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Diverse Convolutions in CNNs
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C h a I I e n ges * Derived from the DW+PW design for standard convolution

replacement. The more effective DSC schemes that can
potentially deliver better accuracy and model size trade-offs
> First, there are limited DSC designs to balance still remain uncovered.
accuracy performance and the size of

. * For example, we can further reduce the computation cost and
computation/parameters.

parameter size by combining the group convolution (GC)
(dividing the input and output channel into the same number
of groups and only applying standard convolution within each

group) with PW.

* Rely on the deep-learning infrastructure with standard/group
convolutions for their factorized kernel implementation.

* For example, the DW convolution can be expressed as the

» Second, there is a lack of efficient implementation extreme case of the GC with the number of groups equal the
! input channels, while the PW convolution can be expressed as

support for new factorized kernels. another special case of standard convolution withthe 1 x 1
kernel spatial dimension.

* Therefore, the better factorized kernel that may bring better
accuracy and lower computation and memory costs but not in
the above categories cannot leverage the existing convolutional
primitives for an effective implementation



Contributions

> A novel Sliding-channel Convolution (SCC) design. » Seamless integration with the original
e Balance the accuracy performance and the Pytorch framework.
reduction of computation and memory cost. * Drop-in replacement of the existing
* Enormous design exploration space with DSCs to facilitate the training and
parameterized design strategy. inference of an end-to-end fashion.

» Extensive Experiments.
* Better accuracy and lower
computation/memory cost compared
with the existing DSC.

» An optimized GPU-implementation tailored for
SCC design.
e Qutput-centric forward and input-centric
backward optimization
* Optimization based on the convolutional
specialty (cyclic channel) of its filters.



Comparison with existing kernels
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TABLE I: Comparison among SCC, PW, and GPW.

Convolution | FLOPs Params. Acc.
PWT High High  High
GPW* Low Low Low
SCC Low Low High

T: PW can be seen as SCC with 1 group with 100%
channel overlapping of adjacent filters.
*: GPW can be seen as SCC with m groups with
0% channel overlapping of adjacent filters. m is a

parameter that can be determined by users.



Pytorch-based SCC Design
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Optimized CUDA SCC Kernel
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Channel-cyclic Optimizatio
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Fig. 6: Case study of cyclic-channel optimization on Pytorch-
based implementations for C;,, = 4, cg = 2, co = 50%.
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Algorithm 1: Compute channel indexes of one cycle.

channel_map = {} ;

group_width = input_channel//num_groups;

start,end = 0, group_w:idth;

start_v, end_v = start, end,

cyclic_dist = 0;

for oid = 0; oid < output_channel; oid + + do

item = (start, end);

if item not in channel_map then
channel_map.add(item);
cyclic_dist + +;

end

else

| break;

end

start_v = end_v — int(overlap * group_width);

end_v = start_v + group_width;

start = start_v % input_channel,

18 end = end_v % input_channel,

19 end
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Algorithm 2: DSXplore Channel-cyclic Optimization

thread_id = blockIdx.x *x blockDim.x + threadldx.x;
opt_channel_id = get_output_channel(thread_id);
idx = output_channel_id % cyclic_dist;

start, end = channel_maplidzx];
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Experiment: Accuracy

TABLE II: Accuracy comparison of CNNs on CIFAR-10.

Model Implementation MFPLOS Param. (M) Acc. (%)
VOGIS  poilore 9439 08sM_ 9260
VGG e 142 LM 927
MobileNet il 459 lem 920
ReNel$ e aowes  0SaM oast
ReNeSO il Lo 1281M 9567

TABLE III: Accuracy comparison (ImageNet) for ResNet50.

Network  MFLOPs  Param. Acc.(%)

Origin 4130 23.6TM 76.56
DSXplore 2550 14.34M 7591




Experiment: Accuracy (Cont’d)

TABLE IV: Comparison of different settings on MobileNet.

Network MFLOPs Param. Acc.(%)

Baseline (DW+PW) 67.31 3.19M 92.05

DW+GPW-cg2 45.29 1.63M  90.11
DW+GPW-cg4 34.28 0.84M  88.88
DW+GPW-cg8 28.78 0.45M  82.69

DW+SCC-cg2-c025% 45.29 1.63M  92.02
DW+SCC-cg2-c050% 45.29 1.63M 91.36
DW+SCC-cg4-c025% 34.28 0.84M  90.63
DW+SCC-cg4-c050% 34.28 0.84M  90.60
DW+SCC-cg8-c025% 28.78 0.45M  88.92
DW+SCC-cg8-¢050% 28.78 0.45M 89.23




Experiment: Performance
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Fig. 7: Runtime performance comparison on CIFARI10. Note that speedup is normalized w.r.t. Pytorch-Base Implementation.
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Fig. 8: Runtime performance comparison on ImageNet. Note that speedup is normalized w.r.t. Pytorch-Opt Implementation.
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Experiment: Additional Studies (cont’d)
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Fig. 9: Back-propagation optimization.
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Fig. 10: Channel-cyclic optimization.



Experiment: Additional Studies (con’d)
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Fig. 11: The performance impact of the number of groups (cg).

Note that we set co = 50% and the runtime is normalized w.r.t the
performance at cg = 1.
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Fig. 12: The performance impact of the input-channel over-

lapping ratio (co). Note that we set cg = 2 and the runtime is

normalized w.r.¢ the performance at co = 10%.
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: Impact of batch size on training performance.



Thank You

Q&A

[Github] https://github.com/YukeWang96/DSXplore.git
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