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Graphs are Everywhere, GNNs are Useful Hammer!

Social Networks Financial Services
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Background

• Basic computation in GNNs.

• Graph Neural Network Basics.

• Neighbor aggregation (SpMM-like).

• Edge feature computation (SDDMM-like).

Graph Neural Network Basics.

Basic computation in GNNs.
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• GPU Tensor Cores (TCs).

Background

• Programming of TCs. 

• TC supports the compute primitive of 
D = A × B + C.

• Matrix tile A, B and C are certain precision 
(e.g., tf-32, fp-16)

• cuBLAS cublasSgemmEX APIs with limited 
precision option (e.g., INT8, FP16)

• Warp Matrix Multiply-Accumulate (WMMA) 
(nvcuda::wmma) API in CUDA C.
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Challenges

• Existing deep-learning frameworks are 
optimized for dense neural network operations.

• Existing major sparse computation kernels 
(e.g., cuSPARSE) leverage CUDA cores.

• Existing Tensor-Core based kernels (e.g., 
Block-SpMM) rely on rigid input sparsity pattern 
(e.g., block sparsity).

Lack of efficient support for sparse 
graph neural network computation.

Underutilize the latest GPU with 
new hardware feature that can offer  
high-performance computation.

Limits its applicability towards 
different sparse inputs settings.
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Motivations

Dense MM on CUDA core

Sparse MM on CUDA core

GNNs fit GPUs

Apply separate optimization on one 
direction only would hardly work 

GPUs fit GNNs
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How could we match the sparse GNN 
workload with GPUs to achieve high 
computation efficiency and better 

utilization of GPU resources?

Question:  
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TC-GNN Overview

• The first TC-based GNN 
acceleration design on GPUs. 

• At the input level technique.  

• At the kernel level innovation.

• At the framework level design. 

“Let the input sparse graph fit the 
dense computation of Tensor Core”

Sparse graph translation (SGT) 
technique condense non-zero 
elements from sparse tiles into a 
fewer number of “dense” tiles

TC-GNN exploits the benefits 
of CUDA core and tensor core 
collaboration. 

TC-GNN integrates with the 
popular Pytorch framework.
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Overall Design
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Overall Design
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Load TC-GNN 
Module

Load graphs by 
TC-GNN

Preprocess graphs 
by TC-GNN



Sparse Graph Translation

Row Window
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Sparse Graph Translation 1. Fewer number of iterations for 
Calling TC WMMA primitives.

2. Fewer number of dense row access 
for node embedding vector.

3. Lower Shared Memory Usage due to 
more condensed tiles loading.
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TC-aware 
Sparse Graph 
Translation

1

2
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TC-optimized Dataflow

TC-Optimized Dataflow Design for (a) Neighbor Aggregation and (b) Edge Feature Computing in GNNs
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TC-tailored SDDMMTC-tailored SpMM

Warp

Block
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Evaluation

• Baseline: 
• Deep Graph Library (DGL)
• PyTorch Geometric (PyG)

• GNN model: 
• GCN (Graph Convolutional Network)
• AGNN (Attention-based GNN)

• Platform: 
• A desktop server with 8-core 16-thread 

Intel Xeon Silver 4110 CPU (64GB host memory) 
and NVIDIA RTX3090 GPU (24GB device memory)
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End-to-end Performance: DGL & PyG

Speedup over (a) DGL and (b) PyG on GCN and AGNN.

Avg: 1.70X
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Operator Performance (dgl.op)

• SpMM (dgl.op.copy_u_sum) • SDDMM (dgl.op.u_dot_v)

Avg: 1.50X Avg: 6.98X
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Kernel Performance (cuSPARSE)

• SpMM w.r.t cuSPARSE with different embedding dimension. (GFLOPS)

Avg: 1.23X

7/10/23 19



Future Works

• GPU-accelerated Preprocessing.
• Current version is based on CPU + OpenMP parallel.
• Intra-warp/block sorting for variable length edge list is needed (may use CUB library 

for fixed-length array sorting + padding).

• Support/optimization for multiple precision TC.
• Current version is using TF32 on Ampere with WMMA shape of 16x8x16.
• Adaptive optimization for different inputs settings (graph/dimension) when multiple 

WMMA shape available (e.g., FP16 with 16x8x8 and 16x8x16).

• Kernel Fusion with other layers.
• Current version focuses on training.
• More fusion operation in inference, such as Graphconv+BatchNorm.
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Thank You

https://github.com/YukeWang96/TC-GNN_ATC23.git

yuke_wang@cs.ucsb.edu
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