DSXplore: Optimizing Convolutional Neural
Networks via Sliding-Channel Convolutions

Yuke Wang, Boyuan Feng, Yufei Ding
UC Santa Barbara, CA, USA

yuke_wang@cs.ucsb.edu

Diverse Convolutions in CNNs

I i
| g=2 s
! ———— 1
: out:
Fy :]
I
I
Fy :
cin ! H I W Cin Cln
: Con Cin | T
!
I

Input Feature Map

(a) Standard (b) PW (c) GC (cg=2)

(e) GPW (cg-Z)

Cout

Output Feature Map

C h a I I e n ges * Derived from the DW+PW design for standard convolution

replacement. The more effective DSC schemes that can
potentially deliver better accuracy and model size trade-offs
> First, there are limited DSC designs to balance still remain uncovered.
accuracy performance and the size of

. * For example, we can further reduce the computation cost and
computation/parameters.

parameter size by combining the group convolution (GC)
(dividing the input and output channel into the same number
of groups and only applying standard convolution within each

group) with PW.

* Rely on the deep-learning infrastructure with standard/group
convolutions for their factorized kernel implementation.

* For example, the DW convolution can be expressed as the

» Second, there is a lack of efficient implementation extreme case of the GC with the number of groups equal the
! input channels, while the PW convolution can be expressed as

support for new factorized kernels. another special case of standard convolution withthe 1 x 1
kernel spatial dimension.

* Therefore, the better factorized kernel that may bring better
accuracy and lower computation and memory costs but not in
the above categories cannot leverage the existing convolutional
primitives for an effective implementation

Contributions

> A novel Sliding-channel Convolution (SCC) design. » Seamless integration with the original
e Balance the accuracy performance and the Pytorch framework.
reduction of computation and memory cost. * Drop-in replacement of the existing
* Enormous design exploration space with DSCs to facilitate the training and
parameterized design strategy. inference of an end-to-end fashion.

» Extensive Experiments.
* Better accuracy and lower
computation/memory cost compared
with the existing DSC.

» An optimized GPU-implementation tailored for
SCC design.
e Qutput-centric forward and input-centric
backward optimization
* Optimization based on the convolutional
specialty (cyclic channel) of its filters.

Comparison with existing kernels

Cjy0 Cy1 Cp2 Cp3

Cout 0 (Filterg) ‘ ' ‘ ‘
Cout 1 (Filtery) ‘ ‘ ‘ ‘
Cout2 (Filters) ‘ ‘ ‘ ‘
e @ @ @ @

(a) PW

CinO Cin1 Ci112 Cin3

0000

TABLE I: Comparison among SCC, PW, and GPW.

Convolution | FLOPs Params. Acc.
PWT High High High
GPW* Low Low Low
SCC Low Low High

T: PW can be seen as SCC with 1 group with 100%
channel overlapping of adjacent filters.
*: GPW can be seen as SCC with m groups with
0% channel overlapping of adjacent filters. m is a

parameter that can be determined by users.

Pytorch-based SCC Design

(1] 2] © 4]

g Indexing Extracting Convolution Concatnating

(3

Concatnating

Convolution

(a) Channel-Stack

Optimized CUDA SCC Kernel

Y

| *

g W3 | W3

{ | e CH-3 el |
<«—— Conflict update Element-wise g Element-wise
<— Non-Conflict update multiplication ® Accumulation

e GPU-thread

=4

A

cyclic_dist

Channel-cyclic Optimizatio

Ci{lz Cin?’ c,0 C;,1 Cy2 Ci3 €4 Ciy5
; D Couto . 7 Couto
‘ ’ Caut1 ™
‘ . Cout2 ‘él< . ‘ . Courl
_______________‘__77_____,__ Caut3 ; Zi . . Coutz
: i L I G £ |
O é Courd S O O (‘ E €3
' Cout5 | E
O O E C::i6 O O ‘ E Coutt

® c.

...........................

(a) C;,, = 4,cg=2,c0 =50%

Input Tensor

Tensor Indexing
and Slicing ([-

Concatenation
Weights
fC
T

Fig. 6: Case study of cyclic-channel optimization on Pytorch-
based implementations for C;,, = 4, cg = 2, co = 50%.

ns

Algorithm 1: Compute channel indexes of one cycle.

channel_map = {} ;

group_width = input_channel//num_groups;

start,end = 0, group_w:idth;

start_v, end_v = start, end,

cyclic_dist = 0;

for oid = 0; oid < output_channel; oid + + do

item = (start, end);

if item not in channel_map then
channel_map.add(item);
cyclic_dist + +;

end

else

| break;

end

start_v = end_v — int(overlap * group_width);

end_v = start_v + group_width;

start = start_v % input_channel,

18 end = end_v % input_channel,

19 end

TS - N T O JCR SR

e e e
N QN N R W N =

Algorithm 2: DSXplore Channel-cyclic Optimization

thread_id = blockIdx.x *x blockDim.x + threadldx.x;
opt_channel_id = get_output_channel(thread_id);
idx = output_channel_id % cyclic_dist;

start, end = channel_maplidzx];

BW N -

Experiment: Accuracy

TABLE II: Accuracy comparison of CNNs on CIFAR-10.

Model Implementation MFPLOS Param. (M) Acc. (%)
VOGIS poilore 9439 08sM_ 9260
VGG e 142 LM 927
MobileNet il 459 lem 920
ReNel$ e aowes 0SaM oast
ReNeSO il Lo 1281M 9567

TABLE III: Accuracy comparison (ImageNet) for ResNet50.

Network MFLOPs Param. Acc.(%)

Origin 4130 23.6TM 76.56
DSXplore 2550 14.34M 7591

Experiment: Accuracy (Cont’d)

TABLE IV: Comparison of different settings on MobileNet.

Network MFLOPs Param. Acc.(%)

Baseline (DW+PW) 67.31 3.19M 92.05

DW+GPW-cg2 45.29 1.63M 90.11
DW+GPW-cg4 34.28 0.84M 88.88
DW+GPW-cg8 28.78 0.45M 82.69

DW+SCC-cg2-c025% 45.29 1.63M 92.02
DW+SCC-cg2-c050% 45.29 1.63M 91.36
DW+SCC-cg4-c025% 34.28 0.84M 90.63
DW+SCC-cg4-c050% 34.28 0.84M 90.60
DW+SCC-cg8-c025% 28.78 0.45M 88.92
DW+SCC-cg8-¢050% 28.78 0.45M 89.23

Experiment: Performance

11.0 10.0
10.0 9.0
= 90 —~ 8.0
x §I.g X 70
o 7. 2 6.0
S 6.0 3 5.0
o 50 ® 40
8 4.0 2 3.0
@ 39 » 20
1.0 I I I 1.0
0.0 0.0
VGG16 VGG19 MobileNet ResNet18 ResNet50 VGG16 VGG19 MobileNet ResNet18 ResNet50

cg=2, co=50% Pytorch-Opt (x) = cg=2, co=50% DSXplore (x) cg=2, co=25% Pytorch-Opt (x) =cg=2, co=25% DSXplore (x)

cg=4, co=50% Pytorch-Opt (x) = cg=4, co=50% DSXplore (x) cg=2, co=50% Pytorch-Opt (x) " cg=2, co=50% DSXplore (x)

cg=8, co=50% Pytorch-Opt (x) ®cg=8, co=50% DSXplore (x) cg=2, co=75% Pytorch-Opt (x) ®cg=2, co=75% DSXplore (x)

Fig. 7: Runtime performance comparison on CIFARI10. Note that speedup is normalized w.r.t. Pytorch-Base Implementation.

5.0 5.0
2 4.0 2 4.0
o 3.0 o 3.0
: 3
§ 2.0 @ 2.0
o 1.0 o 1.0
/7] /7]

0.0 0.0

VGG16 VGG19 MobileNet ResNet18 ResNet50 VGG16 VGG19 MobileNet ResNet18 ResNet50
® cg=2, co=50% cg=4, co=50% ®cg=8, co=50% mcg=2, co=25% cg=2, co=50% ®cg=2, co=75%

Fig. 8: Runtime performance comparison on ImageNet. Note that speedup is normalized w.r.t. Pytorch-Opt Implementation.

BP Runtime (s)

1.0
0.9
0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1
0.0

Experiment: Additional Studies (cont’d)

VGG16 VGG19 Mobile Net ResNet18 ResNet50
= Pytorch-Base Pytorch-Opt = DSXplore-Var =DSXplore

Fig. 9: Back-propagation optimization.

w/o CC (MB) = w/ CC (MB)

o

&

= 5000 .
0 == e == |

VGG16 VGG19 MobileNet ResNet18 ResNet50

Fig. 10: Channel-cyclic optimization.

Experiment: Additional Studies (con’d)

120%

100%

80%

60% | o VGG16
a0%, | —*—VEG19 2
Mobile Net
ResNet18

—s—ResNet50

20%

0%

1 2 4 8
Number of Channel Groups (cg)

Fig. 11: The performance impact of the number of groups (cg).

Note that we set co = 50% and the runtime is normalized w.r.t the
performance at cg = 1.

140%

120%
100% -
80% 5

60% —e—VGG16

3 —e—VGG19
a0k Mobile Net
20% ResNet18
—¢— ResNet50

OOA’ 1 1 1 1 1

10% 20% 30% 40% 50% 60% 70% 80% 90%
Channel Overlaping (co)

Fig. 12: The performance impact of the input-channel over-

lapping ratio (co). Note that we set cg = 2 and the runtime is

normalized w.r.¢ the performance at co = 10%.

16 32 64

128 256 512 1024
mVGG16 Mobile Net mResNet18

: Impact of batch size on training performance.

Thank You

Q&A

[Github] https://github.com/YukeWang96/DSXplore.git

https://github.com/YukeWang96/DSXplore.git

