

APNN-TC: Accelerating Arbitrary Precision Neural Network on Ampere GPU Tensor Cores Boyuan Feng*, Yuke Wang*, Tong Geng, Ang Li, Yufei Ding.

Motivation

Quantized Neural networks

- Low cost (e.g., memory & computation)
- Arbitrary precision (e.g., int2, int3)

- Suitable for NN computation, especially with Tensor Cores
- Only support a limited set of precisions (e.g., int1, int4)

Key Ideas

- Support arbitrary precision neural networks with the limited precisions on Tensor Cores
 - Utilize bit-level operations (e.g., XOR and AND)

Challenges

- Lack of mathematical emulation design
 - For supporting multiplication and addition in quantized NNs with only bitlevel operations
 - For supporting diverse input data (e.g., -1/+1 or 0/1)
- Lack of efficient implementation for arbitrary precision NN layers
 - Need to exploit data locality in our emulation workload
 - Need specialized bit operations and data organization to avoid uncoalesced memory access
- Lack of efficient NN framework designs
 - To exploit data reuse opportunity across NN layers (e.g., location of quantization layer)

Overview of APNN-TC

AP-Bit Emulation Design

• AP-Bit Operation Template Design

Cost Analysis (p-bit W and q-bit X of shape n×n)

- Bit decomposition: O((p+q)n^2) [Negligible]
- TC computation: O(pqn^3)
- Bit combination: O(pqn^2) [Negligible]

AP-Bit Emulation Design

Data Adaptive Operator Selection

Problem:

- Bit-0 and bit-1 may encode diverse values
- 1-bit weight matrix may encode -1 and 1, instead of 0 and 1
 - I.e., bit-0 -> -1, bit-1 -> 1
- Naïvely utilizing AND bit operation leads to erroneous computation results

Our design:

- Adaptively select operator based on data encoding information
- Case-I:
 - When both W and X encode 0 and 1
 - Use logical AND operation
 - Example:
 - W = [0, 1], X = [1, 1]
 - WX = popc(AND([0, 1], [1, 1]))
 - = popc([0, 1]) = 1

- Case-II:
 - When both W and X encode -1 and 1
 - Use logical XOR operation
 - Example:
 - W = [-1, 1], X = [1, 1]
 - WX = n 2*popc(XOR([0, 1], [1, 1]))
 - = n 2*popc([0, 1]) = 1
- Case-III:
 - When W encodes -1 and +1, X encodes 0 and 1
 - 1) first transform W into a vector with 0/1
 - 2) Compute with logical AND operation
 - 3) Recover the value WX with linear transformation
 - Example:
 - W = [-1,1], X = [1,0]
 - W' = (W+[1,1])/2 = [0,1]
 - WX = 2W'X [1,1]X = -1

• Arbitrary-Precision Matrix Multiplication (APMM)

• Arbitrary-Precision Convolution (APConv)

Input-aware Padding Design

Problem:

- Bit-0 and bit-1 may encode diverse values
 - E.g., weight W encodes -1 and 1 with 0 and 1
- Cannot naively padding 0 since 0 represents -1

Solution:

- Case-I: both weight and feature encode 0/1
 - Simply pad 0 for features
- Case-II: both weight and feature encode -1/1
 - Pad 1 for features
 - Use an extra counter to track the number of weight 0's outside the input image frame
- Case-III: weight encodes -1/1 and feature encodes 0/1
 - Pad 0 for features

• Performance Analysis

Performance Model:

- Consider tread-level parallelism (TLP) and compute intensity (CI)
- Given:
 - a p-bit weight matrix of shape M × K
 - a q-bit feature matrix of shape K × N
 - matrix tiling size bm × bn
- We have:

$$TLP = \frac{pM \times qN}{b_m \times b_n} \qquad CI = \frac{2 \times b_m \times b_n}{b_m + b_n}$$

Auto-tuning:

• A heuristic algorithm to find the design with largest CI while maintaining TLP

Arbitrary Precision Neural Network Design

Key insights:

- Given 32-bit output from Tensor Cores, we quantize the TC computation results before writing to global memory
- Fuse APMM/APConv with following quantization, BN, pooling and ReLU kernels to minimize global memory access
- For scalar operations (e.g., ReLU), reduce shared memory access by directly reusing values in registers

Evaluation

• APMM Performance

APMM-w5a1 APMM-w1a8 4 APMM-w6a2 APMM-w2a8 -cutlass-gemm-int1 cublas-gemm-int8 3 Speedup 1 0 512 640 Matrix Size 128 256 384 768 896 1024

(b) Over CUBLAS-GEMM-INT8.

Evaluation: APNN Inference

• APNN Inference Performance

	ImageNet-AlexNet		ImageNet-VGG		ImageNet-ResNet18	
Schemes	8 Latency	Throughput	8 Latency	Throughput	8 Latency	Throughput
CUTLASS-Single	25.22ms	3.29×10 ² fps	116.84ms	6.85×10 ¹ fps	24.02ms	5.22×10 ² fps
CUTLASS-Half-TC	14.37ms	6.21×10 ² fps	31.42ms	2.79×10 ² fps	12.52ms	1.13×10 ³ fps
CUTLASS-INT8-TC	3.78ms	2.40×10 ³ fps	23.53ms	3.51×10 ² fps	6.6ms	3.13×10 ³ fps
BNN	0.69ms	1.37×10 ⁴ fps	2.17ms	3.91×10 ³ fps	0.68ms	1.89×10 ⁴ fps
APNN-w1a2	2.87ms	3.79×10 ³ fps	7.50ms	1.07×10 ³ fps	3.66ms	4.37×10 ³ fps

Evaluation

• Overhead from bit combination and bit decomposition

Evaluation

• Speedup from Kernel Fusion

Questions?

The project is open-sourced at:

https://github.com/BoyuanFeng/APNN-TC

Artifact Available

Artifact Functional Re

Results Reproduced

17