARK frameworks since ReLU contains

only elementwise comparison.

Theoretical benefit analysis. We summarize theoretical

benefits of ZENO circuit in Table 3. One significant result is

that ZENO circuit requires 𝑂 (𝑛) computation for dot prod-

uct while conventional circuit requires 𝑂 (𝑛2) computation.

This generalizes to fully connected, convolution, and pool

layers with significantly reduced complexity. This saving

ZENO: A Type-based Optimization Framework for Zero Knowledge Neural Network Inference ASPLOS’24, April 27–May 01, 2024, San Diego, CA, USA

Table 3. NN layer complexity comparison between conventional circuit and proposed ZENO circuit.

IR Layer Input Shape # Gate # Wire # LC len(CriticalPath) Computation

Arithmetic
Circuit

Dot Product (𝑛, 𝑛) 2𝑛 − 1 𝑛 𝑛 − 1 𝑛 𝑂 (𝑛2)
Fully Connected (𝑚 × 𝑛, 𝑛) 𝑚(2𝑛 − 1) 𝑚𝑛 𝑚(𝑛 − 1) 𝑛 𝑂 (𝑚𝑛2)
Convolution (𝑚 × 𝑛, 𝑛 × 𝑘) 𝑚𝑘 (2𝑛 − 1) 𝑚𝑘𝑛 𝑚𝑘 (𝑛 − 1) 𝑛 𝑂 (𝑚𝑘𝑛2)
Pool (𝑚 × 𝑛), s 𝑚𝑛

𝑠2
(𝑠2 − 1) 0

𝑚𝑛
𝑠2

(𝑠2 − 1) 𝑠2 − 1 𝑂 (𝑚𝑛𝑠2)

ZENO
Circuit

Dot Product (𝑛, 𝑛) 𝑛 + 1 𝑛 1 2 𝑂 (𝑛)
Fully Connected (𝑚 × 𝑛, 𝑛) 𝑚(𝑛 + 1) 𝑚𝑛 𝑚 2 𝑂 (𝑚𝑛)
Convolution (𝑚 × 𝑛, 𝑛 × 𝑘) 𝑚𝑘 (𝑛 + 1) 𝑚𝑘𝑛 𝑚𝑘 2 𝑂 (𝑚𝑘𝑛)
Pool (𝑚 × 𝑛), s 𝑚𝑛

𝑠2
0

𝑚𝑛
𝑠2

1 𝑂 (𝑚𝑛)

leads to significant performance improvement on zkSNARK

NNs with millions of gates. ZENO circuit also introduces a

constant critical path length of 2, in contrast to the length 𝑛

in conventional circuit. This exposes parallel opportunities

that can hardly be identified in conventional circuit due to

complex dependency.

5.2 Workload-specialized Parallel Scheduler
Workload-specialized parallel scheduler identifies the par-

allel computation opportunities during circuit computation
phase and exploits these opportunities for speedup. While

NNs have parallel opportunities in the same NN layer (e.g.,
fully connected layer), NNs are also intrinsically sequen-

tial across layers where leading layer needs to be computed

before following layers. This cross-layer dependency still

hurdles paralleling zkSNARK NN computation even with

ZENO circuit that improves parallelism within NN layer.

Naively parsing the circuit at NN level still leads to heavy

overhead.

We propose a lightweight dependency-aware workload
scheduler to identify cross-layer dependency in circuit and

map parallel workloads to individual threads. We have two

major observations. First, gates in the same zkSNARK NN

layer usually can be computed independently while gates

in later layers depend on gates in leading layers. Second,

the number of gates for a NN layer is proportional to the

number of computation in this layer. To this end, we pro-

pose a three-step design. First, based on the plaintext NN

with specific layer shapes, we first count the number of ad-

dition and multiplication in each layer. For example, given

a fully connected layer with shape𝑀 × 𝑁 , there are𝑀 × 𝑁

multiplications and𝑀 × (𝑁 − 1) additions. Then, based on

this number of computation, we directly identify the gates

for each NN layer since each addition and multiplication is

mapped to exactly one gate in the circuit. Finally, we evenly

assign gates in the same layer to each thread for acceleration.

6 NN-centric System Optimization
In this section, we propose NN-centric system optimization
to further accelerate zkSNARK NN computation.

6.1 NN-inspired Computation Reuse
ZENO identifies redundant computation in zkSNARK NNs

and removes such redundancy for improving performance. In

particular, we identify two types of computation reuse oppor-

tunities – frequency-based cache service for mitigating redun-

dancy when computing a single image and batch-specialized
constraint system sharing for mitigating redundancy when

computing a batch of images.

Frequency-based Cache Service. We build a lightweight

cache service to cache computation results of frequent operand

pairs during circuit computation phase, such as public weights
and constant coefficients in average pooling. We have two

insights behind this design. First, zkSNARKNNs usually com-

pute with uint8 values since zkSNARK supports only com-

putation on finite fields (e.g., 254-bit integers). Since there
are at most 256 values for uint8, the same value appears

frequently. Second, NN weights and features usually follow

Normal distribution where many weights and features are

around zero, as widely observed in the NN algorithmic area

[31, 34]. This distribution makes many values around zero

appear frequently. To this end, cache service can improve

performance by reducing the number of expensive compu-

tations on _-bit finite fields (_ ≥ 254). Since we only apply

cache service to public data, this does not lead to security

vulnerabilities such as timing side channels.

To mitigate the runtime overhead, we adopt a two-phase

design. During the offline profiling phase, we evaluate the

plaintext NN on a small set (=100) of images and profile the

frequency of addition and multiplication operand pairs. We

rank all pairs by frequency and keep the top-k(=5) values

and the computation results in a hash table. This offline

profiling introduces negligible overhead since it is only con-

ducted once on a plaintext NN. During the online compu-

tation phase, for each weight and data pair, we first search

the pair in the hash table and reuse the results in the hash

table. In this way, we can mitigate expensive security com-

putation for a large number of weight and data pairs that

appear frequently.

Batch-specializedConstraint System Sharing. We share

the constraint system across images when using the same

ASPLOS’24, April 27–May 01, 2024, San Diego, CA, USA Boyuan Feng, Zheng Wang, Yuke Wang, Shu Yang, Yufei Ding

zkSNARK NN to process a batch of images. Our key insight

is that the constraint system is a description of the zkSNARK

NN computation. Since we usually use the same zkSNARK

NNs to process a batch of images, the same computation

applies to each image such that the constraint system can

be shared. One specific example is the accuracy scheme in

ZEN [25], where the same zkSNARK NN is used to process

𝑛(= 100) images for proving the accuracy of the zkSNARK

NN. To this end, ZENO provides a batch mode that takes

a zkSNARK NN and a batch of images. The generate and
circuit computation steps are only conducted once and the

constraint system is reused for different images, leading to

improved overall performance. In particular, in the same con-

straint system, we assign different values to input variables

according to images.

6.2 zkSNARK-aware NN Fusion
We propose zkSNARK-aware NN fusion to further reduce

the number of constraints for performance improvement.

Our key insight is that the number of constraints is pro-

portional to the number of computation in zkSNARK NNs.

While fusion has been utilized to accelerate non-zkSNARK

NNs [16, 26, 59], there are several intrinsic differences in ten-

sor fusion for zkSNARK NNs. First, fusion in non-zkSNARK

NNs usually target reducing memory access by avoiding

saving intermediate results in memory. In zkSNARK NNs,

we target reducing the number of computations which de-

cides the number of constraints and the latency of generating

zero-knowledge proofs. Second, fusion in non-zkSNARKNNs

usually fuses all element-wise computation (e.g., relu) with
convolution layers. However, many element-wise computa-

tion cannot be fused in zkSNARK NNs. For example, relu

layer cannot be fused since relu requires expensive compari-

son operator with hundreds of constraints in zkSNARK.

To this end, we propose pre-computation-based fusion to

reduce computation in zkSNARK NNs. Many NN layers in-

volve injective computation such as one-to-one scale and

addition. We can fuse such injective layers with convolution

and fully-connected layers. For example, consider a fully

connected layer 𝑌 = 𝑊𝑋 and a batch normalization layer

𝐵𝑁 (𝑌) = 𝛾 ∗ 𝑌 + 𝛽 which is an injective layer. Naive ap-

proach is to independently prove the computation of these

two layers which leads to extra constraints. Instead, we can

precompute the fused weight value 𝛾 ∗𝑊 and directly prove

the computation of (𝛾 ∗𝑊)𝑋 + 𝛽 to save constraints.

7 Evaluation
In this section, we comprehensively evaluate ZENO over

various datasets and popular NNs.

Baselines. We compare ZENO with Arkworks [4, 13],

which is the state-of-the-art zkSNARK framework andwidely

used in industry zkSNARK products [3, 15, 41]. We also com-

pare with two other representative zkSNARK frameworks,

Table 4. Neural Networks for Evaluation

Network Abbr. #FLOPs (K) Acc.(%)
ShallowNet SHAL 102 94.91

LeNetCifarSmall LCS 530 55.35

LeNetCifarLarge LCL 7,170 63.68

VggNet-16 VGG16 19,917 84.19

ResNet-18 RES18 32,355 85.45

ResNet-50 RES50 69,191 87.05

Bellman [62] and Ginger [33] for comprehensive compari-

son.

Datasets.We evaluate with two popular datasets (MNIST

and CIFAR-10) in secure deep learning field [22, 25, 29, 35,

36, 60]. MNIST [42] is a large dataset for handwritten digits

classification with 60, 000 training images and 10, 000 testing

images in gray-scale with the shape of 28×28×1. CIFAR-10
[39] is a classification dataset with 10 classes (e.g., cat and

dog). It contains 50, 000 training images and 10, 000 testing

images of shape 32 × 32 × 3.

Models.We evaluate six neural networks, as summarized

in Table 4. The evaluation of these six variants demonstrates

the performance of ZENO under diverse model sizes. In par-

ticular, ShallowNet [25] contains two fully connected layers

and one ReLU layer. LeNetCifarSmall and LeNetCifarLarge
are two variants of LeNet [43] with 5 layers but different num-

ber of computation. VggNet-16 [50], ResNet-18 [32], ResNet-50
[32] have 16, 18, and 50 NN layers, respectively. We evaluate

ShallowNet on MNIST and all other models on CIFAR-10.

Experiment Configuration. All the evaluations run on

a server with Intel(R) Xeon(R) Gold 5218 CPU @ 2.30GHz

and 503 GB DRAM.

7.1 End-to-End Evaluation
In this section, we show the end-to-end performance im-

provement fromZENO on various privacy settings. For exam-

ple, the privacy setting of private image and public weights

can be used when we only protect the user image privacy

(e.g., face image) and prove the user’s identity on a public

NN (e.g., a face recognition based door lock system). The

privacy setting of private weights and private images can

be used when we aim to protect both privacy-sensitive im-

ages (e.g., medical images) and weights (e.g., private NNs as
we discussed in §1). We skip the privacy setting of private

weights and public images since it shows similar results as

private images and public weights. We report the end-to-end

execution time summing all three phases for proof genera-

tion, including Generate, Circuit Computation, and Security
Computation. We measure the proof generation latency of a

single image with a batch size of 1.

Overall Speedup. We first show the overall speedup

when proving private images and public weights in Fig. 7.

Overall, ZENO achieves upto 8.5× speedup than Arkworks.

ZENO: A Type-based Optimization Framework for Zero Knowledge Neural Network Inference ASPLOS’24, April 27–May 01, 2024, San Diego, CA, USA

Figure 7. Overall speedup: private image & public weight. Figure 8. Overall speedup: private image & private weight.

Figure 9.Circuit computation speedup: private image & public

weight.

Figure 10. Circuit computation speedup: private image &

private weight.

Figure 11. Circuit computation speedup: convolution. Shape:

[#c_out, #c_in, kernel_width, kernel_height]
Figure 12.Circuit computation speedup: fully-connected layer.

Shape: [#c_in, #c_out]

This result shows that ZENO can significantly improve the

performance of zkSNARK NNs. We also observe that ZENO

achieves higher speedup on large NNs (e.g., 8.5× on VGG16)

than small NNs (e.g., 2.4× on SHAL). The reason is that

tensor-type driven optimization (§5) reduces the quadratic

computation complexity to linear complexity for many NN

layers (e.g., fully connected, convolution, and pool). We high-

light that we reduce the latency of ResNet-50 from 5154 sec-

onds (around 1.5 hours) to 680 seconds (around 11 minutes),

which makes it promising to construct practical zkSNARK

NNs.

We show overall speedupwhen proving private NNweights

and private images in Fig. 8. We achieve up to 2.01× speedup,

which shows the effectiveness of ZENO optimizations. We

also observe a similar trend as Fig. 7 that ZENO achieves

higher speedup on larger zkSNARK NNs. This validates the

benefits of tensor-driven optimizations in reducing the com-

putation complexity. Compared with Fig. 7, we observe a

smaller speedup. The reason is that our type-sensitive circuit

generation provides more aggressive optimization for the

setting with private weights and public images. This shows

the importance of considering privacy information (§4) when

optimizing zkSNARK NNs.

Raw Latency Comparison. We provide the raw latency

on an image in Table 5. We show latency on CPU following

popular zkSNARK frameworks. We observe a significant

latency reduction from 398 seconds to 48 seconds for VGG16.

Although this is still a gap from non-zkSNARK NNs due to

the overhead from zkSNARK security scheme such as 254-

bit finite fields instead of 8-bit integers, we are the first to

bring zkSNARK NN into the practical realm. For example,

a user may spend 8.5 seconds for lightweight models such

ASPLOS’24, April 27–May 01, 2024, San Diego, CA, USA Boyuan Feng, Zheng Wang, Yuke Wang, Shu Yang, Yufei Ding

Figure 13. Security comput. speedup from knit encoding Figure 14. Overall performance: proving n (=100) images

Figure 15. Speedup over Bellman and Ginger

Table 5. Latency measured on Intel Xeon Gold 5218 CPU.

Unit: Seconds

Model Arkworks ZENO non-zkSNARK NN
SHAL 5.1 2.1 0.2

LCS 19.6 8.5 0.8

LCL 120 15.3 1.4

VGG16 398 48 4.2

RES18 826 102 8.9

RES50 5440 680 54

as LeNet or 48 seconds for heavy models such as VGG16 to

prove his identity without revealing his face image to the

access control system. This is a significant improvement in

protecting user privacy given the wide deployment of such

systems. We note that GPUs can further accelerate zkSNARK

by an order of magnitude [27] and may reduce the zkSNARK

NN latency to millisecond-level. We leave GPU support as

future work.

7.2 Optimization Analysis
In this section, we show speedup from individual ZENO

optimizations.

Performance benefits on circuit computation step for
entire NNs.We show speedup on circuit computation step

for private images and public weights in Fig. 9. Overall, we

achieve speedup of 67.7× on average (from 15× to 150×) for
circuit computation step. This speedup increases as zkSNARK
NN size increases due to our ZENO circuit (§5.1) that reduces

quadratic complexity to linear complexity. On individual

optimizations, we observe 8.7× speedup from ZENO Circuit

(§5.1), 1.2× speedup from frequency-based cache service

(§6.1), and 6.2× speedup from workload-specialized parallel

scheduler (§5.2). These results show benefits of individual

optimizations on reducing zkSNARK NN latency.

We show speedup on circuit computation step for pri-

vate images and private weights in Fig. 10. We have sim-

ilar observations as the case in private image and public

weights. In particular, we observe 9.4× speedup on aver-

age (from 2.5× to 24.6×). On individual optimizations, we

observe 2.9× speedup from ZENO circuit, 1.1× speedup

from frequency-based cache service, and 2.9× speedup from

workload-specialized parallel scheduler. Similar to the case in

§7.1, this speedup is smaller than the case for private weights

and public images. This shows importance of privacy-type

driven optimizations (§4) that customize the circuit genera-

tion and encoding methods according to privacy types.

Performance benefits on circuit computation step at
NN layer level.We further show the circuit computation

speedup at NN layer level in Fig. 11 and Fig. 12. We focus

on the two most time consuming layers – convolution and

fully connected layers, under the privacy setting of private

images and public weights. We omit the privacy setting of

private images and private weights due to page limits. We

achieve up to 315.6× speedup on convolution layers and

10.5× speedup on fully connected layers. This result matches

up to 150× circuit computation speedup at NN level in Fig. 9.

We achieve higher speedup on convolution layers which gain

more benefit from ZENO circuit due to the larger number of

dot products. We also observe an increasing speedup on both

convolution layers and fully connected layers as the layer

size increases, thanks to the tensor-driven optimization that

reduces computation complexity of circuit computation step.

Speedup on security computation from knit encod-
ing.We show knit encoding benefits in Fig. 13. We show the

result for private weights and public images, as discussed in

§4.2. Overall, we achieve up to 3.63× speedup. The reason is

that knit encoding can effectively reduce the number of con-

straints, which decides the latency in security computation
step. We observe that speedup increases from 1.03× to 3.63×

ZENO: A Type-based Optimization Framework for Zero Knowledge Neural Network Inference ASPLOS’24, April 27–May 01, 2024, San Diego, CA, USA

as NN size increases. The reason is that, in larger zkSNARK

NNs, fully-connected, convolution, and pooling layers ac-

count for larger portion of security computation latency such

that knit encoding can bring more benefits.

Benefits from sharing when proving n (=100) images.
We show the speedup from batch-specialized constraint sys-

tem sharing (§6.1) in Fig. 14. While the latency of circuit
computation step has been significantly reduced, we can still

observe 6.5% speedup from this optimization. The reason

is that the constraint system represents the computation

procedure of a zkSNARK NN with constraints which can be

assigned different values for different images.

7.3 Compared with other Frameworks
In this section, we further compare ZENO with two other

representative general zkSNARK frameworks – Bellman

[62] and Ginger [33]. These two frameworks are general

zkSNARK framework and do not provide direct support for

zkSNARKNNs. They require constraints (Eq. 1) as inputs and

cannot automatically compile arbitrary arithmetic function

to constraints. We manually port compiled constraints from

ZENO into Bellman and Ginger and compare security com-
putation latency. We show results in Fig. 15. We demonstrate

the performance on two fully-connected layers with shape

[#in_channels, #out_channels] and two convolution layers

with shape [#out_channels, #in_channels, kernel_width, ker-
nel_height]. Overall, we observe that ZENO achieves 4.09×
speedup over Bellman and 5.26× speedup over Ginger. These

benefits come from our NN-tailored optimizations such as

privacy-aware knit encoding. Comparing across layers, we

observe 1.7× to 6.8× speedup over Bellman and 4.9× to 6×
speedup over Ginger. This result demonstrates the consistent

benefits from ZENO on various layers.

8 Discussion
Privacy-preserving NN Techniques. To protect diverse

aspects of NN privacy, many techniques have been designed.

On the training side, MPC [37, 38] enables multiple parties

to collaboratively train a NN without sharing training data.

Differential privacy [1, 5] prevents extracting sensitive in-

formation in training data (e.g., data related to a specific

person).

On the inference side, FHE [19, 21, 22] helps private com-

putation outsourcing to remote servers where other persons

cannot know the encrypted data or computation results.

Instead, zkSNARK NN [24, 25, 28, 44, 46] enables users to

generate proof on local machines which could be verified

by other persons or companies. This proof could serve as a

digital passport, as deployed in World ID.

Practical Applications of zkSNARK NNs.We envision

that zkSNARK NN will play a critical role in NN industry

given the increasing awareness and regulation of privacy.

Existing applications include World ID [18] for user identity

and Leela vs the World [40] for AI chess models. Furthermore,

we envision more applications in access control systems

where zkSNARK NNs allow users to prove their identity

without sharing face images with commercial companies.

With ZENO, a laptop can generate proof within 2.1 seconds

on a CPU which makes it possible to deploy in access control

systems. This latency can be significantly reduced by orders

of magnitudes with the help of server GPUs or even mobile

GPUs such as Jetson Nano. We leave this as future work.

We expect this application to become an industry standard

when deploying neural networks in access control systems

and more.

9 Conclusion
In this paper, we propose a ZENO (ZEro knowledge Neural
network Optimizer) framework for efficient zero-knowledge

NN inference. Specifically, we design a set of ZENO lan-

guage constructs to maintain high-level semantics and type

information while accommodating a more aggressive compi-

lation from a zkSNARK NN to a gate-level circuit. We then

propose several privacy-type driven and tensor-type driven

optimizations to further optimize the generated zkSNARK

circuit. Finally, we propose NN-centric system optimizations

to further accelerate zkSNARK NNs. Extensive experimental

results show that ZENO outperforms the state-of-the-art

zkSNARK framework across diverse applications.

10 Acknowledgment
We would like to thank Shumo Chu for helpful discussion.

We would also like to thank anonymous ASPLOS reviewers,

and our shepherd, Mingyu Gao, for helpful feedback. This

work was supported in part by NSF-2124039 and CloudBank

[47].

References
[1] Martín Abadi, Andy Chu, Ian J. Goodfellow, H. BrendanMcMahan, Ilya

Mironov, Kunal Talwar, and Li Zhang. Deep learning with differential

privacy. In CCS, pages 308–318. ACM, 2016.

[2] Scott Ames, Carmit Hazay, Yuval Ishai, andMuthuramakrishnan Venki-

tasubramaniam. Ligero: Lightweight sublinear arguments without a

trusted setup. In CCS, pages 2087–2104. ACM, 2017.

[3] Anoma. Anoma network. https://anoma.network/, 2020.
[4] arkworks. arks-snark. https://github.com/arkworks-rs/snark.
[5] Eugene Bagdasaryan, Omid Poursaeed, and Vitaly Shmatikov. Differ-

ential privacy has disparate impact on model accuracy. In NeurIPS,
pages 15453–15462, 2019.

[6] Paulo S. L. M. Barreto and Michael Naehrig. Pairing-friendly elliptic

curves of prime order. In Selected Areas in Cryptography, volume 3897

of Lecture Notes in Computer Science, pages 319–331. Springer, 2005.
[7] Eli Ben-Sasson, Iddo Bentov, Yinon Horesh, and Michael Riabzev. Scal-

able, transparent, and post-quantum secure computational integrity.

IACR Cryptol. ePrint Arch., 2018:46, 2018.
[8] Eli Ben-Sasson, Alessandro Chiesa, Michael Riabzev, Nicholas Spooner,

Madars Virza, and Nicholas P. Ward. Aurora: Transparent succinct

arguments for R1CS. In EUROCRYPT (1), volume 11476 of Lecture
Notes in Computer Science, pages 103–128. Springer, 2019.

https://anoma.network/
https://github.com/arkworks-rs/snark

ASPLOS’24, April 27–May 01, 2024, San Diego, CA, USA Boyuan Feng, Zheng Wang, Yuke Wang, Shu Yang, Yufei Ding

[9] Eli Ben-Sasson, Alessandro Chiesa, Eran Tromer, and Madars Virza.

Succinct non-interactive zero knowledge for a von neumann architec-

ture. In USENIX Security Symposium, pages 781–796, 2014.

[10] Nir Bitansky, Ran Canetti, Alessandro Chiesa, and Eran Tromer. Re-

cursive composition and bootstrapping for snarks and proof-carrying

data. In Proceedings of the Forty-Fifth Annual ACM Symposium on
Theory of Computing, STOC ’13, page 111–120, New York, NY, USA,

2013. Association for Computing Machinery.

[11] Dan Boneh, Ben Lynn, and Hovav Shacham. Short signatures from

the weil pairing. In ASIACRYPT, volume 2248, pages 514–532, 2001.

[12] Sean Bowe. Bls12-381: New zk-snark elliptic curve construction. https:
//electriccoin.co/blog/new-snark-curve/.

[13] Sean Bowe, Alessandro Chiesa, Matthew Green, Ian Miers, Pratyush

Mishra, and Howard Wu. ZEXE: enabling decentralized private com-

putation. In IEEE Symposium on Security and Privacy (S&P), 2020.
[14] Benedikt Bünz, Jonathan Bootle, Dan Boneh, Andrew Poelstra, Pieter

Wuille, and Gregory Maxwell. Bulletproofs: Short proofs for confiden-

tial transactions and more. In IEEE Symposium on Security and Privacy
(S&P), pages 315–334. IEEE Computer Society, 2018.

[15] Celo. Celo cryptocurrency. https://celo.org/, 2018.
[16] Tianqi Chen, Thierry Moreau, Ziheng Jiang, Lianmin Zheng, Eddie Q.

Yan, Haichen Shen, Meghan Cowan, Leyuan Wang, Yuwei Hu, Luis

Ceze, Carlos Guestrin, andArvind Krishnamurthy. TVM: an automated

end-to-end optimizing compiler for deep learning. In OSDI, pages 578–
594. USENIX Association, 2018.

[17] Sharan Chetlur, Cliff Woolley, Philippe Vandermersch, Jonathan Co-

hen, John Tran, Bryan Catanzaro, and Evan Shelhamer. cudnn: Efficient

primitives for deep learning. CoRR, abs/1410.0759, 2014.
[18] World Coin. Introducing world id and sdk. https://worldcoin.org/blog/

announcements/introducing-world-id-and-sdk.
[19] Meghan Cowan, Deeksha Dangwal, Armin Alaghi, Caroline Trippel,

Vincent T. Lee, and Brandon Reagen. Porcupine: A synthesizing com-

piler for vectorized homomorphic encryption. 2021.

[20] Dipankar Das, Naveen Mellempudi, Dheevatsa Mudigere, Dhiraj

Kalamkar, Sasikanth Avancha, Kunal Banerjee, Srinivas Sridharan,

Karthik Vaidyanathan, Bharat Kaul, Evangelos Georganas, Alexan-

der Heinecke, Pradeep Dubey, Jesus Corbal, Nikita Shustrov, Roma

Dubtsov, Evarist Fomenko, and Vadim Pirogov. Mixed precision train-

ing of convolutional neural networks using integer operations. In

ICLR, 2018.
[21] Roshan Dathathri, Blagovesta Kostova, Olli Saarikivi, Wei Dai, Kim

Laine, and Madan Musuvathi. EVA: an encrypted vector arithmetic

language and compiler for efficient homomorphic computation. In

PLDI, pages 546–561. ACM, 2020.

[22] Roshan Dathathri, Olli Saarikivi, Hao Chen, Kim Laine, Kristin E.

Lauter, Saeed Maleki, Madanlal Musuvathi, and Todd Mytkowicz.

CHET: an optimizing compiler for fully-homomorphic neural-network

inferencing. In PLDI, pages 142–156. ACM, 2019.

[23] Forrest Davis and Marten Van Schijndel. Recurrent neural network

language models always learn english-like relative clause attachment.

In ACL. Association for Computational Linguistics, 2020.

[24] Boxiang Dong, Bo Zhang, and Hui Wang. Veridl: Integrity verification

of outsourced deep learning services. ECML/PKDD, 2021.
[25] Boyuan Feng, Lianke Qin, Zhenfei Zhang, Yufei Ding, and Shumo Chu.

Zen: Efficient zero-knowledge proofs for neural networks. Cryptology

ePrint Archive, Report 2021/087, 2021. https://eprint.iacr.org/2021/087.
[26] Boyuan Feng, Yuke Wang, Tong Geng, Ang Li, and Yufei Ding. APNN-

TC: accelerating arbitrary precision neural networks on ampere GPU

tensor cores. In SC, pages 37:1–37:13. ACM, 2021.

[27] filecoin project. Bellperson. https://github.com/filecoin-project/
bellperson.

[28] Zahra Ghodsi, Tianyu Gu, and Siddharth Garg. Safetynets: Verifiable

execution of deep neural networks on an untrusted cloud. In NIPS,
pages 4672–4681, 2017.

[29] Ran Gilad-Bachrach, Nathan Dowlin, Kim Laine, Kristin E. Lauter,

Michael Naehrig, and John Wernsing. Cryptonets: Applying neural

networks to encrypted data with high throughput and accuracy. In

ICML, volume 48, pages 201–210, 2016.

[30] Jens Groth. On the size of pairing-based non-interactive arguments.

In EUROCRYPT (2), volume 9666 of Lecture Notes in Computer Science,
pages 305–326. Springer, 2016.

[31] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Delving

deep into rectifiers: Surpassing human-level performance on imagenet

classification. In ICCV, pages 1026–1034. IEEE Computer Society, 2015.

[32] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep

residual learning for image recognition. In CVPR, pages 770–778. IEEE
Computer Society, 2016.

[33] Horizen. ginger-lib: a rust library for zk-snarks. https://github.com/
HorizenOfficial/ginger-lib.

[34] Sergey Ioffe and Christian Szegedy. Batch normalization: Accelerating

deep network training by reducing internal covariate shift. In ICML,
volume 37 of JMLR Workshop and Conference Proceedings, pages 448–
456. JMLR.org, 2015.

[35] Xiaoqian Jiang, Miran Kim, Kristin E. Lauter, and Yongsoo Song. Secure

outsourced matrix computation and application to neural networks.

In CCS, pages 1209–1222. ACM, 2018.

[36] Chiraag Juvekar, Vinod Vaikuntanathan, and Anantha Chandrakasan.

GAZELLE: A low latency framework for secure neural network in-

ference. In USENIX Security Symposium, pages 1651–1669. USENIX

Association, 2018.

[37] Marcel Keller and Ke Sun. Secure quantized training for deep learning.

In ICML, volume 162 of Proceedings of Machine Learning Research,
pages 10912–10938. PMLR, 2022.

[38] Brian Knott, Shobha Venkataraman, Awni Y. Hannun, Shubho Sen-

gupta, Mark Ibrahim, and Laurens van der Maaten. Crypten: Secure

multi-party computation meets machine learning. In NeurIPS, pages
4961–4973, 2021.

[39] Alex Krizhevsky, Vinod Nair, and Geoffrey Hinton. Cifar-10 (canadian

institute for advanced research). Tech report, 2009.
[40] Modulus Labs. Leela vs the world. https://www.leelavstheworld.xyz/.
[41] O. Labs. Mina cryptocurrency. https://minaprotocol.com/, 2017.
[42] Y. Lecun, L. Bottou, Y. Bengio, and P. Haffner. Gradient-based learning

applied to document recognition. Proceedings of the IEEE, 86(11):2278–
2324, 1998.

[43] Yann Lecun, Léon Bottou, Yoshua Bengio, and Patrick Haffner.

Gradient-based learning applied to document recognition. In Pro-
ceedings of the IEEE, pages 2278–2324, 1998.

[44] Seunghwa Lee, Hankyung Ko, Jihye Kim, and Hyunok Oh. vcnn:

Verifiable convolutional neural network. IACR Cryptol. ePrint Arch.,
2020:584, 2020.

[45] R. Lidl, H. Niederreiter, P.M. Cohn, G.C. Rota, B. Doran, Cambridge Uni-

versity Press, P. Flajolet, M. Ismail, T.Y. Lam, and E. Lutwak. Finite
Fields. Number v. 20, pt. 1 in EBL-Schweitzer. Cambridge University

Press, 1997.

[46] Tianyi Liu, Xiang Xie, and Yupeng Zhang. zkcnn: Zero knowledge

proofs for convolutional neural network predictions and accuracy. In

CCS, pages 2968–2985. ACM, 2021.

[47] Michael L. Norman, Vince Kellen, Shava Smallen, Brian DeMeulle,

Shawn Strande, Ed Lazowska, Naomi Alterman, Rob Fatland, Sarah

Stone, Amanda Tan, Katherine A. Yelick, Eric Van Dusen, and James

Mitchell. Cloudbank: Managed services to simplify cloud access for

computer science research and education. In Joseph Paris, Jackie

Milhans, Betsy Hillery, Sharon Broude Geva, Patrick Schmitz, and

Robert S. Sinkovits, editors, PEARC ’21: Practice and Experience in
Advanced Research Computing, Boston, MA, USA, July 18-22, 2021, pages
45:1–45:4. ACM, 2021.

[48] Bryan Parno, Jon Howell, Craig Gentry, and Mariana Raykova. Pinoc-

chio: Nearly practical verifiable computation. In IEEE Symposium on

https://electriccoin.co/blog/new-snark-curve/
https://electriccoin.co/blog/new-snark-curve/
https://celo.org/
https://worldcoin.org/blog/announcements/introducing-world-id-and-sdk
https://worldcoin.org/blog/announcements/introducing-world-id-and-sdk
https://eprint.iacr.org/2021/087
https://github.com/filecoin-project/bellperson
https://github.com/filecoin-project/bellperson
https://github.com/HorizenOfficial/ginger-lib
https://github.com/HorizenOfficial/ginger-lib
https://www.leelavstheworld.xyz/
https://minaprotocol.com/

ZENO: A Type-based Optimization Framework for Zero Knowledge Neural Network Inference ASPLOS’24, April 27–May 01, 2024, San Diego, CA, USA

Security and Privacy, pages 238–252. IEEE Computer Society, 2013.

[49] Herbert Robbins and Sutton Monro. A Stochastic Approximation

Method. The Annals of Mathematical Statistics, 22(3):400 – 407, 1951.

[50] Karen Simonyan and Andrew Zisserman. Very deep convolutional

networks for large-scale image recognition. In ICLR, 2015.
[51] Paul Valiant. Incrementally verifiable computation or proofs of knowl-

edge imply time/space efficiency. In Ran Canetti, editor, Theory of
Cryptography, pages 1–18, Berlin, Heidelberg, 2008. Springer Berlin
Heidelberg.

[52] Riad S. Wahby, Ioanna Tzialla, Abhi Shelat, Justin Thaler, and Michael

Walfish. Doubly-efficient zksnarks without trusted setup. In IEEE
Symposium on Security and Privacy, pages 926–943. IEEE Computer

Society, 2018.

[53] Jonathan Wang. Bn254 for the rest of us. https://hackmd.io/@jpw/
bn254.

[54] Xin Eric Wang, Vihan Jain, Eugene Ie, William Yang Wang, Zornitsa

Kozareva, and Sujith Ravi. Environment-agnostic multitask learning

for natural language grounded navigation. In ECCV, 2020.
[55] J. Wu, C. Leng, Y. Wang, Q. Hu, and J. Cheng. Quantized convolu-

tional neural networks for mobile devices. In 2016 IEEE Conference
on Computer Vision and Pattern Recognition (CVPR), pages 4820–4828,
2016.

[56] Tiancheng Xie, Jiaheng Zhang, Yupeng Zhang, Charalampos Papa-

manthou, and Dawn Song. Libra: Succinct zero-knowledge proofs

with optimal prover computation. In CRYPTO (3), volume 11694 of

Lecture Notes in Computer Science, pages 733–764. Springer, 2019.
[57] Zhaohui Yang, YunheWang, Kai Han, Chunjing Xu, Chao Xu, Dacheng

Tao, and Chang Xu. Searching for low-bit weights in quantized neural

networks. In Hugo Larochelle, Marc’Aurelio Ranzato, Raia Hadsell,

Maria-Florina Balcan, and Hsuan-Tien Lin, editors, Advances in Neu-
ral Information Processing Systems 33: Annual Conference on Neural
Information Processing Systems 2020, NeurIPS 2020, December 6-12, 2020,
virtual, 2020.

[58] Ritchie Zhao, Yuwei Hu, Jordan Dotzel, Christopher De Sa, and Zhiru

Zhang. Improving neural network quantization without retraining

using outlier channel splitting. In ICML, volume 97 of Proceedings of
Machine Learning Research, pages 7543–7552. PMLR, 2019.

[59] Lianmin Zheng, Chengfan Jia, Minmin Sun, Zhao Wu, Cody Hao

Yu, Ameer Haj-Ali, Yida Wang, Jun Yang, Danyang Zhuo, Koushik

Sen, Joseph E. Gonzalez, and Ion Stoica. Ansor: Generating high-

performance tensor programs for deep learning. In OSDI, pages 863–
879. USENIX Association, 2020.

[60] Yuqing Zhu, Xiang Yu, Manmohan Chandraker, and Yu-Xiang Wang.

Private-knn: Practical differential privacy for computer vision. In

CVPR, June 2020.
[61] B. Zhuang, L. Liu, M. Tan, C. Shen, and I. Reid. Training quantized neu-

ral networks with a full-precision auxiliary module. In 2020 IEEE/CVF
Conference on Computer Vision and Pattern Recognition (CVPR), pages
1485–1494, 2020.

[62] zkcrypto. Bellman. https://github.com/zkcrypto/bellman.

https://hackmd.io/@jpw/bn254
https://hackmd.io/@jpw/bn254
https://github.com/zkcrypto/bellman

	Abstract
	1 Introduction
	2 Related Work and Motivation
	2.1 zkSNARK
	2.2 zkSNARK Neural Networks
	2.3 Opportunities and Challenges

	3 ZENO Language Construct
	4 Privacy-type Driven Optimization
	4.1 Privacy-adaptive Circuit Generation
	4.2 Privacy-aware Knit Encoding

	5 Tensor-type Driven Optimization
	5.1 ZENO Circuit for Efficient IR
	5.2 Workload-specialized Parallel Scheduler

	6 NN-centric System Optimization
	6.1 NN-inspired Computation Reuse
	6.2 zkSNARK-aware NN Fusion

	7 Evaluation
	7.1 End-to-End Evaluation
	7.2 Optimization Analysis
	7.3 Compared with other Frameworks

	8 Discussion
	9 Conclusion
	10 Acknowledgment
	References

