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Background

Object detection, video classification,
« Convolutional neural network is s image segmentation, and human pose

popular and widely applied. estimation.
» Existing CNN work tries to improve Efficient models crafted manually (e.g.,
accuracy or reduce complexity. VGG, MobileNet), or generated from

neural architecture search (NAS).

\ 1) Missing an interpretable metric

2) Huge training efforts.

« Two major issues.




Existing Convolutions
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(a) Standard Convolution . (b) Pointwise Convolution |  (c) Group Convolution (d) Depthwise Convolution (e) Group-Pointwise Convolution

Figure 1: Channel mapping (top) and Spatial mapping (bottom) of the standard convolution and factorized convolution kernel.



Receptive Field

e Quantifies the local
representation ability in a single ﬂ
traditional convolution layer. |

_____________________________________________________________________________

A larger receptive field leads to higher
accuracy.

» Fails to quantify the global . Modern CNNs have a large number of
representation ability across > convolution layers with diverse receptive
layers. . fields stacked in a CNN stage.

* Fails to consider the channel __ Channel information is critical in
number. “ modern convolution layers (e.g.,

Depthwise convolution and Channel-
wise convolution).



Contributions

» 3D-Receptive Field (3DRF), an

interpretable metric. ' Decide the number of convolution

, K iff :
- |CNN model stage-level design. ernels at different stages

* (CNN model kernel-level design.

Decide the type of the
convolution kernel to use
(standard convolution kernels or

efficient factorized kernels).




3D-RECEPTIVE FIELD

» 3D-Receptive Field (3DRF).
3DRF;, = (3DRF")?  3DRF}

Measuring the representation

3DRF,” = min(3DRF;"” | + wj — 1, wo)

3DRF; = min(g(3DRF;_,, Ty), co)
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3D-RECEPTIVE FIELD (Cont’d)

* 3DRF Gain. Quantifying the
3DRFy — 3DRFj_; s *2RFics representation ability change
A3DRF, = 3DRF,_, xe W beteen two consecutive
convolution layers.
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S Sy,

Case Study: Accuracy Impact of 3DRF Gain

T N .
e VGG11 as the baseline structure and ! Table 2: Impact of 3DRF Gain (A3DRF) over Accuracy.
|
run it on CIFAR-10 dataset. i Network A3DRF Accuracy (%) AAccuracy (%)
|
. . . . |
* Five VGG-variants by inserting a : VGG-11 0 92.68 0
. ] I .
single standard convolution before | Variant-1 ~ 1.73 93.56 0.88
. : Variant-2  1.60 93.46 0.78
each max pooling. .
-------------------------------------------- g Variant-3  0.29 92.75 0.07
Variant-4 0.0 92.58 -0.10

Variant-5 0.0 92.41 -0.27




Stage-level Organizer
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Kernel-Level Decomposer

| Reduces the computational cost of a CNN
architecture design.

1) Quality Condition: 3DRF (N) = 3DRF
(S) for the same input tensor;

2) Compact Condition: 3DRF (N - x) <
3DRF (S) if we remove a factorized

. kernel x from N

N o o e -

i Unify the previous construction of the
E convolution block and build a new

I convolution blocks and one efficient

|
|

N ———
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Substituting its standard
convolution kernels with less
computational expensive
convolution blocks.

Ensures the effectiveness of
N with regards to its learning
capacity,

Guarantees its optimality in
terms of computation
efficiency.
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Kernel-Level Decomposer (cont’d)
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Figure 4: Illustration of the 3DRF, both in the channel (I) and spatial (II) dimension, for the standard kernels (S) and previous
convolution blocks (A-D). g is the number of groups for GC and GPW. The arrow denotes the flow from inputs to outputs

in the channel dimension, and the number of input channels that could flow into an output neuron would be the channel
dimension of 3DRF for that block. We omit the process of computing the spatial size of 3DRF, while only giving the computed

result based on Equation 4 in the figure.
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Evaluation

* The state-of-the-art CNN models (VGG16
and VGG19, MobileNet and ResNeth0.

» We use CIFAR-10 (CIFAR-100) and
ImageNet dataset.



Evaluation (Cont’d)

Stage-level Stage-level

Optimizer Optimizer
Table 3: Performance comparison (CIFAR-10) between orig- Table 4: Performance comparison (CIFAR-100) between orig-
inal CNNs and reorganized structures. inal CNNs and reorganized structures.
Network MFLOPs Param. Acc.(%) A3DRF Network MFLOPs Param. Acc.(%) A3DRF
VGG16 310 14.73M 92.64 - VGG16 330 34.02M 72,93 =
VGG16-opt 370 5.10M 9295 2.30 VGG16-opt 390 24.39M  74.64 2.30
VGG19 400 20.04M 91.91 - VGG19 420 39.33M 72.23 E
VGG19-opt 490 8.09M  92.89 3.13 VGG19-opt 500 27.38M  74.00 .15
MobileNet 50 3.22M  90.67 - MobileNet 50 3.32M  65.98 -
MobileNet-opt 50 1.13M  92.05 3.94 MobileNet-opt 50 1.23M 7145 3.94
ResNet50 1,300 23.52M 93.75 = ResNet50 1,310 23.71IM 17:39 =

ResNet50-opt 1,310 17.24M  95.79 0.76 ResNet50-opt 1,380 21.89M  78.25 0.76

13



Evaluation (COnt ’ d ) Kernel-level

Optimizer
Stage-level P
Optimizer Table 6: Kernel-level design (CIFAR-10) on VGG16-opt.

Table 5: Performance comparison (ImageNet) between orig-

inal CNNs and reorganized structures. Network MFLOPs Param. Acc.(%)
Baseline 370 9.64M 92.95
Network MFLOPs Param. Acc.(%) A3DRF
DW+PW 50 1L.11IM  92.12
VGG16 15500  13836M  71.59 -
VGG16-opt 16900 133.82M 72.17  0.39 DWGE Weg2 20 Giolll: %233
VGG19 19,670  143.67TM  72.38 - DW+GPW-g4 20 0.36M  88.05
VGG19-opt 21,0600 141.34M 7261  1.09 DW-+GPW-g8 10 0.20M  86.41
MobileNet 580 423M  70.60 - DW+RPW-g2-033% 30 0.66M  92.52
MobileNet-opt 570 3.52M 7105 259
DW+RPW-g2-050% 30 0.66M  92.70
ResNet50 4,120 2556M  76.15 =
ResNet50-opt 4,130  23.67M 7656  0.47 DW+RPW-g4-033% 20  0.36M  91.61

DW+RPW-g4-050% 20 0.36M  91.59
DW+RPW-g8-033% 10 0.20M  89.86
DW+RPW-g8-050% 10 0.20M 90.19
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