
TC-GNN: Bridging Sparse GNN Computation
and Dense Tensor Cores on GPUs

Yuke Wang, Boyuan Feng, Zheng Wang,
Guyue Huang, Yufei Ding

Department of Computer Science
University of California, Santa Barbara

2023 USENIX Annual Technical Conference

Graphs are Everywhere, GNNs are Useful Hammer!

Social Networks Financial Services

Image Credit: Google

Power Grid Molecular Biology
7/10/23 2Image Credit: Google

Background

• Basic computation in GNNs.

• Graph Neural Network Basics.

• Neighbor aggregation (SpMM-like).

• Edge feature computation (SDDMM-like).

Graph Neural Network Basics.

Basic computation in GNNs.

7/10/23 3

• GPU Tensor Cores (TCs).

Background

• Programming of TCs.

• TC supports the compute primitive of
D = A × B + C.

• Matrix tile A, B and C are certain precision
(e.g., tf-32, fp-16)

• cuBLAS cublasSgemmEX APIs with limited
precision option (e.g., INT8, FP16)

• Warp Matrix Multiply-Accumulate (WMMA)
(nvcuda::wmma) API in CUDA C.

7/10/23 4

Challenges

• Existing deep-learning frameworks are
optimized for dense neural network operations.

• Existing major sparse computation kernels
(e.g., cuSPARSE) leverage CUDA cores.

• Existing Tensor-Core based kernels (e.g.,
Block-SpMM) rely on rigid input sparsity pattern
(e.g., block sparsity).

Lack of efficient support for sparse
graph neural network computation.

Underutilize the latest GPU with
new hardware feature that can offer
high-performance computation.

Limits its applicability towards
different sparse inputs settings.

7/10/23 5

Motivations

Dense MM on CUDA core

Sparse MM on CUDA core

GNNs fit GPUs

Apply separate optimization on one
direction only would hardly work

GPUs fit GNNs

7/10/23 6

How could we match the sparse GNN
workload with GPUs to achieve high
computation efficiency and better

utilization of GPU resources?

Question:

7/10/23 7

TC-GNN Overview

• The first TC-based GNN
acceleration design on GPUs.

• At the input level technique.

• At the kernel level innovation.

• At the framework level design.

“Let the input sparse graph fit the
dense computation of Tensor Core”

Sparse graph translation (SGT)
technique condense non-zero
elements from sparse tiles into a
fewer number of “dense” tiles

TC-GNN exploits the benefits
of CUDA core and tensor core
collaboration.

TC-GNN integrates with the
popular Pytorch framework.

7/10/23 8

Overall Design

7/10/23 9

Overall Design

7/10/23 10

Load TC-GNN
Module

Load graphs by
TC-GNN

Preprocess graphs
by TC-GNN

Sparse Graph Translation

Row Window

7/10/23 11

Adjacency
Matrix A

Em
bedding

X

Updated
Embedding X

Condensed Row Window

Sparse Graph Translation 1. Fewer number of iterations for
Calling TC WMMA primitives.

2. Fewer number of dense row access
for node embedding vector.

3. Lower Shared Memory Usage due to
more condensed tiles loading.

7/10/23 12

TC-aware
Sparse Graph
Translation

1

2

7/10/23 13

3

TC-optimized Dataflow

TC-Optimized Dataflow Design for (a) Neighbor Aggregation and (b) Edge Feature Computing in GNNs

7/10/23 14

TC-tailored SDDMMTC-tailored SpMM

Warp

Block

7/10/23 15

Warp

Block

Evaluation

• Baseline:
• Deep Graph Library (DGL)
• PyTorch Geometric (PyG)

• GNN model:
• GCN (Graph Convolutional Network)
• AGNN (Attention-based GNN)

• Platform:
• A desktop server with 8-core 16-thread

Intel Xeon Silver 4110 CPU (64GB host memory)
and NVIDIA RTX3090 GPU (24GB device memory)

7/10/23 16

End-to-end Performance: DGL & PyG

Speedup over (a) DGL and (b) PyG on GCN and AGNN.

Avg: 1.70X

7/10/23 17

Operator Performance (dgl.op)

• SpMM (dgl.op.copy_u_sum) • SDDMM (dgl.op.u_dot_v)

Avg: 1.50X Avg: 6.98X

7/10/23 18

Kernel Performance (cuSPARSE)

• SpMM w.r.t cuSPARSE with different embedding dimension. (GFLOPS)

Avg: 1.23X

7/10/23 19

Future Works

• GPU-accelerated Preprocessing.
• Current version is based on CPU + OpenMP parallel.
• Intra-warp/block sorting for variable length edge list is needed (may use CUB library

for fixed-length array sorting + padding).

• Support/optimization for multiple precision TC.
• Current version is using TF32 on Ampere with WMMA shape of 16x8x16.
• Adaptive optimization for different inputs settings (graph/dimension) when multiple

WMMA shape available (e.g., FP16 with 16x8x8 and 16x8x16).

• Kernel Fusion with other layers.
• Current version focuses on training.
• More fusion operation in inference, such as Graphconv+BatchNorm.

7/10/23 20

Thank You

https://github.com/YukeWang96/TC-GNN_ATC23.git

yuke_wang@cs.ucsb.edu

7/10/23 21

https://github.com/YukeWang96/TC-GNN_ATC23.git
mailto:yuke_wang@cs.ucsb.edu

