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Abstract
In this paper, we identify and tackle emerging system-level
challenges in serving heterogeneous RAG workflows, char-
acterized by complex stages and diverse request patterns. We
present HedraRAG, a new system built on RAGraph, a graph-
based abstraction that exposes optimization opportunities
across stage-level parallelism, intra-request similarity, and
inter-request skewness. These opportunities are expressed
through graph transformations, including node splitting, re-
ordering, edge addition and rewiring. Transformations are
dynamically applied to wavefronts of subgraphs across con-
current requests and scheduled onto the CPU–GPU pipeline.
Experiments across a wide range of workflows demonstrate
that HedraRAG achievesmore that 1.5× and up to 5× speedup
over existing frameworks, offering a comprehensive solution
for heterogeneous RAG workload serving.

CCS Concepts: • Information systems → Search engine
architectures and scalability; • Computer systems or-
ganization→ Real-time system architecture.

Keywords: Heterogeneous RAG, LLM, Vector Search

1 Introduction
Large LanguageModels (LLMs) are fundamentally transform-
ing the landscape of the AI landscape. With their rapidly
expanding capabilities, LLMs have been widely adopted in
knowledge-intensive scenarios [8, 36], including everyday
question answering [35], engineering applications [52], and
scientific research [71]. This has created a growing demand
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Document 1

Answer: June, 1516
Document 2
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One-shot (1 retrieval, 1 generation)
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by Alexander Fleming.
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Document 1

In 1940s, a team at the University of 
Oxford purify and produce it.
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Document 2

Document 3

…… Document 4 ……

Vector
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External knowledge

LLM
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Figure 1. Heterogeneous RAG workflows bring needs for
efficient LLM and vector search coordination.

to integrate LLMs with external knowledge, containing in-
formation beyond the models’ original training cut-off.
In response to the growing need for external knowledge

integration, Retrieval-Augmented Generation (RAG) [42]
has emerged as a promising solution. It enables LLMs to
access external knowledge without the prohibitive cost of
pretraining [21, 37], while effectively reducing hallucina-
tions [73] and better preserving data privacy [67]. Early
RAG systems commonly adopt a two-stage workflow: a Re-
trieval stage that gathers context-relevant information from
external databases, followed by a Generation stage that in-
corporates the retrieved content into the prompt to produce
more accurate and grounded results.

To support this two-stage workflow, existing systems such
as LangChain [2], FlashRAG [31], and vLLM-based pipelines
[41] integrate LLM inference with a vector-based retrieval
component through hybrid CPU–GPU designs. Typically,
vector data is stored in host memory for CPU-based re-
trieval, while the GPU executes compute-intensive genera-
tion. These frameworks primarily support sequential execu-
tion of this two-stage workflow, typically combining stan-
dard LLM serving engines with vector search libraries such
as FAISS [14], to enable basic RAG functionality.
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Figure 2. The overview of HedraRAG, an LLM-Vector search co-designed system, to efficiently transform and schedule
heterogeneous RAG workflows onto the hybrid system pipeline.

Yet, recent advances in RAG techniques [5, 6, 16, 19, 24, 38,
45, 50, 51, 62] have led to increasing heterogeneity in RAG
requests, both in workload patterns and workflow structures,
beyond the prior simple two-stage pipeline (Figure 1). This
heterogeneity mainly manifests in two key dimensions. First,
both the number and duration of stages can vary signifi-
cantly across requests. The number of stages often increases
in workflows that perform multiple iterations of retrieval
and generation [6, 29], such as in multi-hop reasoning or
refinement-based RAG. Meanwhile, the duration of each
stage can fluctuate depending on factors like generation
length [6], model confidence [5], or the complexity of the
input query [38, 45]. Second, to support diverse objectives,
different tasks often adopt distinct workflow patterns by
design [19, 24, 50]. This high-level structural heterogeneity
means that a general-purpose RAG framework must flexi-
bly accommodate a wide range of task-specific workflows
without requiring system reengineering.

Although existing RAG system frameworks [2, 31, 44]
provide modular support for generation and retrieval, and
work well for earlier two-stage RAG designs, they treat the
two components as independently executed stages, lacking
tight coordination or runtime co-optimization. As a result,
dynamic and imbalanced workloads often lead to misaligned
execution and CPU-GPU hybrid system under-utilization.
To mitigate these issues, we identify three key optimiza-

tion opportunities in heterogeneous RAG workflows: across
stages, within a request, and across requests. Across stages,
generation and retrieval from different requests can be paral-
lelized to improve CPU–GPU pipeline utilization. However,
the execution models of the two stages differ significantly.
LLM generation is step-wise and benefits from dynamic
batching, while retrieval is typically a one-shot operation
that favors large static batches. These mismatches often lead
to resource imbalance and pipeline stalls, especially when the
duration of each stage varies. A coordinated system design
is required to align their execution and fully utilize available
hardware resources. Within a request, semantic similarity

across sequential stages enables reuse and approximate re-
trieval. For example, embeddings in successive retrievals or
partial generations often remain close to final outputs. Yet,
exploiting this requires handling high-dimensional embed-
dings [39] and diverse similarity patterns, demanding solu-
tions that balance efficiency and generality.Across requests,
retrievals often show skewed index access, offering GPU
caching opportunities. But limited memory, high PCIe la-
tency, and shifting access patterns make static or on-demand
caching ineffective. This calls for a dynamic, runtime-aware
caching strategy that adapts to evolving request workloads.

We propose HedraRAG, a co-designed LLM–vector search
system built to efficiently serve heterogeneous RAG work-
flows, as illustrated by Figure 2. At the core of HedraRAG
is RAGraph, a graph-based abstraction that represents di-
verse RAG workflows. HedraRAG also supports seamless
integration with existing open-source frameworks [1, 2, 44]
by exposing graph construction APIs compatible with their
workflow specifications. This effectively bridges the gap be-
tween high-level workflow heterogeneity and low-level, task-
oriented LLM and vector search backends.

RAGraph enables a unified view of workflow heterogene-
ity and facilitates runtime optimization through a set of
graph transformation operations, including node splitting,
reordering, edge addition, and dependency rewiring. This
abstraction unlocks a significantly larger optimization space
than prior stage-centric scheduling frameworks [19, 22, 53],
by exposing finer-grained structural variations and richer de-
pendency patterns. By carefully modeling and dynamically
applying these transformations, HedraRAG adapts to work-
load patterns and serving conditions at runtime, maximizing
system throughput and resource utilization.

In particular, HedraRAG introduces three key techniques
to address the system-level challenges of serving hetero-
geneous RAG requests: (1) Fine-grained sub-stage partition-
ing and dynamic batching mitigate pipeline stalls caused by
variable-length stages across requests, enabling smoother
CPU–GPU pipelining; (2) Semantic-aware reordering with
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Figure 3. Advanced RAG design and heterogeneous workflows, involving multi-round LLM-ANNS interaction.

speculative execution leverages intra-request similarity to
overlap dependent stages in complex, multi-round work-
flows; (3) Partial GPU index caching with asynchronous up-
dates captures skewed access patterns across requests and
enables efficient hybrid CPU–GPU retrieval execution.

The key contributions of this paper are:

• We introduce a novel graph-based abstraction, RA-
Graph, for representing heterogeneous RAG work-
flows, enabling unified reasoning over diverse exe-
cution patterns on hybrid CPU–GPU platforms.

• We present HedraRAG, a co-designed RAG serving
system that leverages this abstraction to support dy-
namic batching, semantic-aware execution, and adap-
tive caching across complex multi-stage workflows.

• Experimental results show that HedraRAG achieves
over 1.5× and up to 5× throughput gains compared to
state-of-the-art frameworks.

2 Background and Related Work
This section provides background on RAG workflows and
summarizes prior work across three perspectives. Section
2.1 introduces the algorithmic roles of the retrieval and gen-
eration stages. Section 2.2 summarizes system-level work to
independently optimize the retrieval and generation stages.
Section 2.3 discusses recent system efforts that begin to inte-
grate them into unified serving workflows.

2.1 Algorithmic Roles of Retrieval and Generation
RAGworkflows interleave two algorithmically distinct stages:
retrieval and generation. The retrieval stage fetches relevant
information—typically text fragments—from an external cor-
pus based on a user query, while the generation stage in-
corporates this information into the prompt to guide LLMs
toward producing responses [7, 42].
In the simplest form, RAG follows a one-shot retrieval-

then-generation pattern. However, this structure struggles
to handle complex inputs that require multi-hop reason-
ing [20, 65] or involve vague, underspecified queries. These

LLM

Vector
database

Request

engine.add_request

faiss.search

Q1 Q2 Q3

1 2 4 8 16 32 64 128 256
Batch Size

0

20

40

60

80
IVF4096 Throughput (QPS)

nprobe = 128
nprobe = 512

Figure 4. The comparison between different batching strate-
gies: continuous batching in LLMs and fixed batching in
vector search. 𝑛𝑝𝑟𝑜𝑏𝑒 represents the number of clusters in
IVF index search.

challenges have driven the evolution ofmore sophisticated al-
gorithmic structures, resulting in heterogeneous RAG work-
flows, as illustrated in Figure 3.
To address retrieval difficulty, recent designs introduce

pre-retrieval stages, such as query rewriting [4, 16, 25, 48] and
decomposition [38, 44, 45], aiming to transform user inputs
into more effective search queries. Conversely, to improve
generation quality, post-retrieval stages filter, rerank, or com-
press the retrieved content [62, 64, 69, 76] to improve contex-
tual coherence and relevance. In parallel, the workflow has
expanded beyond one-shot pattern. With increasing model
reasoning capacity [18, 47] and the emergence of agent-based
orchestration [57, 61], modern workflows incorporate multi-
step generation with chain-of-thought (CoT) [60], verifica-
tion, and feedback-guided refinement. These developments
have led to branching [5, 6], iterative [29, 49, 51, 70], and
adaptive [24, 50] workflow structures.

2.2 Independent System Support
At the system level, retrieval and generation exhibit funda-
mentally different hardware demands. The generation stage
involves LLM inference, which is highly compute-intensive
and runs exclusively on GPUs. Due to the auto-regressive
nature of decoding [55] and continuous batching across
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Figure 5. Comparison of CPU-GPU pipeline efficiency with different strategies.

sequences of varying lengths [68], generation incurs dy-
namic workloads with significant GPU memory pressure
from model weights and key–value (KV) caches.
In contrast, the retrieval stage typically runs on CPUs, as

large-scale vector indexes demand high memory capacity
beyond what GPUs can support. Documents or passages are
pre-encoded into semantic vectors using embedding models
[11, 58, 59]. At query time, similarity (e.g., L2 distance or
cosine similarity [32]) is computed between the query vector
and stored vectors, returning the top-𝑘 nearest matches.
To improve retrieval efficiency, vectors are stored in Ap-

proximate Nearest Neighbor Search (ANNS) indexes. The
Inverted File Index (IVF) [77], as used in FAISS [14], par-
titions vectors into clusters via K-Means-like training [3],
represented by centroids. At query time, the 𝑛𝑝𝑟𝑜𝑏𝑒 closest
clusters are selected, and the search is restricted to those
regions, enabling a trade-off between accuracy and speed.
IVF also enables spatial pruning techniques such as triangle
inequality filtering [12, 13, 63].

2.3 Towards Integrated Serving
While both retrieval and generation stages are individually
well-supported, recent work has begun to explore more inte-
grated approaches for serving RAG workflows. Open-source
frameworks such as LlamaIndex [44], LangChain [2], and
FlashRAG [31] expose modular components and APIs, en-
abling developers to compose retrieval–generation pipelines
through user-defined logic. However, these frameworks dis-
patch each stage to isolated backends—e.g., vLLM [41] for
LLM inference and Faiss [14] for vector search—without
runtime coordination or shared optimization.
Figure 4 illustrates the performance divergence between

these two backends. vLLM maintain stable throughput via
continuous token-level batching, which amortizes decod-
ing overhead across concurrent requests. In contrast, vector
search frameworks like Faiss benefit from larger batches

due to multi-threaded CPU execution [10], achieving higher
throughput when more concurrent queries are processed.

Recent efforts have begun to explore optimization strate-
gies across both system and algorithmic levels. At the system
level, Chameleon [27] and RAGO [26] investigate resource
scheduling and disaggregated deployment strategies. Yet,
unified runtime support for coordinating multi-stage, het-
erogeneous workflows, particularly in hybrid CPU–GPU
environments, remains largely absent. At the algorithmic
level, techniques such as RAGCache [30], PromptCache [17],
and CacheBlend [66] aim to accelerate generation by reusing
document prefixes across requests. Others including early-
terminated retrieval [30] and speculative generation from
predicted documents [28, 75], seek to decouple retrieval la-
tency from LLM execution. While effective in specific scenar-
ios, these methods often rely on workflow-specific heuristics
and sometimes sacrifice output quality for speed.

3 Motivation
This section motivates our system design by identifying
key performance challenges of serving heterogeneous RAG
workflows in practical environments. Although retrieval and
generation are individually well-supported by existing frame-
works, their composition introduces runtime bottlenecks due
to stage interleaving, request variability, and resource con-
tention. These issues are further amplified by the dynamic
and irregular structure of modern RAG workflows. To tackle
these challenges and improve overall efficiency, we identify
three concrete optimization opportunities: (1) parallelism
across independent generation and retrieval stages, (2) se-
mantic similarity within multi-turn stages, and (3) skewed
index access across multi-request retrievals.

3.1 Stage-Level Parallelism
Heterogeneous RAG workflows introduce concurrent re-
trieval and generation stages with varying numbers and
durations. A natural system-level opportunity is to pipeline
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these stages by integrating LLM inference and vector search
through asynchronous execution. However, such naive inte-
gration suffers frommismatched execution patterns between
the two components. The performance divergence between
generation and retrieval backends, previously discussed in
§ 2.3, becomes more pronounced with variable-length stages.

Figure 5 illustrates this using a HyDE [16] workflow that
summarizes knowledge about RAG, LLMs, and ML. In (a),
general RAG frameworks execute coarse-grained stages se-
quentially, leading to hardware under-utilization. In (b), naive
asynchronous integration introduces scheduling delays: for
example, Request 1’s short generation triggers an early but
long-latency search, delaying retrieval for Requests 2 and 3.
Meanwhile, Request 1’s subsequent retrieval call suffers low
throughput due to the small batch size. To address such inef-
ficiency, HedraRAG introduces fine-grained sub-stage parti-
tioning for both generation and retrieval. Shown in (c), this
partitioning eliminates the sequentiality of coarse-grained
stages to improve throughput, and mitigates batching strat-
egy mismatches to reduce single-request latency.
However, achieving balanced pipelining through equal-

length stage partitioning is non-trivial, due to workload im-
balance across both the generation and retrieval stages. To
better understand the source of imbalance, we analyze the
latency characteristics of the smallest schedulable units: de-
coding steps for generation and single-cluster searches for
retrieval. As shown in Figure 6, the latency distributions of
both decoding steps and retrieval clusters are highly non-
uniform, depending on the context length and the target clus-
ter. This further complicates static partitioning. To mitigate
such imbalance, we design a dynamic, load-aware alignment
strategy that adjusts sub-stage boundaries based on real-time
workload, enabling efficient and stall-free hybrid pipelining.

3.2 Intra-Request Semantic Similarity
Heterogeneous RAG workflows often involve multi-round
generation and retrieval [44, 51]. However, existing systems
typically treat these stages as independent requests. Such
separation results in accumulated latency and redundant
computation, while missing opportunities for cross-stage
coordination and optimization.
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Figure 7. Inter-stage and Intra-stage similarity in IRG. (a)
The distances of the current query retrieval vector to its top-
𝑘 retrieved passage embedding vectors, and to the previous
retrieval query vector. (b) The embedding vector distances
between partial generations with different prefix ratios and
the final generation result.

Our key observation is that semantic similarities naturally
emerge across stages within the same request. These arise
from the inherent coherence of generation and retrieval in
languageworkflows.We identify two types of such similarity,
illustrated through an IRG [51] workflow on open datasets:
(1) Inter-retrieval similarity:The similarity between query
embedding vectors in adjacent retrieval stages is often high,
since these queries are usually generated from the same
underlying context. As shown in Figure 7(a), the average dis-
tance between consecutive queries is smaller than between
a query and its top-5 retrieved passages. This suggests that
successive retrievals operate within similar index regions
and may even yield overlapping results.
(2) Intra-generation similarity: the step-wise nature of
LLM decoding leads to partial generations that are semanti-
cally close to the final output. As Figure 7(b) shows, using
only 22–50% of the tokens yields embeddings within the top-
1 retrieved range of the final output. This suggests that partial
generations can effectively guide subsequent retrieval.

The above observations highlight opportunities for intra-
request optimization. Rather than enforcing strict stage-by-
stage execution, we can exploit semantic locality to lower
the costs of both generation and retrieval. However, conven-
tional locality-based pruning methods [12, 13, 63] are less
effective in high-dimensional embedding spaces. To address
this, our second design introduces heuristic, semantic-aware
strategies: locality-based cluster reordering and workload-
aware speculative execution. These techniques overlap de-
pendent generation and retrieval stages, reducing serving
latency while preserving result quality.

3.3 Inter-Request Retrieval Skewness
When dealing with large external databases, the highly con-
current retrieval stages in heterogeneous RAG workflows
often leads to system-level bottlenecks, incurring higher
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overhead than generation. One potential solution is to offload
expensive vector similarity computations to the GPU. How-
ever, existing GPU-accelerated vector search engines [33, 34,
56, 74] are designed for standalone use and do not address
co-execution challenges with LLM inference.
In RAG serving on hybrid CPU–GPU environments, lim-

ited GPU memory poses a fundamental challenge. LLM infer-
ence consumes most of the GPU memory for model weights
and KV caches, leaving insufficient space to store the full
vector index. As a result, systems must load index shards on
demand from CPU memory. However, this is bottlenecked
by the limited bandwidth of PCIe [46], making such transfers
prohibitively expensive at runtime.

To address this, we leverage an important workload char-
acteristic: index access skewness. Real workloads exhibit
concentrated access to a small subset of index clusters, which
we refer to as hotspot clusters. This skewness arises because
user requests centered around similar topics or scopes tend
to generate query embeddings spatially close to a shared
subset of clusters in the index. As shown in Figure 8, the
top 20% of hotspot clusters account for over 69% of total
computation. This suggests that caching only a fraction of
the index could yield substantial acceleration.

However, hotspot clusters shift dynamically across hetero-
geneous workflows and request distributions. We therefore
introduce a partial GPU index cache with asynchronous
updates. This design enables lightweight, runtime-aware
caching of hot clusters, allowing high-throughput GPU search
while minimizing interference with ongoing LLM generation
and CPU-side retrieval.

4 HedraRAG: Method and Design
We present HedraRAG, a co-designed framework for LLM
and vector search integration, built to efficiently serve het-
erogeneous RAG requests on a CPU-GPU hybrid system.
HedraRAG abstracts user-defined RAGworkflows as a graph-
based abstraction, and enables unified optimization tech-
niques through a series of graph transformation operations.
HedraRAG extensively explores optimization opportunities

Listing 1. Construct RAG workflows with graph primitives.
1 from HedraRAG import RAGraph, START, END
2 from HedraRAG import Server
3 # HyDE-style workflow
4 g1 = RAGraph()
5 g1.add_generation(0, prompt="Generate a hypothesis
6 for {input}.", output="hypopara")
7 g1.add_retrieval(1, topk=5, query="hypopara", output="docs")
8 g1.add_generation(2, prompt="Answer {query} using {docs}.")
9 g1.add_edge(START, 0); g1.add_edge(0, 1)
10 g1.add_edge(1, 2); g1.add_edge(2, END)
11 # Multistep-style workflow
12 g2 = RAGraph()
13 g2.add_generation(0, prompt="Decompose {input} into
14 subquestions.", output="subquestion")
15 g2.add_retrieval(1, topk=2, query="subquestion",
16 output="docs")
17 g2.add_generation(2, prompt="Answer {subquestion}
18 using {docs}.")
19 g2.add_edge(START, 0); g2.add_edge(0, 1); g2.add_edge(1, 2)
20 g2.add_edge(2, lambda s: 1 if s.get("subquestion") else END)
21 # Server initiating and execution
22 s = Server(generator="Llama3-8B", index="IVF4096")
23 s.add_request("What is RAG?", g1)
24 s.add_request("Compare RAG with long-context models.", g2)

across the stage parallelism, intra-request semantic similar-
ity, and inter-request retrieval skewness, and encapsulates
the optimization techniques as graph transformations, in-
cluding node splitting, reordering, edge addition, and de-
pendency rewiring. Through dynamic graph transformation
and scheduling, HedraRAG efficiently coordinates and par-
allelizes stages across concurrent, heterogeneous requests.
Such design bridges the gap between highly variable run-
time workflows and the underlying LLM and vector search
backends, enabling robust and generalizable optimization.

4.1 RAGraph: RAG Specific Abstraction
We first introduce RAGraph, a graph-based abstraction tai-
lored for RAG workflows, to enable customizable workflow
specification and optimization. The original RAGraph con-
sists of two types of nodes: Generation nodes initiate LLM
generation with the specific prompt and inputs, while Re-
trieval nodes perform vector database search to fetch rele-
vant passages. HedraRAG provides simple graph primitives
that allow users to construct RAGraph with the target RAG
workflows, as is shown in Listing 1. Through node adding
primitives add_generation and add_retrieval, the user
can define Generation or Retrieval nodes with a customized
prompt, typically corresponding to a single stage in the RAG
workflow. add_edge connects different stages by establish-
ing edges, enabling data flow and control transitions, in-
cluding conditional branches. Such a design is compatible
with many existing RAG frameworks [1, 2], thereby enabling
seamless migration and integration.
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search time throught locality-based reordering.

Unlike existing whole-stage DAG abstractions such as
RAGO [26] and Cognify [19], RAGraph is explicitly designed
for stage-level decomposition and scheduling. It captures the
execution asymmetry between retrieval and generation: Re-
trieval nodes execute a predefined sequence of searches over
fixed index clusters with structurally bounded cost, while
Generation nodes represent prompt-based LLM inference,
realized as a dynamic, multi-step process unfolding at token
level. This design exposes fine-grained transformation oper-
ations (e.g., node splitting, reordering, dependency rewiring)
that coarse-grained abstractions cannot express.

HedraRAG further elevates system-level optimization by
formulating it as a set of graph transformation operators
over the RAGraph abstraction. These transformations, in-
cluding node splitting, reordering, and edge insertion, con-
vert the original stage-wise, sequential workflow into fine-
grained, overlappable sub-stages, enabling dynamic and par-
allel scheduling across hybrid hardware resources. Such a
graph-based abstraction overcomes the limitations of exist-
ing ad-hoc workflow optimization approaches [28, 30, 75],
providing a unified and generalizable system-level optimiza-
tion framework for heterogeneous RAG workflows.

4.2 Fine-Grained Sub-Stage Pipelining
To bridge the design gaps between LLM generation and
vector search, HedraRAG partitions both generation and
retrieval stages into fine-grained sub-stages with similar exe-
cution costs. In generation, each sub-stage comprises several
decoding steps. In retrieval, each sub-stage involves search-
ing across one or more clusters. Such partitioning follows
two key objectives: (1) By aligning the short-latency, multi-
step decoding with the long-latency, single-step retrievals,
we can enable coordinated dynamic batching across gener-
ation and retrieval stages. (2) these sub-stages serve as the
fundamental units for scheduling and execution, with each
representing a portion of a generation/retrieval stage’s work-
load. Such design enables further optimizations including
speculative execution and partial GPU indexing.

A straightforward method to partition sub-stages is to
assign a fixed number of generation steps and retrieval clus-
ters. However, such method leads to sub-stage misalignment
and workload imbalance, as both LLM generation steps and
single-cluster retrieval operations exhibit runtime workload
variation. To overcome this, we introduce a dynamic time-
budgeting method based on retrieval requests. Before exe-
cuting a sub-stage, clusters from each retrieval request are
incrementally added until a maximum time budget 𝑚𝑏 is
reached. The execution time for the sub-stage is then deter-
mined as the time cost to batch-search these clusters. The
retrieval-centric strategy is motivated by the fact that the
workload variance across retrieval clusters is substantially
higher than that of generation steps.
The configuration of 𝑚𝑏 is crucial to performance, in-

volving the tradeoff between the latency improvement of
sub-stages and the additional overhead introduced by par-
titioning and scheduling. We calculate𝑚𝑏 by modeling the
expected latency improvement Δ𝑙 :

𝑚𝑏 = argmax(Δ𝑙 ),Δ𝑙 =
𝑡Retrieval −𝑚𝑏

2
+ 𝑡Retrieval

𝑚𝑏
𝛽, (1)

where 𝛽 denotes the CPU overhead of request scheduling and
handling intermediate results. 𝑡Retrieval denotes the average
time of retrieval stages, measured at runtime. In the equation,
we assume that retrieval requests arrive evenly across all sub-
stages, so the expected wait time for the preceding retrieval
operation is reduced from 𝑡Retrieval

2 to 𝑚𝑏
2 .

In RAGraph, sub-stage partitioning is modeled via node
splitting, where coarse-grained nodes are divided into fine-
grained, sequentially dependent sub-nodes with similar costs.
Efficient CPU-GPU pipelining is enabled by concurrently
scheduling these fine-grained nodes across different requests.

4.3 Similarity-Aware Search Optimization
To further reduce the latency of RAG requests involving
multi-round generation and retrieval stages, HedraRAG lever-
ages the intra-request the semantic similarity. We first define
the optimization problem for similarity-based vector search
as follows: given two query vectors 𝑣 and 𝑣 ′, with cluster sets
𝐶 = {𝑐1, 𝑐2, ..., 𝑐𝑛𝑝𝑟𝑜𝑏𝑒 } and 𝐶′ = {𝑐′1, 𝑐′2, ..., 𝑐′𝑛𝑝𝑟𝑜𝑏𝑒 } to search.
The problem formulates as follows: Assuming their distance
satisfies 𝑑𝑣𝑣′ ≤ 𝛿 , how to leverage the search results of 𝑣 to
accelerate the search for 𝑣 ′?
Leveraging such semantic vector similarity is challeng-

ing due to the well-known curse of dimensionality [39].
Existing semantic embedding models produce vectors in
high-dimensional space (e.g. 768 for BERT [11] and 1024 for
e5_large [58]), leading to sparse distributions on the surface
of spheres. As a result, pairwise distances tend to become
nearly uniform. Traditional similarity-based optimizations,
such as those using triangle inequalities [12, 13, 63], become
significantly less effective.
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Fortunately, we find that semantic similarity still provides
good opportunities specific in the RAG context. Our experi-
mental analysis reveals three locality-based observations re-
lated to semantic similarity: (1) The search results of 𝑣 ′ tend
to be included within the search results of 𝑣 with a larger
top-𝑘 . (2) When the search results of 𝑣 are in a cluster set 𝐻𝑣 ,
the results of 𝑣 ′ also tend to be located in 𝐻𝑣 . (3) The search
results of 𝑣 ′ tend to be located in clusters of𝐶∩𝐶′. According
to the open-domain dataset results shown in Figure 9(a), up
to 33%, 52%, and 77% of retrieval queries satisfy the three
locality-based observations, respectively.
HedraRAG leverages the above observations by caching

and reusing historical search information. For each retrieval
in a request, a set of larger top-𝑘 results of 𝑣 (20 in practice)
are stored in a local cache for future reuse. The search for
𝑣 ′ is first attempted in the local cache of 𝑣 . Next, the target
cluster set 𝐶′ is reordered based on 𝐻𝑣 and 𝐶𝑣 : first search
𝐻𝑣 ∩ 𝐶′ (if any), followed by (𝐶 − 𝐻𝑣) ∩ 𝐶′ (if any), and
finally the remaining clusters. As illustrated in Figure 9(b),
such search order optimization leads to earlier termination
in ANNS by up to 28%, effectively reducing the search time.

Based on the search order optimization, HedraRAG further
exploits the early-terminating property of ANNS to enable
speculative execution. As illustrated in Figure 10. we enable
two forms of speculative execution:
Speculative Generation. When a retrieval stage is fol-

lowed by a generation stage, speculative generation can be
started using partial search results from a small subset of
clusters. This allows the following generation stage, which
would otherwise run sequentially only after the entire re-
trieval stage completes, to overlap with the remaining cluster
searches. After the retrieval completes, the final results are

compared against the partial results used by speculative
generation. If the results are identical, the speculative gen-
eration is valid, otherwise the generation must be restarted.
Since speculative generation overlaps with the retrieval, re-
generation does not add to the original latency.
Speculative Retrieval. When a generation stage is fol-

lowed by a retrieval stage, speculative retrieval can be ini-
tiated using embeddings from partially generated outputs.
The latency of speculative retrieval is overlapped with the
remaining generation stage, to provide inter-retrieval history
to guide the following real retrieval stage. The optimization
is effective when there is no preceding retrieval, or when the
interval between consecutive retrieval stages is long.

Deciding the speculative execution point in heterogeneous
RAG workflows is challenging due to unpredictable outputs
and workflow patterns. Most existing approaches [28, 30, 75]
are tailored to specificworkflows and depend on static heuris-
tics, with limitations to generalize and adapt under dynamic
serving senarios. HedraRAG introduces an adaptive specula-
tive strategy based on both workload dynamics and seman-
tic similarity. Specifically, speculative generation/retrieval
is triggered when CPU/GPU system throughput of the next
sub-stage is underutilized with 𝑇curr < 𝜏𝑇max, where 𝑇curr is
empirically estimated with the number of requests, 𝑇max is
the estimated system peak throughput. In our experiments,
we found 𝜏𝑇max attains its optimal value when the number
of requests reaches 16 for generation and 32 for retrieval.

For each sub-stage, HedraRAG selects speculative requests
until system throughput reaches threshold 𝜏 at each sub-
stage. For speculative generation, we select the retrieval
request with current top-𝑘 vectors closest to the query em-
bedding. For speculative retrieval, we select the generation
stage with minimal semantic drift 𝛿𝑠 from the previous sub-
stage. Such strategies heuristically prioritizes those with
lower speculative error rates.

In RAGraph, search order optimization and speculative ex-
ecutionmodify the dependency structure between sub-nodes.
Leveraging semantic similarity, the sub-nodes obtained are
reordered for an optimized execution sequence. Speculative
edges are inserted to mark the entry points of speculative ex-
ecution, enabling overlapping between originally sequential
sub-stages and supporting rollback upon speculation errors.

4.4 Partial GPU Indexing
Leveraging the cluster skewness described in §3.3, we can
only cache a small number of hotspot clusters to acceler-
ate most of the computations. HedraRAG further utilizes
this observation to build a hybrid retrieval engine with a
partial index cache for index clusters, enabling cross-device
acceleration of vector search.

To identify and onload hotspot clusters, HedraRAG main-
tains a GPU-side partial index cache for the CPU index. As
illustrated in Figure 11, HedraRAG allocates a certain amount
of GPU memory for the cache, and tracks the runtime access
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frequency of each cluster in the index. The top-𝑔𝑐 most fre-
quently accessed clusters are retained in the cache. Cache
updates primarily involve swapping clusters in and out via
asynchronous memory transfers, which are executed in par-
allel with the ongoing stages on both the CPU and GPU.
To avoid PCIe contention caused by overly frequent cache
updates, HedraRAG performs updates at fixed intervals, set
as every 50 sub-stages in practice.
For each batched retrieval workload within a sub-stage,

the hybrid retrieval engine first checks whether each target
cluster resides in the GPU cache. If the cluster is valid in the
partial index cache, the search is performed on the GPU. If
the cluster is not in the cache or is currently being swapped
in or out, the search is performed on the CPU. All the clusters
assigned to GPU and CPU computation are batched through
unified search interfaces (§5), enabling efficient thread-level
parallelism. After the search calls completes, the results from
both CPU and GPU for each request are merged. By such
design, HedraRAG enables the parallelism of PCIe transfers,
CPU-side retrieval, and GPU-side retrieval, thereby maxi-
mizing hardware utilization to improve retrieval efficiency.
The co-location of LLM weights and KV cache necessi-

tates a trade-off in setting the GPU index cache size (𝑔𝑠): too
small yields minimal retrieval benefit, too large interferes
with generation via KV cache swapping. To address this,
HedraRAG conducts offline benchmarking on open datasets
to characterize the generation throughput 𝑇𝐺 (𝐾𝑉 _𝑠𝑖𝑧𝑒, 𝑟𝑝𝑠)
and the CPU retrieval throughput 𝑇𝑅 (𝑟𝑝𝑠) under varying
request rates. For each new RAG workflow, HedraRAG es-
timates the expected generation and retrieval request rate
(𝑟𝑝𝑠𝐺 , 𝑟𝑝𝑠𝑅) from its average stage composition, and selects
the KV cache size by solving:

arg max
𝐾𝑉 _𝑠𝑖𝑧𝑒

min {𝑇𝐺 (KV_size, 𝑟𝑝𝑠𝐺 ), 𝑇𝑅 (𝑟𝑝𝑠𝑅)} . (2)

When the server starts, we allocate 𝐾𝑉 _𝑠𝑖𝑧𝑒 GPU memory
to the KV cache, and the remaining GPU memory budget is
allocated for caching index clusters.
In RAGraph, GPU indexing is modeled as further paral-

lelization within a sub-stage over its assigned clusters. For
each sub-stage, HedraRAG decides whether to enable GPU
acceleration based on the number of target clusters cached
on the GPU, balancing the potential search speedup against
kernel launch and synchronization overhead.

4.5 Dynamic Graph Transformation and Scheduling
The heterogeneity of RAGworkflows results in distinct work-
load distributions for the generation and retrieval stages.
Consequently, the effectiveness of each optimization tech-
nique may vary with the workflow type and the runtime
workload. Therefore, HedraRAG introduces adaptive graph
transformation and scheduling.
Before each scheduling cycle, the scheduler traverses a

batch of pending requests to identify stages that can be exe-
cuted in parallel, forming a node wavefront. The scheduler
then performs graph transformations sequentially, guided by
the estimated latency and throughput benefits. The resulting
optimized sub-stages are then dispatched to the CPU-GPU
execution pipeline, providing foundational support for co-
ordinated optimization of heterogeneous RAG workflows.
Figure 12 illustrates this process under concurrent execution
of One-shot, RECOMP, and Multistep workflows.
In addition, RAGraph enables the incorporate a broader

range of optimization opportunities. By defining graph trans-
formation operations alongwith their expected latency shifts,
various existing workflow optimizations can be naturally
integrated. For example, retrieval-generation workflow op-
timization [28, 30, 75] can be modeled by introducing new
speculative edge, and the GPU index prefetching [43] can
be implemented by introducing specific nodes to perform
onloading that execute in parallel with retrieval nodes.

5 Implementation
System Construction. HedraRAG is built on vLLM [41]
(version 0.6.6) and Faiss [14] (version 1.9.0). The generation
and retrieval workers are assigned to separate processes
using Python multiprocessing, enabling parallel execution.
At runtime, the generation worker repeatedly invokes the
step function of the vLLM engine, while the retrieval worker
executes the extended step function of index search. The two
workers exchange inputs and outputs via a shared message
queue. During each parallel iteration cycle, the scheduler
traverses the RAGraph of all active requests, selects a new
wavefront, and inserts the transformed sub-nodes into the
task queues of the generation and retrieval workers.
Extension of Vector Search Library. Faiss provides a state-
of-the-art in-memory vector search implementation with
various performance optimizations. However, its interface is
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primarily designed for batched, search-only operations, mak-
ing it difficult to integrate with the fine-grained execution
patern of LLMs. We extend the index searching implemen-
tation with multi-step cluster partitioning and step-wise
execution, and provide the step function similar to LLM en-
gines. We also implement an interface for asynchronous
index loading, supporting partial GPU caching of selected
clusters. Furthermore, since #clusters to be processed per
batch can vary within a sub-stage at both the CPU and GPU
side, we provide a variable-length cluster search interface
across requests, along with specific performance optimiza-
tions including workload balancing and effective reduction.

6 Evaluation
6.1 Experimental Setup
Hardware. We evaluate HedraRAG on a CPU–GPU hybrid
server. Vector search is executed on an AMD EPYC 9534
64-core processor, while LLM generation is performed on
NVIDIA H100 GPUs with 80 GB of memory.
Model. We use Llama 3.1–8B [15] as the primary model in
our experiments. Additionally, we also evaluate HedraRAG
on Llama2-13B [54] and OPT-30B [72]. We use the instruct-
tuned model version to better construct RAG workflows.
Corpus and Index. Wikipedia passages [9, 23] as the pri-
mary retrieval corpus, covering knowledge up to 2022 and
containing ∼38M documents. For each document chunk
in the corpus, we use the e5_large embedding model [59]
for 1024-dimensional semantic vectors. We evaluate the in-
dex commonly used for large-scale vector search: IVF4096.
𝑛𝑝𝑟𝑜𝑏𝑒 is set to 128, 256, or 512, for different search costs
and accuracy. The number of top-𝑘 results returned is 1. In
our evaluation, increasing 𝑛𝑝𝑟𝑜𝑏𝑒 from 128 to 512 improves
answer accuracy by 5% on the NQ dataset with One-shot
workflow, but also increases retrieval latency by nearly 4×.
Datasets. We evaluate on three open datasets: NaturalQues-
tions [40] (referred to as NQ), 2WikiMultiHopQA [20] (re-
ferred to as wikiQA), and HotpotQA [65]. Both wikiQA and
HotpotQA are designed for multi-hop or progressive ques-
tion answering, which is typically challenging for the sim-
ple one-shot RAG workflow. These datasets were originally
collected from real user queries in practical domains such

as Google Search [40], ensuring that our workload traces
resemble realistic user requests. We evaluate five types of
RAG workflows: One-shot, Multistep [44], IRG [51], HyDE
[16], and RECOMP [62]. One-shot is the simplest retrieval-
then-generation workflow. Multistep and IRG involve multi-
ple rounds of interaction between generation and retrieval
stages, while HyDE and RECOMP introduce additional pre-
retrieval and post-retrieval stages, respectively.
Baselines. Our baseline includes two open-source RAG
frameworks: LangChain [2] and FlashRAG [31]. The frame-
works support comprehensive functionality for various RAG
workflows, and provide implementations that integrate with
the state-of-the-art inference serving system (vLLM [41]) and
the vector database search library (Faiss [14]). Building on
FlashRAG, we implement asynchronous parallel invocations
of vLLM and Faiss to support online serving and provide a
more competitive baseline framework.
For speculative execution, we compare two existing ap-

proaches: RaLMSpec [75] and RAGCache [30]. As neither
of them provides open-source access, we enable support for
both in HedraRAG by adding speculative execution edges
between the generation and retrieval nodes.
Primary Evaluation Setting. To facilitate a detailed and
systematic comparison of different RAG workflows, we pri-
marily conduct in-depth evaluations on LLaMA3-8B [15],
focusing on the impact of retrieval-stage overheads (e.g.,
varying 𝑛𝑝𝑟𝑜𝑏𝑒 from 128 to 512) and workflow patterns (5
RAG workflows). This setup enables us to thoroughly ana-
lyze performance bottlenecks and optimization effectiveness
in a controlled setting. To further validate the generality of
our findings, we additionally evaluate HedraRAG on larger
models (e.g., LLaMA2-13B [54], OPT-30B [72]), and observe
consistent performance improvement across these settings.

6.2 Overall Improvement
We evaluate HedraRAG under three scenarios: single work-
flow online serving, offline execution, and multiple workflow
concurrent serving, measuring its impact on system latency
and throughput.We set the service-level objective (SLO) to 10
seconds per request, representing the target for end-to-end
responsiveness to user queries.
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Figure 13. Average request latency when using various RAG workflows.
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Online serving. We first evaluate how HedraRAG improves
throughput and latency in online RAG request serving. Fig-
ure 13 illustrates how request latency varies with the request
arrival rate across different RAG workflows and datasets.

Compared to existing RAG frameworks, HedraRAG reduces
request latency by 2.2× to as much as 18.2× at the same
request rate. HedraRAG also sustains higher request rates,
achieving more than 3×. Performance gains stem from effi-
cient parallelization of the generation and retrieval stages,
along with associated optimization strategies.

Through performance variation of vertical subplots in Fig-
ure 13, we can observe that HedraRAG provides greater im-
provements on more complex workflows. For instance, when
𝑛𝑝𝑟𝑜𝑏𝑒 = 256, the throughput improvement on one-shot is
1.5×, and reaches up to 4× and 3× for Multistep and IRG.
Moreover, the performance variation across the horizontal
subplots in Figure 13 reveals how the retrieval-stage over-
head influences the optimization effectiveness of HedraRAG.
For example, in the one-shot workflow, increasing 𝑛𝑝𝑟𝑜𝑏𝑒
from 256 to 512 leads to a throughput improvement from
1.5× to 4.4×. This is because HedraRAG’s fine-grained, dy-
namic graph transformation and scheduling mechanism sig-
nificantly reduces pipeline stalls caused by vector search, and
further improves the efficiency of multi-round interactions
between the LLM and vector search.

Offline execution. Next, we evaluate how HedraRAG im-
proves the execution time for offline workload. Figure 14
compares offline execution times of different RAG work-
flows on across different index types. While larger batches
in offline scenarios are better suited to the modular design
of existing frameworks, HedraRAG still delivers significant
performance gains, achieving speedups of 3.5× and 1.3×
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over LangChain and FlashRAG, respectively. The speedup is
due to the efficient parallel execution across CPU and GPU
further improve the hybrid system throughput.

Concurrency of different workflows. We evaluate the
performance advantages of HedraRAG under concurrent
execution of requests from different RAG workflows (Fig-
ure 15). We construct mixed workloads by combining two
types of RAG workflows at a 1:1 ratio as input queries. Con-
current workflows impose greater performance degradation
on FlashRAG, particularly for complex workflows. In con-
trast, HedraRAG maintains high efficiency under such con-
current workloads, achieving up to 5.5× latency reduction
and 3.3× throughput improvement.
We further analyze the latency distribution under vary-

ing query complexity ratios to simulate real-world request
compositions. As shown in Figure 16, HedraRAG consis-
tently outperforms FlashRAG across all distributions, achiev-
ing up to 5.6× latency reduction. The above results demon-
strate HedraRAG’s ability to seamlessly optimize perfor-
mance across heterogeneous RAG workflows.
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Figure 17. Average request latency on larger LLM models,
with Multistep and IRG workflows. 𝑛𝑝𝑟𝑜𝑏𝑒 is set as 128.
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Figure 18. The fine-grained partitioning of HedraRAG to
improve vector database search latency.

Other LLMs.We further evaluate HedraRAG on larger mod-
els, including Llama2-13B and OPT-30B. As shown in Fig-
ure 17, HedraRAG consistently achieves over 1.5× through-
put improvement. The performance gains are more pro-
nounced under higher per-request latency (e.g., Llama2-13B),
where fine-grained scheduling and pipelining better alleviate
inter-stage stalls. Larger models also exhibit distinct system-
level behaviors: (i) longer generation latencies and higher
GPU memory pressure, which amplify pipeline imbalance
between generation and retrieval, and (ii) heterogeneous
reasoning dynamics across models, leading to inconsistent
workflow behaviors such as varying iteration counts.

Despite these differences, HedraRAG maintains consis-
tent speedups across model scales, demonstrating its abil-
ity to adapt to varying model characteristics through dy-
namic stage partitioning and execution strategies. Besides,
extremely large models paired with small databases tend
to shift the performance bottleneck toward LLM inference,
making retrieval coordination less impactful. We find that
more balanced configurations yield better overall tradeoffs
in both efficiency and accuracy.
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Figure 19. The speculation accuracy and latency comparison
across existing speculation methods. RPS: request/second.

6.3 Performance Analysis
In this section, we systematically evaluate the effectiveness
of three core optimization techniques, including dynamic
pipelining, speculative execution, and GPU-based indexing,
by incrementally enabling them and measuring their indi-
vidual impact on latency and throughput. The following
evaluations compare against baseline methods to highlight
the performance contribution of each.
Dynamic partitioning and pipelining. We evaluate how
HedraRAG’s sub-stage partitioning impacts vector database
search latency in RAG serving scenarios. To simulate the fine-
grained and non-batched search requests (typically come
from the step-wise generation stages from different requests),
we vary the request rate sent to the retrieval engine at
the granularity of individual requests. As Figure 18 shows,
HedraRAG effectively improves search latency, achieving
a reduction of 1.09× to 1.77×. This improvement is due to
the more fine-grained and dynamic batching, which mini-
mizes the time for new requests to wait behind long-latency,
coarse-grained search calls.
Reordering and Speculation. We compare HedraRAG’s
dynamic speculative execution strategy against existing ap-
proaches, including RaLMSpec and RAGCache, with respect
to both speculation accuracy and end-to-end request latency.
Speculation accuracy is defined as the proportion of specula-
tive generation steps in which the partially retrieved results
match those produced by complete retrieval. As shown in
Figure 19, HedraRAG’s similarity-aware reordering and dy-
namic speculation strategies yield a latency speedup ranging
from 1.06× to 1.62× over prior methods. RaLMSpec, which
relies solely on local cache contents, suffers from lower spec-
ulation accuracy and frequently incurs additional rollback
overhead. PipeRAG adopts a more conservative speculation
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Figure 20. The speedups of GPU indexing and the hotspot
cluster cache hit rate. nprobe is set as 512.

policy, as it does not leverage semantic similarity across re-
trieval stages, resulting in limited latency reduction. In con-
trast, HedraRAG integrates similarity-aware reordering with
a runtime-adaptive speculative execution mechanism that
considers both RAG workflow heterogeneity and request-
level workload dynamics. This coordinated design leads to
consistently higher speculation accuracy and more effective
latency reduction across diverse workloads.
Partial GPU Indexing. We evaluate the impact of GPU-
based indexing on performance. The observed speedup is
most pronounced when the retrieval stage incurs high CPU
overhead, for example, when approaching system through-
put limits (e.g., with 𝑛𝑝𝑟𝑜𝑏𝑒 = 512 and request-per-second
(RPS) between 8 and 12). Figure 20 shows the GPU speedup
as well as the probability that accessed clusters during re-
trieval are found in the GPU cache. GPU indexing yields
a speedup ranging from 1.12× to 1.49×, which correlates
positively with the cache hit probability of accessed clusters.
The hit rate varies across datasets. Intuitively, we attribute
this variation to differences in topic skewness: compared to
NQ, datasets like WikiQA and HotpotQA exhibit stronger
access skewness, leading to higher cache reuse.

7 Conclusion
We present HedraRAG, a co-designed generation-retrieval
system for heterogeneous RAGworkflow serving. HedraRAG
introduces RAGraph, a unified graph-based abstraction that
expresses diverse workflow structures and enables general-
izable optimizations. By defining transformation operations
that model fine-grained sub-stage partitioning, semantic-
aware speculative execution, and partial GPU index caching,
HedraRAG bridges the gap between high-level RAG hetero-
geneity and low-level LLM and vector search backends. Our
evaluation shows that HedraRAG consistently outperforms
existing RAG systems across different models and work-
flows, demonstrating the value of system design to address
the challenges of modern, heterogeneous AI pipelines.
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