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Abstract

In this paper, we propose Mercury, a multi-GPU operator
compiler based on a loop-based intermediate representa-
tion, CommIR. At the core of Mercury is an abstraction that
treats remote GPU memory as an explicitly managed ex-
tension of the memory hierarchy, expanding the available
storage and communication resources beyond local HBM.
This unified view enables the compiler to reason holisti-
cally about data placement and inter-device communica-
tion, unlocking a vastly larger design space that encom-
passes and extends beyond existing manual strategies. As
a result, Mercury is able to automatically reproduce the
performance of hand-optimized baselines like RingAtten-
tion and Ulysses, and in some configurations, even dis-
covers more effective strategies that manual designs have
overlooked. Our implementation is open-sourced at https:
//anonymous.4open.science/r/mercury-2FE3/.

1 Introduction

As Large Language Models (LLMs) scale up in both model
size and input sequence length, the compute and memory
demands of individual operators, especially attention and
GEMM, have grown beyond the capacity of a single GPU.
Modern attention operators, with many heads and long con-
texts (e.g., 32K tokens), can require hundreds of gigabytes
of memory; the KV cache alone for Llama-3 70B consumes
282GB, far exceeding the 80GB HBM of an NVIDIA H100
GPU. Multi-GPU operator design, in both single-node and
multi-node settings, is thus not only a performance optimiza-
tion, but also a fundamental requirement for training and
inferring large-scale models.
Optimizing multi-GPU operators for LLMs remains a

highly manual and labor-intensive process. In the past two
years alone, over twenty papers (e.g., like [2, 5, 12, 15, 16, 22,
34, 40, 41]) have proposed different hand-tuned designs for
just these two operators, attention and linear, underscoring
both the difficulty and importance of this problem. These
manual optimizations are often tightly coupled to specific
hardware and model configurations, with performance de-
pending on factors such as GPU memory size, the number
of GPUs, interconnect topology, and operator-specific pa-
rameters like head count and sequence length. With the
advent of advanced hardware, like NVIDIA’s B100 GPUs in-
terconnected with NVLink72 [25], the hand-tuning methods
become increasingly impractical.
This motivates the need for an automated and adaptive

compiler for multi-GPU operators, one that not only reduces
engineering effort but also unlocks a broader optimization

space through proper abstractions, enabling the discovery
of solutions that match or even outperform expert-tuned
implementations across diverse hardware and workloads.
Yet, existing multi-GPU compilers [42] remain insufficient
for optimizing LLM operators. Academic compilers [6, 45]
have yet to uncover a design space that encompasses re-
cent hand-optimized multi-GPU operator designs [12], and
are often unavailable or impractical to evaluate. Meanwhile,
industrial systems like torch.compile [4] offer only sim-
ple multi-GPU support and consistently underperform com-
pared to manual implementations [15? ].

We observe that a fundamental reason for the performance
gap in existing multi-GPU operator compilers lies in their
restrictive assumption of a local-memory-centric execution
model. That is, compilers operate under the belief that all in-
put data must be fully available in each GPU’s local memory
before computation can proceed. As a result, inter-device
communication is largely treated as a mechanism for ex-
changing intermediate results between operators. This as-
sumption leads current compilers to default to execution
models that fully duplicate shared inputs and enforce identi-
cal, temporally synchronized computation across devices—a
pattern we refer to as the synchronous schedule. As illustrated
in Fig. 1- 2 , GPU0 computes over outer loop 𝐼 on 𝐴[0] and
GPU1 over 𝐴[1], but both follow the same inner loop struc-
ture over 𝐽 . Shared input 𝐵 is fully replicated across devices
and accessed in a fixed order, e.g., 𝐵 [0] is used first, followed
by 𝐵 [1], in exact synchrony across all GPUs. This duplica-
tion not only wastes valuable local HBM capacity but also
hinders GPU optimizations such as deeper tiling.
To address this limitation, our approach is grounded in

the insight that remote GPU memory can be treated as a
first-class, schedulable layer in the memory hierarchy—on
par with local HBM. In this abstraction, inter-device com-
munication is used as a means to access shared input across
devices rather than just exchanging intermediate results be-
tween kernels. It thus unlocks many new schedules. One
representative example is the shifted asynchronous schedule,
where devices stagger their access to shared data, allowing
it to reside on the larger remote GPU memory pool aggre-
gated by all GPUs and be transferred when needed by the
local device. As shown in Fig. 1- 3 , offsetting the inner 𝐽 loop
timeline by GPU 𝐼 induces such a shifted computation and
communication pattern. This temporal decoupling allows
shared input data to be reused across devices, reducing local
memory pressure and enabling other compiler optimizations
(e.g., large tiling size). We note that this shifted schedule also
forms the foundation of recent hand-optimized multi-GPU
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Figure 1. (a) Motivating example of multi-GPU operators with remote memory access. (b) Overview of Mercury.

operators [22, 41], but prior implementations are rigid and
not designed to integrate with compiler frameworks.

Translating such remote-memory–aware execution strate-
gies into a general compiler infrastructure presents several
key challenges. First, existing compiler abstractions lack a
unified view of compute, memory, and communication, treat-
ing remote memory as an external mechanism rather than
an integral part of the scheduling space, making it difficult
to express structured patterns involving remote reuse or
cross-device scheduling within the loop hierarchy. Second,
not all remote memory accesses are equivalent-supported
with collectives primitives (e.g., AllGather, ReduceScatter),
which often outperform arbitrary P2P remotememory access
patterns [35]. Thus, the compiler must not only express fine-
grained memory sharing but also be capable of automatically
generating efficient collective primitives when appropriate.
To address these challenges, we designMercury, a com-

piler for optimizing multi-GPU operators. Fig. 1(b) shows
an overview of theMercury architecture.Mercury takes as
input a tensor-level operator written in a Python-embedded
domain-specific language (DSL) and generates an optimized
execution plan across multiple GPUs, both within a single
node and across multiple nodes. We remark that Mercury
acts as a middle layer in the compiler stack: it connects to
the upper computation graph optimization [45] to support
global decisions such as operator fusion and intra-operator
resharding, and to lower-level tensor compilers [7, 36] and
libraries [27] for intra-GPU kernel optimization and code
generation. This separation of concerns allows Mercury to
focus exclusively on multi-GPU scheduling.
At the core of Mercury is CommIR (§4), a loop-based

intermediate representation (IR) that extends traditional
loop-based IRs [13, 28]. CommIR introduces structured
transformation primitives, parallelize, shift, shard, and
replicate, which unify support for both standard intra-
GPU tiling and advanced inter-GPU scheduling patterns,
such as asynchronous shifts and collective communication
primitives. These primitives enable the expression of all
known hand-optimized multi-GPU strategies and expose
a significantly larger design space by allowing parallelism
and shift transformations across arbitrary loop dimensions,

as well as flexible hybridization of collective patterns that
manual efforts have yet to explore (§5).
Mercury implements the CommIR and adopts an auto-

tuning process for the optimal schedule (§6). Unlike prior
systems that rely on hardcoded templates,Mercury lowers
the CommIR candidates to local operator and communication
kernels automatically to explore a larger design space (§7
). Because the transformations are structured,Mercury can
automatically synthesize communication plans, e.g., gener-
ating a ring-style pass as a shift over the loop dimension,
without requiring custom kernel logic.

We evaluateMercury across a range of LLMoperatorswith
varying context length, hardware platform, and network con-
figurations, demonstrating consistent performance improve-
ment (§8). Our compiler outperforms state-of-the-art (SOTA)
hand-optimized designs like USP[12] and Ulysses[16], av-
eraging 1.56× speedup. Compared with model-level 3D-
parallel [21], Mercury achieves up to 1.62× performance
improvement for real LLM workloads.

In summary, this work makes the following contributions:
•We introduce a novel loop-based IR, CommIR that treats

remote GPU memory as an explicitly managed extension
of the memory hierarchy and unifies computation, memory,
and communication into a single scheduling abstraction.
•We build a modular compiler,Mercury, that automati-

cally generates efficient multi-GPU operators through a set
of communication-driven transformation passes.
• Our evaluation shows thatMercury outperforms state-

of-the-art hand-tuned LLM libraries across diverse operators
and hardware platforms.

2 Background

In this section, we first introduce the common settings for
modern multi-node multi-GPU systems and their remote
memory access interfaces. We then discuss representative
multi-GPU operator designs with these interfaces.

2.1 Multi-GPU Systems

To understand the design of multi-GPU operators, we first
examine their interconnect topologies and access interfaces.
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Figure 2. Multi-GPU interconnection and access patterns.

Multi-GPU Interconnection. To meet the massive require-
ment of modern LLM workloads, the systems are usually
organized in a multi-node multi-GPU topology with differ-
ent bandwidth as shown in Fig. 2-(a). Building on diverse
interconnection hardware (such as Ethernet or PCIe), the
communication bandwidth varies dramatically at different
levels. For example, the intra-node bidirectional connection
over NVLink mesh provides a 900 GB/s bandwidth, which
is merely 3× slower than the local HBM bandwidth. The
inter-node communication over high-specification RDMA
over Converged Ethernet (RoCE) [38] or InfiniBand [32]
delivers a much slower bandwidth, for example, 100 Gbps.
Over this physical interconnection hardware, the remote
memory access between GPU devices is delivered through
point-to-point (P2P) or collective communication interfaces.
P2P Access. P2P communication provides fine-grained con-
trol of data transferring directly between GPU pairs, enabling
flexible and overlapped communication patterns ideal for
irregular or pipeline-parallel workloads. However, the P2P
communication requires non-trivial scheduling across multi-
ple GPU devices, making it difficult to schedule. For example,
Fig. 2-(b) and (c) demonstrate two patterns that pass the
intermediate results asynchronously. The multi-level shift
pattern in (c) groups the intra- and inter-node connection
together while the universal shift launches P2P communi-
cation universally. This flexibility makes it well-suited for
optimizing bandwidth usage in hierarchical systems.
Collective Access. Modern vendor-provided libraries [1,
26], on the other hand, offer highly optimized implemen-
tations of collective remote memory access launched syn-
chronously by a group of GPUs. These libraries deliver pro-
gramming interfaces such as AllReduce, Broadcast, and All-
Gather as shown in Fig. 2-(d). The underlying implemen-
tation of these collective communication are aware of the
physical hierarchy and dynamically select optimized algo-
rithms (e.g., ring, tree, or hybrid) based on the bandwidth
and latency characteristics. For instance, NCCL exploits the
NVLink mesh for high-throughput intra-node communica-
tion while using pipelined protocols over RoCE or InfiniBand

Projects Parallel Dimension∗ Collective Schedule Topology
AdaptivityHead Query Context

Synchronous Operators
Context Parallel [20] # G# # # No #
Ulysess [16] G# # #  No #
TreeAtten [34] # # G#  No  

Asynchronous Operators
RingAtten [22] #  # # No #
USP [12] G#  #  Template  
LoongTrain [15] G#  #  Template  

Automatic Approaches
Alpa [45] G# G# G#  Template  
Centauri [6] G# G# G#  Template #
CoCoNet [17] G# G# G#  Auto #
Mercury     Auto  

∗G# synchronous,
 asynchronous

Table 1. Comparison of multi-GPU attention operators.

for inter-node transfers. Collective communication provides
a clean abstraction for inter-GPU coordination and ensures
performance portability across a range of heterogeneous
systems through low-level, hardware-aware scheduling.

2.2 Distributed Operators

With the aforementioned remote memory access interfaces,
many parallelism strategies and supporting operators are
studied. We will discuss the common operators in LLMs and
their multi-GPU implementations in the following.
Operators in LLMs. Modern LLMs are fundamentally built
upon attention mechanisms and linear layers. Multi-Head At-
tention (MHA) [37] enables models to capture diverse contex-
tual relationships by attending to different parts of the input
sequence. Variants like Multi-Query Attention (MQA) [31]
and Grouped-Query Attention (GQA) [3] optimize inference
efficiency and memory usage by sharing key and value (KV)
activation across attention heads [3, 31]. The calculation
of attention involves a four-level loop structure: the batch,
head, query, and context dimensions. Another part is the lin-
ear layer, typically implemented as General Matrix-Matrix
Multiplication (GEMM) [11] operations. Efficient distribu-
tion and execution of these operators across multiple GPUs
are crucial for scaling LLM training and inference.
Synchronous Operators.With these well-defined collec-
tive communication libraries, many parallel strategies are
proposed addressing the variety of operators, device config-
urations, and deployment scenarios. The basic asynchro-
nous designs can be regarded as parallelizing the loop
axis at a specific dimension. To elaborate, data parallelism
(DP) [19, 29, 44] partitions input samples across devices, min-
imizing communication but duplicating model parameters,
leading to high storage consumption, which is regarded as
parallelizing at the batch dimension. As such, data paral-
lelism does not require dedicated operators. Tensor paral-
lelism (TP) [33] parallelizes the reduction dimension of the
linear operator. This shards model parameters across devices,
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def matmul(a: Tensor, b: Tensor, c: Tensor):
    # Define axes
    I = Axis("I", 128)  
    J = Axis("J", 128)  
    K = Axis("K", 128)  

    # Match buffers with axis binding
    A = match_buffer(a, [I, J], “float16”)  
    B = match_buffer(b, [J, K], “float16”)  
    C = match_buffer(c, [I, K], “float16”)

    # Assign compute grid with axes
    for i, j, k in grid([I, J, K], "srs"):
        C[i, k] += A[i, j] * B[j, k]

❶ Operator DSL ❷ Init CommIR
read A[(I , J,), “float16” ]
read B[(J, K ), “float16” ]
write C: [(I, K ), “float16” ]
For i in I
  For j in J
    For k in K
      C[i, k] += A[i, j] * B[j, k]

❸ Computation Schedule
Tile I, 4
Tile J, 2
Reorder I0,J0,I1,J1

❷ Parallel CommIR 

CUTLASS,
FlashAtten,
…

Communication 
Library

NCCL, RCCL, …

CommIR Parsing ❺ Design Space Generation CommIR Transformation

Parallelize J0, 0
Parallelize J1, 1
Shift J1, I0
Shift I1, J0
Patch GEMM

❸ Communication Schedule

❹ Tensor Program Lowering

Operator
Library

Tensor
Compiler

TVM, 
Inductor,
…

or

Network Topology
DeviceMesh(shape=(2,4))

Parallel I0
  Parallel J0 
    For I1
      For J1
        send(B[J0, (J1+I0)%J1])
        receive(B[J0, (J1+I0+1)%J1])
        GEMM(C_J0[I0,(I1+J0)%I1,J0],
             A[I0,(I1+J0)%I1,J0,(J1+I0)%J1],
             B[J0, (J1+I0)%J1])
      receive(C[I0,(I1+J0)%I1,J0])
      send(C[I0,(I1+J0)%I1,J0])
    C[I0,(I1+J0)%I1]+=C_J0[I0,(I1+J0)%I1,J0]

Figure 3. Overview of CommIR’s workflow.

reducing storage but incurring significant communication
overhead due to partial result reductions.

Due to attention calculation’s complex computation flow,
its multi-GPU operator design raises a much larger design
space, mainly determined by the parallel dimension as shown
in Tbl. 1. Context parallelism (CP) [18] distributes workloads
along the spatial query dimension but requires replication of
large KV activations. This can be abstracted as parallelizing
the query dimension of the attention operator. Head par-
allelism introduced by DeepSpeed-Ulysses [16] distributes
the workloads at the attention head dimension. Similarly,
TreeAtten [34] proposes to parallelize the reduction dimen-
sion of the attention operator with fine-grained collective
communications. Mnemosyne [2] further extends this idea
by combining it with other parallelism strategies.
Asynchronous Operators.Advanced distributed operators,
in recent research, have introduced asynchronous patterns
into the operators to reduce memory and improve commu-
nication efficiency. For attention operators, several research
studies [15, 22, 39, 41] propose passing data among parallel
workers to reduce the storage consumption with overlapped
communication as shown in the upper part of Tbl. 1. RingAt-
ten [22] proposes a universal shift pass of the sharded KV
activation on top of the CP design. Yet this universal logical
ring launches intra- and inter-node communication together,
thus bottlenecked by the low-bandwidth inter-node com-
munication. LoongTrain [15], TokenRing [41], and USP [12]
propose multi-level shift patterns that separate the intra- and
inter-node communication with a multi-level shift design
for better overlapping, as shown in Fig. 2-(c).
Similarly, the shift pattern is also applied to the GEMM

operators [5, 40] to overlap the communication at a finer
granularity. These works focus on different operators and
network settings, resulting in ad-hoc development efforts
and difficulty generalizing to different configurations.
Automatic Approaches.While several template-based tun-
ing frameworks or compilers support the generation and
optimization of multi-GPU operators with synchronous com-
munication patterns, no open-sourced distributed compiler
provides general support for generating high-performance
multi-GPU operators automatically, especially in multi-node

scenarios. Existing frameworks overlook the importance of
using remote GPUmemory as a source of input sharing, thus
delivering sub-optimal performance. Alpa [45] proposes a
communication-computation-communication paradigm to
gather inputs and reduce outputs on parallel workers. The
applicable parallel pattern is determined as a template for
each operator. Centauri [6] further proposes partitioning the
communication and computation for fine-grained overlap-
ping with pre-defined splitable axes on each operator.

3 Overview

To address the growing challenges of multi-GPU operator
optimization, we introduce Mercury, a distributed opera-
tor compiler that unifies computation, communication, and
memory management via a novel intermediate representa-
tion, CommIR. As illustrated in Fig. 3,Mercury systematically
transforms a high-level operator specification into an effi-
cient, distributed execution plan through four key stages:
parsing, transformation, code generation, and tuning.
DSL. Mercury starts with a Python-like DSL that is sim-
ple, intuitive, and easy to adopt as shown in Fig. 3 1 . It
closely matches the syntax and structure of existing tensor
DSLs [13, 43] to minimize the learning curve, while intro-
ducing a key distinction: the use of explicit loop symbols
to expose iteration structure for lowering. This loop-based
abstraction makes the DSL not only transformation-friendly
but also expressive enough to capture tensor computations
and their distribution semantics in a unified way. Users can
directly specify parallelism levels, data shifts, replication, and
other communication patterns via loop annotations, enabling
seamless integration of computation and communication.
CommIR and Transformation Schedules. This DSL is
parsed into CommIR (Fig. 3 2 ), a structured IR that preserves
the hierarchy of loop nests and encodes distribution intent
through a set of computation and communication primitives
(Fig. 3 3 ). Computation primitives such as tile, reorder, and
patch rewrite the loop structure, supporting rich scheduling
transformations. Communication primitives such as paral-
lelize, shard, and shift annotate loop variables and buffer
layouts to indicate how data is partitioned, accessed, and ex-
changed across a device mesh. These primitives do not emit
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Primitive Demonstration Definition Example

CommIR Defined by user Weighted Sum
For i in I

For j in J
C[i]+=A[i,j]*B[j]

Computation Primitives

Tile Split loop and add buffer Tile(J)

For i in I
For j0 in J0

For j1 in J1
C_j0[i,j0]+=A[i,j0,j1]*B[j0,j1]

C[i]+=C_j0[i,j0]

Join Merge loops Join(I,J) For ij in IJ
C[ij//j_len]+=C[ij//j_len,ij%j_len]

Reorder Change the order of loops
(for better locality) Reorder(J,I)

For j in J
For i in I

C[i]+=A[i,j]*B[j]

Patch
Replace subgraph with
micro-kernel by pattern
matching

Patch(op) For i in I
op(C[i],A[i,:],B[:])

Communication Primitives

Parallelize Parallelize a loop at a net-
work hierarchy level Parallelize(I, 0)

Parallel i {length: I, mesh: 0}
For j in J

C[i]+=A[i,j]*B[j]

Shift Shift a local loop according
to a parallel loop Shift(J,I)

Parallel i {length: I, mesh: 0}
For j in J

C[i]+=A[i,(j+i)%j]*B[(j+i)%j]

Shard Shard a buffer to distributed
buffer Shard(B,I)

Parallel i {length: I, mesh: 0}
AllGather(B)
For j in J

C[i]+=A[i,j]*B[j]

Replicate Replicate a buffer among par-
allel ranks explicitly Replicate(A,I)

Parallel i {length: I, mesh: 0}
For j in J

C[i]+=A[i,j]*B[j]

Table 2. Transformation primitives in CommIR.

code directly but serve as symbolic annotations maintained
through optimization and lowering.
Communication and Local Operator Lowering. Once
a candidate schedule is selected, Mercury lowers it into
backend-compatible code as shown in Fig. 3 4 . The code
generation process consists of two stages. First, communi-
cation kernels are synthesized by symbolically analyzing
the loop index transformations and buffer annotations to
determine P2P or collective communication patterns. This
includes staggered sends/receives introduced by shift as well
as collective communications. Second, the local computation
kernels are lowered into device-specific IRs (e.g., TorchIn-
ductor), optionally patching regions with optimized libraries
such as FlashAttention when applicable.
Auto-Tuner. To identify the most efficient distributed sched-
ules,Mercury employs an auto-tuner that explores a struc-
tured design space generated from CommIR transformations
as shown in Fig. 3 5 . It first enumerates local computation
schedules, then overlays communication strategies such as
parallelize and shift, constrained by the target hardware
mesh. Each candidate is profiled for latency, while mem-
ory usage is statically checked to prune infeasible options.
This phased and constraint-aware search enables fast con-
vergence to high-performance schedules.

4 CommIR

In this section, we draw the core abstraction of CommIR and
how to use it to represent existing parallelism and beyond.

4.1 Definition and Primitives of CommIR

The insight of CommIR is that the loop-based IR in the tensor
compilers for local operators already contains the semantics

read A[(I , J,), “float16” ]
read B[(J, ), “float16” ]
write C: [( I, ), “float16” ]
For i in I
  For j in J
    C[ i ]+=A[ i , j ] * B[ j ]

(a) original program

Parallel i {length: I, mesh: 0}
  read A[(1 , J,), “float16” ]
  read B[(J, ), “float16” ]
  write C: [( 1, ), “float16” ]
  For j in J
    C[ i ]+=A[ i , j ] * B[ j ]

(b) multi-gpu program

Shard A, I
Replicate B, I

Parallelize I,0

Shard C, I

read A[(I0,I1,J0,J1), “float16” ]
read B[(J0,J1 ), “float16” ]
write C: [( I0,I1 ), “float16” ]
For i0 in I0
  For i1 in I1
    For j0 in J
      For j in J
        C[i0,i1,j0,j1]
          +=A[i0,i1,j0,j1]*B[ j0,j1]

Parallel i0 {length: I0, mesh: 0}
  Parallel j0 {length: J0, mesh: 1}
    read A[(1,I1,1,J1,), “float16” ]
    read B[(1,J1), “float16” ]
    write C: [(1,I1), “float16” ]
    For I1 in I1
      For j1 in J1
        C[i0,i1,j0,j1]
          +=A[i0,i1,j0,j1]*B[ j0,j1]

Tile I

Parallelize I0,0
Parallelize J0,1

Replicate B, I0

(c) tiled program (d) two-level multi-GPU

Shard B, J0

Shard A, I0Shard A, J0

Shard C, I0Replicate C, J0

Figure 4. Workload partitioning with parallelize transfor-
mation at multiple topology levels.

for parallel execution natively. For example, in the tensor
compiler TVM[7], bind primitive assigns a loop to hardware
constructs such as CUDA thread blocks or threads. Extend-
ing such a loop-based representation to a coarse-grained
distributed scenario is a natural fit. As such, we adopt a loop-
based IR design inheriting previous tensor compilers and
the computation-related transformations as introduced in
Tbl. 2. We introduce four transformation primitives to intro-
duce remote memory access semantics into the loop-based
IR. The parallelize and shift are applied on the loop nodes
to schedule the computation and the shard and replicate are
applied on the buffer nodes to manage the memory. Tbl. 2
show minimal examples of the transformation effect on top
of a weighted sum CommIR object in the first row.
• Parallelize distributes the iterations of a loop across par-
allel workers at a specified hierarchy level in the network
(e.g., inter-node or intra-node). The second argument speci-
fies the hierarchy order, and we restrict the loop length and
hardware size to be equal.
• Shift offsets a local loop’s index relative to a parallel loop,
introducing asynchronous access patterns that stagger data
access across ranks. This explicitly introduces remote mem-
ory access at different temporal steps. The first argument of
shift identifies the target local temporal loop, and the second
argument identifies the regarding parallel loop.
• Shard splits a buffer across workers, so each parallel rank
owns a disjoint portion of the buffer. Note that a buffer can
be sharded even on a loop that is not in its access index.
• Replicate duplicates a buffer across all workers participat-
ing in the parallel loop, so every rank has a full copy.

4.2 Remote Memory Access with CommIR

These communication primitives enable CommIR to repre-
sent a broad range of remote memory access patterns, as dis-
cussed in Sec. 2.1. Unlike computation transformations, com-
munication primitives annotate the IR rather than modify it
directly. These annotations are interpreted during the lower-
ing phase to insert appropriate communication operations.
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Parallel i {length: I, mesh: 0}
  read A[(1 , J,), “float16” ]
  read B[(J, ), “float16” ]
  write C: [( 1, ), “float16” ]
  For j in J
    C[ i ]+=A[ i , j ] * B[ j ]

Parallel i {length: I, mesh: 0}
  read A[(1 , J,), “float16” ]
  read B[(1, ), “float16” ]
  write C: [( 1, ), “float16” ]
  For j in J {shift: i}
    send B[ (j+i)%J ]
    receive B[ (j+i+1)%J ]
    C[ i ]+=A[ i , (j+i)%J ] 
            * B[ (j+i)%J ]

Shift J, I

Shard BParallel I

Parallel I

Figure 5. Asynchronous communication lowering with shift
transformation.

This approach maintains a clean separation of concerns, fa-
cilitating joint computation and communication scheduling
without premature commitment to a particular data layout
or communication pattern.
Parallel Semantic with Parallelize. The parallelize prim-
itive partitions a loop across devices and determines the
workload distribution. Although memory placement and
loop parallelization are conceptually independent, we apply
a default initialization to avoid unnecessary remote mem-
ory accesses. The rationale is that buffers indexed by the
parallelized loop are sharded across devices, and buffers not
indexed by the parallel loop are replicated. This initialization
ensures that each worker has local access to its required data.
For example, in Fig. 4-(a),(b), buffers A and C are sharded,
while B is replicated to all devices.

Furthermore, by explicitly specifying the network mesh
hierarchy in parallelize, we expose hierarchical memory shar-
ing. For instance, in Fig. 4-(c,d), loops 𝐼0 and 𝐽0 are mapped
to mesh levels 0 (inter-node) and 1 (intra-node), respectively.
This results in buffer B being shared at the inter-node level
and replicated at the intra-node level. Additionally, loop
tiling and joining can combine axes from different dimen-
sions, providing more flexibility in buffer sharing or replica-
tion within a hierarchy.
AsynchronousAccesswith Shift. The shift primitive intro-
duces asynchrony by offsetting loop indices across workers.
In Fig. 5, loop 𝐽 is the local loop and 𝐼 is the parallelized
dimension. Shifting loop 𝐽 by 𝐼 causes each worker to ac-
cess a different segment of the shared buffer B at staggered
time steps, reducing contention. We automatically shard
buffers associated with shifted loops to facilitate efficient
communication. In the example, buffer B is replicated and A
is locally sharded before the shift transformation. With the
transformed access pattern: ( 𝑗 + 𝑖)%𝐽 , B can also be sharded
with staggered access from worker 𝑖 .

This shift-based design not only reduces storage by a fac-
tor of the number of devices but also overlaps computation

Parallel i
  B = AllGather(B[i], rank=i)
  For j
    C[i]+=A[i,j]*B[j]

For i
  For j
    C[i]+=A[i,j]*B[j]

Parallel j
  For i
    AllReduce(C[i], A[i,j]*B[j])

Parallel j
  For i
    ReduceScatter(C[i], A[i,j]*B[j])
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Figure 6. Representative collective communications synthe-
sized from transformation schedules.

and communication, as shown by the dashed arrows. Fur-
thermore, multiple loop levels can be shifted independently,
forming complex communication patterns that adapt to hi-
erarchical hardware topologies (e.g., Fig. 2-(c)). We present
hybrid shift patterns in Sec. 5.
Collective Access with Shard. Collective operations such
as AllGather, Broadcast, and ReduceScatter are derived from
buffer sharding patterns during the lowering phase. Fig. 6
illustrates three examples: (1) Read buffers: Sharding a read
buffer triggers collective gathering, e.g., AllGather or Broad-
cast, depending on access and layout. (2) Write buffers:
Sharded or replicated write buffers trigger reduce operations
(e.g., AllReduce). (3) If the result buffer of a reduction is also
sharded, the operation simplifies to ReduceScatter, reducing
overhead. The exact operation depends on the arithmetic
semantics of the computation (e.g., sum, product) and the
storage layout derived from the IR annotations.

5 CommIR’s Expressiveness

With the well-defined CommIR, we can represent a wide
range of parallelism strategies, capturing both established
patterns and uncovering new ones. We illustrate this expres-
siveness using the attention operator [37], a core component
of LLMs, as shown in Fig. 7. For simplicity, we reduce the
attention operator to a scaled accumulation, mapping the
query dimension to I and the context dimension to J, while
omitting the batch and head dimensions, which follow a sim-
ilar transformation process. The vanilla local computation is
shown in 1 , where buffer B (KV activation) is shared along
the I axis and the output is reduced over J. By parallelizing the
I axis, we naturally express context parallelism as in 2 . The
shift primitive enables asynchronous communication pat-
terns, aligning with prior designs like [22]. Further splitting
of the I axis across device hierarchies allows hardware-aware
communication planning, illustrated in Fig. 2-(c). Reordering
and parallelizing the reduction loop yields patterns resem-
bling TreeAttention [34], beneficial for decoding.
Beyond manually derived patterns, CommIR enables the

discovery of novel strategies by automatically applying trans-
formations along new axes and composing them. For exam-
ple, shifting the reduction axis allows partial sums to be
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Figure 7. Attention operator examples and their CommIR expression. We approximate the attention operation as scaled
accumulation in 1 to simplify the illustration without any loss of generality.

passed across workers in parallel, as shown in 6 . To further
increase parallelism, the J axis can be split to enable partial
reductions with multiple workers, parallelizing both I and
outer J loops as in 7 . A more advanced composition appears
in 8 , an actual searched result in our evaluation. Here, two
workers collaborate on the same J0 reduction loop, with par-
tial results shifted along I1, avoiding collective reduction.
Additionally, J1 is shifted along I0, introducing intra-group
shift communication for the shared B buffer. This complex
design involves intricate scheduling of compute and commu-
nication, making it challenging to craft manually.

Besides the attention operator, CommIR can also support
other operators. For instance, the TP method for linear layers
[33] is expressible by splitting and parallelizing the GEMM
reduction axis. The more advanced AsyncTP[40] strategy is
captured by applying shift over an outer loop of size two.
Altogether, CommIR offers broad expressiveness and gener-
ality across operators, enabling exploration of an expansive
design space for distributed computation.

6 Auto Tuner

With the expressive design of CommIR and a unified code
generation pipeline, we build an auto-tuning system that
searches for optimal distributed operator schedules by ex-
ploring a rich, transformation-driven design space.
Design Space Generation. We build the design space by
enumerating the transformation primitives and sizes. In prac-
tice, we introduce several empirical rules to reduce the prob-
lem size without sacrificing expressiveness.

Firstly, We divide the generation process into two sequen-
tial schedules: (a) the computation schedule which applies
tiling, reordering, and join transformations to define the local
loop structure and buffer layout and (b) the communication

schedule which applies communication primitives, such as
parallelize, shift, shard, and replicate, to distribute compu-
tation and manage remote memory access. This phased ap-
proach retains the full expressiveness of the transformation
space while reducing redundancy and avoiding invalid con-
figurations. Candidates produced in the computation phase
can be reused across multiple parallelization strategies.
Secondly, we explicitly incorporate hardware mesh con-

figuration to regularize candidate generation. In particular,
loops are only tiled according to mesh size (e.g., number of
devices at each hierarchy level). Loops parallelized or shifted
must have a length equal to the corresponding mesh dimen-
sion. Combined with reordering and loop merging, this con-
straint preserves coverage of the relevant schedules while
significantly reducing the overall number of candidates.

Besides, we also bundle the parallelize and shift with cor-
responding shard or replicate operations. Although these
can be decoupled in principle, shifting without sharding
produces no semantic change. While this bundling could
theoretically exclude some valid trade-offs (e.g., selectively
sharding some shifted buffers), the evaluated workloads do
not exhibit such patterns. Thus, this simplification reduces
search complexity without sacrificing coverage in practice.
Search Objectives. The tuner aims to minimize end-to-end
latency of the generated distributed operator, subject to mem-
ory constraints. Specifically:
• Latency evaluation: each candidate schedule is fully low-
ered and profiled in real hardware settings to obtain empiri-
cal runtime measurements.
• Memory constraint: we statically analyze each candidate’s
storage layout from its CommIR representation and compute
the per-worker memory footprint. Candidates exceeding the
provided capacity are pruned early in the search process.
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With these empirical rules, the tuning completes within
10 minutes per operator in our evaluations. However, we
acknowledge that search cost may grow with larger operator
complexity or mesh topologies. Exploring more advanced
tuning algorithms, e.g., cost-model–guided sampling or ML-
based predictors, is a promising direction for future work.

7 Implementation

We introduce the implementation of the distributed compiler
Mercury as shown in Fig. 1-(b).

7.1 DSL

To support the specification and transformation of dis-
tributed tensor operators, we design a new DSL that allows
concise and semantically rich operator definitions. We chose
to build a new DSL instead of extending existing ones like
TVM[7] or Triton[36], as they lack loop-level distribution se-
mantics beyond local tensor programs. In our approach, loop
transformations are first-class citizens across hierarchical
device meshes, enabling unified local scheduling and global
communication planning in the IR. The DSL is built around
three key abstractions: axis declarations, buffer bindings,
and computation grids, aligning with standard IR concepts
including loop variables and storage objects.
• Axis. An Axis represents a named loop variable that de-
fines a dimension of iteration. Each axis has a statically
known extent and can be annotated with distribution meta-
data, such as its mapping to a hardware mesh level or a
communication shift offset.
• Buffer. Buffers are declared using the match_buffer API,
which binds a symbolic name to a tensor with a shape ex-
pressed over a set of axes. This declaration determines both
storage layout and access semantics, allowing the compiler to
infer the necessary communication based on axis transforma-
tions. The DSL tracks which axes are involved in paralleliza-
tion or shifting, and associates the buffers with appropriate
distribution primitives such as shard or replicate.
• Grid. Computation is specified using the grid construct,
which defines the iteration space of the operator over a set
of axes and allows annotations for reduction semantics or
fused loop scheduling. This construct corresponds to the loop
nest in traditional IRs and forms the basis for tiling, reorder-
ing, and transformation during optimization. In the example
shown in Fig. 3, "srs" refers to the loop types: "s" for spatial
and "r" for reduction, which can influence communication
patterns and data reuse strategies when compiled.

7.2 Schedule Primitives

Upon the CommIR, we implement the transformation primi-
tives introduced in Sec. 4.1

Computation primitives. Computation primitives in Com-
mIR are implemented by rewriting the loop nest representa-
tion. Each transformation uses structured rewrite rules over
the IR’s loop tree. Internally, transformation passes traverse
the loop nest using pattern matching, apply local rewrites,
and update metadata tied to loop variables (e.g., iteration
bounds, index expressions, and loop tags). These rewrites
preserve referential transparency and are composable, en-
abling multi-pass scheduling without inconsistencies.

The Patch primitive is a special transformation designed
to utilize the existing high-optimized local operator libraries,
implemented as a subgraph substitution mechanism. Users
can register pattern-to-kernel mapping rules, which de-
scribes the required loop shape, buffer access pattern, and op-
tionally data types. During transformation, a graph matcher
scans the IR for compatible subgraphs and replaces themwith
opaque external calls, wrapped with the necessary buffer
bindings. This simplifies downstream lowering, especially
when targeting well-optimized libraries like cuDNN[8] or
FlashAttention[9, 10, 30].
Communication primitives. As introduced in Sec. 4.1,
communication primitives are implemented as annotations
on loop and buffer objects within the IR. They do not di-
rectly insert communication code; instead, they decorate the
program with distribution intent, which is later materialized
in the code generation stage. In summary, the communica-
tion primitives are annotated with the following metadata.
Parallelize marks the loop variable with a target mesh level
and records the mapping between loop iterations and device
ranks. Shard and replicate update buffer metadata with a
logical partitioning plan. Shift modifies the loop initializa-
tion and indexing logic to introduce staggered access across
devices. This transformation is performed symbolically and
maintained until lowering. In effect, communication is in-
ferred based on the loop hierarchy and buffer sharing anno-
tations.

7.3 Code Generation

The code generation pipeline inMercury lowers the CommIR
into an executable distributed program. This process is di-
vided into two main stages: (1) generation of communication
kernels and (2) lowering of local computation kernels.
Communication Kernel Generation.We begin by analyz-
ing the annotated CommIR to infer the required inter-device
communication patterns. P2P communications, introduced
via the shift primitive, are derived firstly by statically an-
alyzing the loop index transformations. The receiver and
sender ranks are inferred using symbolic offset formulas (as
introduced in Sec. 4.1), enabling a concise and general for-
mulation of staggered data flows. Collective communication
operations are inferred for buffers annotated with shard or
replicate. These are determined by analyzing buffer access
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Parallel I0
  Parallel I1 
    For J0
      For J1
        send(B[(J0+I0)%J0,(J1+I1)%J1]))
        receive(B[(J0+I0+1)%J0,(J1+I1+1)%J1])
        C_J0[I0,I1,(J0+I0)%J0]
          +=A[I0,I1,(J0+I0)%J0,(J1+I1)%J1]
          *B[(J0+I0)%J0,(J1+I1)%J1]
      C[I0,I1]+=C_J0[I0,I1,(J0+I1)%J1]

Parallel I0
  Parallel I1 
    For J0
      local_B = inter_node_send_receive(B[J0,0])
      For J1
          local_B = intra_node_send_receive(B[J0, J1])
          J_index = compute_index(J0, J1)
        C_J0[I0,I1,J_index] += A[I0,I1,J_index] * local_B
      C[I0,I1] += C_J0[I0,I1,J0]

For I
  For J
    C[I]+=A[I,J]*B[J]

❶ Mecury ❷ Manual Design

Tile I
Tile J
Parallelize I0, 0
Parallelize I1, 1
Shift J0, I0
Shift J1, I1

Unify
Ad-hoc
Handling

Transform

Figure 8. Comparison of code generated for the same two-
level shift pattern from manual design andMercury.

patterns and the aggregation semantics of the surrounding
loops.
This symbolic analysis decouples communication intent

from implementation, allowing us to generate complex,
topology-aware communication schedules automatically. As
illustrated in Fig. 8, Mercury synthesizes a two-level shifted
attention kernel using a unified representation of P2P com-
munication. The result matches or exceeds the quality of
hand-optimized kernels, while significantly reducing man-
ual effort. Notably, the compiler is capable of generating
sophisticated nested communication patterns that are chal-
lenging for human developers to design and verify manually.
Local Computation Lowering Once communication is
resolved, we lower the computation portion of the IR to
backend-specific code. The loop-based structure of Com-
mIR allows for straightforward translation into existing ten-
sor compilers or runtime libraries. In our implementation,
TorchInductor is used as the primary backend for lower-
ing and optimizing local computation. Because CommIR
retains loop-level structure and buffer semantics, it inte-
grates naturally with TorchInductor’s operator represen-
tation and scheduling mechanisms. For compute-intensive
regions, such as the innermost loops of attention kernels, we
optionally invoke highly optimized operator libraries. Specif-
ically, we use FlashAttention (FA) to patch local subgraphs
where supported. These patches are inserted via the Patch
transformation and treated as opaque external calls during
lowering. FA patching is exposed as a tunable candidate in
the search space to balance performance and generality.

This modular design enables joint optimization of compu-
tation and communication, accounting for both the device-
level execution environment and the distributed topology.
In addition, patching local computations with pre-optimized
kernels significantly reduces the size of the design space,
thereby accelerating the tuning process.

7.4 Inter-Operator Resharding

To extend the benefits of operator-level tuning to the entire
model, we incorporate graph-level reasoning by considering
both the execution time of individual operators and the com-
munication overhead required for resharding between them.
This supports the synergy of the proposed operator-level
tuning with model-level optimizations, such as Pipeline Par-
allelism (PP) [23]. In distributed settings, adjacent operators
in a model often require different parallelization strategies,

Algorithm 1 Graph-level Search over Operator DAG
Input: Operator DAG 𝐺 = (𝑂, 𝐸 ) , where each 𝑂𝑖 has candidate shardings
{𝑆𝑖,1, · · · , 𝑆𝑖,𝐾𝑖 }
Output: Optimal sharding config 𝑆∗ = {𝑆∗1 , · · · , 𝑆∗𝑁 } minimizing total cost

1: Initialize 𝑆∗ ← ∅,𝐶min ←∞
2: for each full candidate 𝑆 = {𝑆1, 𝑗1 , · · · , 𝑆𝑁,𝑗𝑁 } do
3: 𝐶 ← 0
4: for each operator𝑂𝑖 ∈ 𝑂 do

5: 𝐶exec ← OpExecCost(𝑂𝑖 , 𝑆𝑖,𝑗𝑖 ) ,𝐶reshard ← 0
6: for each predecessor𝑂𝑘 of𝑂𝑖 in DAG do

7: 𝐶reshard ← 𝐶reshard + ReshardCost(𝑆𝑘,𝑗𝑘 , 𝑆𝑖,𝑗𝑖 )
8: end for

9: 𝐶 ← 𝐶 +𝐶exec +𝐶reshard
10: end for

11: if 𝐶 < 𝐶min then

12: 𝑆∗ ← 𝑆 ,𝐶min ← 𝐶

13: end if

14: end for

15: return 𝑆∗

leading to incompatible sharding specifications on interme-
diate buffers. To resolve this mismatch, explicit resharding
communication must be inserted, which contributes non-
negligible latency beyond intra-operator communication.
Our approach maintains a searchable database of dis-

tributed operator configurations, where each record includes
the operator’s input/output sharding settings and the corre-
sponding execution time. Given a computation graph repre-
sented as a directed acyclic graph (DAG), we first compute
the pairwise resharding cost for each edge connecting two
dependent operators. This cost accounts for the communica-
tion required to transform the output sharding of a producer
into the expected input sharding of its consumer.
To find the optimal combination of operator configura-

tions, we perform a global search over the space of candidate
assignments, aiming to minimize the total cost composed of
per-operator execution latency and inter-operator reshard-
ing cost. To support seamless integration with our DSL, the
input and output sharding constraints for each operator are
defined using the Parallelize primitive in Mercury. Reshard-
ing communication routines are synthesized by interpreting
mismatches in sharding specifications along DAG edges,
following the procedure illustrated in Alg. 1. This design
ensures that graph-level scheduling remains aware of both
computation and communication costs, enabling more effec-
tive parallel strategy selection for the model.

8 Evaluation

This section introduces our evaluation settings and demon-
strates the experimental findings. Our evaluation is struc-
tured into four parts: (1) operator benchmarks across hard-
ware backends, (2) adaptability to network topologies, (3)
scalability with increasing sequence lengths, and (4) design
space analysis. This organization highlights the performance,
portability, scalability, and expressiveness of Mercury.
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Figure 9. Multi-GPU operators performance benchmark from LLMs.

L4 A100 H100
TFLOPs @FP16 242 312 1979
Memory (GB) 24 40 80
Memory Bandwidth (GB/s) 300 1555 3350
Intra-node Connection PCIe NVLink NVLink
Intra-node Bandwidth (GB/s) 64 600 900
Inter-node Bandwidth (Gbps) 50 50 100

Table 3. Distributed hardware and network configurations.

8.1 Experimental Setup

Testbed. We deploy the proposed Mercury compiler with
diverse GPU devices and interconnection settings to evaluate
its generality. The configurations are summarized in Tbl. 3,
showing the key varying factors. The nodes are connected
with RoCE, and the intra-node connection is facilitated by
NVLink[24] or PCIe. We adapt the number of nodes (ranging
from 1 to 4) and GPU devices per node (ranging from 1 to 8)
in each benchmark to evaluate the portability of Mercury
with different settings, which will be elaborated accordingly.
Mercury is implemented with CUDA-v12.6, NCCL-v2.26.2
and TorchInductor released with PyTorch-v2.8.
Workloads. We use Mercury to optimize the representa-
tive operators of modern LLMs, including different vari-
ants of attention (MHA, GQA). For the GEMM operator, we
benchmark two settings, AllGather-GEMM (AG) and GEMM-
ReduceScatter (RS), which typically show in the linear layers
of LLMs with TP. The configuration of the evaluated op-
erators is selected to match the model specification of the
Llama-3 series[14], which stands for a typical setting for
many LLMmodels. Besides, we also evaluate these operators
under common batch size settings of 1 16 and scale the se-
quence length from 4K to 2M to show Mercury’s generality.
Baselines. To evaluate the effectiveness of operators gen-
erated and tuned byMercury, we compare with the SOTA
manual written operators and auto-searching methods avail-
able. For the attention operator, we compare it with the

asynchronous CP design RingAtten[22] (denoted as Ring)
and synchronous HP design from DeepSpeed-Ulysses[16]
(denoted as Ulysses), adopting collective communications.
Furthermore, we also include an advanced template-based
adaptive operator USP[12] using a hybrid communication
pattern of CP and HP. Specifically, we report the best per-
formance result in USP’s design space, which will be elabo-
rated in a case study. For the linear operator, we benchmark
the synchronous operators with NCCL collective commu-
nication in cuBLAS[27]. We also benchmark a promising
asynchronous design AsyncTP[40]. Besides, we also com-
pare with the operators generated by the TorchInductor[4]
compiler, which tunes the best TP setting with a manual
template of multi-GPU schedules.

8.2 Operator Benchmarks.

Operator Results. Across all benchmarks, Mercury consis-
tently outperforms existing solutions, demonstrating both
superior performance and broad generality. As shown in
Fig. 9, Mercury achieves the highest speedup in every set-
ting across both attention and GEMMworkloads on multiple
hardware backends (H100, A100, and L4), indicating its ro-
bustness and hardware portability.
In attention benchmarks, Mercury delivers significant

speedups. For example, on H100, Mercury achieves up to
4× speedup on MHA with batch size 16, substantially out-
performing USP and Ulysses. Notably, Ulysses excels only
in the MHA setting due to its reliance on head-wise parti-
tioning and fixed all-to-all communication, but suffers on
GQA where the number of heads is reduced. USP, while in-
troducing a combined CP+HP template, remains limited by
a narrower design space. In contrast, Mercury automatically
searches for optimized strategies tailored to operator charac-
teristics and hardware, maintaining high performance even
on GQA tasks. This highlights its adaptability to operator-
specific constraints. In conclusion, Mercury demonstrates
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Figure 10. Attention operator benchmark with various hardware network configurations.

unmatched performance and flexibility across all attention
configurations.
Mercury also shows strong results on GEMM bench-

marks, which are generally considered more regular and
communication-heavy. Although the performance gap is
smaller compared to attention, Mercury still consistently
surpasses both manually tuned baselines (e.g., AsyncTP)
and compiler-generated ones (e.g., Inductor). For example,
it achieves up to 1.9× speedup on AG with batch size 16
on A100, and maintains a stable lead across all devices. The
improvement stems fromMercury’s ability to break collec-
tive communication into finer-grained transactions and op-
timize overlapping computation and communication. This
demonstrates its advantage even in conventional workloads
with less inherent structural diversity. Therefore, Mercury’s
effectiveness on GEMM benchmarks further supports its
general-purpose design.
Network Topology Adaptability. We evaluate Mercury
across various multi-GPU configurations, shown in Fig. 10.
The left plots fix the per-GPU workload (4K context), reveal-
ing scalability trends as the GPU count increases. The right
plots fix total workload (32K context), highlighting commu-
nication efficiency under increasing parallelism. Across all
settings on H100 and A100,Mercury consistently achieves
the lowest latency, outperforming all baselines with an aver-
age 2.91× speedup. Unlike handcrafted strategies or fixed-
template methods,Mercury adapts its communication and
parallelism plan to each topology automatically.
In the 4K-per-GPU setting, intra-node topologies (e.g.,

1 × 8) show better performance due to faster links, while
inter-node layouts (e.g., 4 × 4) suffer from higher latency.
Mercurymaintains efficiency even in these bandwidth-heavy
cases by avoiding excessive inter-node communication. In
contrast, RingAtten becomes bandwidth-bound, and Ulysses
and USP show inconsistent performance depending on how
well their fixed strategies match the mesh.

In the 32K total context case, Mercury continues to out-
perform all baselines. However, in configurations with only
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Figure 11. Attention operators scaling sequence lengths.

a single-level hierarchy—such as purely intra-node (1 × 4)
or inter-node (4 × 1) setups—the performance gap between
Mercury and existing approaches narrows, as handcrafted
strategies like USP and Ulysses are already well-optimized
for such scenarios. This underscores Mercury’s strength: its
advantage becomes more pronounced in complex, hybrid
topologies (e.g., 2 × 4, 4 × 2) where static methods struggle,
and dynamic, topology-aware scheduling is crucial.
Context Scalability.We evaluate the scalability of Mercury
by increasing the sequence length of the MHA operator
under a 2 × 4 configuration on the H100 platform. As shown
in Fig. 11, Mercury consistently outperforms all baselines as
the sequence length scales from 32K up to 2M tokens.

When the sequence length exceeds 1 million, computation
dominates the attention operator’s runtime, diminishing the
relative impact of communication. As a result, the speedup
margin between Mercury and the baselines narrows. Nev-
ertheless, Mercury still maintains competitive or superior
performance in this regime. A key highlight is Mercury’s
ability to generate feasible execution plans even under ex-
treme memory pressure. While other baselines fail with out-
of-memory (OOM) errors at the 2M token mark, Mercury
adapts by aggressively sharding KV caches and output ten-
sors, trading increased communication for reduced memory
usage. This flexibility enablesMercury to meet strict memory
constraints without manual intervention. Another observa-
tion is the shift in relative performance between Ulysses and
USP. Ulysses performs better for sequence lengths up to 65K,
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but USP overtakes it beyond that point. This behavior un-
derscores the complexity of selecting optimal parallelization
strategies and reinforces the value of Mercury’s automatic
search mechanism, which adapts to both workload and hard-
ware constraints.

8.3 Model Benchmark

We evaluate Mercury’s performance at the model level with
operator configurations from Llama3-8B and Llama3-70 B.
Specifically, we construct the computation graph using the
graph-level search algorithm introduced in Sec. 7.4. We
benchmark one Transformer layer with attention and linear
operators since all layers share the same configuration. We
compare to the 3D parallelism[21] strategy, combining DP,
TP, and CP with the best configuration. In this benchmark,
we set the sequence length to 4096 with batch size 1. The
latency is broken down by key operators and resharding
steps, including QKV Projection, Attention, and MLP layers.

Fig. 12 shows the normalized latency result of Llama3-8B
and 70B models under two settings: 2 × 4 and 4 × 2. Across
all configurations,Mercury achieves significantly lower la-
tency than 3D Parallel. This improvement is not solely from
optimizing individual operators but stems from a synergis-
tic coordination at the model level. By jointly considering
operator schedules and resharding decisions, Mercury elim-
inates redundant layout transformations and streamlines
data flow across layers. The pronounced reduction in re-
sharding overhead highlightsMercury’s capability to treat
the model as a unified computational graph, where layout
choices are optimized globally, rather than in isolation. This
global view enablesmore efficient execution pipelines, reveal-
ing the advantage of integrating operator-level compilation
with model-wide communication planning.

8.4 Design Space Analysis

To better understand the expressiveness and tunability of
Mercury, we visualize its design space on an MHA operator
using a 2 × 4 H100 configuration, as shown in Fig. 13. Each
red dot represents a candidate schedule evaluated during
Mercury’s auto-tuning process, plotted in terms of latency
and memory consumption. We also include the results of
baseline methods, USP, Ring, and Ulysses, for comparison. To
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Figure 13. Design space analysis.

highlight the most practical region, we zoom into the lower-
latency, lower-memory corner and outline the Pareto front.
Mercury’s large and expressive search space, enabled by the
proposed CommIR, encompasses both existing strategies and
novel schedules that are not easily reachable throughmanual
design. This allows Mercury to adapt to diverse operators
and hardware topologies.
The best-latency candidate (marked in the zoom-in) fea-

tures a hybrid parallelism strategy: it applies HP with a
degree of 4 across both intra-node and inter-node levels,
combined with a shifted CP-2 on the intra-node level. Addi-
tionally, each local operator is shifted along the reduction
dimension, enabling fine-grained overlap between computa-
tion and communication. In contrast, the best-memory candi-
date uses intra-node parallelism over the context dimension
and reuses the local Q dimension with a shift transformation.
This significantly reduces peak memory usage by efficiently
shifting KV activation and output tensors, as demonstrated
in Fig. 7.

For comparison, we also represent USP’s manually crafted
design space using CommIR’s abstraction. As shown in the
blue box, USP only explores a narrow subregion of the full
design space, with limited tunability over key axes like tiling
granularity or parallelism layout. This further illustrates the
necessity of automated exploration in achieving both optimal
performance and memory efficiency across diverse settings.

9 Conclusion

We present Mercury, an automated compiler framework for
multi-GPU tensor programs, built on a novel loop-based IR,
CommIR. By combining a custom DSL with advanced sched-
uling and communication primitives,Mercury jointly opti-
mizes computation and communication, discovering novel
parallel strategies that outperform state-of-the-art on atten-
tion and GEMM operators. It simplifies complex multi-GPU
operator design and adapts to diverse hardware, enabling
scalable, efficient execution for large-scale models and open-
ing paths for future tuning, graph-level integration, and het-
erogeneous device support.
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