
APNN-TC: Accelerating Arbitrary Precision Neural Network
on Ampere GPU Tensor Cores
Boyuan Feng*, Yuke Wang*, Tong Geng, Ang Li, Yufei Ding.

* indicates equal contribution
1

Motivation

Quantized Neural networks
• Low cost (e.g., memory &

computation)

• Arbitrary precision (e.g., int2, int3)

GPU Hardware
• Suitable for NN computation,

especially with Tensor Cores

• Only support a limited set of
precisions (e.g., int1, int4)

2

Key Ideas

• Support arbitrary precision neural networks with the limited
precisions on Tensor Cores
• Utilize bit-level operations (e.g., XOR and AND)

3

Challenges

• Lack of mathematical emulation design
• For supporting multiplication and addition in quantized NNs with only bit-

level operations
• For supporting diverse input data (e.g., -1/+1 or 0/1)

• Lack of efficient implementation for arbitrary precision NN layers
• Need to exploit data locality in our emulation workload
• Need specialized bit operations and data organization to avoid uncoalesced

memory access

• Lack of efficient NN framework designs
• To exploit data reuse opportunity across NN layers (e.g., location of

quantization layer)
4

Overview of APNN-TC

5

AP-Bit Emulation Design

Cost Analysis (p-bit W and q-bit X of shape n×n)
• Bit decomposition: O((p+q)n^2) [Negligible]
• TC computation: O(pqn^3)
• Bit combination: O(pqn^2) [Negligible]

• AP-Bit Operation Template Design

6

AP-Bit Emulation Design
• Data Adaptive Operator Selection

Problem:
• Bit-0 and bit-1 may encode diverse values
• 1-bit weight matrix may encode -1 and 1,

instead of 0 and 1
• I.e., bit-0 -> -1, bit-1 -> 1

• Naïvely utilizing AND bit operation leads to
erroneous computation results

Our design:
• Adaptively select operator based on data

encoding information
• Case-I:

• When both W and X encode 0 and 1
• Use logical AND operation
• Example:

• W = [0, 1], X = [1, 1]
• WX = popc(AND([0, 1], [1, 1]))
• = popc([0, 1]) = 1

• Case-II:
• When both W and X encode -1 and 1
• Use logical XOR operation
• Example:

• W = [-1, 1], X = [1, 1]
• WX = n – 2*popc(XOR([0, 1], [1, 1]))
• = n – 2*popc([0, 1]) = 1

• Case-III:
• When W encodes -1 and +1, X encodes 0 and 1
• 1) first transform W into a vector with 0/1
• 2) Compute with logical AND operation
• 3) Recover the value WX with linear

transformation
• Example:

• W = [-1,1], X = [1,0]
• W’ = (W+[1,1])/2 = [0,1]
• WX = 2W’X – [1,1]X = -1 7

Arbitrary Precision Layer Design
• Arbitrary-Precision Matrix Multiplication (APMM)

8

Arbitrary Precision Layer Design
• Arbitrary-Precision Convolution (APConv)

Channel-major Data Organization

9

Arbitrary Precision Layer Design
• Input-aware Padding Design

Problem:
• Bit-0 and bit-1 may encode diverse values

• E.g., weight W encodes -1 and 1 with 0 and 1
• Cannot naively padding 0 since 0 represents -1

Solution:
• Case-I: both weight and feature encode 0/1

• Simply pad 0 for features
• Case-II: both weight and feature encode -1/1

• Pad 1 for features
• Use an extra counter to track the number of weight 0’s outside the input image frame

• Case-III: weight encodes -1/1 and feature encodes 0/1
• Pad 0 for features

10

Arbitrary Precision Layer Design
• Performance Analysis

Performance Model:
• Consider tread-level parallelism (TLP) and compute intensity (CI)
• Given:

• a p-bit weight matrix of shape M × K
• a q-bit feature matrix of shape K × N
• matrix tiling size bm × bn

• We have:

Auto-tuning:
• A heuristic algorithm to find the design with largest CI while maintaining TLP

11

Arbitrary Precision Neural Network Design

Key insights:
• Given 32-bit output from Tensor Cores, we quantize the TC computation results

before writing to global memory
• Fuse APMM/APConv with following quantization, BN, pooling and ReLU kernels to

minimize global memory access
• For scalar operations (e.g., ReLU), reduce shared memory access by directly

reusing values in registers

12

Evaluation

13

• APMM Performance

Evaluation: APNN Inference

14

• APNN Inference Performance

Evaluation

15

• Overhead from bit combination and bit decomposition

Evaluation

16

• Speedup from Kernel Fusion

Questions?

The project is open-sourced at:

https://github.com/BoyuanFeng/APNN-TC
17

https://github.com/BoyuanFeng/APNN-TC

