

Control Center Installation Guide

Release 1.3.3

Zenoss, Inc.

www.zenoss.com

Control Center Installation Guide

Copyright © 2017 Zenoss, Inc. All rights reserved.

Zenoss and the Zenoss logo are trademarks or registered trademarks of Zenoss, Inc., in the United States and other countries. All other trademarks, logos, and service marks are the property of Zenoss or other third parties. Use of these marks is prohibited without the express written consent of Zenoss, Inc., or the third-party owner.

Linux is a registered trademark of Linus Torvalds.

All other companies and products mentioned are trademarks and property of their respective owners.

Part Number: 1320.17.206

Zenoss, Inc. 11305 Four Points Drive Bldg 1 - Suite 300 Austin, Texas 78726

Contents

About this guide	5
Chapter 1: Installing a master host	
Verifying candidate host resources	
Master host storage requirements	
Disabling consistent network device naming	
Preparing the master host operating system	
Installing Docker CE	
Installing Control Center	
Configuring Docker	
Optional: Loading image files	
Creating the application data thin pool	
Chapter 2: Configuring and starting the master host	
Control Center maintenance scripts on the master host	
User access control	
Configuring the base size device for tenant data storage	
Setting the host role to master	
Optional: Changing the local Docker registry endpoint	
Optional: Configuring offline use	
Master host configuration variables	
Universal configuration variables	
Starting Control Center for the first time	
Adding the master host to a resource pool	
	25
Chapter 3: Installing delegate hosts	
Verifying candidate host resources	
Delegate host storage requirements	
Disabling consistent network device naming	
Preparing a delegate host	
Installing Docker CE	
Installing Control Center	
Configuring Docker	
Chapter 4. Configuring and starting delegate hosts	45
Chapter 4: Configuring and starting delegate hosts	
Control Center maintenance scripts on delegate hosts	
Enabling use of the command-line interface	
Setting the host role to delegate	
Changing the local Docker registry endpoint	
Setting internal services endpoints	
Optional: Configuring offline use	
Delegate host configuration variables	
Universal configuration variables	
Starting Control Center	
Delegate host authentication	

Chapter 5: Configuring a ZooKeeper ensemble	55
ZooKeeper and Control Center	
Understanding the configuration process	
Configuring the master host as a ZooKeeper node	
Configuring delegate host A as a ZooKeeper node	
Configuring delegate host B as a ZooKeeper node	
Installing the ZooKeeper image for Docker	
Starting a ZooKeeper ensemble	
Updating delegate hosts	63
Appendix A: Starting and stopping Control Center deployments	65
Stopping Control Center (single-host deployment)	65
Starting Control Center (single-host deployment)	
Stopping Control Center (multi-host deployment)	
Starting Control Center (multi-host deployment)	
Appendix B: Storage management utility	72
serviced-storage	
Appendix C: Control Center configuration variables	76
Best practices for configuration files	
Control Center configuration file	
Appendix D: Preparing to install without internet access	86
Downloading repository and image files	86
Installing the repository mirror	
Staging Docker image files on the master host	88
Staging a Docker image file on ZooKeeper ensemble nodes	
Appendix E: Configuring a private master NTP server	
Configuring an NTP master server	
Configuring NTP master server	

About this guide

Control Center Installation Guide provides detailed procedures for installing and configuring a Control Center cluster. Before using this guide, carefully review the *Control Center Planning Guide*.

Zenoss customers: This guide does not include procedures for installing a high-availability deployment. For additional information, please contact your Zenoss representative.

Related publications

Title	Description
Control Center Release Notes	Describes known issues, fixed issues, and late-breaking information not included in other publications.
Control Center Planning Guide	Provides both general and specific information about preparing to deploy a Control Center cluster.
Control Center Installation Guide	Provides detailed procedures for installing and configuring a Control Center cluster.
Control Center Installation Guide for High-Availability Deployments	Provides detailed procedures for installing and configuring Control Center in a high-availability deployment.
Control Center Reference Guide	Provides information and procedures for managing Control Center. This information is also available as online help in the Control Center browser interface.
Control Center Upgrade Guide	Provides detailed procedures for updating a Control Center deployment to the latest release.
Control Center Upgrade Guide for High- Availability Deployments	Provides detailed procedures for updating a high-availability deployment of Control Center to the latest release.

Documentation feedback

To provide feedback about this document, or to report an error or omission, please send an email to docs@controlcenter.io. In the email, please include the document title and part number, and as much information as possible about the context of your feedback. The part number appears at the end of the list of trademarks, at the front of this guide.

Supported clients and browsers

The following table identifies the supported combinations of client operating systems and web browsers.

Client OS	Supported Browsers
Windows 7 and 8.1	Internet Explorer 11 (Enterprise mode only; compatibility mode is not supported.)
	Internet Explorer 10 [*]
Windows 10	Internet Explorer 11 (Enterprise mode only; compatibility mode is not supported.)
	Internet Explorer 10 [*]

Support for Internet Explorer 10 will be withdrawn beginning with the next feature release of Control Center.

Client OS	Supported Browsers
	Firefox 50 and later
	Chrome 54 and later
	Microsoft Edge
Windows Server 2012 R2	Firefox 30
	Chrome 36
Macintosh OS/X 10.9	Firefox 30 and above
	Chrome 36 and above
Ubuntu 14.04 LTS	Firefox 30 and above
	Chrome 37 and above
Red Hat Enterprise Linux 6.5,	Firefox 30 and above
CentOS 6.5	Chrome 37 and above

Change history

The following list associates document part numbers and the important changes to this guide since the previous release. Some of the changes involve features or content, but others do not. For information about new or changed features, refer to the *Control Center Release Notes*.

1320.17.206

Correct a previous modification for configuring Docker. The --insecure-registry flag must be set when the value of *SERVICED DOCKER REGISTRY* is not localhost:5000.

1320.17.187

Modify the yum command used to install Docker CE 17.03.1.

1320.17.171

Update release number (1.3.3).

Add support for Docker CE 17.03.1.

Add ZooKeeper variables for tuning TCP/IP communications with resource pools.

Remove step for disabling SELinux.

1320.17.122

Update release number (1.3.2).

1320.17.100

Update release number (1.3.1).

Modify the step for configuring Docker on master hosts. The --insecure-registry flag is only needed on delegate hosts.

1320.17.076

Update release number (1.3.0).

Add clarification that offline installations must be performed completely offline.

Add procedure for adding delegates when using network address translation (NAT).

1320.17.59

Update release number (1.2.3).

Remove TLS_RSA_WITH_RC4_128_SHA from list of ciphers associated with *SERVICED_TLS_CIPHERS*.

1320.17.024

Update release number (1.2.2).

1320.16.351

Minor changes to synchronize with the Upgrade Guide.

1320.16.350

Add steps to download and use the serviced RPM file (Zenoss customers only).

Add procedures for importing the ZooKeeper image file on offline nodes (Zenoss customers only).

Update release number (1.2.1).

1320.16.327

Add new best practice guideline for managing configuration files.

1320.16.319

Initial release (1.2.0).

Installing a master host

This chapter describes how to install Control Center on a Red Hat Enterprise Linux (RHEL) or CentOS host. The candidate host must have the CPU, RAM, and storage resources required to serve as the master host in a Control Center cluster.

For more information about master host requirements, refer to the Control Center Planning Guide.

Verifying candidate host resources

Use this procedure to determine whether the hardware resources and installed operating system of a host are sufficient to serve as a Control Center master host.

- 1 Log in to the candidate host as root, or as a user with superuser privileges.
- 2 Verify that the host implements the 64-bit version of the x86 instruction set.

uname -m

- If the output is x86_64, the architecture is 64-bit. Proceed to the next step
- If the output is i386/i486/i586/i686, the architecture is 32-bit. Stop this procedure and select a different host.
- 3 Determine whether the installed operating system release is supported.

cat /etc/redhat-release

- If the result includes 7.1, 7.2, or 7.3 proceed to the next step.
- If the result does not include 7.1, 7.2, or 7.3, select a different host, and then start this procedure again.
- 4 Determine whether the CPU resources are sufficient.
 - **a** Display the total number of CPU cores.

```
cat /proc/cpuinfo | grep -Ec '^core id'
```

b Compare the available resources with the requirements for a Control Center master host. For more information, refer to the *Control Center Planning Guide*. 5 Determine whether the CPU resources support the AES instruction set.

cat /proc/cpuinfo | grep -Ec '^flags.*aes'

For optimal performance, the result of the preceding commands must match the total number of CPU resources available on the host. If the result is 0, performance is severely degraded.

If the result is 0 and the candidate host is a virtual machine, the managing hypervisor may be configured in Hyper-V compatibility mode. Check the setting and disable it, if possible, or select a different host.

- 6 Determine whether the available memory and swap is sufficient.
 - **a** Display the available memory.

free -h

- **b** Compare the available memory with the amount required for a master host in your deployment. For more information, refer to the *Control Center Planning Guide*.
- 7 Ensure the host has a persistent numeric ID.

Skip this step if you are installing a single-host deployment.

Each host in a Control Center cluster must have a unique host ID, and the ID must be persistent (not change when the host reboots).

test -f /etc/hostid || genhostid ; hostid

Record the ID for comparison with other hosts in the cluster.

8 Verify that name resolution works on this host.

hostname -i

If the result is not a valid IPv4 address, add an entry for the host to the network nameserver, or to /etc/ hosts.

- 9 Add an entry to /etc/hosts for localhost, if necessary.
 - **a** Determine whether 127.0.0.1 is mapped to localhost.

grep 127.0.0.1 /etc/hosts | grep localhost

If the preceding commands return no result, perform the following substep.

b Add an entry to /etc/hosts for localhost.

echo "127.0.0.1 localhost" >> /etc/hosts

- 10 Update the Linux kernel, if necessary.
 - **a** Determine which kernel version is installed.

uname -r

If the result is lower than 3.10.0-327.22.2.e17.x86_64, perform the following substep.

b Update the kernel, and then restart the host.

The following commands require internet access or a local mirror of operating system packages.

yum makecache fast && yum update -y kernel && reboot

Master host storage requirements

This section provides a quick reference for the minimum storage requirements of a Control Center master host. These requirements are in addition to the storage required for the host's operating system. For more information, refer to the *Control Center Planning Guide*.

Control Center cluster hosts need either unformatted block storage devices or partitions, or free space in one or more LVM volume groups.

• Enter the following command to display information about block storage:

lsblk -ap --output=NAME,SIZE,TYPE,FSTYPE,MOUNTPOINT

• Enter the following command to display information about LVM volume groups:

```
vgdisplay
```

Compare the output with the information in the following table.

Purpose	Minimum size	Description
Docker data	50GB (required)	Local, high-performance storage.
Control Center internal services data	50GB (required)	Local, high-performance storage formatted as an XFS filesystem.
Application data	200GB (suggested)	Local, high-performance storage.
Application data backups	150GB (suggested)	A remote file server compatible with XFS or a local storage formatted as an XFS filesystem. If the storage is local, ensure that it does not cause contention with the storage for Control Center internal services.

The storage for Docker data and application data is configured as LVM thin pools in subsequent procedures.

The suggested minimum sizes for application data and application data backups should be replaced with sizes that meet your application requirements. To calculate the appropriate sizes for these storage areas, use the following guidelines:

- Application data storage includes space for both data and snapshots. The default base size for data is 100GB, and the recommended space for snapshots is 100% of the base size. Adding the two yields the suggested minimum size of 200GB.
- For application data backups, the recommended space is 150% of the base size for data.

The following sections provide procedures for formatting and mounting local storage as XFS filesystems for Control Center internal services data and application data backups.

Creating a filesystem for Control Center internal services

This procedure requires one unused device or partition.

Use this procedure to create an XFS filesystem on an unused device or partition.

- 1 Log in to the target host as root, or as a user with superuser privileges.
- 2 Identify the target device or partition for the filesystem to create.

lsblk -ap --output=NAME,SIZE,TYPE,FSTYPE,MOUNTPOINT

3 Create an XFS filesystem.

Replace Storage with the path of the target device or partition:

mkfs.xfs Storage

4 Enter the following command to add an entry to the /etc/fstab file. Replace *Storage* with the path of the device or partition used in the previous step:

echo "Storage /opt/serviced/var/isvcs xfs defaults 0 0" >> /etc/fstab

5 Create the mount point for internal services data.

mkdir -p /opt/serviced/var/isvcs

6 Mount the filesystem, and then verify it mounted correctly.

mount -a && mount | grep isvcs

Example result:

```
/dev/xvdb1 on /opt/serviced/var/isvcs type xfs
(rw,relatime,attr2,inode64,noquota)
```

Creating a filesystem for application data backups

This procedure requires one unused device or partition, or a remote file server that is compatible with XFS.

Use this procedure create an XFS filesystem on a device or partition, or to mount a remote filesystem, for application data backups.

Note If you are using a partition on a local device for backups, ensure that the storage for Control Center internal services data is not on the same device.

- 1 Log in to the target host as root, or as a user with superuser privileges.
- **2** Optional: Identify the target device or partition for the filesystem to create, if necessary. Skip this step if you are using a remote file server.

lsblk -ap --output=NAME,SIZE,TYPE,FSTYPE,MOUNTPOINT

3 Optional: Create an XFS filesystem, if necessary.

Skip this step if you are using a remote file server.

Replace Storage with the path of the target device or partition:

mkfs.xfs Storage

4 Create an entry in the /etc/fstab file.

Replace File-System-Specification with one of the following values:

- the path of the device or partition used in the previous step
- the remote server specification

```
echo "File-System-Specification \
    /opt/serviced/var/backups xfs defaults 0 0" >> /etc/fstab
```

5 Create the mount point for backup data.

mkdir -p /opt/serviced/var/backups

6 Mount the filesystem, and then verify it mounted correctly.

```
mount -a && mount | grep backups
Example result:
```

```
/dev/sdb3 on /opt/serviced/var/backups type xfs
(rw,relatime,seclabel,attr2,inode64,noquota)
```

Disabling consistent network device naming

The consistent network device naming feature can create device names that are too long for use with virtual IPs. This step disables the feature so that all network device names are eth followed by an integer.

- 1 Log in as root, or as a user with superuser privileges.
- 2 Edit the GRUB 2 general settings file.
 - **a** Create a backup copy of the settings file.

cp /etc/default/grub /etc/default/grub.bak

- **b** Open /etc/default/grub with a text editor.
- c Add kernel boot arguments to the value of the *GRUB_CMDLINE_LINUX* variable. The arguments to add are biosdevname=0 and net.ifnames=0. Make sure the arguments are between the delimiter characters (").
- **d** Save the file, and then close the text editor.
- 3 Determine whether the host is configured for UEFI or legacy boot mode.

find /boot -maxdepth 1 -type d

- If the output includes /boot/efi, the host is configured for UEFI boot mode.
- If the output does not include /boot/efi, the host is configured for legacy boot mode.
- 4 Recreate the GRUB 2 boot configuration file. For UEFI boot mode:

```
grub2-mkconfig -o /boot/efi/EFI/centos/grub.cfg
```

For legacy boot mode:

grub2-mkconfig -o /boot/grub2/grub.cfg

5 Create an override for the default rules policy of the dynamic device management daemon.

ln -s /dev/null /etc/udev/rules.d/80-net-name-slot.rules

- 6 Change network device configurations.
 - a Change directory to /etc/sysconfig/network-scripts.

cd /etc/sysconfig/network-scripts

b List the network device configuration files.

ls ifcfg-* | grep -v ifcfg-lo

The ifcfg-lo file is excluded because it does not need to be changed.

c Rename and edit device files.

For example, if you have a device file named ifcfg-enp0s3, use the mv command rename it to ifcfg-eth0, and then change the values of the *NAME* and *DEVICE* variables inside the file to eth0.

- 7 Update the default route.
 - **a** Display the current default route.

```
ip route show | head -n 1
```

Example result, showing device enp0s3 and gateway host 198.51.100.1:

default via 198.51.100.1 dev enp0s3 proto static metric 100

b Update the network device.

Replace Device-Name with the name of the device to update:

```
ip link set Device-Name down ; \
    ip link set Device-Name name eth0 ; ip link set eth0 up
```

To maintain your terminal session, perform the preceding commands as shown.

c Update the default route. Replace *Gateway-Address* with the IP address of the gateway host:

ip route replace default via Gateway-Address dev eth0

8 Reboot the host.

Preparing the master host operating system

Note Zenoss customers: If you are creating a deployment without internet access, perform the steps in *Preparing to install without internet access* on page 86, before performing this procedure.

Use this procedure to prepare a RHEL/CentOS host as a Control Center master host.

- 1 Log in to the candidate master host as root, or as a user with superuser privileges.
- **2** Disable the firewall, if necessary.

This step is required for installation but not for deployment. For more information, refer to the *Control Center Planning Guide*.

a Determine whether the firewalld service is enabled.

systemctl status firewalld.service

- If the result includes Active: inactive (dead), the service is disabled. Proceed to the next step.
- If the result includes Active: active (running), the service is enabled. Perform the following substep.

b Disable the firewalld service.

systemctl stop firewalld && systemctl disable firewalld

On success, the preceding commands display messages similar to the following example:

```
rm '/etc/systemd/system/dbus-org.fedoraproject.FirewallD1.service'
rm '/etc/systemd/system/basic.target.wants/firewalld.service'
```

3 Optional: Enable persistent storage for log files, if desired.

By default, RHEL/CentOS systems store log data only in memory or in a ring buffer in the /run/log/ journal directory. By performing this step, log data persists and can be saved indefinitely, if you implement log file rotation practices. For more information, refer to your operating system documentation.

mkdir -p /var/log/journal && systemctl restart systemd-journald

4 Enable and start the Dnsmasq package.

The package facilitates networking among Docker containers.

systemctl enable dnsmasq && systemctl start dnsmasq

If name resolution in your environment relies solely on entries in /etc/hosts, configure dsnmasq so that containers can use the file:

- a Open /etc/dnsmasq.conf with a text editor.
- **b** Locate the line that starts with #domain-needed, and then make a copy of the line, immediately below the original.
- **c** Remove the number sign character (#) from the beginning of the line.
- d Locate the line that starts with #bogus-priv, and then make a copy of the line, immediately below the original.
- e Remove the number sign character (#) from the beginning of the line.
- f Locate the line that starts with #local=/localnet/, and then make a copy of the line, immediately below the original.
- g Remove net, and then remove the number sign character (#) from the beginning of the line.
- **h** Locate the line that starts with #domain=example.com, and then make a copy of the line, immediately below the original.
- i Replace example.com with local, and then remove the number sign character (#) from the beginning of the line.
- j Save the file, and then close the editor.
- k Restart the dnsmasq service.

systemctl restart dnsmasq

5 Install and configure the NTP package.

Note This procedure assumes the host has internet access. To install and configure NTP on a host that does not have internet access, see *Configuring a private master NTP server* on page 89.

a Install the package.

yum install -y ntp

b Set the system time.

ntpd -gq

c Enable the ntpd daemon.

systemctl enable ntpd

d Configure ntpd to start when the system starts.

Currently, an unresolved issue associated with NTP prevents ntpd from restarting correctly after a reboot. The following commands provide a workaround to ensure that it does.

```
echo "systemctl start ntpd" >> /etc/rc.d/rc.local
chmod +x /etc/rc.d/rc.local
```

- 6 Add the Zenoss repositories to the host's repository list.
 - **a** Install the repository package.

The package adds the Zenoss stable, unstable, and testing repositories to /etc/yum.repos.d. All three repositories are disabled.

rpm -ivh http://get.zenoss.io/yum/zenoss-repo-1-1.x86_64.rpm

b Clean out the yum cache directory.

yum clean all

7 Reboot the host.

reboot

Installing Docker CE

Use one of the procedures in this section to install Docker CE.

Installing Docker CE with internet access

Use this procedure to install Docker CE on a host that has internet access.

- 1 Log in to the host as root, or as a user with superuser privileges.
- 2 Install Docker CE 17.03.1, and then disable accidental upgrades.
 - **a** Add the Docker CE repository to the host's repository list.

```
cat <<EOF > /etc/yum.repos.d/docker-ce.repo
[docker-ce-stable]
name=Docker CE Stable - \$basearch
baseurl=https://download.docker.com/linux/centos/7/\$basearch/stable
enabled=1
gpgcheck=1
gpgkey=https://download.docker.com/linux/centos/gpg
EOF
```

b Clean the yum cache and update repository metadata.

yum clean all && yum makecache fast

c Install Docker CE from the remote repository.

```
yum install -y --setopt=obsoletes=0 \
    docker-ce-17.03.1.ce-1.el7.centos \
    docker-ce-selinux-17.03.1.ce-1.el7.centos
```

d Enable automatic startup.

systemctl enable docker

- e Open /etc/yum.repos.d/docker-ce.repo with a text editor.
- f Change the value of the enabled key from 1 to 0.
- g Save the file, and then close the text editor.

Optional: Installing Docker CE without internet access

Zenoss customers: If you are installing Docker CE without internet access, perform the steps in *Preparing to install without internet access* on page 86 before performing this procedure.

Use this procedure to install Docker CE on a host that does not have internet access.

Note To avoid dependency errors when installing without internet access, install only from the local repository mirror.

- 1 Log in to the host as root, or as a user with superuser privileges.
- 2 Install Docker CE 17.03.1 from the local repository mirror.
 - **a** Clean the yum cache and update repository metadata.

yum clean all && yum makecache fast

b Install Docker CE.

```
yum install -y --disablerepo=\* --enablerepo=zenoss-mirror \
    docker-ce-17.03.1.ce
```

c Enable automatic startup.

systemctl enable docker

Installing Control Center

Use one of the procedures in this section to install Control Center.

Installing Control Center with internet access

Use this procedure to install Control Center on a host that has internet access.

- 1 Log in to the host as root, or as a user with superuser privileges.
- **2** Install Control Center 1.3.3.
 - a Clean the yum cache and update repository metadata.

```
yum clean all && yum makecache fast
```

b Install Control Center from the remote repository.

```
yum --enablerepo=zenoss-stable install -y serviced-1.3.3
```

c Enable automatic startup.

systemctl enable serviced

- 3 Make a backup copy of the Control Center configuration file.
 - **a** Make a copy of /etc/default/serviced.

cp /etc/default/serviced /etc/default/serviced-1.3.3-orig

b Set the backup file permissions to read-only.

chmod 0440 /etc/default/serviced-1.3.3-orig

4 Add a drop-in file for the NFS service.

This step is a workaround for an *an unresolved issue*.

a Create a directory for the drop-in file.

mkdir -p /etc/systemd/system/nfs-server.service.d

b Create the drop-in file.

```
cat <<EOF > /etc/systemd/system/nfs-server.service.d/nfs-server.conf
[Unit]
Requires=
Requires= network.target proc-fs-nfsd.mount rpcbind.service
Requires= nfs-mountd.service
EOF
```

c Reload the systemd manager configuration.

systemctl daemon-reload

Optional: Installing Control Center without internet access

Zenoss customers: Perform the steps in *Preparing to install without internet access* on page 86 before performing this procedure.

Use this procedure to install Control Center on a host that does not have internet access.

- 1 Log in to the master host as root, or as a user with superuser privileges.
- 2 Install Control Center 1.3.3 from the local repository mirror.
 - a Clean the yum cache and update repository metadata.

yum clean all && yum makecache fast

b Install Control Center.

```
yum --disablerepo=\* --enablerepo=zenoss-mirror install -y \
   /opt/zenoss-repo-mirror/serviced-1.3.3-1.x86_64.rpm
```

c Enable automatic startup.

systemctl enable serviced

- 3 Make a backup copy of the Control Center configuration file.
 - **a** Make a copy of /etc/default/serviced.

cp /etc/default/serviced /etc/default/serviced-1.3.3-orig

b Set the backup file permissions to read-only.

chmod 0440 /etc/default/serviced-1.3.3-orig

4 Add a drop-in file for the NFS service.

This step is a workaround for an *an unresolved issue*.

a Create a directory for the drop-in file.

mkdir -p /etc/systemd/system/nfs-server.service.d

b Create the drop-in file.

```
cat <<EOF > /etc/systemd/system/nfs-server.service.d/nfs-server.conf
[Unit]
Requires=
Requires= network.target proc-fs-nfsd.mount rpcbind.service
Requires= nfs-mountd.service
EOF
```

c Reload the systemd manager configuration.

systemctl daemon-reload

Configuring Docker

Use this procedure to configure Docker.

- 1 Log in to the master host as root, or as a user with superuser privileges.
- 2 Create a symbolic link for the Docker temporary directory.

Docker uses its temporary directory to spool images. The default directory is /var/lib/docker/tmp. The following command specifies the same directory that Control Center uses, /tmp. You can specify any directory that has a minimum of 10GB of unused space.

a Create the docker directory in /var/lib.

mkdir /var/lib/docker

b Create the link to /tmp.

ln -s /tmp /var/lib/docker/tmp

- **3** Create a systemd drop-in file for Docker.
 - **a** Create the override directory.

mkdir -p /etc/systemd/system/docker.service.d

b Create the unit drop-in file.

```
cat <<EOF > /etc/system/system/docker.service.d/docker.conf
[Service]
TimeoutSec=300
EnvironmentFile=-/etc/sysconfig/docker
ExecStart=
ExecStart=
ExecStart=/usr/bin/dockerd \$OPTIONS
TasksMax=infinity
EOF
```

c Reload the systemd manager configuration.

systemctl daemon-reload

4 Create an LVM thin pool for Docker data.

For more information about the serviced-storage command, see *serviced-storage* on page 72. **To use an entire block device or partition** for the thin pool, replace *Device-Path* with the device path:

serviced-storage create-thin-pool docker Device-Path

To use 50GB of an LVM volume group for the thin pool, replace *Volume-Group* with the name of an LVM volume group:

serviced-storage create-thin-pool --size=50G docker Volume-Group

On success, the result is the device mapper name of the thin pool, which always starts with /dev/mapper.

- 5 Configure and start the Docker service.
 - **a** Create a variable for the name of the Docker thin pool.

Replace *Thin-Pool-Device* with the name of the thin pool device created in the previous step:

myPool="Thin-Pool-Device"

b Create variables for adding arguments to the Docker configuration file. The --exec-opt argument is a workaround for *a Docker issue* on RHEL/CentOS 7.x systems.

```
myDriver="--storage-driver devicemapper"
myLog="--log-level=error"
myFix="--exec-opt native.cgroupdriver=cgroupfs"
myMount="--storage-opt dm.mountopt=discard"
myFlag="--storage-opt dm.thinpooldev=$myPool"
```

c Add the arguments to the Docker configuration file.

d Start or restart Docker.

systemctl restart docker

The startup may take up to a minute, and may fail. If startup fails, repeat the restart command.

6 Configure name resolution in containers.

Each time it starts, docker selects an IPv4 subnet for its virtual Ethernet bridge. The selection can change; this step ensures consistency.

a Identify the IPv4 subnet and netmask docker has selected for its virtual Ethernet bridge.

ip addr show docker0 | grep inet

- **b** Open /etc/sysconfig/docker in a text editor.
- c Add the following flags to the end of the *OPTIONS* declaration.

Replace Bridge-Subnet with the IPv4 subnet docker selected for its virtual bridge:

--dns=Bridge-Subnet --bip=Bridge-Subnet/16

For example, if the bridge subnet is 172.17.0.1, add the following flags:

--dns=172.17.0.1 --bip=172.17.0.1/16

Note Use a space character () to separate flags, and make sure the double quote character (") delimits the declaration of *OPTIONS*.

- d Save the file, and then close the editor.
- e Restart the Docker service.

systemctl restart docker

Optional: Loading image files

Zenoss customers: Perform the steps in *Preparing to install without internet access* on page 86 before performing this procedure.

Use this procedure to load images into the local repository on a host that does not have internet access.

- 1 Log in to the master host as root, or as a user with superuser privileges.
- 2 Change directory to /root.

cd /root

3 Extract the images.

```
for image in install-*.run
do
echo -n "$image: "
eval ./$image
done
```

Image extraction begins when you press the y key. If you press the y key and then **Return** key, the current image is extracted, but the next one is not.

4 List the images in the registry.

docker images

The result should show one image for each archive file.

5 Optional: Delete the archive files, if desired.

rm -i ./install-*.run

Creating the application data thin pool

Use this procedure to create a thin pool for application data storage.

The following Control Center configuration variables are used to specify application data thin pools:

SERVICED_FS_TYPE

Default: devicemapper

The driver to manage application data storage on the serviced master host. Only devicemapper is supported in production deployments.

The only supported storage layout for the devicemapper driver is an LVM thin pool. To create a thin pool, use the serviced-storage utility. To specify the name of the thin pool device, use the *SERVICED_DM_THINPOOLDEV* variable.

SERVICED_DM_THINPOOLDEV

Default: (none)

The name of the thin pool device to use with the devicemapper storage driver.

Note This procedure does not include a specific value for the size of the thin pool. For more information about sizing this resource, refer to the documentation for your application. Or, use the suggested minimum value, 200GB. You can add storage to an LVM thin pool at any time.

Perform these steps:

- 1 Log in to the master host as root, or as a user with superuser privileges.
- 2 Create an LVM thin pool for application data.

For more information about the serviced-storage command, see *serviced-storage* on page 72.

To use an entire block device or partition for the thin pool, replace Device-Path with the device path:

serviced-storage create-thin-pool serviced Device-Path

To use 200GB of an LVM volume group for the thin pool, replace *Volume-Group* with the name of an LVM volume group:

serviced-storage create-thin-pool --size=200G serviced Volume-Group

On success, the result is the device mapper name of the thin pool, which always starts with /dev/mapper. Record the name for use in the next step.

- 3 Edit storage variables in the Control Center configuration file.
 - a Open /etc/default/serviced in a text editor.
 - **b** Locate the line for the *SERVICED_FS_TYPE* variable, and then make a copy of the line, immediately below the original.
 - c Remove the number sign character (#) from the beginning of the line.
 - **d** Locate the line for the *SERVICED_DM_THINPOOLDEV* variable, and then make a copy of the line, immediately below the original.
 - e Remove the number sign character (#) from the beginning of the line.
 - f Set the value to the device mapper name of the thin pool for application data.
 - **g** Save the file, and then close the editor.

Proceed to the next chapter and configure the host.

Configuring and starting the master host

This chapter includes the procedures for configuring Control Center on the master host, describes the configuration options that apply to the master host, and includes steps for starting the master host for the first time. Before installing Control Center on delegate hosts, perform the procedures in this chapter.

Many configuration choices depend on application requirements. Before configuring Control Center on the master host, review your application documentation.

This chapter includes synopses of the configuration variables that affect the master host. For more information about a variable, see *Control Center configuration variables* on page 76.

Control Center maintenance scripts on the master host

The scripts in the following list are installed when Control Center is installed, and are started either daily or weekly by anacron.

```
/etc/cron.daily/serviced
```

This script invokes logrotate daily, to manage the /var/log/serviced.access.log file.

This script is required on the master host and on all delegate hosts.

```
/etc/cron.weekly/serviced-fstrim
```

This script invokes fstrim weekly, to reclaim unused blocks in the application data thin pool.

The life span of a solid-state drive (SSD) degrades when fstrim is run too frequently. If the block storage of the application data thin pool is an SSD, you can reduce the frequency at which this script is invoked, as long as the thin pool never runs out of free space. An identical copy of this script is located in /opt/ serviced/bin.

This script is required on the master host only.

/etc/cron.weekly/serviced-zenossdbpack

This script invokes a serviced command weekly, which in turn invokes the database maintenance script for a Zenoss application. If the application is not installed or is offline, the command fails. This script is required on the master host only.

User access control

Control Center provides a browser interface and a command-line interface.

To gain access to the Control Center browser interface, users must have login accounts on the Control Center master host. In addition, users must be members of the Control Center browser interface access group, which by default is the system group, wheel. To enhance security, you may change the browser interface access group from wheel to any other group.

To use the Control Center command-line interface (CLI) on a Control Center cluster host, a user must have login account on the host, and the account must be a member of the serviced group. The serviced group is created when the Control Center RPM package is installed.

Note Control Center supports using two different groups to control access to the browser interface and the CLI. You can enable access to both interfaces for the same users by choosing the serviced group as the browser interface access group.

Pluggable Authentication Modules (PAM) is supported and recommended for enabling access to both the browser interface and the command-line interface.

Adding users to the default browser interface access group

Use this procedure to add users to the default browser interface access group of Control Center, wheel.

Note Perform this procedure or the next procedure, but not both.

- 1 Log in to the host as root, or as a user with superuser privileges.
- 2 Add a user to the wheel group.

Replace User with the name of a login account on the master host.

usermod -aG wheel User

Repeat the preceding command for each user to add.

Configuring a regular group as the Control Center browser interface access group

Use this procedure to change the default browser interface access group of Control Center from wheel to a non-system group.

The following Control Center variables are used in this procedure:

SERVICED_ADMIN_GROUP

Default: wheel

The name of the Linux group on the serviced master host whose members are authorized to use the serviced browser interface. You may replace the default group with a group that does not have superuser privileges.

SERVICED_ALLOW_ROOT_LOGIN

Default: 1 (true)

Determines whether the root user account on the serviced master host may be used to gain access to the serviced browser interface.

Note Perform this procedure or the previous procedure, but not both.

1 Log in to the host as root, or as a user with superuser privileges.

2 Create a variable for the group to designate as the administrative group.

In this example, the group is ccuser. You may choose a different group, or choose the serviced group. (Choosing the serviced group allows all browser interface users to use the CLI.)

```
myGROUP=ccuser
```

3 Create a new group, if necessary.

groupadd \$GROUP

4 Add one or more existing users to the group.

Replace User with the name of a login account on the host:

usermod -aG \$myGROUP User

Repeat the preceding command for each user to add.

- 5 Specify the new administrative group in the serviced configuration file.
 - **a** Open /etc/default/serviced in a text editor.
 - **b** Locate the line for the *SERVICED_ADMIN_GROUP* variable, and then make a copy of the line, immediately below the original.
 - c Remove the number sign character (#) from the beginning of the line.
 - d Change the value from wheel to the name of the group you chose earlier.
 - e Save the file, and then close the editor.
- 6 Optional: Prevent the root user from gaining access to the Control Center browser interface, if desired.
 - a Open /etc/default/serviced in a text editor.
 - **b** Locate the line for the *SERVICED_ALLOW_ROOT_LOGIN* variable, and then make a copy of the line, immediately below the original.
 - c Remove the number sign character (#) from the beginning of the line.
 - **d** Change the value from 1 to 0.
 - e Save the file, and then close the editor.

Enabling use of the command-line interface

Use this procedure to enable a user to perform administrative tasks with the Control Center command-line interface.

- 1 Log in to the host as root, or as a user with superuser privileges.
- 2 Add a user to the serviced group.

Replace User with the name of a login account on the host.

usermod -aG serviced User

Repeat the preceding command for each user to add.

Configuring the base size device for tenant data storage

Use this procedure to configure the base size of virtual storage devices for tenants in the application data thin pool. The base size is used each time a tenant device is created. In particular, the first time serviced starts, it creates the base size device and then creates a tenant device from the base size device.

The following Control Center configuration variable is used to specify the base size device:

SERVICED_DM_BASESIZE

Default: 100G

The base size of virtual storage devices for tenants in the application data thin pool, in gigabytes. The units symbol (G) is required. This variable is used when serviced starts for the first time, to set the initial size of tenant devices, and when a backup is restored, to set the size of the restored tenant device.

The base size device is sparse device that occupies at most 1MB of space in the application data thin pool; its size has no immediate practical impact. However, the application data thin pool should have enough space for twice the size of each tenant device it supports, to store both the data itself and snapshots of the data. Since the application data thin pool is an LVM logical volume, its size can be increased at any time. Likewise, the size of a tenant device can be increased, as long as the available space in the thin pool can support the larger tenant device plus snapshots.

Perform these steps:

- 1 Log in to the master host as root, or as a user with superuser privileges.
- 2 Identify the size of the thin pool for application data.

The size is required to set an accurate value for the SERVICED_DM_BASESIZE variable.

lvs --options=lv_name,lv_size | grep serviced-pool

- 3 Edit storage variables in the Control Center configuration file.
 - a Open /etc/default/serviced in a text editor.
 - **b** Locate the line for the *SERVICED_DM_BASESIZE* variable, and then make a copy of the line, immediately below the original.
 - **c** Remove the number sign character (#) from the beginning of the line.
 - **d** Change the value, if necessary. Replace *Fifty-Percent* with the value that is less than or equal to 50% of the size of the thin pool for application data. Include the symbol for gigabytes, G:

SERVICED_DM_BASESIZE=Fifty-PercentG

- e Save the file, and then close the editor.
- 4 Verify the settings.

grep -E '^\b*SERVICED' /etc/default/serviced

Setting the host role to master

Use this procedure to configure a host as the master host. The following configuration variable assigns the host role:

SERVICED_MASTER

Default: 1 (true)

Assigns the role of a serviced instance, either master or delegate. The master runs the application services scheduler and other internal services. Delegates run the application services assigned to the resource pool to which they belong.

Only one serviced instance can be the master; all other instances must be delegates. The default value assigns the master role. To assign the delegate role, set the value to 0 (false). This variable must be explicitly set on all Control Center cluster hosts.

Perform these steps:

- 1 Log in to the host as root, or as a user with superuser privileges.
- 2 Edit the Control Center configuration file.
 - a Open /etc/default/serviced in a text editor.
 - **b** Locate the line for the *SERVICED_MASTER* variable, and then make a copy of the line, immediately below the original.
 - c Remove the number sign character (#) from the beginning of the line.
 - **d** Save the file, and then close the editor.
- 3 Verify the settings.

```
grep -E '^\b*SERVICED' /etc/default/serviced
```

Optional: Changing the local Docker registry endpoint

Use this procedure to configure the master host with the endpoint of an alternative local Docker registry. Control Center includes a local Docker registry, but you may use an existing registry in your environment, if desired. For more information about configuring a local Docker registry, please refer to *Docker documentation*.

Note Changing the local Docker registry endpoint is rare. Perform this procedure only if you are sure it is necessary and the alternative local Docker registry is already available in your environment.

The following configuration variable identifies the local Docker registry endpoint:

SERVICED_DOCKER_REGISTRY

Default: localhost: 5000

The endpoint of the local Docker registry, which serviced uses to store internal services and application images.

If the default value is changed, the host's Docker configuration file must include the --insecure-registry flag with the same value as this variable.

Perform these steps:

- 1 Log in to the master host as root, or as a user with superuser privileges.
- 2 Edit the Control Center configuration file.
 - a Open /etc/default/serviced in a text editor.
 - **b** Locate the line for the *SERVICED_DOCKER_REGISTRY* variable, and then make a copy of the line, immediately below the original.
 - **c** Remove the number sign character (#) from the beginning of the line.
 - **d** Replace localhost: 5000 with the endpoint of the local Docker registry.
 - e Save the file, and then close the editor.
- 3 Verify the settings.

grep -E '^\b*SERVICED' /etc/default/serviced

- 4 Add the insecure registry flag to the Docker configuration file.
 - **a** Open /etc/sysconfig/docker in a text editor.
 - **b** Add the following flag to the end of the *OPTIONS* declaration.

Replace Registry-Endpoint with the same value used for the SERVICED_DOCKER_REGISTRY variable:

--insecure-registry=Registry-Endpoint

Note Use a space character () to separate flags, and make sure the double quote character (") delimits the declaration of *OPTIONS*.

- **c** Save the file, and then close the editor.
- 5 Restart the Docker service.

systemctl restart docker

Optional: Configuring offline use

Zenoss customers: If you are creating a deployment without internet access, perform this procedure.

Use this procedure to configure a host to operate without internet access. The following configuration variable informs serviced that internet access is not available:

SERVICED_OUTBOUND_IP

Default: (none)

The default startup routines of serviced include attempting to ping google.com. When a value is set for this variable, serviced does not attempt the ping and assumes it does not have internet access. Use this variable to specify the IP address of a network interface other than the default, or to prevent serviced from assuming it has internet access.

Note Setting the Docker *HTTP_PROXY* or *HTTPS_PROXY* environment variables prevents access to the IP address defined with this variable. To enable access, unset the Docker variables, and then reboot the host.

Perform these steps:

- 1 Log in to the host as root, or as a user with superuser privileges.
- 2 Identify the IPv4 address of the host.

hostname -i

- **3** Edit the Control Center configuration file.
 - a Open /etc/default/serviced in a text editor.
 - **b** Locate the line for the *SERVICED_OUTBOUND_IP* variable, and then make a copy of the line, immediately below the original.
 - **c** Remove the number sign character (#) from the beginning of the line.
 - **d** Change the value to the IPv4 address identified in the previous step.
 - e Save the file, and then close the editor.
- 4 Verify the settings.

grep -E '^\b*SERVICED' /etc/default/serviced

Master host configuration variables

The tables in this section provide an overview of the serviced configuration variables that apply to the Control Center master host. Set these variables as required for your environment or applications.

Best practices for configuration files

The Control Center configuration file, /etc/default/serviced, contains Bash environment variables that are read by the serviced daemon startup script. The following list describes recommended best practices for its use and maintenance:

- 1 When in doubt, make a backup. Before editing, making a backup copy of the configuration file is always the safest choice.
- 2 Copy a variable, then edit the copy. If you need to revert a variable to its default value, you don't have to leave the file to look it up.
- **3** Copy and edit a variable only if the default value needs to be changed. It's easier to troubleshoot problems when only non-default variables are copied and edited.
- 4 Put the first character of the variable declaration in the first column of its line. It's easier to grep for settings when each one starts a line.
- 5 Add customizations to the top of the file. Customizations at the end of the file or scattered throughout the file may be overlooked.
- 6 In high-availability deployments, the contents of /etc/default/serviced on the master nodes must be identical. Use a utility like sum to compare the files quickly.

Storage variables

The variables in the following table are set only on the master host.

- Use one of the first two groups of variables but not both.
- Before starting the master host for the first time, you might need to change the defaults of the third group.
- Typically, the defaults of the last two groups of variables are not changed until Control Center has managed an application for a while and a need arises.

The SERVICED_STORAGE_STATS_UPDATE_INTERVAL variable sets the interval for collecting kernel statistics about the application data thin pool. Its default value is unlikely to require a change until a need arises.

Variable	Description	Purpose
SERVICED_FS_TYPE SERVICED_DM_ARGS SERVICED_DM_BASESIZE SERVICED_DM_THINPOOLDEV	The specifications of a devicemapper-based application data storage resource for production use.	Provide basic information about the data storage resource.
SERVICED_FS_TYPE SERVICED_DM_LOOPDATASIZE SERVICED_DM_LOOPMETADATASIZE SERVICED_ALLOW_LOOP_BACK	The specifications of a devicemapper-based application data storage resource for development use.	Provide basic information about the data storage resource.
SERVICED_ISVCS_PATH SERVICED_VOLUMES_PATH SERVICED_BACKUPS_PATH	The data storage paths of separate functional components of Control Center internal services.	Enable separate storage areas for one or more components. The default installation process puts all three components on the same device.
SERVICED_SNAPSHOT_TTL SERVICED_SNAPSHOT_USE_PERCENT SERVICED_MAX_DFS_TIMEOUT	The snapshot retention interval, the percentage of the data storage thin pool that is unused, and the snapshot attempt timeout interval.	Prevent the creation of snapshots that are too large to fit the thin pool.

Variable	Description	Purpose
SERVICED_LOGSTASH_MAX_DAYS SERVICED_LOGSTASH_MAX_SIZE SERVICED_LOGSTASH_CYCLE_TIME	The variables that manage the amount of space used by the application log storage service.	Prevent application logs from filling the storage device that logstash uses.

Internal services endpoint variables

The variables in the following table must be set identically on all Control Center delegate hosts.

The SERVICED_AUTH_TOKEN_EXPIRATION variable affects RPC, mux, and internal services endpoint traffic.

Variable	Endpoint	Description
SERVICED_DOCKER_REGISTRY	(varies)	The local Docker registry for Control Center internal services images and application images.
SERVICED_ENDPOINT	<i>Master-Host</i> : 4979	The serviced RPC server. The endpoint port number must match the value of <i>SERVICED_RPC_PORT</i> .
SERVICED_LOG_ADDRESS	<i>Master-Host</i> : 5042	The <i>logstash</i> service.
SERVICED_LOGSTASH_ES	<i>Master-Host</i> :9100	The Elasticsearch service for logstash.
SERVICED_STATS_PORT	<i>Master-Host</i> :8443	The serviced metrics consumer service.
SERVICED_AUTH_TOKEN_EXPIRATION	(none)	The length of time a delegate authentication token is valid.

RPC service variables

The variables in the following table must be set identically on all Control Center cluster hosts, except:

- SERVICED RPC PORT, set only on the master
- SERVICED_MAX_RPC_CLIENTS, set only on delegates

By default, serviced uses TLS to encrypt all RPC traffic. The *SERVICED_KEY_FILE* and *SERVICED_CERT_FILE* variables identify the digital certificate used for RPC, mux, and HTTP traffic.

The SERVICED_AUTH_TOKEN_EXPIRATION variable affects RPC, mux, and internal services endpoint traffic.

Variable	Where to set
SERVICED_ENDPOINT	Master, delegates
SERVICED_MAX_RPC_CLIENTS	Delegates
SERVICED_RPC_PORT	Master
SERVICED_RPC_CERT_VERIFY	Master, delegates
SERVICED_RPC_DISABLE_TLS	Master, delegates

Variable	Where to set
SERVICED_RPC_TLS_MIN_VERSION	Master, delegates
SERVICED_RPC_TLS_CIPHERS	Master, delegates
SERVICED_KEY_FILE	Master
SERVICED_CERT_FILE	Master
SERVICED_RPC_DIAL_TIMEOUT	Master, delegates
SERVICED_AUTH_TOKEN_EXPIRATION	Master

Multiplexer variables

The variables in the following table must be set identically on all Control Center cluster hosts.

By default, serviced uses TLS to encrypt all mux traffic. The *SERVICED_KEY_FILE* and *SERVICED_CERT_FILE* variables identify the digital certificate used for RPC, mux, and HTTP traffic.

The SERVICED_AUTH_TOKEN_EXPIRATION variable affects RPC, mux, and internal services endpoint traffic.

Variable	Where to set
SERVICED_MUX_PORT	Master, delegates
SERVICED_MUX_DISABLE_TLS	Master, delegates
SERVICED_MUX_TLS_MIN_VERSION	Master, delegates
SERVICED_MUX_TLS_CIPHERS	Master, delegates
SERVICED_KEY_FILE	Master
SERVICED_CERT_FILE	Master
SERVICED_AUTH_TOKEN_EXPIRATION	Master

HTTP server variables

The variables in the following table are set only on the master host, except the *SERVICED_UI_PORT* variable, which must be set identically on all cluster hosts.

By default, serviced uses TLS to encrypt all HTTP traffic. The *SERVICED_KEY_FILE* and *SERVICED_CERT_FILE* variables identify the digital certificate used for RPC, mux, and HTTP traffic.

Variable	Description
SERVICED_UI_PORT	The port on which the HTTP server listens for requests.
SERVICED_TLS_MIN_VERSION	The minimum version of TLS that serviced accepts for HTTP traffic.
SERVICED_TLS_CIPHERS	The list TLS ciphers that serviced accepts for HTTP traffic.
SERVICED_KEY_FILE	The path of a digital certificate key file.

Variable	Description
SERVICED_CERT_FILE	The path of a digital certificate file.

Browser interface variables (master host only)

The variables in the following table are set only on the master host.

Variable	Description
SERVICED_UI_POLL_FREQUENCY	The number of seconds between polls from browser interface clients.
SERVICED_SVCSTATS_CACHE_TIMEOUT	The number of seconds to cache statistics about services.
SERVICED_ADMIN_GROUP	The group on the master host whose members can use the browser interface.
SERVICED_ALLOW_ROOT_LOGIN	Determines whether root on the master host can use the browser interface.

Tuning variables (master host only)

Variable	Description
SERVICED_ES_STARTUP_TIMEOUT	The number of seconds to wait for the Elasticsearch service to start.
SERVICED_MASTER_POOLID	The name of the default resource pool. This variable is only used the first time serviced is started.

Universal configuration variables

The tables in this section provide an overview of the serviced configuration variables that apply to all hosts in a Control Center cluster. Set these variables as required for your environment or applications.

Role variable

Variable	Description
SERVICED_MASTER	Assigns the role of a serviced instance, either master or delegate. The master runs the application services scheduler and other internal services. Delegates run the application services assigned to the resource pool to which they belong.

Browser interface variable (all hosts)

Variable	Description
SERVICED_UI_PORT	The port on which the HTTP server listens for requests.

Networking variables

Variable	Description
SERVICED_STATIC_IPS	A list of one or more static IP addresses for IP assignment.
SERVICED_OUTBOUND_IP	The IP address of the network interface for serviced to use. When this variable is not set, serviced uses the IP address of the default network interface and assumes it has internet access. To prevent serviced from assuming it has internet access, set this variable.
SERVICED_VIRTUAL_ADDRESS_SUBNET	The private network for containers that use virtual IP addresses. The default is $10.3.0.0/16$, and the network can be unique on each host. A /29 network is sufficient.
SERVICED_DOCKER_DNS	A list of one or more DNS servers. The list is injected into all Docker containers.

Debugging variables

Variable	Description
SERVICED_LOG_LEVEL	The log level serviced uses when writing to the system log.
SERVICED_DEBUG_PORT	The port on which serviced listens for HTTP requests for the <i>Go profiler</i> .
SERVICED_DOCKER_LOG_DRIVER	The log driver for all Docker container logs.
SERVICED_DOCKER_LOG_CONFIG	Docker log-opt options.

Tuning variables (all cluster hosts)

Variable	Description
GOMAXPROCS	The maximum number of CPU cores that serviced uses.
SERVICED_MAX_CONTAINER_AGE	The number of seconds serviced waits before removing a stopped container.
SERVICED_ISVCS_ENV_[0-9]+	Startup arguments to pass to specific internal services.
SERVICED_SERVICE_MIGRATION_TAG	Overrides the default value for the service migration image.
SERVICED_OPTS	Startup arguments for serviced.
SERVICED_CONTROLLER_BINARY	The path of the serviced-controller binary.
SERVICED_HOME	The path of the home directory for serviced.
SERVICED_ETC_PATH	The path of the directory for serviced configuration files.
SERVICED_VHOST_ALIASES	A list of hostname aliases for a host; for example, localhost.

Variable	Description
SERVICED_ZK_CONNECT_TIMEOUT	The number of seconds Control Center waits for a connection to the lead ZooKeeper host.
SERVICED_ZK_PER_HOST_CONNECT_DELAY	The number of seconds Control Center waits before attempting to connect to the next host in its round- robin list of ZooKeeper hosts.
SERVICED_ZK_RECONNECT_START_DELAY, SERVICED_ZK_RECONNECT_MAX_DELAY	These are used together when Control Center is unable to re-establish a connection with the lead ZooKeeper host.

Starting Control Center for the first time

Use this procedure to start the Control Center service (serviced) on a master host after installing and configuring it. This procedure is valid for single-host and multi-host deployments, whether the deployment has internet access or not, and is only performed once.

- 1 Log in to the master host as root, or as a user with superuser privileges.
- 2 Verify the configuration settings.

grep -E '^\b*SERVICED' /etc/default/serviced

3 Start the Control Center service.

systemctl start serviced

To monitor progress, enter the following command:

journalctl -flu serviced -o cat

On hosts with internet access, the serviced daemon invokes docker to pull its internal services images from Docker Hub. The Control Center browser and command-line interfaces are unavailable until the images are installed and tagged, and the services are started. The process takes about 5 minutes.

On hosts without internet access, the serviced daemon tags images in the local registry and starts its internal services. The Control Center browser and command-line interfaces are unavailable for about 3 minutes.

When the message Host Master successfully started is displayed, Control Center is ready for the next procedure.

Note Until the master host is added to a pool, all serviced CLI commands that use the RPC server must be run as root.

Adding the master host to a resource pool

Perform one of the procedures in this section.

Adding the master host to a resource pool (single-host deployments)

Use this procedure to add the master host to a resource pool. For single-host deployments, the master host is added to the default pool.

- 1 Log in to the master host as root, or as a user with superuser privileges.
- 2 Add the master host to the default resource pool. Replace *Hostname-Or-IP* with the hostname or IP address of the Control Center master host:

```
serviced host add --register Hostname-Or-IP:4979 default
```

If you use a hostname, all of the hosts in your Control Center cluster must be able to resolve the name, either through an entry in /etc/hosts or through a nameserver on the network.

Adding the master host to a resource pool (multi-host deployments)

Use this procedure to add the master host to a resource pool. For multi-host deployments, the master host is added to its own, separate pool.

- 1 Log in to the master host as root, or as a user with superuser privileges.
- 2 Create a new resource pool named master.

serviced pool add master

3 Assign administrative and distributed file system (DFS) permissions to the new resource pool.

serviced pool set-permission --admin --dfs master

4 Add the master host to the new resource pool. Replace *Hostname-Or-IP* with the hostname or IP address of the Control Center master host:

serviced host add --register Hostname-Or-IP:4979 master

If you use a hostname, all of the hosts in your Control Center cluster must be able to resolve the name, either through an entry in /etc/hosts or through a nameserver on the network.

3

Installing delegate hosts

This chapter describes how to install Control Center on a Red Hat Enterprise Linux (RHEL) or CentOS host. The candidate host must have the CPU, RAM, and storage resources required to serve as a delegate host in a Control Center cluster.

For more information about delegate host requirements, refer to the Control Center Planning Guide.

Note If you are installing a single-host deployment, skip this chapter.

Repeat the procedures in this chapter on each host to add to a cluster.

Verifying candidate host resources

Use this procedure to determine whether a host's hardware resources and operating system are sufficient to serve as a Control Center delegate host. Perform this procedure on each candidate delegate host in your deployment.

- 1 Log in to the candidate host as root, or as a user with superuser privileges.
- 2 Verify that the host implements the 64-bit version of the x86 instruction set.

```
uname -m
```

- If the output is x86_64, the architecture is 64-bit. Proceed to the next step
- If the output is i386/i486/i586/i686, the architecture is 32-bit. Stop this procedure and select a different host.
- 3 Determine whether the installed operating system release is supported.

cat /etc/redhat-release

- If the result includes 7.1, 7.2, or 7.3 proceed to the next step.
- If the result does not include 7.1, 7.2, or 7.3, select a different host, and then start this procedure again.
- 4 Determine whether the CPU resources are sufficient.
 - **a** Display the total number of CPU cores.

cat /proc/cpuinfo | grep -Ec '^core id'

b Compare the available resources with the requirements for a Control Center master host.

For more information, refer to the Control Center Planning Guide.

5 Determine whether the CPU resources support the AES instruction set.

cat /proc/cpuinfo | grep -Ec '^flags.*aes'

For optimal performance, the result of the preceding commands must match the total number of CPU resources available on the host. If the result is 0, performance is severely degraded.

If the result is 0 and the candidate host is a virtual machine, the managing hypervisor may be configured in Hyper-V compatibility mode. Check the setting and disable it, if possible, or select a different host.

- 6 Determine whether the available memory and swap is sufficient.
 - **a** Display the available memory.

free -h

- **b** Compare the available memory with the amount required for a delegate host in your deployment. For more information, refer to the *Control Center Planning Guide*.
- 7 Ensure the host has a persistent numeric ID.

Each host in a Control Center cluster must have a unique host ID, and the ID must be persistent (not change when the host reboots).

test -f /etc/hostid || genhostid ; hostid

Record the ID for comparison with other hosts in the cluster.

8 Verify that name resolution works on this host.

hostname -i

If the result is not a valid IPv4 address, add an entry for the host to the network nameserver, or to /etc/ hosts.

- 9 Add an entry to /etc/hosts for localhost, if necessary.
 - **a** Determine whether 127.0.0.1 is mapped to localhost.

grep 127.0.0.1 /etc/hosts | grep localhost

If the preceding commands return no result, perform the following substep.

 $b \ \ \, Add$ an entry to /etc/hosts for localhost.

echo "127.0.0.1 localhost" >> /etc/hosts

- 10 Update the Linux kernel, if necessary.
 - **a** Determine which kernel version is installed.

uname -r

If the result is lower than 3.10.0-327.22.2.e17.x86_64, perform the following substep.

b Update the kernel, and then restart the host.

The following commands require internet access or a local mirror of operating system packages.

yum makecache fast && yum update -y kernel && reboot

Delegate host storage requirements

This section provides a quick reference to the block storage requirements of Control Center delegate hosts. For more information, refer to the *Control Center Planning Guide*.

Control Center cluster hosts need either unformatted block storage devices or partitions, or free space in one or more LVM volume groups.

• Enter the following command to display information about block storage:

lsblk -ap --output=NAME, SIZE, TYPE, FSTYPE, MOUNTPOINT

• Enter the following command to display information about LVM volume groups:

vgdisplay

The following storage configuration is recommended for delegate hosts:

- A root filesystem with a minimum of 35GB of storage, formatted with XFS.
- A dedicated swap area.
- One or more block devices or partitions, or one or more LVM physical volumes, with a total of 50GB of space. A step in this chapter configures the space as an LVM thin pool for Docker data.

Disabling consistent network device naming

The consistent network device naming feature can create device names that are too long for use with virtual IPs. This step disables the feature so that all network device names are eth followed by an integer.

- 1 Log in as root, or as a user with superuser privileges.
- 2 Edit the GRUB 2 general settings file.
 - **a** Create a backup copy of the settings file.

cp /etc/default/grub /etc/default/grub.bak

- **b** Open /etc/default/grub with a text editor.
- c Add kernel boot arguments to the value of the GRUB_CMDLINE_LINUX variable.

The arguments to add are biosdevname=0 and net.ifnames=0. Make sure the arguments are between the delimiter characters (").

- **d** Save the file, and then close the text editor.
- 3 Determine whether the host is configured for UEFI or legacy boot mode.

```
find /boot -maxdepth 1 -type d
```

- If the output includes /boot/efi, the host is configured for UEFI boot mode.
- If the output does not include /boot/efi, the host is configured for legacy boot mode.
- Recreate the GRUB 2 boot configuration file. For UEFI boot mode:

grub2-mkconfig -o /boot/efi/EFI/centos/grub.cfg

For legacy boot mode:

grub2-mkconfig -o /boot/grub2/grub.cfg

5 Create an override for the default rules policy of the dynamic device management daemon.

```
ln -s /dev/null /etc/udev/rules.d/80-net-name-slot.rules
```

- 6 Change network device configurations.
 - **a** Change directory to /etc/sysconfig/network-scripts.

cd /etc/sysconfig/network-scripts

b List the network device configuration files.

```
ls ifcfg-* | grep -v ifcfg-lo
```

The ifcfg-lo file is excluded because it does not need to be changed.

c Rename and edit device files.

For example, if you have a device file named ifcfg-enp0s3, use the mv command rename it to ifcfg-eth0, and then change the values of the *NAME* and *DEVICE* variables inside the file to eth0.

- 7 Update the default route.
 - **a** Display the current default route.

ip route show | head -n 1

Example result, showing device enp0s3 and gateway host 198.51.100.1:

default via 198.51.100.1 dev enp0s3 proto static metric 100

b Update the network device.

Replace Device-Name with the name of the device to update:

```
ip link set Device-Name down ; \
    ip link set Device-Name name eth0 ; ip link set eth0 up
```

To maintain your terminal session, perform the preceding commands as shown.

c Update the default route.

Replace Gateway-Address with the IP address of the gateway host:

ip route replace default via Gateway-Address dev eth0

8 Reboot the host.

Preparing a delegate host

Zenoss customers: If you are creating a deployment without internet access, perform the steps in *Preparing to install without internet access* on page 86, before performing this procedure.

Use this procedure to prepare a RHEL/CentOS host as a Control Center delegate host.

- 1 Log in to the candidate delegate host as root, or as a user with superuser privileges.
- 2 Disable the firewall, if necessary.

This step is required for installation but not for deployment. For more information, refer to the *Control Center Planning Guide*.

a Determine whether the firewalld service is enabled.

systemctl status firewalld.service

- If the result includes Active: inactive (dead), the service is disabled. Proceed to the next step.
- If the result includes Active: active (running), the service is enabled. Perform the following substep.
- **b** Disable the firewalld service.

systemctl stop firewalld && systemctl disable firewalld

On success, the preceding commands display messages similar to the following example:

```
rm '/etc/systemd/system/dbus-org.fedoraproject.FirewallD1.service'
rm '/etc/systemd/system/basic.target.wants/firewalld.service'
```

3 Optional: Enable persistent storage for log files, if desired.

By default, RHEL/CentOS systems store log data only in memory or in a ring buffer in the /run/log/ journal directory. By performing this step, log data persists and can be saved indefinitely, if you implement log file rotation practices. For more information, refer to your operating system documentation.

mkdir -p /var/log/journal && systemctl restart systemd-journald

4 Enable and start the Dnsmasq package.

The package facilitates networking among Docker containers.

systemctl enable dnsmasq && systemctl start dnsmasq

If name resolution in your environment relies solely on entries in /etc/hosts, configure dsnmasq so that containers can use the file:

- a Open /etc/dnsmasq.conf with a text editor.
- **b** Locate the line that starts with #domain-needed, and then make a copy of the line, immediately below the original.
- **c** Remove the number sign character (#) from the beginning of the line.
- d Locate the line that starts with #bogus-priv, and then make a copy of the line, immediately below the original.
- e Remove the number sign character (#) from the beginning of the line.
- f Locate the line that starts with #local=/localnet/, and then make a copy of the line, immediately below the original.
- g Remove net, and then remove the number sign character (#) from the beginning of the line.
- **h** Locate the line that starts with #domain=example.com, and then make a copy of the line, immediately below the original.
- i Replace example.com with local, and then remove the number sign character (#) from the beginning of the line.
- **j** Save the file, and then close the editor.
- **k** Restart the dnsmasq service.

systemctl restart dnsmasq

5 Install and configure the NTP package.

Note This procedure assumes the host has internet access. To install and configure NTP on a host that does not have internet access, see *Configuring a private master NTP server* on page 89.

a Install the package.

yum install -y ntp

b Set the system time.

ntpd -gq

c Enable the ntpd daemon.

systemctl enable ntpd

d Configure ntpd to start when the system starts.

Currently, an unresolved issue associated with NTP prevents ntpd from restarting correctly after a reboot. The following commands provide a workaround to ensure that it does.

echo "systemctl start ntpd" >> /etc/rc.d/rc.local
chmod +x /etc/rc.d/rc.local

- 6 Add the Zenoss repositories to the host's repository list.
 - **a** Install the repository package.

The package adds the Zenoss stable, unstable, and testing repositories to /etc/yum.repos.d. All three repositories are disabled.

rpm -ivh http://get.zenoss.io/yum/zenoss-repo-1-1.x86_64.rpm

b Clean out the yum cache directory.

yum clean all

7 Reboot the host.

reboot

Installing Docker CE

Use one of the procedures in this section to install Docker CE.

Installing Docker CE with internet access

Use this procedure to install Docker CE on a host that has internet access.

- 1 Log in to the host as root, or as a user with superuser privileges.
- 2 Install Docker CE 17.03.1, and then disable accidental upgrades.
 - **a** Add the Docker CE repository to the host's repository list.

```
cat <<EOF > /etc/yum.repos.d/docker-ce.repo
[docker-ce-stable]
name=Docker CE Stable - \$basearch
baseurl=https://download.docker.com/linux/centos/7/\$basearch/stable
```

```
enabled=1
gpgcheck=1
gpgkey=https://download.docker.com/linux/centos/gpg
EOF
```

b Clean the yum cache and update repository metadata.

yum clean all && yum makecache fast

c Install Docker CE from the remote repository.

```
yum install -y --setopt=obsoletes=0 \
    docker-ce-17.03.1.ce-1.el7.centos \
    docker-ce-selinux-17.03.1.ce-1.el7.centos
```

d Enable automatic startup.

systemctl enable docker

- e Open /etc/yum.repos.d/docker-ce.repo with a text editor.
- f Change the value of the enabled key from 1 to 0.
- **g** Save the file, and then close the text editor.

Optional: Installing Docker CE without internet access

Zenoss customers: If you are installing Docker CE without internet access, perform the steps in *Preparing to install without internet access* on page 86 before performing this procedure.

Use this procedure to install Docker CE on a host that does not have internet access.

Note To avoid dependency errors when installing without internet access, install only from the local repository mirror.

- 1 Log in to the host as root, or as a user with superuser privileges.
- 2 Install Docker CE 17.03.1 from the local repository mirror.
 - **a** Clean the yum cache and update repository metadata.

yum clean all && yum makecache fast

b Install Docker CE.

```
yum install -y --disablerepo=\* --enablerepo=zenoss-mirror \
    docker-ce-17.03.1.ce
```

c Enable automatic startup.

systemctl enable docker

Installing Control Center

Use one of the procedures in this section to install Control Center.

Installing Control Center with internet access

Use this procedure to install Control Center on a host that has internet access.

- 1 Log in to the host as root, or as a user with superuser privileges.
- **2** Install Control Center 1.3.3.
 - **a** Clean the yum cache and update repository metadata.

yum clean all && yum makecache fast

b Install Control Center from the remote repository.

yum --enablerepo=zenoss-stable install -y serviced-1.3.3

c Enable automatic startup.

```
systemctl enable serviced
```

Optional: Installing Control Center without internet access

Zenoss customers: Perform the steps in *Preparing to install without internet access* on page 86 before performing this procedure.

Use this procedure to install Control Center on a host that does not have internet access.

Note To avoid dependency errors when installing without internet access, install only from the local repository mirror.

- 1 Log in to the host as root, or as a user with superuser privileges.
- **2** Install Control Center 1.3.3 from the local repository mirror.
 - **a** Clean the yum cache and update repository metadata.

yum clean all && yum makecache fast

b Install Control Center.

```
yum --disablerepo=\* --enablerepo=zenoss-mirror install -y \
   /opt/zenoss-repo-mirror/serviced-1.3.3-1.x86_64.rpm
```

c Enable automatic startup.

systemctl enable serviced

Configuring Docker

Use this procedure to configure Docker.

- 1 Log in to the delegate host as root, or as a user with superuser privileges.
- 2 Create a symbolic link for the Docker temporary directory.

Docker uses its temporary directory to spool images. The default directory is /var/lib/docker/tmp. The following command specifies the same directory that Control Center uses, /tmp. You can specify any directory that has a minimum of 10GB of unused space.

a Create the docker directory in /var/lib.

mkdir /var/lib/docker

b Create the link to /tmp.

ln -s /tmp /var/lib/docker/tmp

- 3 Create a systemd drop-in file for Docker.
 - **a** Create the override directory.

mkdir -p /etc/systemd/system/docker.service.d

b Create the unit drop-in file.

```
cat <<EOF > /etc/systemd/system/docker.service.d/docker.conf
[Service]
TimeoutSec=300
EnvironmentFile=-/etc/sysconfig/docker
ExecStart=
ExecStart=/usr/bin/dockerd \$OPTIONS
TasksMax=infinity
EOF
```

c Reload the systemd manager configuration.

systemctl daemon-reload

4 Create an LVM thin pool for Docker data.

For more information about the serviced-storage command, see *serviced-storage* on page 72. **To use an entire block device or partition** for the thin pool, replace *Device-Path* with the device path:

serviced-storage create-thin-pool docker Device-Path

To use 50GB of an LVM volume group for the thin pool, replace *Volume-Group* with the name of an LVM volume group:

serviced-storage create-thin-pool --size=50G docker Volume-Group

On success, the result is the device mapper name of the thin pool, which always starts with /dev/mapper.

- 5 Configure and start the Docker service.
 - **a** Create a variable for the name of the Docker thin pool.

Replace Thin-Pool-Device with the name of the thin pool device created in the previous step:

myPool="Thin-Pool-Device"

b Create variables for adding arguments to the Docker configuration file. The --exec-opt argument is a workaround for *a Docker issue* on RHEL/CentOS 7.x systems.

```
myDriver="--storage-driver devicemapper"
myLog="--log-level=error"
myFix="--exec-opt native.cgroupdriver=cgroupfs"
myMount="--storage-opt dm.mountopt=discard"
myFlag="--storage-opt dm.thinpooldev=$myPool"
```

c Add the arguments to the Docker configuration file.

d Start or restart Docker.

systemctl restart docker

The startup may take up to a minute, and may fail. If startup fails, repeat the restart command.

6 Configure name resolution in containers.

Each time it starts, docker selects an IPv4 subnet for its virtual Ethernet bridge. The selection can change; this step ensures consistency.

a Identify the IPv4 subnet and netmask docker has selected for its virtual Ethernet bridge.

ip addr show docker0 | grep inet

- **b** Open /etc/sysconfig/docker in a text editor.
- c Add the following flags to the end of the *OPTIONS* declaration.

Replace Bridge-Subnet with the IPv4 subnet docker selected for its virtual bridge:

--dns=Bridge-Subnet --bip=Bridge-Subnet/16

For example, if the bridge subnet is 172.17.0.1, add the following flags:

```
--dns=172.17.0.1 --bip=172.17.0.1/16
```

Note Use a space character () to separate flags, and make sure the double quote character (") delimits the declaration of *OPTIONS*.

- **d** Save the file, and then close the editor.
- e Restart the Docker service.

systemctl restart docker

Proceed to the next chapter and configure the host.

Configuring and starting delegate hosts

This chapter provides the procedures that are required to configure a delegate host, describes the configuration options that apply to delegate hosts, and includes steps for starting a delegate for the first time. Perform the procedures in this chapter on each delegate host in a Control Center cluster.

Note If you are installing a single-host deployment, skip this chapter.

This chapter includes synopses of the configuration variables that affect delegate hosts. For more information about a variable, see *Control Center configuration variables* on page 76.

Control Center maintenance scripts on delegate hosts

The scripts in the following list are installed when Control Center is installed, and are started either daily or weekly by anacron.

Of these scripts, only the first is required on delegate hosts. The others can be removed.

```
/etc/cron.daily/serviced
```

This script invokes logrotate daily, to manage the /var/log/serviced.access.log file.

This script is required on the master host and on all delegate hosts.

```
/etc/cron.weekly/serviced-fstrim
```

This script can be removed from delegate hosts.

```
/etc/cron.weekly/serviced-zenossdbpack
```

This script can be removed from delegate hosts.

Enabling use of the command-line interface

Use this procedure to enable a user to perform administrative tasks with the Control Center command-line interface.

- 1 Log in to the host as root, or as a user with superuser privileges.
- 2 Add a user to the serviced group.

Replace User with the name of a login account on the host.

```
usermod -aG serviced User
```

Repeat the preceding command for each user to add.

Setting the host role to delegate

Use this procedure to configure a host as a delegate host. The following configuration variable assigns the host role:

SERVICED_MASTER

Default: 1 (true)

Assigns the role of a serviced instance, either master or delegate. The master runs the application services scheduler and other internal services. Delegates run the application services assigned to the resource pool to which they belong.

Only one serviced instance can be the master; all other instances must be delegates. The default value assigns the master role. To assign the delegate role, set the value to 0 (false). This variable must be explicitly set on all Control Center cluster hosts.

Perform these steps:

- 1 Log in to the host as root, or as a user with superuser privileges.
- 2 Edit the Control Center configuration file.
 - a Open /etc/default/serviced in a text editor.
 - **b** Locate the line for the *SERVICED_MASTER* variable, and then make a copy of the line, immediately below the original.
 - c Remove the number sign character (#) from the beginning of the line.
 - **d** Change the value from 1 to 0.
 - e Save the file, and then close the editor.
- 3 Verify the settings.

```
grep -E '^\b*SERVICED' /etc/default/serviced
```

Changing the local Docker registry endpoint

Use this procedure to configure the delegate host with the endpoint of the local Docker registry. Unless the master host is configured with an alternative local Docker registry, which is rare, the endpoint is the master host's hostname or IP address and port 5000.

The following configuration variable identifies the local Docker registry endpoint:

SERVICED_DOCKER_REGISTRY

Default: localhost: 5000

The endpoint of the local Docker registry, which serviced uses to store internal services and application images.

If the default value is changed, the host's Docker configuration file must include the --insecure-registry flag with the same value as this variable.

Perform these steps:

- 1 Log in to the delegate host as root, or as a user with superuser privileges.
- 2 Edit the Control Center configuration file.
 - a Open /etc/default/serviced in a text editor.
 - **b** Locate the line for the *SERVICED_DOCKER_REGISTRY* variable, and then make a copy of the line, immediately below the original.
 - c Remove the number sign character (#) from the beginning of the line.

d Replace localhost: 5000 with the endpoint of the local Docker registry.

If the master host is configured with an alternative local Docker registry, use the same endpoint here. Otherwise, just replace localhost with the IP address or hostname of the Control Center master host.

- e Save the file, and then close the editor.
- 3 Verify the settings.

grep -E '^\b*SERVICED' /etc/default/serviced

- 4 Add the insecure registry flag to the Docker configuration file.
 - a Open /etc/sysconfig/docker in a text editor.
 - **b** Add the local Docker registry endpoint to the end of the *OPTIONS* declaration. Replace *Registry-Endpoint* with the same value used for the *SERVICED_DOCKER_REGISTRY* variable:

--insecure-registry=Registry-Endpoint

Note Use a space character () to separate flags, and make sure the double quote character (") delimits the declaration of *OPTIONS*.

- c Save the file, and then close the editor.
- 5 Restart the Docker service.

systemctl restart docker

Setting internal services endpoints

Use this procedure to configure a delegate host with the endpoints of the Control Center internal services.

Although Control Center relies on ZooKeeper for coordination, it is not a Control Center internal service. The instructions for setting the ZooKeeper endpoint are included in the next chapter.

The following configuration variables identify the internal services endpoints:

SERVICED_ENDPOINT

Default: { {SERVICED_MASTER_IP } }:4979

The endpoint of the serviced RPC server. Replace {{SERVICED_MASTER_IP}} with the IP address or hostname of the serviced master host. The port number of this endpoint must match the value of the *SERVICED RPC PORT* variable defined on the serviced master host.

SERVICED_LOG_ADDRESS

Default: { {SERVICED_MASTER_IP } }:5042

The endpoint of the logstash service. Replace { {SERVICED_MASTER_IP } } with the IP address or hostname of the serviced master host.

SERVICED_LOGSTASH_ES

Default: { {SERVICED_MASTER_IP } } :9100

The endpoint of the Elasticsearch service for logstash. On delegate hosts, replace

{{SERVICED_MASTER_IP}} with the IP address or hostname of the Elasticsearch host, which by default is the serviced master host.

SERVICED_STATS_PORT

Default: { {SERVICED_MASTER_IP } } :8443

The endpoint of the serviced metrics consumer service. Replace {{SERVICED_MASTER_IP}} with the IP address or hostname of the serviced master host.

Perform these steps:

- 1 Log in to the delegate host as root, or as a user with superuser privileges.
- 2 Edit the Control Center configuration file.
 - **a** Open /etc/default/serviced in a text editor.
 - **b** For each endpoint variable, locate the line that sets the variable, and then make a copy of the line, immediately below the original.
 - **c** Remove the number sign character (#) from the beginning of the line.
 - **d** Replace localhost or {{SERVICED_MASTER_IP}} with the IP address or hostname of the master host.
 - e Save the file, and then close the editor.
- 3 Verify the settings.

```
grep -E '^\b*SERVICED' /etc/default/serviced
```

Optional: Configuring offline use

Zenoss customers: If you are creating a deployment without internet access, perform this procedure.

Use this procedure to configure a host to operate without internet access. The following configuration variable informs serviced that internet access is not available:

SERVICED_OUTBOUND_IP

Default: (none)

The default startup routines of serviced include attempting to ping google.com. When a value is set for this variable, serviced does not attempt the ping and assumes it does not have internet access. Use this variable to specify the IP address of a network interface other than the default, or to prevent serviced from assuming it has internet access.

Note Setting the Docker *HTTP_PROXY* or *HTTPS_PROXY* environment variables prevents access to the IP address defined with this variable. To enable access, unset the Docker variables, and then reboot the host.

Perform these steps:

- 1 Log in to the host as root, or as a user with superuser privileges.
- 2 Identify the IPv4 address of the host.

hostname -i

- **3** Edit the Control Center configuration file.
 - **a** Open /etc/default/serviced in a text editor.
 - **b** Locate the line for the *SERVICED_OUTBOUND_IP* variable, and then make a copy of the line, immediately below the original.
 - c Remove the number sign character (#) from the beginning of the line.
 - **d** Change the value to the IPv4 address identified in the previous step.
 - e Save the file, and then close the editor.

4 Verify the settings.

grep -E '^\b*SERVICED' /etc/default/serviced

Delegate host configuration variables

The tables in this section provide an overview of the serviced configuration variables that apply to Control Center delegate hosts. Set these variables as required for your environment or applications.

Delegate variables

The following miscellaneous variables apply only to delegate hosts.

Variable	Description
SERVICED_STATS_PERIOD	The frequency at which delegates gather metrics to send to the master host.
SERVICED_IPTABLES_MAX_CONNECTIONS	The maximum number of open connections to allow on a delegate. The number increases when the master is unavailable and decreases when the master returns to service.

Internal services endpoint variables

The variables in the following table must be set identically on all Control Center delegate hosts.

The SERVICED_AUTH_TOKEN_EXPIRATION variable affects RPC, mux, and internal services endpoint traffic.

Variable	Endpoint	Description
SERVICED_DOCKER_REGISTRY	(varies)	The local Docker registry for Control Center internal services images and application images.
SERVICED_ENDPOINT	<i>Master-Host</i> : 4979	The serviced RPC server. The endpoint port number must match the value of <i>SERVICED_RPC_PORT</i> .
SERVICED_LOG_ADDRESS	<i>Master-Host</i> : 5042	The <i>logstash</i> service.
SERVICED_LOGSTASH_ES	<i>Master-Host</i> :9100	The Elasticsearch service for logstash.
SERVICED_STATS_PORT	<i>Master-Host</i> :8443	The serviced metrics consumer service.
SERVICED_AUTH_TOKEN_EXPIRATION	(none)	The length of time a delegate authentication token is valid.

RPC service variables

The variables in the following table must be set identically on all Control Center cluster hosts, except:

■ SERVICED RPC PORT, set only on the master

■ SERVICED MAX RPC CLIENTS, set only on delegates

By default, serviced uses TLS to encrypt all RPC traffic. The *SERVICED_KEY_FILE* and *SERVICED_CERT_FILE* variables identify the digital certificate used for RPC, mux, and HTTP traffic.

The SERVICED_AUTH_TOKEN_EXPIRATION variable affects RPC, mux, and internal services endpoint traffic.

Variable	Where to set
SERVICED_ENDPOINT	Master, delegates
SERVICED_MAX_RPC_CLIENTS	Delegates
SERVICED_RPC_PORT	Master
SERVICED_RPC_CERT_VERIFY	Master, delegates
SERVICED_RPC_DISABLE_TLS	Master, delegates
SERVICED_RPC_TLS_MIN_VERSION	Master, delegates
SERVICED_RPC_TLS_CIPHERS	Master, delegates
SERVICED_KEY_FILE	Master
SERVICED_CERT_FILE	Master
SERVICED_RPC_DIAL_TIMEOUT	Master, delegates
SERVICED_AUTH_TOKEN_EXPIRATION	Master

Multiplexer variables

The variables in the following table must be set identically on all Control Center cluster hosts.

By default, serviced uses TLS to encrypt all mux traffic. The *SERVICED_KEY_FILE* and *SERVICED_CERT_FILE* variables identify the digital certificate used for RPC, mux, and HTTP traffic.

The SERVICED_AUTH_TOKEN_EXPIRATION variable affects RPC, mux, and internal services endpoint traffic.

Variable	Where to set
SERVICED_MUX_PORT	Master, delegates
SERVICED_MUX_DISABLE_TLS	Master, delegates
SERVICED_MUX_TLS_MIN_VERSION	Master, delegates
SERVICED_MUX_TLS_CIPHERS	Master, delegates
SERVICED_KEY_FILE	Master
SERVICED_CERT_FILE	Master
SERVICED_AUTH_TOKEN_EXPIRATION	Master

Universal configuration variables

The tables in this section provide an overview of the serviced configuration variables that apply to all hosts in a Control Center cluster. Set these variables as required for your environment or applications.

Role variable

Variable	Description
SERVICED_MASTER	Assigns the role of a serviced instance, either master or delegate. The master runs the application services scheduler and other internal services. Delegates run the application services assigned to the resource pool to which they belong.

Browser interface variable (all hosts)

Variable	Description
SERVICED_UI_PORT	The port on which the HTTP server listens for requests.

Networking variables

Variable	Description
SERVICED_STATIC_IPS	A list of one or more static IP addresses for IP assignment.
SERVICED_OUTBOUND_IP	The IP address of the network interface for serviced to use. When this variable is not set, serviced uses the IP address of the default network interface and assumes it has internet access. To prevent serviced from assuming it has internet access, set this variable.
SERVICED_VIRTUAL_ADDRESS_SUBNET	The private network for containers that use virtual IP addresses. The default is $10.3.0.0/16$, and the network can be unique on each host. A /29 network is sufficient.
SERVICED_DOCKER_DNS	A list of one or more DNS servers. The list is injected into all Docker containers.

Debugging variables

Variable	Description
SERVICED_LOG_LEVEL	The log level serviced uses when writing to the system log.
SERVICED_DEBUG_PORT	The port on which serviced listens for HTTP requests for the <i>Go profiler</i> .
SERVICED_DOCKER_LOG_DRIVER	The log driver for all Docker container logs.
SERVICED_DOCKER_LOG_CONFIG	Docker log-opt options.

Tuning variables (all cluster hosts)

Variable	Description
GOMAXPROCS	The maximum number of CPU cores that serviced uses.
SERVICED_MAX_CONTAINER_AGE	The number of seconds serviced waits before removing a stopped container.
SERVICED_ISVCS_ENV_[0-9]+	Startup arguments to pass to specific internal services.
SERVICED_SERVICE_MIGRATION_TAG	Overrides the default value for the service migration image.
SERVICED_OPTS	Startup arguments for serviced.
SERVICED_CONTROLLER_BINARY	The path of the serviced-controller binary.
SERVICED_HOME	The path of the home directory for serviced.
SERVICED_ETC_PATH	The path of the directory for serviced configuration files.
SERVICED_VHOST_ALIASES	A list of hostname aliases for a host; for example, localhost.
SERVICED_ZK_CONNECT_TIMEOUT	The number of seconds Control Center waits for a connection to the lead ZooKeeper host.
SERVICED_ZK_PER_HOST_CONNECT_DELAY	The number of seconds Control Center waits before attempting to connect to the next host in its round- robin list of ZooKeeper hosts.
SERVICED_ZK_RECONNECT_START_DELAY, SERVICED_ZK_RECONNECT_MAX_DELAY	These are used together when Control Center is unable to re-establish a connection with the lead ZooKeeper host.

Starting Control Center

Use this procedure to start serviced on a delegate host for the first time.

- 1 Log in to the delegate host as root, or as a user with superuser privileges.
- 2 Verify the configuration settings.

grep -E '^\b*SERVICED' /etc/default/serviced

3 Start the Control Center service (serviced).

systemctl start serviced

To monitor progress, enter the following command:

journalctl -flu serviced -o cat

Delegate host authentication

Control Center uses RSA key pairs to create the authentication tokens that are required for all delegate communications. When you add a host to a resource pool, the serviced instance on the master host creates a private key for the delegate and bundles it with its own public key. The serviced instance on the delegate host uses the bundle to sign messages with its unique tokens.

Key bundles are installed by using an SSH connection or a file.

- The command to add a host to a pool can initiate an SSH connection with the delegate and install the key bundle. This option is the most secure, because no file is created. However, it requires either public key authentication or password authentication between the master and delegate hosts.
- When no SSH connection is requested, the command to add a host to a pool creates a file containing the key bundle. You can move the key bundle file to the delegate host with any file transfer method, and then install it on the delegate.

The following procedures demonstrate how to add a host to a resource pool and install its key bundle.

Adding a delegate host through an SSH connection

To succeed, the following statements about the login account used to perform this procedure must be true:

- The account exists on both the master host and on the delegate host.
- The account has serviced CLI privileges.
- The account has either public key authentication or password authentication enabled on the master host and on the delegate host.

Use this procedure to add a delegate host to a resource pool through an SSH connection.

- 1 Log in to the Control Center master host as a user with serviced CLI privileges.
- 2 Optional: Create a new resource pool:
 - **a** Display the names of the existing resource pools.

serviced pool list

b Create a new resource pool. Replace *Resource-Pool* with the name of a new resource pool:

serviced pool add Resource-Pool

3 Add a delegate host to a resource pool.

If the master and delegate host are configured for key-based access, the following command does not prompt you to add the delegate to the list of known hosts or to provide the password of the remote user account.

Use the hostname or IP address to identify a Control Center cluster host. If you use a hostname, all hosts in the cluster must be able to resolve it, either through an entry in /etc/hosts or through a nameserver on the network. In the following example, replace *Hostname-Or-IP* with the hostname or IP address of a delegate host, and replace *Resource-Pool* with the name of a resource pool.

If the host is behind a router or firewall for network address translation (NAT), include the option --nataddress to specify the NAT device's hostname or IP address and port of the delegate host.

Adding a delegate host using a file

Use this procedure to add a delegate host to a resource pool by using a key bundle file.

- 1 Log in to the Control Center master host as a user with serviced CLI privileges.
- 2 Optional: Create a new resource pool, if desired.
 - **a** Display the names of the existing resource pools.

serviced pool list

b Create a new resource pool. Replace *Resource-Pool* with the name of a new resource pool:

serviced pool add Resource-Pool

3 Add a delegate host to a resource pool.

Use the hostname or IP address to identify a Control Center cluster host. If you use a hostname, all hosts in the cluster must be able to resolve it, either through an entry in /etc/hosts or through a nameserver on the network. In the following example, replace *Hostname-Or-IP* with the hostname or IP address of a delegate host, and replace *Resource-Pool* with the name of a resource pool.

If the host is behind a router or firewall for network address translation (NAT), include the option --nataddress to specify the NAT device's hostname or IP address and port of the delegate host.

The command creates a unique key bundle file in the local directory.

4 Use a file transfer utility such as scp to copy the key bundle file to the delegate host.

Once copied to the delegate host, the key bundle file is not needed on the master host and can be deleted.

- 5 Log in to the Control Center delegate host as a user with serviced CLI privileges.
- 6 Install the key bundle.

Replace Key-Bundle-Path with the pathname of the key bundle file:

serviced host register Key-Bundle-Path

7 Delete the key bundle file.

The file is no longer needed on the delegate host.

Replace Key-Bundle-Path with the pathname of the key bundle file:

rm Key-Bundle-Path

Configuring a ZooKeeper ensemble

5

This chapter describes how to create a ZooKeeper ensemble (cluster) for a multi-host Control Center deployment that includes a minimum of three hosts. If your deployment includes just one host or two hosts, skip this chapter.

ZooKeeper and Control Center

Control Center relies on *Apache ZooKeeper* to distribute and manage application services. ZooKeeper maintains the definitions of each service and the list of services assigned to each host. The scheduler, which runs on the master host, determines assignments and sends them to the ZooKeeper node that is serving as the ensemble leader. The leader replicates the assignments to the other ensemble nodes, so that the other nodes can assume the role of leader if the leader node fails.

All of the hosts in a Control Center cluster retrieve assignments and service definitions from the ZooKeeper ensemble leader and then start services in Docker containers as required. So, the Control Center configuration files of all Control Center cluster hosts must include a definition for the *SERVICED_ZK* variable, which specifies the ZooKeeper endpoints of the ensemble nodes. Additional variables are required on ensemble nodes.

A ZooKeeper ensemble requires a minimum of three nodes, which is sufficient for most environments. An odd number of nodes is recommended and an even number of nodes is strongly discouraged. A five-node ensemble improves failover protection during maintenance windows but larger ensembles yield no benefits.

The Control Center master host is always an ensemble node. All ensemble nodes should be on the same subnet.

Understanding the configuration process

The procedures in this chapter instruct you to create temporary variables that are used as building blocks, to construct Control Center configuration variables accurately. You append the Control Center variables to /etc/default/serviced, and then edit the file to move the variables to more appropriate locations.

The most important temporary variables specify the IP address or hostname of each host in the ZooKeeper ensemble. The following table identifies these important variables, the names and values of which must be identical on every Control Center cluster host.

Variable name	Placeholder value	Actual value
node1	Master	The IP address or hostname of the master host.
node2	Delegate-A	The IP address or hostname of delegate host A.

Variable name	Placeholder value	Actual value
node3	Delegate-B	The IP address or hostname of delegate host B.
Note All ense	emble hosts should be o	n the same subnet.

ZooKeeper variables

The variables in the following table are set only on ZooKeeper ensemble nodes, except *SERVICED_ZK*, which must be identical on all Control Center cluster hosts.

Variable	Where to set
SERVICED_ISVCS_START	ZooKeeper ensemble nodes
SERVICED_ISVCS_ZOOKEEPER_ID	ZooKeeper ensemble nodes
SERVICED_ISVCS_ZOOKEEPER_QUORUM	ZooKeeper ensemble nodes
SERVICED_ZK	All Control Center cluster hosts
SERVICED_ZK_SESSION_TIMEOUT	ZooKeeper ensemble nodes

Example multi-host ZooKeeper configuration

This example shows the ZooKeeper variables in the /etc/default/serviced configuration file of each host in a 4-node Control Center cluster. For convenience, the relevant settings for each node or host are also included in subsequent procedures.

Note The value of the *SERVICED_ISVCS_ZOOKEEPER_QUORUM* variable is formatted to fit the available space. In the configuration file, the variable and value are on the same line.

Master host and ZooKeeper ensemble node, 198.51.100.135:

```
SERVICED_ISVCS_ZOOKEEPER_ID=1
SERVICED_ZK=198.51.100.135:2181,198.51.100.136:2181,198.51.100.137:2181
SERVICED_ISVCS_ZOOKEEPER_QUORUM=1@0.0.0.0:2888:3888,\
    2@198.51.100.136:2888:3888,3@198.51.100.137:2888:3888
SERVICED_ZK_SESSION_TIMEOUT=15
```

Delegate host and ZooKeeper ensemble node, 198.51.100.136:

```
SERVICED_ISVCS_START=zookeeper
SERVICED_ISVCS_ZOOKEEPER_ID=2
SERVICED_ZK=198.51.100.135:2181,198.51.100.136:2181,198.51.100.137:2181
SERVICED_ISVCS_ZOOKEEPER_QUORUM=1@198.51.100.135:2888:3888,\
2@0.0.0.0:2888:3888,3@198.51.100.137:2888:3888
SERVICED_ZK_SESSION_TIMEOUT=15
```

Delegate host and ZooKeeper ensemble node, 198.51.100.137:

SERVICED_ISVCS_START=zookeeper SERVICED_ISVCS_ZOOKEEPER_ID=3 SERVICED_ZK=198.51.100.135:2181,198.51.100.136:2181,198.51.100.137:2181 SERVICED_ISVCS_ZOOKEEPER_QUORUM=1@198.51.100.135:2888:3888,\

```
20198.51.100.136:2888:3888,300.0.0.0:2888:3888
SERVICED_ZK_SESSION_TIMEOUT=15
```

Delegate host, 198.51.100.138:

SERVICED_ZK=198.51.100.135:2181,198.51.100.136:2181,198.51.100.137:2181

Configuring the master host as a ZooKeeper node

This procedure configures the Control Center master host as a node in a ZooKeeper ensemble.

- 1 Log in to the master host as root, or as a user with superuser privileges.
- 2 Define the IP address variables for each node in the ZooKeeper ensemble. Replace *Master* with the IP address or hostname of the Control Center master host, and replace *Delegate-A* and *Delegate-B* with the IP addresses or hostnames of the delegate hosts to include in the ensemble:

```
node1=Master
node2=Delegate-A
node3=Delegate-B
```

3 Set the ZooKeeper node ID to 1.

```
echo "SERVICED_ISVCS_ZOOKEEPER_ID=1" >> /etc/default/serviced
```

4 Specify the nodes in the ZooKeeper ensemble. You can copy the following text and paste it in your console:

5 Specify the nodes in the ZooKeeper quorum.

ZooKeeper requires a unique quorum definition for each node in its ensemble. To achieve this, replace the IP address or hostname of the master host with 0.0.0.0.

You can copy the following text and paste it in your console:

6 Specify the timeout for inactive connections. You can copy the following text and paste it in your console:

```
echo "SERVICED_ZK_SESSION_TIMEOUT=15" >> /etc/default/serviced
```

- 7 Clean up the Control Center configuration file.
 - **a** Open /etc/default/serviced in a text editor.
 - **b** Navigate to the end of the file, and cut the line that contains the *SERVICED_ZK* variable declaration at that location.
 - c Locate the original SERVICED_ZK variable declaration, and then paste the cut line immediately below it.
 - **d** Navigate to the end of the file, and cut the line that contains the *SERVICED_ISVCS_ZOOKEEPER_ID* variable declaration at that location.

- e Locate the original *SERVICED_ISVCS_ZOOKEEPER_ID* variable declaration, and then paste the cut line immediately below it.
- **f** Navigate to the end of the file, and cut the line that contains the *SERVICED_ISVCS_ZOOKEEPER_QUORUM* variable declaration at that location.
- **g** Locate the original *SERVICED_ISVCS_ZOOKEEPER_QUORUM* variable declaration, and then paste the cut line immediately below it.
- **h** Navigate to the end of the file, and cut the line that contains the *SERVICED_ZK_SESSION_TIMEOUT* variable declaration at that location.
- i Locate the original *SERVICED_ZK_SESSION_TIMEOUT* variable declaration, and then paste the cut line immediately below it.
- j Save the file, and then close the editor.
- 8 Verify the ZooKeeper environment variables.

```
grep -E '^\b*SERVICED' /etc/default/serviced | grep -E '_Z(00|K)'
```

The following example shows the environment variables for a master host with IP address 198.51.100.135.

Note The value of the *SERVICED_ISVCS_ZOOKEEPER_QUORUM* variable is formatted to fit the available space. The result of the grep command shows the variable and value on the same line.

```
SERVICED_ZK=198.51.100.135:2181,198.51.100.136:2181,198.51.100.137:2181
SERVICED_ISVCS_ZOOKEEPER_ID=1
SERVICED_ISVCS_ZOOKEEPER_QUORUM=1@0.0.0.0:2888:3888,\
2@198.51.100.136:2888:3888,3@198.51.100.137:2888:3888
SERVICED_ZK_SESSION_TIMEOUT=15
```

Configuring delegate host A as a ZooKeeper node

Use this procedure to configure the delegate host designated as Delegate-A as a ZooKeeper node.

- 1 Log in to the delegate host as root, or as a user with superuser privileges.
- 2 Define the IP address variables for each node in the ZooKeeper ensemble. Replace *Master* with the IP address or hostname of the Control Center master host, and replace *Delegate-A* and *Delegate-B* with the IP addresses or hostnames of the delegate hosts to include in the ensemble:

```
node1=Master
node2=Delegate-A
node3=Delegate-B
```

3 Set the ID of this node in the ZooKeeper ensemble.

echo "SERVICED_ISVCS_ZOOKEEPER_ID=2" >> /etc/default/serviced

4 Specify the nodes in the ZooKeeper ensemble. You can copy the following text and paste it in your console:

5 Specify the nodes in the ZooKeeper quorum.

ZooKeeper requires a unique quorum definition for each node in its ensemble. To achieve this, replace the IP address or hostname of delegate host A with 0.0.0.0.

You can copy the following text and paste it in your console:

6 Specify the timeout for inactive connections. You can copy the following text and paste it in your console:

```
echo "SERVICED_ZK_SESSION_TIMEOUT=15" >> /etc/default/serviced
```

7 Configure Control Center to start the ZooKeeper service.You can copy the following text and paste it in your console:

```
echo "SERVICED_ISVCS_START=zookeeper" >> /etc/default/serviced
```

- 8 Clean up the Control Center configuration file.
 - **a** Open /etc/default/serviced in a text editor.
 - **b** Navigate to the end of the file, and cut the line that contains the *SERVICED_ZK* variable declaration at that location.
 - c Locate the original SERVICED_ZK variable declaration, and then paste the cut line immediately below it.
 - **d** Comment the original *SERVICED_ZK* declaration, which references only the master host.

Insert the number sign character (#) immediately in front of the original SERVICED ZK variable.

- e Navigate to the end of the file, and cut the line that contains the *SERVICED_ISVCS_ZOOKEEPER_ID* variable declaration at that location.
- **f** Locate the original *SERVICED_ISVCS_ZOOKEEPER_ID* variable declaration, and then paste the cut line immediately below it.
- **g** Navigate to the end of the file, and cut the line that contains the *SERVICED_ISVCS_ZOOKEEPER_QUORUM* variable declaration at that location.
- **h** Locate the original *SERVICED_ISVCS_ZOOKEEPER_QUORUM* variable declaration, and then paste the cut line immediately below it.
- i Navigate to the end of the file, and cut the line that contains the *SERVICED_ZK_SESSION_TIMEOUT* variable declaration at that location.
- **j** Locate the original *SERVICED_ZK_SESSION_TIMEOUT* variable declaration, and then paste the cut line immediately below it.
- **k** Navigate to the end of the file, and cut the line that contains the *SERVICED_ISVCS_START* variable declaration at that location.
- Locate the original *SERVICED_ISVCS_START* variable declaration, and then paste the cut line immediately below it.
- **m** Save the file, and then close the editor.
- 9 Verify the ZooKeeper environment variables.

The following example shows the environment variables for a delegate host with IP address 198.51.100.136.

Note The value of the *SERVICED_ISVCS_ZOOKEEPER_QUORUM* variable is formatted to fit the available space. The result of the grep command shows the variable and value on the same line.

SERVICED_ZK=198.51.100.135:2181,198.51.100.136:2181,198.51.100.137:2181

```
SERVICED_ISVCS_START=zookeeper
SERVICED_ISVCS_ZOOKEEPER_ID=2
SERVICED_ISVCS_ZOOKEEPER_QUORUM=1@198.51.100.135:2888:3888,\
        2@0.0.0.0:2888:3888,3@198.51.100.137:2888:3888
SERVICED_ZK_SESSION_TIMEOUT=15
```

Configuring delegate host B as a ZooKeeper node

Use this procedure to configure the delegate host designated as *Delegate-B* as a ZooKeeper node.

- 1 Log in to the delegate host as root, or as a user with superuser privileges.
- 2 Define the IP address variables for each node in the ZooKeeper ensemble. Replace *Master* with the IP address or hostname of the Control Center master host, and replace *Delegate-A* and *Delegate-B* with the IP addresses or hostnames of the delegate hosts to include in the ensemble:

```
node1=Master
node2=Delegate-A
node3=Delegate-B
```

3 Set the ID of this node in the ZooKeeper ensemble.

echo "SERVICED_ISVCS_ZOOKEEPER_ID=3" >> /etc/default/serviced

4 Specify the nodes in the ZooKeeper ensemble. You can copy the following text and paste it in your console:

5 Specify the nodes in the ZooKeeper quorum.

ZooKeeper requires a unique quorum definition for each node in its ensemble. To achieve this, replace the IP address or hostname of delegate host B with 0.0.0.0.

You can copy the following text and paste it in your console:

6 Specify the timeout for inactive connections. You can copy the following text and paste it in your console:

echo "SERVICED_ZK_SESSION_TIMEOUT=15" >> /etc/default/serviced

7 Configure Control Center to start the ZooKeeper service.You can copy the following text and paste it in your console:

echo "SERVICED_ISVCS_START=zookeeper" >> /etc/default/serviced

- 8 Clean up the Control Center configuration file.
 - **a** Open /etc/default/serviced in a text editor.
 - **b** Navigate to the end of the file, and cut the line that contains the *SERVICED_ZK* variable declaration at that location.
 - c Locate the original SERVICED_ZK variable declaration, and then paste the cut line immediately below it.

- **d** Comment the original *SERVICED_ZK* declaration, which references only the master host. Insert the number sign character (#) immediately in front of the original *SERVICED_ZK* variable.
- e Navigate to the end of the file, and cut the line that contains the *SERVICED_ISVCS_ZOOKEEPER_ID* variable declaration at that location.
- **f** Locate the original *SERVICED_ISVCS_ZOOKEEPER_ID* variable declaration, and then paste the cut line immediately below it.
- **g** Navigate to the end of the file, and cut the line that contains the *SERVICED_ISVCS_ZOOKEEPER_QUORUM* variable declaration at that location.
- **h** Locate the original *SERVICED_ISVCS_ZOOKEEPER_QUORUM* variable declaration, and then paste the cut line immediately below it.
- i Navigate to the end of the file, and cut the line that contains the *SERVICED_ZK_SESSION_TIMEOUT* variable declaration at that location.
- **j** Locate the original *SERVICED_ZK_SESSION_TIMEOUT* variable declaration, and then paste the cut line immediately below it.
- **k** Navigate to the end of the file, and cut the line that contains the *SERVICED_ISVCS_START* variable declaration at that location.
- I Locate the original SERVICED_ISVCS_START variable declaration, and then paste the cut line immediately below it.
- **m** Save the file, and then close the editor.
- 9 Verify the ZooKeeper environment variables.

The following example shows the environment variables for a delegate host with IP address 198.51.100.137.

Note The value of the *SERVICED_ISVCS_ZOOKEEPER_QUORUM* variable is formatted to fit the available space. The result of the grep command shows the variable and value on the same line.

```
SERVICED_ZK=198.51.100.135:2181,198.51.100.136:2181,198.51.100.137:2181
SERVICED_ISVCS_START=zookeeper
SERVICED_ISVCS_ZOOKEEPER_ID=3
SERVICED_ISVCS_ZOOKEEPER_QUORUM=1@198.51.100.135:2888:3888,\
2@198.51.100.136:2888:3888,3@0.0.0.0:2888:3888
SERVICED ZK SESSION TIMEOUT=15
```

Installing the ZooKeeper image for Docker

Use one of the procedures in this section to pull or import the Docker image for the ZooKeeper service on each ZooKeeper ensemble node.

Pulling the ZooKeeper image for Docker

To perform this procedure, ZooKeeper ensemble nodes must have internet access.

Use this procedure to pull the Docker image for the ZooKeeper service from Docker Hub to a ZooKeeper ensemble node. Repeat this procedure on each node in the ZooKeeper ensemble.

- 1 Log in to the ZooKeeper ensemble node as root, or as a user with superuser privileges.
- 2 Identify the images associated with the installed version of serviced.

serviced version | grep Images

Example result:

IsvcsImages: [zenoss/serviced-isvcs:v54 zenoss/isvcs-zookeeper:v8]

In this example, the tag of the ZooKeeper image is isvcs-zookeeper:v8.

3 Pull the required image from Docker Hub to the local repository. Replace *ZooKeeper-Tag* with the tag displayed in the previous step:

docker pull zenoss/ZooKeeper-Tag

Importing the ZooKeeper image for Docker

Use this procedure to import the Docker image for the ZooKeeper service from a ZooKeeper image file. Repeat this procedure on each node in the ZooKeeper ensemble.

- 1 Log in to the ZooKeeper ensemble node as root, or as a user with superuser privileges.
- 2 Change directory to /root.

```
cd /root
```

3 Extract the ZooKeeper image.

./install-zenoss-isvcs-zookeeper:v*.run

Image extraction begins when you press the y key.

4 Optional: Delete the archive file, if desired.

rm -i ./install-zenoss-isvcs-zookeeper:v*.run

Starting a ZooKeeper ensemble

Use this procedure to start a ZooKeeper ensemble.

This procedures uses the nc utility to query ensemble hosts. If nc is not available, you can use telnet with *interactive ZooKeeper commands*.

The window of time for starting a ZooKeeper ensemble is relatively short. The goal of this procedure is to restart Control Center on each ensemble node at about the same time, so that each node can participate in electing the leader.

- 1 Log in to the Control Center master host as root, or as a user with superuser privileges.
- 2 In a separate window, log in to the second node of the ZooKeeper ensemble (*Delegate-A*) as root, or as a user with superuser privileges.
- **3** In a different window, log in to the third node of the ZooKeeper ensemble (*Delegate-B*) as root, or as a user with superuser privileges.
- 4 On all ensemble hosts, stop and start serviced.

systemctl stop serviced && systemctl start serviced

5 On the master host, check the status of the ZooKeeper ensemble.

a Attach to the container of the ZooKeeper service.

docker exec -it serviced-isvcs_zookeeper /bin/bash

b Query the master host and identify its role in the ensemble. Replace *Master* with the hostname or IP address of the master host:

{ echo stats; sleep 1; } | nc Master 2181 | grep Mode

The result includes leader or follower.

c Query delegate host A and identify its role in the ensemble. Replace *Delegate-A* with the hostname or IP address of delegate host A:

{ echo stats; sleep 1; } | nc Delegate-A 2181 | grep Mode

d Query delegate host B and identify its role in the ensemble. Replace *Delegate-B* with the hostname or IP address of delegate host B:

{ echo stats; sleep 1; } | nc Delegate-B 2181 | grep Mode

e Detach from the container of the ZooKeeper service.

exit

If none of the hosts reports that it is the ensemble leader within a few minutes of starting serviced, reboot the hosts.

Updating delegate hosts

The default configuration of delegate hosts sets the value of the *SERVICED_ZK* variable to the master host only. Use this procedure to update the setting to include all of the hosts in the ZooKeeper ensemble. Perform this procedure on each delegate host in a Control Center cluster that is not an ensemble node.

- 1 Log in to the delegate host as root, or as a user with superuser privileges.
- 2 Define the IP address variables for each node in the ZooKeeper ensemble. Replace *Master* with the IP address or hostname of the Control Center master host, and replace *Delegate-A* and *Delegate-B* with the IP addresses or hostnames of the delegate hosts to include in the ensemble:

```
node1=Master
node2=Delegate-A
node3=Delegate-B
```

3 Specify the nodes in the ZooKeeper ensemble.You can copy the following text and paste it in your console:

- 4 Update the variable.
 - a Open /etc/default/serviced in a text editor.
 - **b** Navigate to the end of the file, and cut the line that contains the *SERVICED_ZK* variable declaration at that location.

The value of this declaration specifies three endpoints.

c Locate the *SERVICED_ZK* variable near the beginning of the file, and then delete the line it is on. The value is just the master host endpoint.

- **d** Paste the *SERVICED_ZK* variable declaration from the end of the file in the location of the just-deleted declaration.
- e Save the file, and then close the editor.
- 5 Verify the setting.

grep -E '^\b*SERVICED_ZK' /etc/default/serviced

The following example shows the environment variable for a delegate host that is not a node in the ZooKeeper ensemble:

SERVICED_ZK=198.51.100.135:2181,198.51.100.136:2181,198.51.100.137:2181

6 Restart Control Center.

systemctl restart serviced

Starting and stopping Control Center deployments

This appendix includes procedures for stopping and starting both single-host and multi-host Control Center deployments.

Note The procedures in this appendix assume that Control Center is the only source of Docker containers that are run on a host.

Stopping Control Center (single-host deployment)

Use this procedure to stop the Control Center service (serviced) in a single-host deployment.

- 1 Log in to the master host as root, or as a user with superuser privileges.
- 2 Stop the top-level service serviced is managing, if necessary.
 - **a** Show the status of running services.

serviced service status

The top-level service is the service listed immediately below the headings line.

- If the status of the top-level service and all child services is stopped, proceed to the next step.
- If the status of the top-level service and all child services is not stopped, perform the remaining substeps.
- **b** Stop the top-level service.

Replace Service with the name or identifier of the top-level service:

serviced service stop Service

c Monitor the stop.

serviced service status

When the status of the top-level service and all child services is stopped, proceed to the next step.

3 Stop the Control Center service.

systemctl stop serviced

4 Ensure that no containers remain in the local repository.

a Display the identifiers of all containers, running and exited.

docker ps -qa

- If the command returns no result, stop. This procedure is complete.
- If the command returns a result, perform the following substeps.
- **b** Remove all remaining containers.

docker ps -qa | xargs --no-run-if-empty docker rm -fv

c Display the identifiers of all containers, running and exited.

docker ps -qa

- If the command returns no result, stop. This procedure is complete.
- If the command returns a result, perform the remaining substeps.
- **d** Disable the automatic startup of serviced.

systemctl disable serviced

e Reboot the host.

reboot

- f Log in to the master host as root, or as a user with superuser privileges.
- g Enable the automatic startup of serviced.

systemctl enable serviced

Starting Control Center (single-host deployment)

Use this procedure to start Control Center in a single-host deployment. The default configuration of the Control Center service (serviced) is to start when the host starts. This procedure is only needed after stopping serviced to perform maintenance tasks.

- 1 Log in to the master host as root, or as a user with superuser privileges.
- 2 Determine whether serviced is configured to start when the system starts.

systemctl is-enabled serviced

- If the result is enabled, proceed to the next step.
- If the result is disabled, enter the following command:

systemctl enable serviced

3 Start the Control Center service.

systemctl start serviced

4 Optional: Monitor the startup, if desired.

```
journalctl -u serviced -f -o cat
```

Once Control Center is started, it is ready to start managing applications. For more information, refer to the documentation of your application.

Stopping Control Center (multi-host deployment)

To stop Control Center in a multi-host deployment, perform the procedures in this section, in order.

Stopping a master host (multi-host deployment)

Use this procedure to stop the Control Center service (serviced) on the master host in a multi-host deployment.

- 1 Log in to the master host as root, or as a user with superuser privileges.
- 2 Stop the top-level service serviced is managing, if necessary.
 - **a** Show the status of running services.

serviced service status

The top-level service is the service listed immediately below the headings line.

- If the status of the top-level service and all child services is stopped, proceed to the next step.
- If the status of the top-level service and all child services is not stopped, perform the remaining substeps.
- **b** Stop the top-level service.

Replace Service with the name or identifier of the top-level service:

serviced service stop Service

c Monitor the stop.

serviced service status

When the status of the top-level service and all child services is stopped, proceed to the next step.

3 Stop the Control Center service.

systemctl stop serviced

- 4 Ensure that no containers remain in the local repository.
 - a Display the identifiers of all containers, running and exited.

docker ps -qa

- If the command returns no result, stop. This procedure is complete.
- If the command returns a result, perform the following substeps.
- **b** Remove all remaining containers.

docker ps -qa | xargs --no-run-if-empty docker rm -fv

c Display the identifiers of all containers, running and exited.

docker ps -qa

- If the command returns no result, stop. This procedure is complete.
- If the command returns a result, perform the remaining substeps.
- **d** Disable the automatic startup of serviced.

systemctl disable serviced

e Reboot the host.

reboot

- f Log in to the master host as root, or as a user with superuser privileges.
- g Enable the automatic startup of serviced.

systemctl enable serviced

Stopping a delegate host

Use this procedure to stop the Control Center service (serviced) on a delegate host in a multi-host deployment. Repeat this procedure on each delegate host in your deployment.

- 1 Log in to the delegate host as root, or as a user with superuser privileges.
- 2 Stop the Control Center service.

systemctl stop serviced

- **3** Ensure that no containers remain in the local repository.
 - a Display the identifiers of all containers, running and exited.

docker ps -qa

- If the command returns no result, proceed to the next step.
- If the command returns a result, perform the following substeps.
- **b** Remove all remaining containers.

docker ps -qa | xargs --no-run-if-empty docker rm -fv

- If the remove command completes, proceed to the next step.
- If the remove command does not complete, the most likely cause is an NFS conflict. Perform the following substeps.
- c Stop the NFS and Docker services.

systemctl stop nfs && systemctl stop docker

d Start the NFS and Docker services.

systemctl start nfs && systemctl start docker

e Repeat the attempt to remove all remaining containers.

docker ps -qa | xargs --no-run-if-empty docker rm -fv

- If the remove command completes, proceed to the next step.
- If the remove command does not complete, perform the remaining substeps.
- f Disable the automatic startup of serviced.

systemctl disable serviced

g Reboot the host.

reboot

- h Log in to the delegate host as root, or as a user with superuser privileges.
- i Enable the automatic startup of serviced.

systemctl enable serviced

4 Dismount all filesystems mounted from the Control Center master host.

This step ensures no stale mounts remain when the storage on the master host is replaced.

a Identify filesystems mounted from the master host.

awk '/serviced/ { print \$1, \$2 }' < /proc/mounts</pre>

- If the preceding command returns no result, stop. This procedure is complete.
- If the preceding command returns a result, perform the following substeps.
- **b** Force the filesystems to dismount.

```
for FS in $(awk '/serviced/ { print $2 }' < /proc/mounts)
do
    umount -f $FS
done</pre>
```

c Identify filesystems mounted from the master host.

awk '/serviced/ { print \$1, \$2 }' < /proc/mounts

- If the preceding command returns no result, stop. This procedure is complete.
- If the preceding command returns a result, perform the following substeps.
- **d** Perform a lazy dismount.

```
for FS in $(awk '/serviced/ { print $2 }' < /proc/mounts)
do
    umount -f -l $FS
done</pre>
```

e Restart the NFS service.

systemctl restart nfs

f Determine whether any filesystems remain mounted.

awk '/serviced/ { print \$1, \$2 }' < /proc/mounts</pre>

- If the preceding command returns no result, stop. This procedure is complete.
- If the preceding command returns a result, perform the remaining substeps.
- g Disable the automatic startup of serviced.

systemctl disable serviced

h Reboot the host.

reboot

- i Log in to the delegate host as root, or as a user with superuser privileges.
- **j** Enable the automatic startup of serviced.

systemctl enable serviced

Starting Control Center (multi-host deployment)

Use this procedure to start Control Center in a multi-host deployment. The default configuration of the Control Center service (serviced) is to start when the host starts. This procedure is only needed after stopping serviced to perform maintenance tasks.

- 1 Log in to the master host as root, or as a user with superuser privileges.
- 2 Determine whether serviced is configured to start when the system starts.

systemctl is-enabled serviced

- If the result is enabled, proceed to the next step.
- If the result is disabled, enter the following command:

systemctl enable serviced

3 Identify the hosts in the ZooKeeper ensemble.

grep -E '^\b*SERVICED_ZK=' /etc/default/serviced

The result is a list of 1, 3, or 5 hosts, separated by the comma character (,). The master host is always a node in the ZooKeeper ensemble.

- 4 In separate windows, log in to each of the delegate hosts that are nodes in the ZooKeeper ensemble as root, or as a user with superuser privileges.
- 5 On all ensemble hosts, start serviced.

The window of time for starting a ZooKeeper ensemble is relatively short. The goal of this step is to start Control Center on each ensemble node at about the same time, so that each node can participate in electing the leader.

systemctl start serviced

6 On the master host, check the status of the ZooKeeper ensemble.

a Attach to the container of the ZooKeeper service.

docker exec -it serviced-isvcs_zookeeper bash

b Query the master host and identify its role in the ensemble. Replace *Master* with the hostname or IP address of the master host:

{ echo stats; sleep 1; } | nc Master 2181 | grep Mode

The result includes leader or follower. When multiple hosts rely on the ZooKeeper instance on the master host, the result includes standalone.

c Query the other delegate hosts to identify their role in the ensemble. Replace *Delegate* with the hostname or IP address of a delegate host:

{ echo stats; sleep 1; } | nc Delegate 2181 | grep Mode

d Detach from the container of the ZooKeeper service.

exit

If none of the nodes reports that it is the ensemble leader within a few minutes of starting serviced, reboot the ensemble hosts.

7 Log in to each of the delegate hosts that are not nodes in the ZooKeeper ensemble as root, or as a user with superuser privileges, and then start serviced.

systemctl start serviced

8 Optional: Monitor the startup, if desired.

journalctl -u serviced -f -o cat

Once Control Center is started, it is ready to start managing applications. For more information, refer to the documentation of your application.

Storage management utility

B

This appendix includes a description of the serviced-storage command, the required utility for creating the Docker thin pool and creating and managing the Control Center application data thin pool.

serviced-storage

The serviced-storage command manages Control Center storage.

Use this command to create LVM thin pools for Docker and Control Center.

USAGE

```
serviced-storage [-h|--help] [-o DeviceMapperOption=Value] \
 [-v] Command [CommandOptions]
```

GLOBAL OPTIONS

--help, -h

Shows the help information.

-o DeviceMapperOption=Value

A device mapper option. Applies only to device mapper drivers.

-v

Displays verbose logging.

COMMANDS

check

Check for orphaned devices.

create

Create a volume on a driver.

create-thin-pool

Create an LVM thin pool.

disable

Disable a driver.

init

Initialize a driver.

list

Print volumes on a driver.

mount

Mount an existing volume from a driver.

remove

Remove an existing volume from a driver.

resize

Resize an existing volume.

set

Set the default driver.

status

Print the driver status

sync

Sync data from a volume to another volume.

unset

Unset the default driver.

version

Print the version and exit.

serviced-storage check

The serviced-storage check command searches for orphaned snapshot devices in the serviced application data thin pool and removes them, if requested. This command requires the path of serviced tenant volumes, which is determined by the *SERVICED_VOLUMES_PATH* variable in /etc/default/ serviced. The default path is /opt/serviced/var/volumes.

Syntax:

serviced-storage [GlobalOptions] check [-c|--clean] Path

Command options:

[-c|--clean]

Remove orphaned snapshot devices.

serviced-storage create-thin-pool

The serviced-storage create-thin-pool command creates an LVM thin pool either for Docker data or for Control Center application data. When devices are specified, the command creates an LVM volume group.

Syntax:

```
serviced-storage [GlobalOptions] create-thin-pool \
  [-s|--size]=[Value][G|%] [docker|serviced] \
  [DevicePath [DevicePath...]|VolumeGroupName]
```

Command options:

[-s|--size]=[Value][G|%]

The size of the thin pool to create. The size can be a fixed value (in gigabytes) or a relative value (a percentage) of the available storage. When this option is not used, the thin pool size defaults to 90% of the specified storage resource.

serviced-storage resize

The serviced-storage resize command increases the size of a serviced tenant device in its LVM thin pool. Like LVM thin pools, the size of a serviced tenant device can never decrease.

Syntax:

```
serviced-storage [GlobalOptions] resize \
  [-d|--driver]=Value TenantID NewSize
```

Command options:

[-d|--driver]=Value

The path of the tenant volume.

EXAMPLES

Create an LVM volume group named zenoss and use it for both thin pools:

```
vgcreate zenoss /dev/sdb /dev/sdc
serviced-storage create-thin-pool --size=50G docker zenoss
serviced-storage create-thin-pool --size=50% serviced zenoss
```

If you specify devices or partitions, serviced-storage creates an LVM volume group with the same name as the thin pool. The following example yields the same result as the previous, except the name of the volume group is docker instead of zenoss:

```
serviced-storage create-thin-pool docker /dev/sdc serviced-storage create-thin-pool serviced docker
```

Create thin pools on separate block devices:

```
serviced-storage create-thin-pool docker /dev/sdb serviced-storage create-thin-pool serviced /dev/sdc
```

Create thin pools on separate partitions:

```
serviced-storage create-thin-pool docker /dev/sdb1
serviced-storage create-thin-pool serviced /dev/sdc3
```

Increase the size of the serviced LVM thin pool, and then increase the size of a serviced tenant device.

```
lvextend -L+300G zenoss/serviced-pool
serviced-storage -o dm.thinpooldev=/dev/mapper/zenoss-serviced--pool \
resize -d /opt/serviced/var/volumes 58uuetj38draeu9alp6002b1y 200G
```

Identify the serviced application data thin pool, and then remove orphaned snapshot devices.

```
ls /dev/mapper | grep serviced
serviced-storage -o dm.thinpooldev=/dev/mapper/zenoss-serviced--pool \
    check -c /opt/serviced/var/volumes
```

Control Center configuration variables

This appendix includes recommended best practices for editing the serviced configuration file, and descriptions of the variables in the file.

Best practices for configuration files

The Control Center configuration file, /etc/default/serviced, contains Bash environment variables that are read by the serviced daemon startup script. The following list describes recommended best practices for its use and maintenance:

- 1 When in doubt, make a backup. Before editing, making a backup copy of the configuration file is always the safest choice.
- 2 Copy a variable, then edit the copy. If you need to revert a variable to its default value, you don't have to leave the file to look it up.
- **3** Copy and edit a variable only if the default value needs to be changed. It's easier to troubleshoot problems when only non-default variables are copied and edited.
- 4 Put the first character of the variable declaration in the first column of its line. It's easier to grep for settings when each one starts a line.
- 5 Add customizations to the top of the file. Customizations at the end of the file or scattered throughout the file may be overlooked.
- 6 In high-availability deployments, the contents of /etc/default/serviced on the master nodes must be identical. Use a utility like sum to compare the files quickly.

Control Center configuration file

The Control Center configuration file, /etc/default/serviced, contains Bash environment variables that are read by the serviced daemon startup script. The order of the following list matches the order of the variables in the file.

HOME

Default: (the value of shell variable *HOME*)

The path Docker clients use to locate the .docker/config.json authentication file, which contains Docker Hub credentials.

TMPDIR

Default: (the value of shell variable TMPDIR)

The path serviced uses for temporary files.

GOMAXPROCS

Default: 2

The maximum number of CPU cores serviced uses.

SERVICED_MASTER

Default: 1 (true)

Assigns the role of a serviced instance, either master or delegate. The master runs the application services scheduler and other internal services. Delegates run the application services assigned to the resource pool to which they belong.

Only one serviced instance can be the master; all other instances must be delegates. The default value assigns the master role. To assign the delegate role, set the value to 0 (false). This variable must be explicitly set on all Control Center cluster hosts.

SERVICED_MASTER_IP

Default: 127.0.0.1

A convenience variable, for use in places where the IP address or hostname of the master host is required. This variable is unused unless it is both set here and referenced elsewhere. (For example, by replacing {{SERVICED_MASTER_IP}} with \$SERVICED_MASTER_IP.)

SERVICED_MASTER_POOLID

Default: default

The name of the default resource pool. This variable is only used the first time serviced is started.

SERVICED_ZK

Default: (none)

The list of endpoints in the serviced ZooKeeper ensemble, separated by the comma character (,). Each endpoint identifies an ensemble node. Each Control Center server and in-container proxy uses *SERVICED_ZK* to create a randomized, round-robin list, and cycles through the list when it attempts to establish a connection with the lead ZooKeeper host.

SERVICED_DOCKER_REGISTRY

Default: localhost: 5000

The endpoint of the local Docker registry, which serviced uses to store internal services and application images.

If the default value is changed, the host's Docker configuration file must include the --insecure-registry flag with the same value as this variable.

SERVICED_OUTBOUND_IP

Default: (none)

The default startup routines of serviced include attempting to ping google.com. When a value is set for this variable, serviced does not attempt the ping and assumes it does not have internet access. Use this variable to specify the IP address of a network interface other than the default, or to prevent serviced from assuming it has internet access.

Note Setting the Docker *HTTP_PROXY* or *HTTPS_PROXY* environment variables prevents access to the IP address defined with this variable. To enable access, unset the Docker variables, and then reboot the host.

SERVICED_STATIC_IPS

Default: (none)

A list of one or more static IP addresses that are available for IP assignment. Use the comma character (,) to separate addresses.

SERVICED_ENDPOINT

Default: { {SERVICED_MASTER_IP } }:4979

The endpoint of the serviced RPC server. Replace { {SERVICED_MASTER_IP } } with the IP address or hostname of the serviced master host. The port number of this endpoint must match the value of the *SERVICED RPC PORT* variable defined on the serviced master host.

SERVICED_MAX_RPC_CLIENTS

Default: 3

The preferred maximum number of simultaneous connections a serviced delegate uses for RPC requests. The value is used to create a pool of sockets, which are reused as needed. Increasing the value increases the number of open sockets and the use of socket-related operating system resources.

When the demand for connections exceeds the supply of open sockets, serviced opens more sockets. When demand eases, serviced reduces the number of open sockets to the preferred maximum.

SERVICED_RPC_PORT

Default: 4979

The port on which the serviced RPC server listens for connections. The value of this variable must match the port number defined for the *SERVICED_ENDPOINT* variable on all serviced delegate hosts.

SERVICED_RPC_CERT_VERIFY

Default: false

Determines whether serviced performs TLS certificate verification for RPC connections. The certificate is defined by the *SERVICED_CERT_FILE* variable.

SERVICED_RPC_DISABLE_TLS

Default: false

Determines whether serviced encrypts RPC traffic with TLS.

SERVICED_RPC_TLS_MIN_VERSION

Default: VersionTLS10

The minimum version of TLS serviced accepts for RPC connections. Valid values include the default, VersionTLS11, and VersionTLS12.

SERVICED_RPC_TLS_CIPHERS

Default: (list of ciphers)

The list of TLS ciphers serviced prefers for RPC connections, separated by the comma character (,):

- TLS_ECDHE_RSA_WITH_AES_128_CBC_SHA
- TLS_RSA_WITH_AES_128_CBC_SHA
- TLS_RSA_WITH_AES_256_CBC_SHA
- TLS_ECDHE_RSA_WITH_AES_256_CBC_SHA
- TLS_ECDHE_RSA_WITH_AES_128_GCM_SHA256

Other ciphers are supported; the preceding ciphers provide strong security for relatively low processing overhead.

An instance of serviced is on both ends of an RPC connection, so both daemons use the first cipher in the list. To use a different cipher, put it first in the list, on all cluster hosts.

SERVICED_UI_PORT

Default: : 443

The port on which the HTTP server listens for requests. The value may be expressed as follows:

- IP-Address:Port-Number
- :Port-Number

Port-Number

All Control Center cluster hosts must have the same value for this variable.

SERVICED_UI_POLL_FREQUENCY

Default: 3

The number of seconds between polls from Control Center browser interface clients. The value is included in a JavaScript library that is sent to the clients.

SERVICED_MUX_PORT

Default: 22250

The port serviced uses for traffic among Docker containers.

SERVICED_MUX_DISABLE_TLS

Default: 0

Determines whether inter-host traffic among Docker containers is encrypted with TLS. Intra-host traffic among Docker containers is not encrypted. To disable encryption, set the value to 1.

SERVICED_MUX_TLS_MIN_VERSION

Default: VersionTLS10

The minimum version of TLS serviced accepts for mux traffic. Valid values include the default, VersionTLS11, and VersionTLS12.

SERVICED_MUX_TLS_CIPHERS

Default: (list of ciphers)

The list of TLS ciphers serviced prefers for mux traffic, separated by the comma character (,):

- TLS_ECDHE_RSA_WITH_AES_128_CBC_SHA
- TLS_RSA_WITH_AES_128_CBC_SHA
- TLS_RSA_WITH_AES_256_CBC_SHA
- TLS_ECDHE_RSA_WITH_AES_256_CBC_SHA
- TLS_ECDHE_RSA_WITH_AES_128_GCM_SHA256

Other ciphers are supported; the preceding ciphers provide strong security for relatively low processing overhead.

An instance of serviced is on both ends of a mux connection, so both daemons use the first cipher in the list. To use a different cipher, put it first in the list, on all cluster hosts.

SERVICED_ISVCS_PATH

Default: /opt/serviced/var/isvcs

The location of serviced internal services data.

SERVICED_VOLUMES_PATH

Default: /opt/serviced/var/volumes

The location of serviced application data.

SERVICED_BACKUPS_PATH

Default: /opt/serviced/var/backups

The location of serviced backup files.

SERVICED_KEY_FILE

Default: \$TMPDIR/zenoss_key.[0-9]+

The path of a digital certificate key file. Choose a location that is not modified during operating system updates, such as /etc.

This key file is used for all TLS-encrypted communications (RPC, mux, and HTTP). The default, insecure key file is created when the serviced web server first starts, and is based on a public key that is compiled into serviced.

SERVICED_CERT_FILE

Default: \$TMPDIR/zenoss_cert.[0-9]+

The path of a digital certificate file. Choose a location that is not modified during operating system updates, such as /etc. Certificates with passphrases are not supported.

This certificate file is used for all TLS-encrypted communications (RPC, mux, and HTTP). The default, insecure certificate file is created when the serviced web server first starts, and is based on a public certificate that is compiled into serviced.

SERVICED_TLS_MIN_VERSION

Default: VersionTLS10

The minimum version of TLS that serviced accepts for HTTP traffic. Valid values include the default, VersionTLS11, and VersionTLS12.

SERVICED_TLS_CIPHERS

Default: (list of ciphers)

The list of TLS ciphers that serviced accepts for HTTP traffic, separated by the comma character (,):

- 1 TLS_ECDHE_RSA_WITH_AES_128_GCM_SHA256
- 2 TLS_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256
- 3 TLS_ECDHE_RSA_WITH_AES_256_GCM_SHA384
- 4 TLS_ECDHE_ECDSA_WITH_AES_256_GCM_SHA384
- 5 TLS_ECDHE_RSA_WITH_AES_256_CBC_SHA
- 6 TLS_ECDHE_RSA_WITH_AES_128_CBC_SHA
- 7 TLS_ECDHE_RSA_WITH_3DES_EDE_CBC_SHA
- 8 TLS_ECDHE_ECDSA_WITH_AES_256_CBC_SHA
- 9 TLS_ECDHE_ECDSA_WITH_AES_128_CBC_SHA
- 10 TLS_RSA_WITH_AES_256_CBC_SHA
- 11 TLS_RSA_WITH_AES_128_CBC_SHA
- 12 TLS_RSA_WITH_3DES_EDE_CBC_SHA
- 13 TLS_RSA_WITH_AES_128_GCM_SHA256
- 14 TLS_RSA_WITH_AES_256_GCM_SHA384

To disable support for most ciphers, you can remove them from the list. The following rules apply to the list:

- The first cipher, TLS_ECDHE_RSA_WITH_AES_128_GCM_SHA256, must always be present in the list of ciphers.
- The first four ciphers in the list must always precede any of the ciphers that appear after the first four. The first four ciphers are valid for HTTP/2, while the remaining ciphers are not.

SERVICED_FS_TYPE

Default: devicemapper

The driver to manage application data storage on the serviced master host. Only devicemapper is supported in production deployments.

The only supported storage layout for the devicemapper driver is an LVM thin pool. To create a thin pool, use the serviced-storage utility. To specify the name of the thin pool device, use the *SERVICED_DM_THINPOOLDEV* variable.

SERVICED_DM_ARGS

Default: (none)

Customized startup arguments for the devicemapper storage driver.

SERVICED_DM_BASESIZE

Default: 100G

The base size of virtual storage devices for tenants in the application data thin pool, in gigabytes. The units symbol (G) is required. This variable is used when serviced starts for the first time, to set the initial size of tenant devices, and when a backup is restored, to set the size of the restored tenant device.

The base size device is sparse device that occupies at most 1MB of space in the application data thin pool; its size has no immediate practical impact. However, the application data thin pool should have enough space for twice the size of each tenant device it supports, to store both the data itself and snapshots of the data. Since the application data thin pool is an LVM logical volume, its size can be increased at any time. Likewise, the size of a tenant device can be increased, as long as the available space in the thin pool can support the larger tenant device plus snapshots.

SERVICED_DM_LOOPDATASIZE

Default: 100G

Specifies the size of the data portion of the loop-back file. This setting is ignored when *SERVICED ALLOW LOOP BACK* is false.

SERVICED_DM_LOOPMETADATASIZE

Default: 2G

Specifies the size of the metadata portion of the loop-back file. This setting is ignored when *SERVICED ALLOW LOOP BACK* is false.

SERVICED_DM_THINPOOLDEV

Default: (none)

The name of the thin pool device to use with the devicemapper storage driver.

SERVICED_STORAGE_STATS_UPDATE_INTERVAL

Default: 300 (5 minutes)

The number of seconds between polls of kernel statistics about the application data thin pool.

This setting is ignored when the operating system kernel version is less than 3.10.0-366.

SERVICED_ALLOW_LOOP_BACK

Default: false

Determines whether loop-back files can be used with the devicemapper storage driver. This option is not supported for production use.

SERVICED_MAX_CONTAINER_AGE

Default: 86400 (24 hours)

The number of seconds serviced waits before removing a stopped container.

SERVICED_VIRTUAL_ADDRESS_SUBNET

Default: 10.3.0.0/16

The private subnet for containers that use virtual IP addresses on a host. This value may be unique on each cluster host, if necessary.

RFC 1918 restricts private networks to the 10.0/24, 172.16/20, and 192.168/16 address spaces. However, serviced accepts any valid IPv4 address space.

Specify the value in CIDR notation. A /29 network provides sufficient address space.

SERVICED_LOG_LEVEL

Default: 0

The log level serviced uses when writing to the system log. Valid values are 0 (normal) and 2 (debug). *SERVICED LOG ADDRESS*

Default: { {SERVICED_MASTER_IP } : 5042

The endpoint of the logstash service. Replace { {SERVICED_MASTER_IP } } with the IP address or hostname of the serviced master host.

SERVICED_LOGSTASH_ES

Default: { {SERVICED_MASTER_IP } }:9100

The endpoint of the Elasticsearch service for logstash. On delegate hosts, replace

{{SERVICED_MASTER_IP}} with the IP address or hostname of the Elasticsearch host, which by default is the serviced master host.

SERVICED_LOGSTASH_MAX_DAYS

Default: 14

The maximum number of days to keep application logs in the logstash database before purging them.

SERVICED_LOGSTASH_MAX_SIZE

Default: 10

The maximum size of the logstash database, in gigabytes.

SERVICED_LOGSTASH_CYCLE_TIME

Default: 6

The amount of time between logstash purges, in hours.

SERVICED_STATS_PORT

Default: { {SERVICED_MASTER_IP } } :8443

The endpoint of the serviced metrics consumer service. Replace {{SERVICED_MASTER_IP}} with the IP address or hostname of the serviced master host.

SERVICED_STATS_PERIOD

Default: 10

The frequency, in seconds, at which delegates gather metrics to send to the serviced metrics consumer service on the master host.

SERVICED_SVCSTATS_CACHE_TIMEOUT

Default: 5

The number of seconds to cache statistics about services. The cache is used by Control Center browser interface clients.

SERVICED_DEBUG_PORT

Default: 6006

The port on which serviced listens for HTTP requests for the *Go profiler*. To stop listening for requests, set the value to -1.

SERVICED_ISVCS_ENV_[0-9]+

Default: (none)

Startup arguments to pass to internal services. You may define multiple arguments, each for a different internal service. The variables themselves, and their arguments, use the following syntax:

SERVICED_ISVCS_ENV_%d

Each variable name ends with a unique integer in place of %d.

Service-Name:Key=Value

The value of each variable includes the following elements, in order:

1 *Service-Name*, the internal service name. The following command returns the internal service names that may be used for *Service-Name*:

docker ps | awk '/serviced-isvcs:/{print \$NF}'

- 2 The colon character (:).
- 3 *Key*, a variable to pass to the internal service.
- 4 The equals sign character (=).
- 5 *Value*, the definition of the variable to pass to the internal service.

The following example variable passes ES_JAVA_OPTS=-Xmx4g to the Elasticsearch internal service.

```
SERVICED_ISVCS_ENV_0=serviced-isvcs_elasticsearch-
logstash:ES_JAVA_OPTS=-Xmx4g
```

SERVICED_ADMIN_GROUP

Default: wheel

The name of the Linux group on the serviced master host whose members are authorized to use the serviced browser interface. You may replace the default group with a group that does not have superuser privileges.

SERVICED_ALLOW_ROOT_LOGIN

Default: 1 (true)

Determines whether the root user account on the serviced master host may be used to gain access to the serviced browser interface.

SERVICED_IPTABLES_MAX_CONNECTIONS

Default: 655360

The default value of this variable ensures that a serviced delegate does not run out of connections if the serviced master goes down. The connections are automatically cleaned up by the kernel soon after the serviced master comes back online.

SERVICED_SNAPSHOT_TTL

Default: 12

The number of hours an application data snapshot is retained before removal. To disable snapshot removal, set the value to zero. The application data storage can fill up rapidly when this value is zero or too high.

SERVICED_NFS_CLIENT

Default: 1

DEPRECATED: Prevent a delegate host from mounting the DFS.

SERVICED_SERVICE_MIGRATION_TAG

Default: 1.0.2

Overrides the default value for the service migration image.

SERVICED_ISVCS_START

Default: (none)

Enables one or more internal services to run on a delegate host. Currently, only zookeeper is supported.

SERVICED_ISVCS_ZOOKEEPER_ID

Default: (none)

The unique identifier of a ZooKeeper ensemble node. The identifier must be a positive integer.

SERVICED_ISVCS_ZOOKEEPER_QUORUM

Default: (none)

The comma-separated list of nodes in a ZooKeeper ensemble. Each entry in the list specifies the ZooKeeper ID, IP address or hostname, peer communications port, and leader communications port of a node in the ensemble. Each quorum definition must be unique, so the IP address or hostname of the "current" host must be 0.0.0.0.

The following example shows the syntax of a node entry:

ZooKeeper-ID@Host-IP-Or-Name:2888:3888

SERVICED_DOCKER_LOG_DRIVER

Default: json-file

The log driver for all Docker container logs, including containers for Control Center internal services. Valid values:

- json-file
- syslog
- journald
- gelf
- fluentd
- none

This is a direct port of the Docker --log-driver option.

SERVICED_DOCKER_LOG_CONFIG

Default: max-file=5, max-size=10m

A comma-separated list of Docker --log-opt options as key=value pairs. To specify the default values for a log driver, or for drivers that need no additional options, such as journald, use a single comma character (,) as the value of this variable.

SERVICED_DOCKER_DNS

Default: (empty)

The IP address of one or more DNS servers. The value of this variable is injected into each Docker container that serviced starts. Separate multiple values with the comma character (,).

SERVICED_OPTS

Default: (empty)

Special options for the serviced startup command.

SERVICED_SNAPSHOT_USE_PERCENT

Default: 20

The amount of free space in the thin pool specified with *SERVICED_DM_THINPOOLDEV*, expressed as a percentage the total size. This value is used to determine whether the thin pool can hold a new snapshot.

SERVICED_ZK_SESSION_TIMEOUT

```
Default: 15
```

The number of seconds the lead ZooKeeper host waits before flushing an inactive connection.

SERVICED_ZK_CONNECT_TIMEOUT

Default: 1

The number of seconds Control Center waits for a connection to the lead ZooKeeper host.

SERVICED_ZK_PER_HOST_CONNECT_DELAY

Default: 0

The number of seconds Control Center waits before attempting to connect to the next host in its round-robin list of ZooKeeper hosts. For more information about the round-robin list, see *SERVICED ZK*.

SERVICED_ZK_RECONNECT_START_DELAY

Default: 1

SERVICED_ZK_RECONNECT_START_DELAY and SERVICED_ZK_RECONNECT_MAX_DELAY are used together when Control Center is unable to re-establish a connection with the lead ZooKeeper host.

To prevent unnecessary spikes in TCP traffic, Control Center waits a randomized amount of time that is equal to plus or minus 20% of the value of *SERVICED_ZK_RECONNECT_START_DELAY*. If Control Center is unable to reconnect after contacting all of the hosts in its round-robin list of ZooKeeper hosts, the wait time is increased by a randomized value and the process of attempting to reconnect begins again. If the attempts fail again, the process repeats until the wait time reaches the value of *SERVICED_ZK_RECONNECT_MAX_DELAY*, and the wait time of subsequent reconnection attempts is capped at *SERVICED_ZK_RECONNECT_MAX_DELAY*. Once connection is re-established, the wait time is reset to *SERVICED_ZK_RECONNECT_START_DELAY*.

For more information about the round-robin list, see SERVICED ZK.

SERVICED_ZK_RECONNECT_MAX_DELAY

Default: 1

See SERVICED_ZK_RECONNECT_START_DELAY.

SERVICED_ES_STARTUP_TIMEOUT

Default: 240

The number of seconds to wait for the Elasticsearch service to start.

SERVICED_MAX_DFS_TIMEOUT

Default: 300

The number of seconds until a DFS snapshot attempt times out.

SERVICED_RPC_DIAL_TIMEOUT

Default: 30

The number of seconds until an RPC connection attempt times out.

SERVICED_AUTH_TOKEN_EXPIRATION

Default: 3600 (1 hour)

The expiration time, in seconds, of delegate authentication tokens. This timeout affects RPC, mux, and serviced internal services endpoint communications.

SERVICED_CONTROLLER_BINARY

Default: /opt/serviced/bin/serviced-controller

The path of the serviced-controller binary, which runs in every container that serviced manages.

SERVICED_HOME

Default: /opt/serviced

The path of the home directory for serviced.

SERVICED_ETC_PATH

Default: /opt/serviced/etc

The path of the directory for serviced configuration files. The default is SERVICED HOME/etc.

SERVICED_VHOST_ALIASES

Default: (none)

A list of hostname aliases for a host; for example, localhost. Separate multiple values with the comma character (,).

Preparing to install without internet access

This appendix includes procedures for downloading and installing or staging Control Center software and its operating system dependencies. This distribution option is available only to Zenoss customers to enable creating Control Center deployments without internet access.

Procedure	Where to perform
Downloading repository and image files on page 86	A workstation with internet access
Installing the repository mirror on page 87	All Control Center cluster hosts
Staging Docker image files on the master host on page 88	The master host or both master nodes (high- availability deployments)
Staging a Docker image file on ZooKeeper ensemble nodes on page 88	Delegate hosts that are ZooKeeper ensemble nodes

The following table identifies where to perform each procedure in this appendix.

Downloading repository and image files

To perform this procedure, you need:

- A workstation with internet access.
- Permission to download files from the *File Portal Download Zenoss Enterprise Software* site. Zenoss customers can request permission by filing a ticket at the *Zenoss Support* site.
- A secure network copy program.

Use this procedure to

- download the required files to a workstation
- copy the files to the hosts that need them

Perform these steps:

- 1 In a web browser, navigate to the File Portal Download Zenoss Enterprise Software site.
- 2 Log in with the account provided by Zenoss Support.
- **3** Download the self-installing Docker image files.

install-zenoss-serviced-isvcs:v56.run
install-zenoss-isvcs-zookeeper:v8.run

4 Download the Control Center RPM file.

serviced-1.3.3-1.x86_64.rpm

5 Download a RHEL/CentOS repository mirror file.

The download site provides a repository mirror file for each supported release of RHEL/CentOS. Each file contains the Control Center package and its dependencies.

To download the correct repository mirror file, match the operating system release number in the file name with the version of RHEL/CentOS installed on all of the hosts in your Control Center cluster.

```
yum-mirror-centos7.centos7.1-Version.x86_64.rpm
yum-mirror-centos7.centos7.2-Version.x86_64.rpm
yum-mirror-centos7.centos7.3-Version.x86_64.rpm
```

6 Optional: Download the Pacemaker resource agents for Control Center.

The resource agents are required only for high-availability deployments.

serviced-resource-agents-1.0.0-1.x86_64.rpm

- 7 Use a secure copy program to copy the files to Control Center cluster hosts.
 - Copy all files to the master host or both master nodes (high-availability deployments).
 - Copy the RHEL/CentOS RPM file and the Control Center RPM file to all delegate hosts.
 - Copy the Docker image file for ZooKeeper to delegate hosts that are ZooKeeper ensemble nodes.

Installing the repository mirror

Use this procedure to install the Zenoss repository mirror on a Control Center host. The mirror contains packages that are required on all Control Center cluster hosts.

- 1 Log in to the target host as root, or as a user with superuser privileges.
- 2 Move the RPM files to /tmp.
- **3** Optional: Remove the existing repository mirror, if necessary.

This step is not necessary during installations, only upgrades.

a Search for the existing repository mirror.

```
yum list --disablerepo=* | awk '/^yum-mirror/ { print $1}'
```

b Remove the mirror.

Replace Old-Mirror with the name of the Zenoss repository mirror returned in the previous substep:

yum remove -y Old-Mirror

4 Install the repository mirror.

yum install -y /tmp/yum-mirror-*.rpm

The yum command copies the contents of the RPM file to /opt/zenoss-repo-mirror.

5 Copy the Control Center RPM file to the mirror directory.

cp /tmp/serviced-1.3.3-1.x86_64.rpm /opt/zenoss-repo-mirror

6 Optional: Delete the RPM files.

rm /tmp/yum-mirror-*.rpm /tmp/serviced-*.rpm

Staging Docker image files on the master host

Before performing this procedure, verify that approximately 640MB of temporary space is available on the file system where /root is located.

Use this procedure to add Docker image files to the Control Center master host. The files are used when Docker is fully configured.

- 1 Log in to the master host as root, or as a user with superuser privileges.
- 2 Copy or move the archive files to /root.
- **3** Add execute permission to the files.

chmod +x /root/*.run

Staging a Docker image file on ZooKeeper ensemble nodes

Before performing this procedure, verify that approximately 170MB of temporary space is available on the file system where /root is located.

Use this procedure to add a Docker image file to the Control Center delegate hosts that are ZooKeeper ensemble nodes. Delegate hosts that are not ZooKeeper ensemble nodes do not need the file. The files are used when the ZooKeeper ensemble is configured.

- 1 Log in to a delegate host as root, or as a user with superuser privileges.
- 2 Copy or move the install-zenoss-isvcs-zookeeper:v8.run file to /root.
- **3** Add execute permission to the file.

chmod +x /root/*.run

Configuring a private master NTP server

Control Center requires a common time source. The procedures in this appendix configure a private master *NTP* server to synchronize the system clocks of all hosts in a Control Center cluster.

A private master server is only required when a multi-host deployment does not have internet access and no time synchronization servers are available behind the firewall. Single-host deployments do not require time synchronization, and deployments with internet access can rely on the default public time servers that are configured in /etc/ntp.conf.

Note VMware vSphere guest systems can synchronize their system clocks with the host system. If that feature is enabled, it must be disabled to configure a private master NTP server or to use a time synchronization server that is available behind the firewall. For more information, refer to the VMware documentation for your version of vSphere.

Configuring an NTP master server

Use this procedure to configure an NTP master server on the Control Center master host. Perform this procedure only if the host does not have internet access.

Note On VMware vSphere guests, before performing this procedure, disable time synchronization between guest and host operating systems.

- 1 Log in to the Control Center master host as root, or as a user with superuser privileges.
- 2 Create a backup of the NTP configuration file.

cp -p /etc/ntp.conf /etc/ntp.conf.orig

- 3 Edit the NTP configuration file./
 - a Open /etc/ntp.conf with a text editor.
 - **b** Replace all of the lines in the file with the following lines:

```
# Use the local clock
server 127.127.1.0 prefer
fudge 127.127.1.0 stratum 10
driftfile /var/lib/ntp/drift
broadcastdelay 0.008
# Give localhost full access rights
```

```
restrict 127.0.0.1
# Grant access to client hosts
restrict ADDRESS_RANGE mask NETMASK nomodify notrap
```

c Replace ADDRESS_RANGE with the range of IPv4 network addresses that are allowed to query this NTP server.

For example, the following IP addresses are assigned to the hosts in an Control Center cluster:

203.0.113.10 203.0.113.11 203.0.113.12 203.0.113.13

For the preceding addresses, the value for ADDRESS_RANGE is 203.0.113.0.

- **d** Replace NETMASK with the IPv4 network mask that corresponds with the address range. For example, a valid network mask for 203.0.113.0 is 255.255.255.0.
- e Save the file and exit the editor.
- 4 Stop Control Center.

systemctl stop serviced

- 5 Enable and start the NTP daemon.
 - a Enable the ntpd daemon.

systemctl enable ntpd

b Configure ntpd to start when the system starts.

Currently, an unresolved issue associated with NTP prevents ntpd from restarting correctly after a reboot, and the following commands provide a workaround to ensure that it does.

```
echo "systemctl start ntpd" >> /etc/rc.d/rc.local
chmod +x /etc/rc.d/rc.local
```

c Start ntpd.

systemctl start ntpd

6 Start Control Center.

systemctl start serviced

Configuring NTP clients

Use this procedure to configure a delegate hosts to synchronize its clocks with the NTP server on the Control Center master host. Perform this procedure only if the hosts do not have internet access. Repeat this procedure on each delegate host in your Control Center cluster.

Note On VMware vSphere guests, before performing this procedure, disable time synchronization between guest and host operating systems.

1 Log in to the Control Center delegate host as root, or as a user with superuser privileges.

2 Create a backup of the NTP configuration file.

```
cp -p /etc/ntp.conf /etc/ntp.conf.orig
```

3 Edit the NTP configuration file./

a Open /etc/ntp.conf with a text editor.

b Replace all of the lines in the file with the following lines:

```
# Point to the master time server
server MASTER_ADDRESS
restrict default ignore
restrict 127.0.0.1
restrict MASTER_ADDRESS mask 255.255.255.255 nomodify notrap noquery
driftfile /var/lib/ntp/drift
```

- **c** Replace both instances of MASTER_ADDRESS with the IPv4 address of the host where the NTP server is running (the Control Center master host).
- **d** Save the file and exit the editor.
- 4 Stop Control Center.

systemctl stop serviced

5 Synchronize the clock with the master server.

ntpd -gq

- 6 Enable and start the NTP daemon.
 - a Enable the ntpd daemon.

systemctl enable ntpd

b Configure ntpd to start when the system starts.

Currently, an unresolved issue associated with NTP prevents ntpd from restarting correctly after a reboot, and the following commands provide a workaround to ensure that it does.

```
echo "systemctl start ntpd" >> /etc/rc.d/rc.local
chmod +x /etc/rc.d/rc.local
```

c Start ntpd.

systemctl start ntpd

7 Start Control Center.

systemctl start serviced