
GNNAdvisor: An Adaptive and Efficient Runtime
System for GNN Acceleration on GPUs

Yuke Wang, Boyuan Feng, Gushu Li,
Shuangchen Li, Lei Deng, Yuan Xie, Yufei Ding.

UC Santa Barbara

The 15th USENIX Symposium on Operating Systems Design and Implementation (OSDI '21)

Graphs are everywhere...

Social Networks Financial Services

Credict: Google Image

Molecular chemistry

Point Cloud Power Grid Molecular Biology

Graph Analystics: Goals and Methods

Ø GNN Vs. Traditional graph algorithms
(e.g., random walks).

o High classification accuracy.
o Better generality for diverse graph inputs.
o Lower computation complexity.
o Ease of parallelization.

Ø Extract more insights from graphs structure.
○ Generate the feature vectors (embeddings)

for nodes, edges, and graphs.
○ Link prediction: friend recommendation.
○ Graph prediction: drug classification.
○ Node classification: power-grid failure

detection.

GNN = +

GNN: Graph Neural Networks

GCN GraphSAGE

GNN: Graph Neural Networks

Kipf, Thomas N., Max Welling. Semi-supervised
classification with graph convolutional networks. ICLR’17

Hamilton et al. Inductive Representation
Learning on Large Graphs. NeurIPS’17

Existing GNN Acceleration Solutions

Ø Graph Processing Framework [Gunrock]:
o Optimizations tailored for graph algorithms.
o Missing operators for NN computation.
o Lack of programmability and portability.

Ø Deep Learning Frameworks [PyG, DGL]:
o Focusing on programmability and generality.
o Lack of efficient backend for sparse operators.
o Hard-coded designs with poor input adaptability.

Overview of GNNAdvisor

Overall, we are the first to
v Explore the benefits of input properties (e.g., GNN model architectures and input graphs).
v Give an in-depth analysis of their importance in guiding system optimizations for GPU-based

GNN computing.

Input Extraction

v Graph Information.
1. Node Degree.
Real-world graphs follow the power-
law distribution of node degrees.
2. Embedding Dimensionality.
GNN input graphs demonstrates
various node embedding size.
3. Graph community
Skewed edge distribution widely
exists many real-world graphs.

Input Extraction (cont’d)

Ø GNN model information.

o The order of neighbor aggregation
and node update.

o The tyes of aggregation method,
such as sum, mean.

GCN Layer GIN Layer

2D Workload Management

Ø Coarse-grained Neighbor Partitioning
It is a novel workload balance technique
tailored for GNN computing on GPUs. It aims
to tackle the challenge of inter-node workloads
imbalance and redundant atomic operations.

Ø Fine-grained Dimension Partitioning
It further distributes the workloads of a neighbor
group along the embedding dimension to improve
the aggregation performance.

2D Workload Management (cont’d)

Ø Warp-aligned Thread Mapping:
This is in collaborating with our neighbor
and dimension partitioning to
systematically capitalize on the
performance benefits of balanced
workloads.

Specialized Memory Optimization

Ø Community-aware Node Renumbering:
We reorder node IDs to improve the
temporal/spatial locality at the GNN aggregation
without changing the output correctness to explore
the performance benefits of graph community.

Specialized Memory Optimization (cont’d)

Ø Warp-centric Shared Memory Optimization:
We customize GPU shared memory layout according
to the block-level warp organization pattern, therefore,
significantly reducing the number of atomic operations
and global memory access.

Design Optimization

Ø Analytical Modeling:
The performance/resource analytical model of
GNNAdvisor has two variables, workload per thread
(WPT), and shared memory usage per block (SMEM).

Ø Parameter Auto Selection:
To determine the value of the neighbor-group size (ngs)
and dimension-worker (dw), we follow two steps.
Ø First, we determine the value of dw based on tpw

(thread-per-warp) and dim (embedding dimension).
Ø Second, we determine the value of ngs based on the

selected dw and the thread-per-block (tpb).

Evaluation

Ø GNN Models.
v Graph Convolutional Network (GCN):
2 layers with 16 hidden dimensions.
v Graph Isomorphism Network (GIN):
5 layers with 64 hidden dimensions.

Ø Evaluation Platform.
A server with an 8-core 16-thread Intel Xeon
Silver 4110 CPU and a Quadro P6000 GPU.
Also study on the DGX-1 system with Tesla
V100 GPU .

Evaluation (cont’d): Overall Performance

Averaged 4.03x and 2.02x speedup
in comparison with DGL on GCN

and GIN in inference.

Averaged 1.61x and 2.00x speedup
in comparison with DGL on GCN

and GIN in training.

Evaluation (cont’d): Optimization Analysis

up to 1.74x and 1.49x speedup
in GCN and GIN, respectively.

average 47.85% and 57.93%
reduction in atomic operations and

DRAM access, respectively

Evaluation (cont’d): Additional Studies

q Design flexibility for
handling different inputs.

Ø 2D workload management.
Ø Specialized memory optimization.

GNN Input propertities (e.g., graph
structure, node embedding size) for guiding
system-level optimizations.

PyTorch-based front-end design with high
programmability and portability.

√

√q Seamless integration with
the existing NN
frameworks.

q Efficient sparse kernel design
for GNN computation on
GPUs

Key Focus & Contributions

√

Thank You
Q & A

[Github] https://github.com/YukeWang96/OSDI21_AE.git

https://github.com/YukeWang96/OSDI21_AE.git

