
Zenoss Service Impact User Guide
Release 5.3.1

Zenoss, Inc.

www.zenoss.com

2

Zenoss Service Impact User Guide

Copyright © 2018 Zenoss, Inc. All rights reserved.

Zenoss, Own IT, and the Zenoss logo are trademarks or registered trademarks of Zenoss, Inc., in the United States and other countries. All other
trademarks, logos, and service marks are the property of Zenoss or other third parties. Use of these marks is prohibited without the express written
consent of Zenoss, Inc., or the third-party owner.

Amazon Web Services, AWS, and EC2 are trademarks of Amazon.com, Inc. or its affiliates in the United States and/or other countries.

Flash is a registered trademark of Adobe Systems Incorporated.

Oracle, the Oracle logo, Java, and MySQL are registered trademarks of the Oracle Corporation and/or its affiliates.

Linux is a registered trademark of Linus Torvalds.

RabbitMQ is a trademark of Pivotal Software, Inc.

SNMP Informant is a trademark of Garth K. Williams (Informant Systems, Inc.).

Sybase is a registered trademark of Sybase, Inc.

Tomcat is a trademark of the Apache Software Foundation.

VMware is a registered trademark or trademark of VMware, Inc. in the United States and/or other jurisdictions.

Windows is a registered trademark of Microsoft Corporation in the United States and other countries.

All other companies and products mentioned are trademarks and property of their respective owners.

Part Number: 1210.18.100.25

Zenoss, Inc.
11305 Four Points Drive
Bldg 1 - Suite 300
Austin, Texas 78726

3

Contents

About this guide...4

Chapter 1: Introduction to Service Impact... 5
Terminology and concepts...5
Service events.. 7
Service models, nodes, and graphs... 8
State propagation policies..13
Service model definition process.. 18

Chapter 2: Tutorial: Creating a service model...19
Define the service to model.. 20
Create logical node and subservice members for Internet connections.. 25
Create members for major network segments.. 27
Create summary members for critical paths... 28
Create a member for the network service...28
Create a member for the service model..29
Send events to fake devices.. 29
Remove tutorial service model members..30

Chapter 3: Exporting service models from one system to another..............32
Exporting a service model...34
Importing service model definitions..34

Chapter 4: Browser interface resources.. 47
Adding an Impact Services portlet..47
Service Impact home page.. 47
Members view..49
Add to Service dialog box.. 49
Impact Events...50
Impact View...51
Impact Policies dialog box.. 54
Logical node details view..57

Chapter 5: Configuring Service Impact.. 59
Production state propagation threshold... 59
Service Impact server configuration files... 60
Targeted graph update... 62

Zenoss Service Impact User Guide

4

About this guide
Zenoss Service Impact User Guide provides information about using and administrating Zenoss Service Impact
(Service Impact).

Audience

This guide is intended for system administrators who have experience with Zenoss Resource Manager
(Resource Manager), a working knowledge of Linux system administration, and an understanding of their data
center environment.

Related publications

Title Description

Zenoss Service Impact Installation and
Upgrade Guide for Resource Manager 5.x
and 6.x

Describes how to install Service Impact with a Resource
Manager version 5 or 6 deployment.

Zenoss Service Impact Installation and
Upgrade Guide for Resource Manager 4.2

Describes how to install Service Impact with a Resource
Manager version 4.2 deployment.

Zenoss Service Impact Release Notes Describes known issues, fixed issues, and late-breaking
information not already provided in the published
documentation set.

Additional information and comments

If you have technical questions about this product that are not answered in this guide, visit the Zenoss Support
site.

Zenoss welcomes your comments and suggestions regarding our documentation. To share your comments,
please send an email to docs@zenoss.com. In the email, include the document title and part number. The
part number appears at the end of the list of trademarks, at the front of this guide.

https://support.zenoss.com

Introduction to Service Impact

5

Introduction to Service Impact 1
Think of a service as any business activity or interface that is provided to users to accomplish a goal. Examples
include systems that represent specific functions like Payroll processing, a Customer Relationship Management
(CRM) tool, departments in a company, such as Finance or Marketing, and a company website.

A service's availability and performance characteristics are provided by key infrastructure entities, such as
databases and application servers, and the hierarchy of those key entities' dependencies on other devices and
components, such as compute, storage, networking, and so on.

Most critical applications have infrastructure redundancies so that service availability continues if a subset of
devices fail. When IT Operations staff are triaging IT infrastructure problems, it is critical to isolate the source
and understand the effect on the service and the business. This effort is called the mean-time-to-know (MTTK).
According to industry experts, MTTK is responsible for over 70% of the mean-time-to-repair problems
(MTTR). For instance, if an application server crashes, the following questions must be answered to triage the
issue:

■ What is the priority? What services does that server support and are those services mission critical or low
priority?

■ Are enough redundant application servers available to carry the load, or is the service effectively offline?
■ If multiple symptoms appear, which symptom is the root cause? This information is needed to assign the

right team to start working on a resolution.

Service Impact enables you to quickly create service models of services and applications in your environment.
Service Impact can display service models as a service model impact dependency graph.

To help you triage service problems, Service Impact performs near-real-time dependency tracking of the
individual components of a service. Service Impact also maintains the availability and performance state
information of your services. When new events occur at any point in a service, Service Impact knows the
origins of the events and assesses whether to generate a service event based on the extent to which the service is
"impacted." A service event differs from an infrastructure event.

Terminology and concepts
Service Impact and this document use the following terminology and concepts.

dynamic service

A Service Impact entity that is used to monitor the status of a service. A dynamic service has a name and
attributes, and is defined by the 0 or more members (devices, components, component groups, logical
nodes, organizing groups, or other dynamic services) that you add to its service model.

Zenoss Service Impact User Guide

6

See also service.

dynamic service context

A dynamic service's context includes all nodes in the dynamic Service Impact graph and the set of that
service’s context-specific policy configurations that are applied to nodes. These configurations override
each node's global policy. The service context includes policies and rules that are specific to a dynamic
service and global policies and rules that govern the operational decisions and actions on that service. For
example, the conditions under which events propagate to eventually generate service events. An entity
such as a device or component can participate as a node in multiple service contexts. When propagating
an entity event, the rules and policy decisions being made can differ depending on each service context.
For example, device D participates in service context X and Y. An entity event on D might propagate to
generate a service X service event but not propagate in service Y’s context.

dynamic Service Impact graph

Visual display of all entities that directly or indirectly impact a service. It is the combination of all service
model members and each of their service model member impact graphs. On the Resource Manager
SERVICES page, the Impact View provides a visual representation of a Service Impact graph.

Each unique entity exists only once in a Service Impact graph, even if the entity affects other service
model members. For example, a database and an application server might depend on the same file system.
However, in each dynamic Service Impact graph, the file system exists only once.

dynamic service model

Sometimes shortened to service model, it defines the service model members (devices, components,
component groups, logical nodes, organizing groups, and other dynamic services) that are manually
associated with a dynamic service by using the Member View on the Resource Manager SERVICES page.

For each service model member, the set of installed ZenPack use domain knowledge to automatically
identify dependencies for each member and recursively for each of the member’s dependent entities. For
example, a ZenPack that manages an application server identifies that it depends on the Linux operating
system. The Linux ZenPack identifies that the OS depends on file systems and a virtual machine, and that
those entities depend on other entities an application server depends on the operating system, file systems,
and virtual machine, and those members depend on other members, and so on until the entire impact graph
for the service model member is modeled.

The set of impact graphs for all service model members is combined to generate the dynamic Service
Impact graph. The Service Impact graph is displayed on the Impact View of the Resource Manager
SERVICES page.

The service model and the generated Service Impact graph are different but related. You can manage the set
of members in the service model. However, the dependencies and the Service Impact graph are managed by
the ZenPacks that are specific to each entity.

dynamic service model member

Any Resource Manager entity that is part of a dynamic Service Impact graph. An entity can be a device,
component, component group, logical node, organizing group, or another dynamic service.

See also node.

entity event

Any event that is related to a Resource Manager entity and displayed on the EVENTS page.

entity impact graph

The set of infrastructure entities that impact another entity's performance and availability. For each
infrastructure entity, the graph includes their impact dependency entities and so on. Resource Manager
internal processing automatically generates and maintains entity impact graphs. You cannot manually define
or adjust impact graphs. However, you can manage the impact policy gateway rules for any node both
globally and in individual dynamic service contexts.

Introduction to Service Impact

7

Sometimes shortened to impact graph.

impact chain

See service event impact chain.

node

Any entity and its position, dependencies, and entities that depend on it within a Service Impact graph,
including the dynamic service context itself, service model members, and member impact graph
infrastructure entities.

root cause analysis (RCA)

See service event root cause analysis.

service

Any business activity or interface that is provided to users to accomplish a goal. Examples include systems
that represent specific functions like payroll processing, a customer relationship management (CRM) tool,
departments in a company, such as Finance or Marketing, and a company website. These logical entities can
be represented as dynamic services by Service Impact in Resource Manager.

service event

A Service Impact-created event against a dynamic service. They are created in reaction to the propagation
of one or more availability or performance entity events through nodes in the Service Impact graph. Service
events contain a list of all impact chains and the relative probability of being the root cause.

service event impact chain

The propagation path from the entity that had an event through the Service Impact graph, applying node
impact propagation policy gateways, until it reaches the dynamic service context node. The impact chain is
generated for each originating entity event and displayed in the details of a service event.

service event root cause analysis

Displayed in the details for each service event to show the list of originating entity events and their impact
chains that resulted in an impact to the dynamic service. Each event has an associated confidence value to
help you identify the most likely root cause of the service problem.

service model

See dynamic service model.

Service Impact graph

The impact graph for an individual service model member.

targeted graph update

When Service Impact receives information about a device that is needed for an event, it targets modeling of
just the device's subgraphs. To allow the modeling workflow to complete, a "placeholder" is immediately
created. This process enables Service Impact graphs to be quickly refreshed without waiting for remodeling
of all Service Impact graphs.

tile

The visual representation of any entity or node that participates in a Service Impact graph. The tile presents
a node's status and other details and actions.

Service events
A service event provides the list of entity events and the daisy chain of how dependencies on that entity affected
other entities and eventually the service itself.

Service Impact performs root-cause analysis (RCA) and ranks each source entity event by its probability of
being the root cause of the service event. In a service event, Service Impact identifies the affected service and
the extent of the impact, the infrastructure dependencies and sub-dependencies that affect the service, and
the most likely root cause. Service Impact often enables you to triage and diagnose problems before end-user

Zenoss Service Impact User Guide

8

complaints occur. You can then provide end users with confidence that you are aware of the issue and causes
and are working a resolution.

The following figure shows a service event and the RCA. The Confidence column displays the probability
ranking.

Figure 1: Service event and root cause

Service models, nodes, and graphs
With Service Impact, service modeling is simple. In your service model, you only define the main members
of the service infrastructure, such as an application server and a database server. You do not need to specify or
even be aware of the infrastructure entities on which the service model members depend.

Resource Manager automatically discovers and actively maintains the remaining infrastructure entities, such
as hosts, operating systems, storage, network, compute, and other dependencies. In cloud and converged
infrastructure environments, dependencies can be very complex and highly dynamic.

In the following figure, the top node of the graph is a the service context (root) node, which represents a
dynamic service that you create. The second tier contains the child nodes of the root node, which represent the
service model members that you identify when you define a dynamic service. In tiers three to n are the service
model member's descendant nodes, the supporting infrastructure entities that are automatically discovered and
maintained.

Introduction to Service Impact

9

Service model members can be devices, components, component groups, logical nodes, organizing groups, or
even other dynamic services, such as Impactor_d78 in the figure.

■ Device nodes represent resources that are monitored by Resource Manager, such as a Linux server.
Additionally, ZenPacks that model a device can extend the model to include other members. (For more
information about Service Impact ZenPacks, contact Zenoss Support.)

Note Resource Manager provides the ability to reidentify devices. The reidentification process deletes
and re-adds the device with a new ID and GUID. When the GUID is changed, the device is removed from
that particular service. If you reidentify a device, you must manually re-add the device to the service model.

■ Component nodes represent resources that are monitored by Resource Manager. Components and component
groups usually represent device entities, such as an Ethernet port.

■ Logical nodes are customizable and serve as filters against Resource Manager or external event sources.
For events that match the logical node filter, the logical node identifies the state as a "placeholder" for the
semantic meaning that is derived from the event filter definition. For example, events from an external
application performance management (APM) source might be filtered to match events with a transaction
that represents the health of the service. If events occur for that transaction, the logical node represents that
negative state in the dynamic Service Impact graph, and propagates the impact as if the logical node were a
device.

■ Organizing group nodes represent the current definition of an organizing group's devices and all child
organizing group hierarchies. For more information about organizing groups, see Organizers and organizing
groups on page 12.

Service models can consist of a single monitored resource and its child dependencies. In the following example,
the top node, CRM, is the dynamic service. The second node, CRM-App, is a service model member. The third
tier, (/dev and /dev) are descendents of the CRM-App node.

Zenoss Service Impact User Guide

10

Figure 2: Service model: Single monitored resource

Service models can consist of multiple service models that are connected in a hierarchy to show their inter-
dependencies. In the following example, the top tier, Network, and the second tier, WWW and CRM Netw
nodes, are all dynamic services.

Figure 3: Service model: Hierarchy of service models

A node can be used in multiple dynamic service contexts as a service model member or as an infrastructure
entity node to other service model members. For example, network-related nodes, such as switches or routers,
are usually shared and appear in multiple service models in the service model hierarchy. In the following
example, the node example is shared by txrt12 and txrt23.

Introduction to Service Impact

11

Figure 4: Dynamic service context: Shared nodes

A node can also exist as both a parent and a child within the same service model, creating a cyclic dependency.
In the following example, node A is both a parent and a child in the service model, as indicated by the lighter
arrow on the right.

Figure 5: Node with cyclic dependency

Dynamic service context
A dynamic service provides a dynamic service context, which includes the service itself, its service model
members, and the impact graph for each of the service model members.

The service context also provides event propagation policies that identify whether and how events are
propagated through the service impact graph. An event that occurs on a device member that participates in
two service contexts might change its state and propagate the event in one service model's context, but behave
differently in the other service context. For more information, see State propagation policies on page 13.

Zenoss Service Impact User Guide

12

The active service context is the one that you are viewing or managing. It is always the highest-level member
in the service model and node in the Service Impact graph. As you view or manage various service model
members, be aware of their current service context.

The following example shows that service model members can be defined by other services, and that models
can share common service members; however, because they are in different service models, they can have
different service contexts.

The service context of the service model on the left is Finance - Databases, and the service model contains two
file systems. The service model on the right has service context Finance, and the service model contains the first
service as its only service model member.

Organizers and organizing groups
The Resource Manager browser interface provides organizer folders for dynamic services and devices.

On the Resource Manager SERVICES page, organizers are available for grouping dynamic services. The
organizers provide valuable context in service events and in Zenoss Analytics reports. The follow example
shows Compute, Network, and Storage organizers for the CRM dynamic service.

On the Resource Manager INFRASTRUCTURE page, organizing groups for groups, systems, and locations
are available to organize devices into different categories. For example, to efficiently manage devices and use
them in Service Impact, you might organize devices into groups based on their organizational group, system
type, or physical location. The following example shows organizing groups.

Introduction to Service Impact

13

You can add organizing groups to a service model for a dynamic service. As you add and remove devices and
other organizing groups on the INFRASTRUCTURE page, the related service models and the impact graph for
the organizing group automatically reflect the changes.

Figure 6: Service model with organizing groups

State propagation policies
State propagation policies for a dynamic service context determine how the Availability and Performance state
of an entity's node and the nodes it impacts change because of events being received to that entity.

When new events occur against a service model member (device, component, component group, logical node,
organizing group, or dynamic service) Service Impact identifies all of the service contexts in which that member
participates. For each service context, Service Impact performs the following processing:

■ Applies the combination of global, service, and node context policies to decide the state of that member in
this service context.

■ If the combination of policies indicate that the event should be propagated further within the service context,
looks up all impact dependency relationships that exist for other nodes in the same service context. Different
relationships can exist in other service contexts.

Zenoss Service Impact User Guide

14

■ Applies the service context polices to each of those nodes to compute their new state in the service context
and decide whether to continue propagating further. Propagation of state change and event continues until all
state and event propagations are completed.

■ If any path through the impact graph affects the dynamic service itself, generates a service event. The service
event includes details about the path from the event to the service model member through the impact graph
to reach the dynamic service. Multiple paths through the graph from a single member’s event might reach
the dynamic service node, and multiple concurrent events to different members. Therefore, details of a
service event include the union list of all service event paths and a probability ranking of which path and
originating member event is the root cause.

For a service model member that you use only to group child members, you can suppress sending service
events.

You can create and assign multiple policies to any service member. In the Impact View, to select the type of
policy that you want to create, edit, or view, select the Availability aspect or the Performance aspect.

The policy type that is applied to the members determines which members receive the data. The policy types, in
order of precedence are as follows. For more information about state symbols and borders that are shown in the
examples, see Actual and derived state on page 16.

1 A contextual policy propagates the member's state change only to its immediate parent members within the
current service context.

In the following example graph, a contextual policy is applied to the service model for Dynamic Service
B (DynSvc-B). The policy states that if one child member is down, then the state of DynSvc-B must be
degraded.

2 A global policy applies to all service model contexts that share an member that has a changed state. For
example, if a global policy is applied to a member in a service model, and a child member has a change to
its state data, the new state is propagated to the parent members in all service models to which the member
belongs.

The following example graph shows that DynSvc-D is used in two different service models: DynSvc-C and
DynSvc-E. The global policy propagates the degraded state to all service contexts of which DynSvc-D is a
member.

Introduction to Service Impact

15

3 A member with the default policy sends the state data of the worst condition affecting it to its parent
member. The default policy is negated if you add either a contextual or global policy to a service model.

In the following example graph, no policy is applied to DynSvc-B. Its state is down because that is the worst
case of its children.

If multiple policies are applied to a member, then the following overrides occur:

■ A contextual policy overrides a global policy.
■ Contextual and global polices override the default policy.

State triggers
A trigger defines a condition that the member's children must reach before the state change is propagated. For
contextual policies, a state change is propagated to the parent members of the current context. For a global
policy, a state change is propagated to the parent members of all service models with the same child member.

A policy includes one or more user-defined state triggers. If a policy contains multiple triggers, each trigger is
evaluated before the state data is sent.

Members with custom state providers provide specialized options for defining state triggers. Service Impact
always collects information from events that belong to most /Status subclasses, and all /Perf classes. You

Zenoss Service Impact User Guide

16

can customize Resource Manager to gather state data from events belonging to other classes. For example, you
can customize state providers to define state triggers for device and component members that are monitored
through customized classes provided by the ZenVMware and CiscoUCS ZenPacks.

Note If you create a policy with a state trigger that cannot be met, a state change will go undetected and
unreported, leaving a service model in an inaccurate state. For example, you might create a policy and define
the state trigger to be met when two child members go down. However, if the service model that is applied to
the policy contains only a single child member, the trigger will never be met and the state data will always be
shown as UP. Because you applied a policy to the member, the default policy is also negated.

Actual and derived state
Each in a service model has an actual state and a derived state.

A device element's actual state is determined by events that occur on the device, regardless of the service
models in which it participates. A service model member's actual state is generated from the service model in its
own service context. The element's derived state is generated from policy propagation within a given context.
In the Service Impact graph, the symbol that appears inside the node's border reflects the actual state; the border
that outlines the node reflects the derived state.

In the following example graph, the actual and derived states are down. The parents of the device have a
degraded and at-risk actual state, yet the derived state based on the contextual policy, is degraded.

Visual state indicators

The Impact View provides symbols and borders to visually indicate availability, actual state, performance, and
derived state, as shown in the following table.

Introduction to Service Impact

17

Availability Performance Symbol / Actual State Border / Derived State

UP ACCEPTABLE

ATRISK Not applicable.

DEGRADED DEGRADED

DOWN UNACCEPTABLE

A member's actual and derived states can be different. As shown in the following example, a service's actual
state can be up, but an applied context policy changed its derived state to down.

How policies work

The following example outlines the Service Impact policy information work-flow using a monitored switch as a
device member.

1 A switch that is monitored by Resource Manager goes down.
2 Resource Manager generates an event about the switch.
3 Service Impact reads the switch-down event and changes the actual state of the device member that

represents the switch.
4 For each service context in which the device member participates, Service Impact evaluates the state triggers

to identify that member's derived state within the service context.
5 Service Impact propagates state data according to the context or global policies that are defined for the

parent members of the device member.
6 If the device member's state causes a change in the derived state for the top-level member in the member's

service context, Service Impact generates a service event and sends it to Resource Manager. (You can
customize service event notifications.)

7 Service Impact performs a RCA and generates confidence rankings of how the switch-down event affects
each service model to which the switch belongs.

Zenoss Service Impact User Guide

18

Service model definition process
The key to defining accurate service models is thorough dependency discovery. Environmental factors influence
the process of defining service models, such as the level of

■ organizational maturity (processes and tooling)
■ automation service life cycles (provisioning and management)
■ application and infrastructure standardization

Despite these factors, the following steps outline a repeatable process for defining accurate service models.

1 Define the service to model.

In Service Impact graphs, a service and its members are represented as service nodes. A service is defined by
its boundaries and type.

■ A web service (for example, a human resources portal) or an IaaS platform (an Amazon EC2 instance)
depends on specific internal or external resources.

■ Software as a service (for example, ServiceNow) is defined by its deployment architecture.
2 Define service models for subservices.

In Service Impact graphs, subservices are represented as service nodes. (Service node roles are contextual.)
A subservice has a direct relationship with one or more services. If the subservice fails or degrades, the
service fails or degrades based on the propagation rules for that service context.

Often, a subservice represents an infrastructure tier, such as a gateway or database service. At a lower level,
a tier might be configured with redundant members for high availability. However, Zenoss recommends
modeling subservices as single points of failure.

3 Add device nodes, component nodes, logical nodes, and organizing groups to service and subservice nodes.
After you define subservices, you can add the infrastructure resources that make up the subservices.

4 Define global policies on subservices.
Policies capture domain knowledge about services, and enable the automated dependency tracking and RCA
computation that make Service Impact so valuable. To facilitate re-use of subservices, use global policies
instead of contextual policies wherever possible.

Contextual policies are valuable, but their use cases are relatively rare because most deployment scenarios
use shared resources. For example, a hypervisor hosts virtual machines that belong to separate services. One
service member with a global policy can apply to all virtual machines, across all service models. The service
relationship, not service ownership, is the key to determining the relevance of events and sending state data
to parent members.

5 Repeat steps 2 - 4 as needed.
6 To identify gaps in monitoring processes, analyze failure scenarios.

Are key measurement points of each member in the service model properly monitored? For example, are
synthetic transactions in place for web servers? Are ping checks being performed against host operating
systems? Service Impact can only act on events that flow through Resource Manager.

7 Test failure scenarios.
The zensendevent command generates synthetic events, which are invaluable for validating service
relationships, policies, and even monitoring functions, before real events or event storms occur. For more
information about zensendevent, refer to the Zenoss Resource Manager Administration Guide.

8 Refine the service model.
If a test or gap analysis reveals missing policies or service members, add them and test again.

http://www.servicenow.com/

Tutorial: Creating a service model

19

Tutorial: Creating a service model 2
This tutorial demonstrates how to create a service model for a simplified CRM application, view the model,
and view and interpret the root-cause analyses that Service Impact creates when events affect the application's
availability state.

About this tutorial:

■ For information about Service Impact browser interface elements, see Browser interface resources on page
47.

■ Complete the tasks in the order in which they are presented.
■ Where indicated, steps depend on the version of Resource Manager with which Service Impact is deployed.
■ Device and component resources for this tutorial are fake, and do not affect production environments. The

final task erases the fake devices and the nodes that you create during the tutorial. For more information, see
Tutorial devices and member types on page 21.

The following diagram shows the network topology of the CRM application that is featured in this tutorial.

Zenoss Service Impact User Guide

20

Internet

txrt12

txfw17

txsw235

txrt23

txfw25

txsw172

txdb27 txdb28 txap16txap15

LEGEND

tx = Texas

rt = router

fw = firewall

sw = switch

db = database

ap = applicat ion

Define the service to model
The service to model is a CRM application, and it is defined by the members (resources) on which it relies.

The CRM application relies on application and database hosts and processes, and on the network infrastructure
that connects the service with its users. This tutorial creates a service model of the development deployment of
the CRM application, not the production or quality assurance deployments.

The following procedure loads the fake devices into Resource Manager and sets up the tutorial environment.

1 (Resource Manager 5.x and later) Gain access to the Resource Manager CLI environment in a Zope
container.

a Log in to the Control Center master host as a user with serviced CLI privileges.
b Start an interactive session in a Zope container as user zenoss.

serviced service attach zope/0 su - zenoss

2 (Resource Manager 4.2.x) Log in to the Resource Manager master host as zenoss.
3 Create a soft link to the Service Impact scripts directory.

a Create a variable for the path of the ZenPacks.zenoss.Impact ZenPack.

my_zp=$(zenpack --list | awk '/\.Impact-/ \
 { print substr($2,2,length($2)-2) }')

b Create the link.

ln -s $my_zp/ZenPacks/zenoss/Impact/scripts/tutorial \
 ${HOME}/impact_scripts

Tutorial: Creating a service model

21

4 Change directory to the Service Impact scripts directory.

cd ${HOME}/impact_scripts

5 Load fake devices and components into Resource Manager.

zenbatchload --nomodel ./devices.txt

6 In tutorial.sh, ensure that the values of the ZENOSS_USERNAME and ZENOSS_PASSWORD
variables specify the user name and password of a Resource Manager user account, and if not, change them.

7 Set up the tutorial environment.

./tutorial.sh

8 Log in to the Resource Manager browser interface as a user with ZenManager or Manager privileges.
9 Click SERVICES.

The Service Impact feature of Resource Manager adds a tab named SERVICES to the Resource Manager
menu bar.

10 In the tree view, open the CRM - Development organizer, and then open the Application and Compute
organizers.

The tree view displays the service members created by the tutorial.sh script, as shown in the following
example.

Tutorial devices and member types
The tutorial uses the following fake devices and service model member types (Resource Manager device or
component).

Zenoss Service Impact User Guide

22

Application host 15

Device name Description Member type

fake-txap15 Application host 15 Device

fake-txap15-httpd Apache daemon Component

fake-txap15-java Java/JRE daemon Component

fake-txap15-nic-0 Network interface card 0 Component

fake-txap15-nic-1 Network interface card 1 Component

Application host 16

Device name Description Member type

fake-txap16 Application host 16 Device

fake-txap16-httpd Apache daemon Component

fake-txap16-java Java/JRE daemon Component

fake-txap16-nic-0 Network interface card 0 Component

fake-txap16-nic-1 Network interface card 1 Component

Database host 27

Device name Description Member type

fake-txdb27 Database host 27 Device

fake-txdb27-mysqld MySQL daemon Component

fake-txdb27-nic-0 Network interface card 0 Component

fake-txdb27-nic-1 Network interface card 1 Component

Database host 28

Device name Description Member type

fake-txdb28 Database host 28 Device

fake-txdb28-mysqld MySQL daemon Component

fake-txdb28-nic-0 Network interface card 0 Component

fake-txdb28-nic-1 Network interface card 1 Component

Firewall 17

Device name Description Member type

fake-txfw17 Firewall 17 Device

fake-txfw17-10g-0 Port 0 (10GB capacity) Component

fake-txfw17-10g-1 Port 1 (10GB capacity) Component

fake-txfw17-10g-2 Port 2 (10GB capacity) Component

Tutorial: Creating a service model

23

Device name Description Member type

fake-txfw17-10g-3 Port 3 (10GB capacity) Component

fake-txfw17-1g-0 Port 0 (1 GB capacity) Component

Firewall 25

Device name Description Member type

fake-txfw25 Firewall 25 Device

fake-txfw25-10g-0 Port 0 (10GB capacity) Component

fake-txfw25-10g-1 Port 1 (10GB capacity) Component

fake-txfw25-10g-2 Port 2 (10GB capacity) Component

fake-txfw25-10g-3 Port 3 (10GB capacity) Component

fake-txfw25-1g-0 Port 0 (1 GB capacity) Component

Router 12

Device name Description Member type

fake-txrt12 Router 12 Device

fake-txrt12-100g-0 Port 0 (100GB capacity) Component

fake-txrt12-10g-0 Port 0 (10GB capacity) Component

fake-txrt12-10g-1 Port 1 (10GB capacity) Component

fake-txrt12-1g-0 Port 0 (1GB capacity) Component

Router 23

Device name Description Member type

fake-txrt23 Router 23 Device

fake-txrt23-100g-0 Port 0 (100GB capacity) Component

fake-txrt23-10g-0 Port 0 (10GB capacity) Component

fake-txrt23-10g-1 Port 1 (10GB capacity) Component

fake-txrt23-1g-0 Port 0 (1GB capacity) Component

Switch 172

Device name Description Member type

fake-txsw172 Switch 172 Device

fake-txsw172-10g-0 Port 0 (10GB capacity) Component

fake-txsw172-10g-1 Port 1 (10GB capacity) Component

fake-txsw172-1g-0 Port 0 (1GB capacity) Component

fake-txsw172-1g-1 Port 1 (1GB capacity) Component

Zenoss Service Impact User Guide

24

Device name Description Member type

fake-txsw172-1g-2 Port 2 (1GB capacity) Component

fake-txsw172-1g-3 Port 3 (1GB capacity) Component

fake-txsw172-1g-4 Port 4 (1GB capacity) Component

Switch 235

Device name Description Member type

fake-txsw235 Switch 235 Device

fake-txsw235-10g-0 Port 0 (10GB capacity) Component

fake-txsw235-10g-1 Port 1 (10GB capacity) Component

fake-txsw235-1g-0 Port 0 (1GB capacity) Component

fake-txsw235-1g-1 Port 1 (1GB capacity) Component

fake-txsw235-1g-2 Port 2 (1GB capacity) Component

fake-txsw235-1g-3 Port 3 (1GB capacity) Component

fake-txsw235-1g-4 Port 4 (1GB capacity) Component

Introduction to the tutorial environment
The tutorial.sh script creates the following service model members and organizers to initialize the CRM
service model in Service Impact. Use of these members and organizers is a recommended best practice.

■ Dashboard organizer; root-level organizer for service models as a whole. Initially, the organizer is empty.
■ Root-level CRM - Development organizer that contains additional organizers. Use a single root-level

organizer to contain the subservices of each service model, and use standardized names (and contents) for
sub-organizers.

■ CRM - Application Service and CRM - Compute Service service model members, children of the CRM -
Development organizer.

These members summarize the application and compute services that are associated with the CRM
application. They are easily located without having to open the organizers in which their constituent
subservices are located.

■ Members in the Network organizer that start with zfake represent the network connections between fake
devices.

Because these fake devices are not modeled, Resource Manager cannot discern their relationships, and
Service Impact cannot create device or component members. Therefore, the script creates members to
represent the connections.

These members have neither contextual nor global policies, so the default policy applies. That is, the state of
the worst condition that affects child members becomes the state of the zfake members, which is the correct
policy for these connections.

■ DNS and interface names that follow a naming convention.
■ Subservice members in the Network organizer that start with tx, which contain redundant resources.

Standardized, global availability policies are defined.

These subservice members demonstrate the following best practices:

Tutorial: Creating a service model

25

■ Each subservice member contains homogeneous child members. Global policies work best when child
members are homogeneous.

■ Each subservice uses global policies. Global policies can be re-used across service model boundaries.
Contextual policies are restricted to specific service models.

■ Each global policy contains the following, standardized availability state triggers: ATRISK if 50%
or more child members are down; DOWN if 100% of child members are down. Use of percentage
thresholds means that the policies do not need to be adjusted if additional resources are deployed later.

Note The standardized state triggers that are used in this case are examples of systematically thinking
about and using global policies, and not intrinsically best practices. For example, if a resource pool
contains more than two members, additional state triggers can be defined.

The remaining procedures in this tutorial demonstrate how to complete and test the CRM service model.

Create logical node and subservice members for Internet connections

All network connections except the connection to the Internet are modeled. Because the Internet connection is
not modeled in Resource Manager, we create a logical node to represent it. For this tutorial, the logical node is
simply a service model member that reacts to fake events. A "real" logical node could be configured to react to
events from a zencommand that pings an Internet resource.

Create logical node

1 In the Resource Manager browser interface, select SERVICES > Logical Nodes.
2 From the Add menu at the bottom of the tree view, select Add Logical Node Organizer.

3 In the Add Logical Node Organizer dialog box, enter CRM - Development, and then click SUBMIT.
4 From the Add menu at the bottom of the tree view, select Add Logical Node.
5 In the Add Logical Node dialog box, enter example.com, and then click SUBMIT.
6 In the example.com details view, enter values to match the following table, and then click Save.

Field Description

Description A node to help represent a route to the Internet.

Criteria all, Summary, contains, fakeInternet

Events for this node in this event class /Status/Ping

will result in these availability states Critical: DOWN, Error: DOWN, Warning:
ATRISK, Clear: UP

Create a subservice member for one Internet connection

Create a service model member for the connection from router 12 to the zenoss.com logical node.

1 In the Resource Manager browser interface, select SERVICES > Dynamic Services.
2 In the tree view of organizers, open CRM - Development > Network.

Zenoss Service Impact User Guide

26

Unless an organizer is selected, new members are created at the root level. From there, you can drag the new
member into the correct organizer.

3 From the Add menu at the bottom of the tree view, select Add Dynamic Service.
4 In the Add Dynamic Service dialog box, enter txrt12 - Internet, and then click SUBMIT.
5 In the Members view, click Add.
6 In the Add to Service search field, enter fake-txrt12.

7 In the left column, select Device, and in the results list, select fake-txrt12-100g-0, and then click ADD.
8 In the search field, enter example.com.
9 From the search results list, select example.com, and then click ADD > CLOSE.

Create a subservice member for the other Internet connection

To create the service model member for the connection through router 23, clone the member for the connection
through router 12.

1 In the tree view, select service model member txrt12 - Internet.
2 From the Action menu at the bottom of the tree view, select Clone Service.
3 In the Clone Service dialog box, enter txrt23 - Internet, and then click SUBMIT.

The new service is created and its contents are displayed in the Members view.
4 From the list of members in the Members view, select fake-txrt12-100g-0, and then click Remove.

If you click on the name of the member, Resource Manager displays the device overview page. To return to
the correct page, click the browser's back button.

5 In the Remove Items dialog box, click OK.
6 In the Members view, click Add.
7 In the Add to Service search field, enter 100g.
8 In the left column, select Device.
9 In the results list, double-click fake-txrt23-100g-0, and then click ADD > CLOSE.

Create service member to represent redundant paths to the Internet

The previous tasks created subservices to represent the WAN connections to the Internet. This task creates a
subservice member in the service model to represent the redundant WAN tier.

1 In the tree view, select Network.
2 From the Add menu, select Add Dynamic Service.
3 In the Add Dynamic Service dialog box, enter Routers - Internet, and then click SUBMIT.
4 In the Members view, click Add.
5 In the Add to Service search field, enter Internet.
6 In the left column, select DynamicService.

Tutorial: Creating a service model

27

7 In the results list, select txrt12-Internet and txrt23-Internet, and then click ADD > CLOSE.

Add a policy to the Internet connection member
Add a global availability policy to the Internet connection subservice member.

1 In the tree view, select Routers - Internet.
2 From the view menu, select Impact View.
3 In the node tile of the Routers - Internet service (the tile at the top of the hierarchy), right-click and then

select Edit Impact Policies.
4 In the Impact Policies dialog box, directly to the right of the Global Policy entry, click Add.

5 In the lower-left corner of the Edit...Policy tab, click Add, and then add the following triggers.

■ ATRISK if >= 50% DynamicService is DOWN

■ DOWN if >= 100% DynamicService is DOWN

Note When you select a type for a state trigger, the selection excludes other types. In this case, the only
options are Any and DynamicService, and both child members are service members, so exclusivity is not a
concern.

Create members for major network segments
All connections between devices and all redundant resources are modeled. This procedure creates service model
members for the major network segments.

1 In the Resource Manager browser interface, select SERVICES > Dynamic Services.
2 In the tree view, open CRM - Development > Network.
3 Create new members for the major network segments. For instructions, see preceding steps.

The following table shows new and existing members.

New service model member Existing service model members

App Hosts - Switches txsw235 - App Hosts, txsw172 - App Hosts

DB Hosts - Switches txsw235 - DB Hosts, txsw172 - DB Hosts

Firewalls - Routers txfw25 - Routers, txfw17 - Routers

Switches - Firewalls txsw235 - Firewalls, txsw172 - Firewalls

Zenoss Service Impact User Guide

28

4 Add the following global policies (availability state triggers) to each new service model member. For
instructions, see preceding steps.

■ ATRISK if >= 50% DynamicService is DOWN

■ DOWN if >= 100% DynamicService is DOWN

Create summary members for critical paths
Service model members for all of the major network segments are in place. Now consider members to represent
the critical paths. To characterize the CRM application as available, the following minimum connections are
required:

■ One connection between Internet users and an application server that is UP.
■ One connection between an application server and a database server that is UP.

If entities for these paths existed, we could create the service model member that summarizes the network
service for CRM. However, only one segment is defined, by the Routers - Internet subservice. The following
paths require an additional subservice each:

■ The path between the routers and the application hosts.
■ The path between the application and database hosts.

1 In the Resource Manager browser interface, select SERVICES > Dynamic Services.
2 In the tree view, open the CRM - Development organizer, and then open and select the Network organizer.
3 Create new service model members for the network paths that affect users.

Because each subservice is critical, the correct policy for these new service model members is the default
policy. The following table matches new and existing service model members.

New service model member Existing service model members

Routers - App Hosts App Hosts - Switches, Firewalls - Routers, Switches - Firewalls

App Hosts - DB Hosts App Hosts - Switches, DB Hosts - Switches

For detailed instructions, see the preceding steps.

Create a member for the network service
The critical network paths are defined. Create a service model member to represent the network service for the
CRM application.

1 In the Resource Manager browser interface, select SERVICES > Dynamic Services.
2 In the tree view, open the CRM - Development organizer, and then select it.

Service model members that represent a category should be peers of their sub-organizers.
3 Create a new service model member, named CRM - Network Service.
4 Add the following subservice model members to the new service model member.

■ App Hosts - DB Hosts
■ Routers - App Hosts
■ Routers - Internet

The correct policy for this member is the default policy.

Tutorial: Creating a service model

29

Create a member for the service model
After all resource categories are modeled, the application as a whole can be modeled.

1 In the Resource Manager browser interface, select SERVICES > Dynamic Services.
2 In the tree view, select the Dashboard organizer.

Keep service model members that represent a service model as a whole in a separate, root-level organizer.
This way, you can quickly determine the state of all service models in the environment.

3 Create a service model member named CRM - Development Service and add the following
subservice model members to it.

■ CRM - Application Service
■ CRM - Compute Service
■ CRM - Network Service

To view the graph of the service model, select the new service in the tree view, and then select Impact
View. After hiding child nodes and zooming in, the graph looks similar to the following image. If necessary,
to reposition the graph, click and drag it.

Send events to fake devices
To see how they affect the availability of the CRM application, send events to the fake devices.

1 In the tree view, open the Dashboard organizer, and then select CRM - Development Service.
2 In the main view area, select Impact View.
3 (Resource Manager 5.x and later) Gain access to the Resource Manager CLI environment in the ZenHub

container.

a Log in to the Control Center master host as a user with serviced CLI privileges.
b Start an interactive session in a Zope container.

serviced service attach zenhub

c In the new session, switch user to zenoss.

su - zenoss

4 (Resource Manager 4.2.x only) Log in to the Resource Manager master host as zenoss.
5 Send ping down events to the fake network interface card components in the txap15 and txap16 hosts.

zensendevent -d fake-txap15-nic-0 -c /Status/Ping -s Critical \
 "Impact Tutorial - fake device is DOWN"
zensendevent -d fake-txap15-nic-1 -c /Status/Ping -s Critical \
 "Impact Tutorial - fake device is DOWN"

Zenoss Service Impact User Guide

30

zensendevent -d fake-txap16-nic-0 -c /Status/Ping -s Critical \
 "Impact Tutorial - fake device is DOWN"

6 In the browser, click Refresh.

The Impact View shows that the CRM application availability state changed to ATRISK, and the nodes
involved in the state change are highlighted with yellow and red.

To see all nodes in the Service Impact graph, click Expand All.
7 Change the view to Impact Events, and then in the Impact Events list, click CRM - Development Service.

The events that contribute to the current state of the CRM application are weighted by the root-cause
analysis that Service Impact performs (the Confidence column). To view the impact chain of an event, click
the plus button in the left column.

8 Send ping down events to the fake network interface card components in the txdb27 and txdb28 hosts,
and then click Refresh.

zensendevent -d fake-txdb27-nic-0 -c /Status/Ping -s Critical \
 "Impact Tutorial - fake device is DOWN"
zensendevent -d fake-txdb27-nic-1 -c /Status/Ping -s Critical \
 "Impact Tutorial - fake device is DOWN"
zensendevent -d fake-txdb28-nic-0 -c /Status/Ping -s Critical \
 "Impact Tutorial - fake device is DOWN"

The list of contributing events grows, and the rankings change to reflect the added events.
9 Send clear events to all fake devices that are down.

zensendevent -d fake-txap15-nic-0 -c /Status/Ping -s Clear \
 "Impact Tutorial - fake device is UP"
zensendevent -d fake-txap15-nic-1 -c /Status/Ping -s Clear \
 "Impact Tutorial - fake device is UP"
zensendevent -d fake-txap16-nic-0 -c /Status/Ping -s Clear \
 "Impact Tutorial - fake device is UP"
zensendevent -d fake-txdb27-nic-0 -c /Status/Ping -s Clear \
 "Impact Tutorial - fake device is UP"
zensendevent -d fake-txdb27-nic-1 -c /Status/Ping -s Clear \
 "Impact Tutorial - fake device is UP"
zensendevent -d fake-txdb28-nic-0 -c /Status/Ping -s Clear \
 "Impact Tutorial - fake device is UP"

Remove tutorial service model members
This step removes all tutorial-defined members.

Tutorial: Creating a service model

31

1 Log in to the Resource Manager browser interface as a user with ZenManager or Manager privileges.
2 Click SERVICES.
3 Remove the dynamic services and logical node.

a In the tree view, select the Dashboard organizer.
b At the bottom of the tree view, click Delete.
c In the tree view, select CRM - Development.
d At the bottom of the tree view, click Delete.
e Select the Logical Nodes view mode.
f In the tree view, select CRM - Development.
g At the bottom of the tree view, click Delete.

4 Remove the fake devices.

a In the Resource Manager browser interface, select INFRASTRUCTURE.
b In the tree view, select FakeImpactDevices.
c At the bottom of the tree view, click Delete.

Zenoss Service Impact User Guide

32

Exporting service models from one system
to another 3

You can create a service model on one Resource Manager system (the originating system) and export that model
to another system (the target system). This feature is useful for tasks such as repopulating a test or staging
environment from a production environment, and performing repeated exporting and model synchronization
from develop, to staging, to production environments. Review the following use case example and process
overview.

"Project Zebra" is a complicated new E-commerce web application with many clustered entities. The application
has been tested in a staging environment (the originating Resource Manager system), and the service model
is ready to export from staging to the production environment (the target Resource Manager system). The
following diagram illustrates the steps in the process; System A is the originating system and System B is the
target system.

Figure 7: Exporting service models

Export overview

On the originating system, select the dynamic service, dynamic service organizer, or set of dynamic
services to export their service models. The export process generates a file in GraphML XML format
that describes the structural properties of the service models, including the devices, components, logical

http://graphml.graphdrawing.org/

Exporting service models from one system to another

33

nodes, and their relationships. On your workstation, save the exported file (referred to in this document as
svc_export.graphml).

The export file contains definitions for entities that are explicitly defined in the service model. It does not
include nodes that Service Impact identified as having an impact relationship and added. For example, service
model SM1 defines only an application server device member, App Server A. However, Service Impact
evaluated App Server A and infrastructure dependencies on the VM, VM OS, VM host, and file systems on
which it resides. Service Impact automatically added the related service model members to the service model
SM1. When service model SM1 is exported, the export file contains only service model SM1 and App Server A.
When service model SM1 is imported and committed on the target system, a new version of service model SM1
is generated that is unique to the infrastructure dependencies of the target system.

Import overview

On the target system, you import the exported file, which imports the service model definitions to view into a
working “sandbox” testing environment. While in the sandbox, service models are not operational and are not
available in the Resource Manager browser interface. Before moving a service model out of the sandbox, you
must complete the reconcile and commit steps.

The initial import process automatically attempts to reconcile (match) each service model member that the
exported file references with a corresponding entity on the target system. For example, for Project Zebra, some
devices in the staging and production environments might be shared. Others, like the database, will be replaced
in the production environment by different entities in the same role. With the higher scalability that production
requires, the clusters in the production environment might have more entities. Some entities might not exist or
be known on the target system. Such differences must be reconciled before the new application is moved into
production.

The import process generates text files to report the results and identify UNRECONCILED
entities. This document refers to the files as svc_export.graphml.latest.txt and
svc_export.graphml.nnnn.txt.

Reconcile overview

The generated text files provide known details about UNRECONCILED entities. Using that information, you
search for and edit svc_export.graphml.latest.txt to identify corresponding entities on the target
system. Your edited version of svc_export.graphml.latest.txt provides input for each reconcile
attempt.

Commit overview

After you have reconciled the service models in the sandbox, perform the final commit. The committed service
models are active and begin analyzing Resource Manager events when appropriate, and generating service
events. View and work with the service models in the SERVICES tab of the Resource Manager browser
interface.

Details about entities that required manual reconciliation are retained on the target system. Future service
model imports of the same entities will be reconciled automatically. For example, for Project Zebra, the
first import-reconcile-commit process on System B required a manual mapping of database “Test_DB1” to
“Prodxn_DB1.” Future imports on System B of service models that reference “Test_DB1” will automatically
refer to “Prodxn_DB1” instead.

You cannot reverse a commit; however, you can start a new import process or edit the service model definition
in the Resource Manager browser interface.

Zenoss Service Impact User Guide

34

Exporting a service model
Select service models on the originating system and generate the export file that you will use as input to import
on the target system.

1 In the Resource Manager browser interface, select the SERVICES tab.
2 In the tree view, select the service models to export.
3 From the Action menu at the bottom of the tree view, select Export Selected.
4 Save the generated export file (svc_export.graphml) on your workstation.
5 Proceed with Importing service model definitions on page 34.

Importing service model definitions

Perform the procedures in this section to import a service export file in graphml format that contains service
model definitions.

The service models in the export file are imported into a non-operational "sandbox" environment on the target
system. The service model remains hidden in the sandbox through the reconcile phase, and does not appear in
the browser interface until you perform the final commit.

The import and reconcile process typically supports files that were exported by the same or different Resource
Manager instance and version (older or newer), and Service Impact versions (older or newer). If an export file’s
content is incompatible with a version of import, incompatibilities can usually be resolved by adjusting the
graphml file content or structure.

Preparing to import
Before you can import, you must copy the export file from your workstation to the target system master host and
connect to that master host.

Prerequisite: Generate an export file (see Exporting a service model on page 34).

1 (Resource Manager 5.x only)

a Connect to the master host on which the zenimpactstate service is running.

ssh zenoss@impacthost.company.com

b Create a directory for the exported file on the Control Center master host.

The directory that contains the exported file must be a local directory (not mounted) and must be
readable, writable, and executable by all users. The following example create a directory in /tmp:

mkdir /tmp/impact && chmod 777 /tmp/impact

c Change directory to the directory you created.

For example:

cd /tmp/impact

d Log in to the Control Center master host as a user with serviced CLI privileges.
e Copy the exported graphml file from your workstation to the new directory (if on the same host) or use

scp to perform a network copy.

Exporting service models from one system to another

35

For example:

scp export_impact_svcname_20161215203455.graphml
 zenossuser@impacthost.company.com

f Connect to the zenimpactstate container.

serviced service shell -i zenimpactstate

g In the new session, switch user from root to zenoss.

su - zenoss

h Change directory to the pwd directory:

For example:

cd /mnt/pwd

2 (Resource Manager 4.2.x only)

a From the originating Service Impact system, copy the exported file to a directory on the Resource
Manager master host.

b Log in to the Resource Manager master host as zenoss.

Proceed with the initial import.

Initiating the import

In the initial import, service models from the exported file are imported into the sandbox, the product attempts
to reconcile service model members from the originating system with entities on the target system, and output
files are generated to show the result of the reconciliation attempt and actions to take.

Prerequisites:

■ Generate an export file (see Exporting a service model on page 34).
■ Copy the export file to the target system and log in (see Preparing to import on page 34).

1 Initiate the import.

zenimpactimport -i svc_export.graphml

The exported data is imported to the target system; the first reconciliation attempt is made, and generated
text files report the results.

2 Review import results in file svc_export.graphml.latest.txt, and then proceed as follows:

■ If Nodes unreconciled is 0, proceed with Adding the service models to the target system on page 39.
■ If Nodes unreconciled is 1 or greater, proceed with Reconciling originating and target system entities on

page 35.
■ If the import ends in an error or you do not plan to commit the import, proceed with Canceling the

service model reconcile on page 37.

Reconciling originating and target system entities
The reconcile phase is an iterative process in which you attempt to match devices or components from the
originating system with their equivalents on the target system.

Multiple attempts to reconcile are often required before you can commit a service model that originated on
another system. For faster progress, make multiple small changes and frequent attempts to reconcile.

Zenoss Service Impact User Guide

36

Begin by reviewing the text files that the initial import generated. Files
svc_export.graphml.latest.txt and svc_export.graphml.0001.txt are identical. Each
attempt to reconcile generates a new "latest" file and a new, sequentially numbered file to provide a record of
your changes. Do not modify the numbered files.

For each service model member, one of the following results or actions exists. When the attempt to
reconcile succeeds, results are reported. When you must manually correct exceptions in the model, actions
provide guidance. <NodeID> identifies the imported service model member. Do not modify the node ID.
<TargetNodeID> is the DMD ID, name, or GUID of the target entity to apply to the imported service model
member.

UNRECONCILED <NodeID>

The result for any member on the originating system that the service model references but which cannot be
identified on the target system.

MAP <NodeID> <TargetNodeID>

The result if a matching entity was found on the target system or an action to take for an UNRECONCILED
service model member. Replace UNRECONCILED with MAP and specify the DMD ID, name, or GUID
for the target entity. For example, you might MAP to specify that device "stage-AppSvr1" should reference
"prod-AppSvr1" in production.

MAP stage-AppSvr1 prod-AppSvr1

Note Some cases might require that you first define and model a device in Resource Manager so that the
next reconcile attempt can detect it either automatically or manually through use of the MAP action.

CREATE <NodeID>

An action to take when no matching entity was found in the target system, but an entity can be created
through import. For example, you might CREATE to add a device for production when a similar device
does not exist in staging.

CREATE prod-AppSvr1

DELETE <NodeID>

The result when a matching entity was found in the target system, and it is marked to be deleted in the
import file, or an action to take when an entity is not needed. Use DELETE to delete the device, not just
remove it from the service model. Replace UNRECONCILED with DELETE and specify the DMD ID,
name, or GUID.

For example, you might DELETE to remove a device in production.

DELETE prod-AppSvr1

If the <NodeID> does not exist in the target system, the action is converted to IGNORE.

IGNORE <NodeID>

An action to take for an imported service model member. For example, you might IGNORE because a
similar entity does not exist in production.

IGNORE stage-AppSvr1

Before you commit, you must edit svc_export.graphml.latest.txt (or another version of the file)
to specify action data. That is, replace UNRECONCILED entries with MAP, CREATE, DELETE, or IGNORE
action syntax, and then attempt to reconcile.

Exporting service models from one system to another

37

Note In some cases, such as when target devices are not yet online, you might commit and make the service
model active even with a few UNRECONCILED entries. Reconcile the remaining UNRECONCILED entries
later by importing the same export file or a new file. This approach is useful if you plan to repeat the export to
the same target, such as after upgrades or service model changes. You will not need to manually reconcile the
same entries each time. You can also manually adjust committed service model definitions later in the target
system by using the browser interface.

Attempting to reconcile

Prerequisites:

■ Generate an export file (see Exporting a service model on page 34).
■ Copy the export file to the target system and log in (see Preparing to import on page 34).
■ Complete the initial import (see Initiating the import on page 35).
■ Review Reconciling originating and target system entities on page 35.

For more information about the zenimpactimport command and options, see zenimpactimport on page
40 or access the help information:

zenimpactimport -h

1 In svc_export.graphml.latest.txt or another version of the file, replace UNRECONCILED with
an action to specify how the exception should be reconciled.

2 Change directory to the directory that contains files svc_export.graphml.latest.txt and
svc_export.graphmlnnnn.txt.

3 Initiate the reconcile attempt.

zenimpactimport -r svc_export.graphml

The zenimpactimport command attempts to reconcile the originating and target
systems, and generates new versions of files svc_export.graphml.latest.txt and
svc_export.graphml.nnnn.txt.

4 Review import results in file svc_export.graphml.latest.txt, and proceed as follows:

■ If Nodes unreconciled is 1 or greater, repeat the reconciliation process.
■ If Nodes unreconciled is 0, proceed with Adding the service models to the target system on page 39.
■ If the import ends in an error or you do not plan to commit the import, proceed with Canceling the

service model reconcile on page 37.

Canceling the service model reconcile

You might need to remove an uncommitted import attempt from the target system sandbox and free up sandbox
resources.

Prerequisites:

■ Generate an export file (see Exporting a service model on page 34).
■ Copy the export file to the target system and log in (see Preparing to import on page 34).
■ Complete the initial import (see Initiating the import on page 35).

You can specify the import attempt to cancel in the following ways:

Zenoss Service Impact User Guide

38

By import file name:

zenimpactimport --import filename.graphml --abort

By reconcile file name:

zenimpactimport --reconcileFile filename.graphml.latest.txt \
 --abort

By action file name:

zenimpactimport --actionFile filename.graphml*.latest.txt* \
 --abort

By source and version. First, generate a list of import attempts:

zenimpactimport --list-imports

Then specify source, version, or both:

zenimpactimport --source sourceID --abort

zenimpactimport --import-version versionID --abort

zenimpactimport --source sourceID \
 --import-version versionID --abort

The following example lists the import versions, the command to remove an uncommitted import, and the
resulting list of import versions.

[zenoss@qa-set1-6-impact-zen graphml5-0-10]$
 zenimpactimport --list-imports
Date Source Version Status
2018-02-13 14:59:36 d6fc-b4fe-00505694381d 1481662776493 COMMITTED
2018-02-14 13:50:48 bd6d-a34a-0242ac110013 1481745048516 COMMITTED
2018-02-14 14:22:11 bd70-945b-0242ac11003d 1481746931561 UNCOMMITTED
2018-02-14 14:46:43 bd70-945b-0242ac11003d 1481748403174 UNCOMMITTED
[zenoss@qa-set1-6-impact-zen graphml5-0-10]$
 zenimpactimport -r svc_export.graphml --import -version 1481746931561
 --abort
INFO:zen.impact.import:Reading action data
 from svc_export.graphml.latest.txt
INFO:zen.impact.import:Aborting import bd70-945b-0242ac11003d
 1481746931561 ...
INFO:zen.impact.import:Printing report to svc_export.graphml.0003.txt
INFO:zen.impact.import:Printing report to svc_export.graphml.latest.txt
INFO:zen.impact.import:Nodes unreconciled: 0
INFO:zen.impact.import:Import node status: aborted
INFO:zen.impact.import:Done
[zenoss@qa-set1-6-impact-zen graphml5-0-10]$
 zenimpactimport --list-imports
Date Source Version Status
2018-02-13 14:59:36 d6fc-b4fe-00505694381d 1481662776493 COMMITTED
2018-02-14 13:50:48 bd6d-a34a-0242ac110013 1481745048516 COMMITTED

Exporting service models from one system to another

39

2018-02-14 14:46:43 bd70-945b-0242ac11003d 1481748403174 UNCOMMITTED

Adding the service models to the target system

When the "latest" file identifies no UNRECONCILED nodes, commit the reconciled service models that are
in the sandbox. After the commit, imported service models, organizers, logical nodes, global and contextual
policies, and custom state providers are added to the target system. Service models are operationally active to
process device and service events, and are listed in the SERVICES tab of the browser interface.

Prerequisites:

■ Generate an export file (see Exporting a service model on page 34).
■ Copy the export file and log in to the target system (see Preparing to import on page 34).
■ Complete the initial import (see Initiating the import on page 35).
■ Reconcile devices or components from the originating system with their equivalents in the target system (see

Attempting to reconcile on page 37).
■ Review the following considerations:

■ It is possible to commit the file with UNRECONCILED nodes, however, those members are lost from
the resulting service model.

■ A final commit cannot be reversed. To change the model definition after committing, edit the service
model definition in the SERVICES tab or delete the service model and start a new export process.

You can specify the import attempt to commit in the following ways:

By import file name:

zenimpactimport --import filename.graphml --commit

By reconcile file name:

zenimpactimport --reconcileFile filename.graphml.latest.txt \
 --commit

By action file name:

zenimpactimport --actionFile filename.graphml*.latest.txt* \
 --commit

By source and version. First, generate a list of import attempts:

zenimpactimport --list-imports

Then specify source, version, or both:

zenimpactimport --source sourceID --commit

zenimpactimport --import-version versionID --commit

zenimpactimport --source sourceID \
 --import-version versionID --commit

Zenoss Service Impact User Guide

40

Future export scenarios and machine learning
In the future, service models for dynamic services that you import might reference the same service model
members that required manual reconcile actions in a previous import. The previous manual reconciliation and
machine learning of mapped members simplifies each future export.

For example, the service model for dynamic service “S” in a Resource Manager staging environment refers to
devices A,B, and C. In the production environment, the imported service model must be reconciled to map to
the shared device A, and to equivalent devices X and Y instead of B and C.

Initial import of service model “S” into production

After the initial import, B and C were UNRECONCILED. You created MAP actions to reconcile B to X and C
to Y, and then committed with svc_export.graphml.latest.txt.

Import 2 of service model “S” to the same production system

A few weeks later, an upgrade to service model “S” adds device “D.” The changed service model "S" with
devices A,B, C, D is imported into production, where service model “S” must have entities A,X,Y, Z.
Previously, you mapped and committed the service model with B mapped to X and C mapped to Y. After
import 2, file svc_export.graphml.latest.txt shows only one UNRECONCILED entry, for added
device “D.” Resource Manager learned and automatically mapped B and C to X and Y. This time, you only
need to manually add a MAP action for “D” to “Z”, and then commit.

Import 3: initial import of the service model for dynamic service “T”

A third import occurs into production for a different service, “T.” Service model "T" contains devices A and D.
After the import and automatic reconcile attempt, no UNRECONCILED entries exist for "T." That is, Resource
Manager automatically found and mapped A, and used knowledge from your previous mapping of device D to Z
for a different service import. In production, service model "T" contain devices A and Z.

Import 4: service model “T” with a different mapping of an entity than in "S" service context

A fourth import occurs, this time of service model “T” with service model members A, B, D. However, in the
context of service “T,” device B should be mapped to device “P.” In production, service model “T” should
contain service model members A, P, Z.

After the import and automatic reconcile attempt, no UNRECONCILED entries exist, but
svc_export.graphml.latest.txt shows D mapped to Z and B mapped X. You must manually MAP
B to P, reconcile, and them commit. As a result, the model for service "T" contains A, P, Z.

zenimpactimport

DESCRIPTION

zenimpactimport - Imports a GraphML file that contains Service Impact the service model definitions for a
dynamic service; imports multiple subsequent calls to process new actions in order to reconcile a service model
against the entities in Resource Manager.

The import process generates files that report the result of the import and recommend actions. The files follow
the same format as the --action command line parameter. An action consists of an action keyword followed
by parameters for that type of action. Actions and parameters are separated by white space, with each action on
a separate line.

For more information about the import process, see Importing service model definitions on page 34.

http://graphml.graphdrawing.org/

Exporting service models from one system to another

41

SYNTAX

zenimpactimport (IMPORT_FILE | IMPORT_ID | ACTION_FILE) ACTIONS*
 [TRANSACTION]

COMMANDS and OPTIONS
--import, -i

Perform the import operation.

--reconcile, -r

Perform the reconcile operation.

--help, -h

Show the help information.

--list-imports

Displays a list of existing imports and their status. Each import is uniquely identified by source and version
identifiers.

--list-adapters

Displays a list of adapters that are installed to parse and recognize export file content and structure. The
“zenoss” adapter expects a Zenoss Service Impact service export file in graphml format.

IMPORT_FILE

--import IMPORT_FILENAME [--adapter ADAPTER]

Performs the initial import of a file in graphml format that generates and attempt to reconcile service model
members with entities on the target Resource Manager system.

IMPORT_FILENAME

The file that contains the data in a format that the ADAPTER recognizes. The default file name is
svc_export.graphml.

ADAPTER

The name of an input adapter. Currently, only the default adapter for the Zenoss graphml export format
is supported.

IMPORT_ID

--source SOURCEID --import-version VERSIONID

Performs the import of the attempt that you specify by source ID, version ID, or both. Each import is
uniquely identified by source and version identifiers. To display imports, issue the --list-imports
command.

The *.latest.txt file is rewritten by the latest command that uses the specified combination of
sourceID and versionID.

ACTION_FILE

(--actionFile | --reconcileFile) FILENAME

Performs the import using data in the specified file.

FILENAME

A text file that contains reconcile actions. If no FILENAME is specified on the command line, file
svc_export.graphml.file.latest.txt is used as input.

ACTIONS

--action ACTION

Zenoss Service Impact User Guide

42

Provides a way to execute a single reconciliation action on the command line, rather than editing the input
file or the parameter --actionFile. For more information about the actions, see Reconciling originating
and target system entities on page 35.

CREATE NodeID

Creates the specified node on the target system.

DELETE NodeID

Deletes the specified node from the target system.

MAP NodeID TargetNodeID

Replaces the specified node on the originating system with the specified node on the target system.

IGNORE NodeID

Takes no action for the specified node.

UNRESOLVED NodeID

The specified node is referenced in the service model but it cannot be reconciled with a node on the
target system.

TRANSACTION

{--abort|--commit}

Abort or commit the import attempt that is identified by its unique combination of source ID and version
ID. Aborting destroys the import sandbox. Committing makes all entries in the input file permanent and
operational in the target system. The last committed combination is the final result.

Example export file

The generated export file name is in the format
export_impact_svcname_YYYYMMDDHHMMSS.graphml, where

■ export is the name of the action that is performed.
■ impact is the name of the Resource Manager plugin that performs the action.
■ service is the name of the service model, a service organizer, or dynamic services environment that you

selected for export.
■ YYYYMMDDHHMMSS is the timestamp of the export action.

For example, export_impact_DynamicServices_20160331135219.graphml.

Note This document refers to the file as svc_export.graphml.

The export file name is included in the names of the text files that the
import process and each reconciliation attempt generate. For example, if file
export_impact_DynamicServices_20160331135219.graphml is imported, then the text file
names are:

export_impact_DynamicServices_20160331135219.graphml.latest.txt

export_impact_DynamicServices_20160331135219.graphml.nnnn.txt

The following example shows the export file for a service named BizSvcA. The service model contains types
DEVICE, SERVICE, and COMPONENT (PROP_element_type_id).

■ The service is named BizSvcA (PROP_name) and it is a dynamic service (PROP_meta_type).
■ The devices are named PROD_SQL SERVER and vcloud-01.zenosslabs.com (PROP_name). They are a

device and a vCloudCell, respectively (PROP_meta_type).
■ The components are named APP_DB1 and tempdb (PROP_name). They are a WinSQLDatabases

(PROP_meta_type).

Exporting service models from one system to another

43

■ Four impact relationship edge members from each device and component.

Figure 8: Example export file

<?xml version="1.0" encoding="utf-8"?>
<graphml xmlns="http://graphml.graphdrawing.org/xmlns" xmlns:xsi="http://www.w3.org/2001/
XMLSchema-instance" xsi:schemaLocation="http://graphml.graphdrawing.org/xmlns http://
graphml.graphdrawing.org/xmlns/1.1/graphml.xsd">
 <key attr.name="PROP_production" attr.type="string" for="node" id="PROP_production"/>
 <key attr.name="INTRINSIC_STATE_AVAILABILITY" attr.type="string" for="node"
 id="INTRINSIC_STATE_AVAILABILITY"/>
 <key attr.name="PROP_priority" attr.type="string" for="node" id="PROP_priority"/>
 <key attr.name="INTRINSIC_STATE_PERFORMANCE" attr.type="string" for="node"
 id="INTRINSIC_STATE_PERFORMANCE"/>
 <key attr.name="RELATED_EVENT_IDS" attr.type="string" for="node" id="RELATED_EVENT_IDS"/>
 <key attr.name="NODE_TYPE" attr.type="string" for="node" id="NODE_TYPE"/>
 <key attr.name="DERIVED_STATE_PERFORMANCE" attr.type="string" for="node"
 id="DERIVED_STATE_PERFORMANCE"/>
 <key attr.name="IN_ANY_CONTEXT" attr.type="string" for="node" id="IN_ANY_CONTEXT"/>
 <key attr.name="PROP_element_type_id" attr.type="string" for="node"
 id="PROP_element_type_id"/>
 <key attr.name="DERIVED_STATE_AVAILABILITY" attr.type="string" for="node"
 id="DERIVED_STATE_AVAILABILITY"/>
 <key attr.name="ID" attr.type="string" for="node" id="ID"/>
 <key attr.name="PROP_name" attr.type="string" for="node" id="PROP_name"/>
 <key attr.name="INTRINSIC_STATE_CAPACITY" attr.type="string" for="node"
 id="INTRINSIC_STATE_CAPACITY"/>
 <key attr.name="PROP_meta_type" attr.type="string" for="node" id="PROP_meta_type"/>
 <key attr.name="ORGANIZER" attr.type="string" for="node" id="ORGANIZER"/>
 <key attr.name="DESCRIPTION" attr.type="string" for="node" id="DESCRIPTION"/>
 <key attr.name="LN_CRITERIA" attr.type="string" for="node" id="LN_CRITERIA"/>
 <key attr.name="LN_AVAILABILITY_MAP" attr.type="string" for="node"
 id="LN_AVAILABILITY_MAP"/>
 <key attr.name="LN_PERFORMANCE_MAP" attr.type="string" for="node"
 id="LN_PERFORMANCE_MAP"/>
 <key attr.name="CUSTOM_STATE_PROVIDER" attr.type="string" for="node"
 id="CUSTOM_STATE_PROVIDER"/>
 <key attr.name="LABEL" attr.type="string" for="edge" id="LABEL"/>
 <graph edgedefault="directed" id="d96ce0f4-2d06-11e6-b939-0242ac110026">
 <node id="8ddcc69b-e6a7-4370-8f3d-4a53f897b9f4">
 <data key="PROP_production">1000</data>
 <data key="PROP_priority">3</data>
 <data key="NODE_TYPE">ELEMENT</data>
 <data key="DERIVED_STATE_PERFORMANCE">__DERIVED_STATE__|ACCEPTABLE|</data>
 <data key="IN_ANY_CONTEXT">true</data>
 <data key="PROP_element_type_id">DEVICE</data>
 <data key="DERIVED_STATE_AVAILABILITY">__DERIVED_STATE__|DOWN|</data>
 <data key="ID">8ddcc69b-e6a7-4370-8f3d-4a53f897b9f4</data>
 <data key="PROP_name"PROD_SQL Server</data>
 <data key="PROP_meta_type">Device</data>
 <data key="CUSTOM_STATE_PROVIDER">{}</data>
 </node>
 <node id="fc6ab26d-75cd-491a-8c71-75fb25845f97">
 <data key="PROP_production">1000</data>
 <data key="NODE_TYPE">ELEMENT</data>
 <data key="DERIVED_STATE_PERFORMANCE">__DERIVED_STATE__|ACCEPTABLE|</data>
 <data key="IN_ANY_CONTEXT">true</data>
 <data key="PROP_element_type_id">COMPONENT</data>
 <data key="DERIVED_STATE_AVAILABILITY">__DERIVED_STATE__|UP|</data>
 <data key="ID">fc6ab26d-75cd-491a-8c71-75fb25845f97</data>
 <data key="PROP_name">APP_DB1</data>
 <data key="PROP_meta_type">WinSQLDatabase</data>
 <data key="CUSTOM_STATE_PROVIDER">{}</data>
 </node>
 <node id="d66416a5-7db7-47df-b9ab-ed9422700efe">
 <data key="PROP_production">1000</data>
 <data key="NODE_TYPE">ELEMENT</data>
 <data key="DERIVED_STATE_PERFORMANCE">__DERIVED_STATE__|ACCEPTABLE|</data>
 <data key="IN_ANY_CONTEXT">true</data>
 <data key="PROP_element_type_id">COMPONENT</data>
 <data key="DERIVED_STATE_AVAILABILITY">__DERIVED_STATE__|UP|</data>
 <data key="ID">d66416a5-7db7-47df-b9ab-ed9422700efe</data>
 <data key="PROP_name">tempdb</data>
 <data key="PROP_meta_type">WinSQLDatabase</data>
 <data key="CUSTOM_STATE_PROVIDER">{}</data>

Zenoss Service Impact User Guide

44

 </node>
 <node id="0dcda951-9885-449c-af1b-0adb37aeec95">
 <data key="IN_ANY_CONTEXT">true</data>
 <data key="PROP_element_type_id">SERVICE</data>
 <data key="DERIVED_STATE_AVAILABILITY">__DERIVED_STATE__|DOWN|</data>
 <data key="ID">0dcda951-9885-449c-af1b-0adb37aeec95</data>
 <data key="NODE_TYPE">SERVICE</data>
 <data key="PROP_name">BizSvcA</data>
 <data key="DERIVED_STATE_PERFORMANCE">__DERIVED_STATE__|ACCEPTABLE|</data>
 <data key="PROP_meta_type">DynamicService</data>
 <data key="ORGANIZER">/Zreconsvcs</data>
 <data key="DESCRIPTION"/>
 </node>
 <node id="6fca9724-6c92-4fd9-b8fa-c72bb133fda8">
 <data key="PROP_production">1000</data>
 <data key="PROP_priority">3</data>
 <data key="NODE_TYPE">ELEMENT</data>
 <data key="DERIVED_STATE_PERFORMANCE">__DERIVED_STATE__|ACCEPTABLE|</data>
 <data key="IN_ANY_CONTEXT">true</data>
 <data key="PROP_element_type_id">DEVICE</data>
 <data key="DERIVED_STATE_AVAILABILITY">__DERIVED_STATE__|UP|</data>
 <data key="ID">6fca9724-6c92-4fd9-b8fa-c72bb133fda8</data>
 <data key="PROP_name">vcloud-01.zenosslabs.com</data>
 <data key="PROP_meta_type">vCloudCell</data>
 <data key="CUSTOM_STATE_PROVIDER">{}</data>
 </node>
 <edge id="2" source="8ddcc69b-e6a7-4370-8f3d-4a53f897b9f4" target="0dcda951-9885-449c-
af1b-0adb37aeec95">
 <data key="LABEL">IMPACTS</data>
 </edge>
 <edge id="0" source="fc6ab26d-75cd-491a-8c71-75fb25845f97" target="0dcda951-9885-449c-
af1b-0adb37aeec95">
 <data key="LABEL">IMPACTS</data>
 </edge>
 <edge id="1" source="d66416a5-7db7-47df-b9ab-ed9422700efe" target="0dcda951-9885-449c-
af1b-0adb37aeec95">
 <data key="LABEL">IMPACTS</data>
 </edge>
 <edge id="3" source="6fca9724-6c92-4fd9-b8fa-c72bb133fda8" target="0dcda951-9885-449c-
af1b-0adb37aeec95">
 <data key="LABEL">IMPACTS</data>
 </edge>
 </graph>
</graphml>

Example import results file

The initial import generates svc_export.graphml.latest.txt to report the results of the process. The
following example shows unreconciled, created, and mapped service model members.

Be aware that the svc_export.graphml.latest.txt is rewritten by the latest command that uses the
specified combination of sourceID and versionID.

UNRECONCILED

In this example, the initial import could not match databases DB3From, DB2From, and tempdbFrom with
databases on the target system. Manual reconciliation is needed. For UNRECONCILED entries, known
information is displayed so that you can search the target system for a corresponding entity. In the example,
PROP_meta_type indicates that a WinSQLDatabase is referenced, PROP_element_type_id shows
that it is a COMPONENT, and PROP_name shows the database name. After the EXTERNAL_ID has been
reconciled, subsequent outputs do not include these details.

CREATE

For imported service DBSvcExpTarget, a matching service does not exist on the target system. The import
command generated a CREATE statement for that service and displays related details about the service that is
being created.

Exporting service models from one system to another

45

MAP

For the SQL Server device and database from the originating system, the import process found and mapped the
same members on the target system. Details about the members are not displayed because manual reconciliation
is not needed.

[zenoss@fde4efeccf58 pwd]$ cat DBSvcExpFROM.graphml.latest.txt
SOURCE d96ce0f4-2d06-11e6-b939-0242ac110026
VERSION 1481917173580 # 2016-12-16 19:39:33

CUSTOM_STATE_PROVIDER: {}
DERIVED_STATE_AVAILABILITY: __DERIVED_STATE__|UP|
DERIVED_STATE_PERFORMANCE: __DERIVED_STATE__|ACCEPTABLE|
EXTERNAL_ID: d05e3670-0bbf-4e76-bcd2-a8a1cd333333
ID: d05e3670-0bbf-4e76-bcd2-a8a1cd333333
IN_ANY_CONTEXT: true
NODE_TYPE: ELEMENT
PROP_element_type_id: COMPONENT
PROP_meta_type: WinSQLDatabase
PROP_name: DB3From
PROP_production: 1000
UNRECONCILED d05e3670-0bbf-4e76-bcd2-a8a1cd333333

CUSTOM_STATE_PROVIDER: {}
DERIVED_STATE_AVAILABILITY: __DERIVED_STATE__|UP|
DERIVED_STATE_PERFORMANCE: __DERIVED_STATE__|ACCEPTABLE|
EXTERNAL_ID: d4176972-bb0e-44b3-90d2-bb8e96222222
ID: d4176972-bb0e-44b3-90d2-bb8e96222222
IN_ANY_CONTEXT: true
NODE_TYPE: ELEMENT
PROP_element_type_id: COMPONENT
PROP_meta_type: WinSQLDatabase
PROP_name: DB2From
PROP_production: 1000
UNRECONCILED d4176972-bb0e-44b3-90d2-bb8e96222222

CUSTOM_STATE_PROVIDER: {}
DERIVED_STATE_AVAILABILITY: __DERIVED_STATE__|UP|
DERIVED_STATE_PERFORMANCE: __DERIVED_STATE__|ACCEPTABLE|
EXTERNAL_ID: d66416a5-7db7-47df-b9ab-ed9422666666
ID: d66416a5-7db7-47df-b9ab-ed9422666666
IN_ANY_CONTEXT: true
NODE_TYPE: ELEMENT
PROP_element_type_id: COMPONENT
PROP_meta_type: WinSQLDatabase
PROP_name: tempdbFrom
PROP_production: 1000
UNRECONCILED d66416a5-7db7-47df-b9ab-ed9422666666

DERIVED_STATE_AVAILABILITY: __DERIVED_STATE__|DOWN|
DERIVED_STATE_PERFORMANCE: __DERIVED_STATE__|ACCEPTABLE|
DESCRIPTION:
EXTERNAL_ID: 1f3e3f0b-35a4-4851-8863-b94f36AAAAAA
ID: 1f3e3f0b-35a4-4851-8863-b94f36AAAAAA
IN_ANY_CONTEXT: true
NODE_TYPE: SERVICE
ORGANIZER: /Zreconsvcs
PROP_element_type_id: SERVICE
PROP_meta_type: DynamicService
PROP_name: DBSvcExpTarget

Zenoss Service Impact User Guide

46

RECONCILE_ACTION: CREATE
CREATE 1f3e3f0b-35a4-4851-8863-b94f36AAAAAA

MAP 8ddcc69b-e6a7-4370-8f3d-4a53f897b9f4 /zport/dmd/Devices/Server/
Microsoft/Windows/devices/10.111.5.81

MAP fc6ab26d-75cd-491a-8c71-75fb25845f97 /zport/dmd/Devices/Server/
Microsoft/Windows/devices/10.111.5.81/
 os/winsqlinstances/
INSTANCE1/databases/INSTANCE15

Browser interface resources

47

Browser interface resources 4
Service Impact resources are available on the SERVICES tab of the Resource Manager browser interface.

Adding an Impact Services portlet
You can customize the Resource Manager dashboard by adding an Impact Services portlet.

Prerequisites: Service Impact must be installed and at least one dynamic service must exist.

1 In the Resource Manager browser interface, choose DASHBOARD.
2 In the top-right of the main dashboard area, click Add, and then choose Add portlet.
3 From the Portlet drop-down list, choose Impact Services.
4 In the Preview pane, choose the services that you want to show in the portlet, and then click Add.

Service Impact home page
The Service Impact feature home page in the Resource Manager browser interface displays the health
summaries of all services.

From the home page, you can view information in Dynamic Services mode or Logical Nodes mode. In both
view modes, the Service Impact home page includes the tree view area and its tools, and the primary view area.

Zenoss Service Impact User Guide

48

View m ode

Tree
view
area

Prim ary
view
area

Tree view tools

Tree view area

The tree view area displays service nodes and logical nodes in alphabetical order. You can create organizers and
order them as you wish. To move service nodes and logical nodes into organizers, drag them into the tree view.

MenuTool

Dynamic Services view mode Logical Nodes view mode

Add Dynamic Service
Add Dynamic Service Organizer

Add Logical Node
Add Logical Node Organizer

(no menu) (no menu)

View and Edit Details
Clone Service...
Export Selected

(no menu)

Primary view area

The content of the primary view area depends on the view mode and the item that you select in the tree view
area.

View mode Tree view selection Primary view contents

Dynamic Services DYNAMIC SERVICES (the root
organizer)

The availability and performance health
summaries of all services.

Browser interface resources

49

View mode Tree view selection Primary view contents

An organizer The availability and performance health
summaries of the services that the
organizer contains.

A dynamic service (service model) The Members of the selected service.
From this view, select Impact Events
on page 50 or Impact View on page
51.

■ LOGICAL NODES (the root
organizer)

■ An organizer

A blank logical node details view. (See
Logical node details view on page 57.)

Logical Nodes

A logical node The details view of the selected logical
node. (See Logical node details view
on page 57.) No other views are
associated with logical nodes.

Members view
The Members view provides details about a service member, including the list of its associated members.

The following example shows the Members view of a service member, with key features highlighted, and the
view menu selected.

List tools

View m enuHealth sum m ary

List tools

The list tools add or remove members from a service model.

Tool Function

Display the Add to Service dialog box.

Remove a selected member from the service model.

Add to Service dialog box
Use the Add to Service dialog box to find and add members to a service model.

Zenoss Service Impact User Guide

50

In the search field, enter the string to find. You can search for a specific device or component name, or
component type (such as interfaces and OS processes) or group type (such as location and system). As you type
characters, Service Impact displays matches.

Impact Events
The Impact Events view shows summary and detail information about events that are affecting a service.

The following example shows an Impact Events view with key features highlighted. The last event in the
details area is expanded to show the Impact chain, which is the hierarchy of service model members that are
associated with the event.

RCA
confidence
rankings

Event tools

Event tools

The event tools provide options for manipulating the list of events.

Tool Function

Acknowledge the selected event.

Close the selected event. The event is moved to the archive.

Undo acknowledgement of the selected event.

Browser interface resources

51

Tool Function

Display the event selection menu.

Select All

Select all events in the list.

None

Deselect all selected events.

Root-cause analysis (RCA) confidence rankings

The second column of the details list contains the event's confidence ranking. Service Impact knows which
members affect which service models, and automatically performs RCA when an event occurs. The analysis
yields a probability value that an event is the cause of the service's current state. Often, multiple events
contribute to a state, so the confidence rankings enable you to quickly focus resources on the most likely cause.

Impact View
The Impact View displays the interactive Service Impact graph of a service model and provides several views
and tools.

Figure 9: Impact View with views and tools identified

Service context (root) node name

In the upper left above the Aspect views, the service context (root) node of the graph is displayed. Click the
name to make the root node the selected node and display its name in the Selected node field.

Aspect views: Availability, Performance

Use aspect views to display and filter on availability or performance states in the graph.

Zenoss Service Impact User Guide

52

Selected Node

Displays the name and type of the node that you have chosen, or the service context (root) node if you
have not chosen a node. For example, DB Hosts (Organizing Group) is the node named DB
Hosts, which is an organizing group type. When you first access the Impact View, the Selected Node field
displays the root node. To resize the Selected Node field, hover the pointer to the left of the field label to
display the resize tool, and then drag the tool left or right. When you choose a node from the list or click a
tile in the graph, that node appears in Selected Node and the node tile is centered in the graph.

To search for specific nodes, begin typing a string in the Selected Node field. The field's drop-down list
displays matching nodes in the following format:

node_name (node_type) [UID]

Tips for searching nodes

■ Strings are not case sensitive.
■ Regular expressions are not supported.
■ You can search for nodes by name, type, or system-generated unique identifier (UID).
■ To search for nodes by name only, suffix the search string with an open parenthesis. For example,

the following string matches only node names that end with "Hosts," such as the DB Hosts node.

Hosts (

However, the following string matches nodes with "hosts" in the name or type.

hosts

■ To search for nodes by type only, prefix the search string with an open parenthesis. For example, the
following string matches only node types beginning with "vSphere," such as the vSpherePnic type.

(vSphere

However, the following string matches nodes with "vsphere" in the name or type.

vSphere

■ To search for nodes that contain the same character string in the UID, prefix the search string with
an open bracket. For example, the following string matches only nodes with a UID beginning with
"G7M," such as G7M589.

[G7M

However, the following string matches nodes with "G7M" in the name, type, or UID.

G7M

Zoom

To increase or decrease the size of tiles in the graph, use the mouse wheel or drag the Zoom control in the
upper right corner of the view.

Node tools

To see a summary of a node in a Service Impact graph, hover the pointer over its tile. Summary information
includes the node name, availability state, performance status, production status, and type.

To display the following menu options for a node, position the pointer over it and right-click:

Browser interface resources

53

Toggle Children

Hide or display the node's child and descendent nodes.

Edit Impact Policies

Display the Impact Policies dialog box. See Impact Policies dialog box on page 54.

Graph and filter tools (right-click menu)

To display the following Impact View menu options, position the pointer in the primary view area and
right-click.

Fit Graph to Window

Adjust the size of the graph so that its dimensions match the display area.

Show All

Display all nodes in the graph, including those that are automatically added by ZenPacks.

Collapse All

Display only the top-level node of the graph.

Compact View

Display only the service model members that you have manually added and the immediate children of a
service or service group.

Toggle Rainbows

Display colored tabs at the right edge of the node, indicating the number of critical, error, and warning
events associated with the node.

Toggle Filter

Hide or display the filter controls.

Use filter check boxes to select availability and performance states by which to filter. By default,
all states are selected for filtering. To restrict displayed nodes to specific states, such as DOWN and
UNACCEPTABLE, select only those check boxes. (Changes to the selected states apply to all dynamic
services because state is a global feature.)

To filter by complete or partial node name, use the Name field. To perform the filter click Filter.

Export Graph Image

Creates a file of the graph image with the default name graph.png.

Enable center view

Disable center view

Shift the graph so that the selected node is in the center. The zoom level does not change. You can zoom
in and out on the node in the center of the graph. Choose this option to recenter a specific node.

Jump to Selected

Shift the graph so that the node that is shown in the Selected Node field is in the center.

Jump to Context (root)

Shift the graph so that the service context (root) node of the graph is in the center.

Node tile

The node tile graphically represents a server or service node and information about it, as described in the
following table:

Zenoss Service Impact User Guide

54

Node tile example Description

This tile represents a Linux server named epowell-
debug.zenoss.loc. (The name is shortened to fit inside the tile.)

■ The computer icon and penguin image represent the node's type,
Linux server.

■ The green arrow and the black border represent the node's availability
state, UP.

This tile represents a service node with a global policy. Event rainbows
are displayed.

■ The event rainbow is the colored tabs on the right side of the tile.
From top to bottom, the rainbow shows the counts of critical, error,
and warning events that are associated with the node. The first
example node has no events, so no numbers are displayed. The
second example node has 1 critical error.

■ When you click an event rainbow tab, Resource Manager displays the
overview page of the node.

■ This tile includes three dots immediately below its bottom border.
The dots represent descendant nodes. To display the descendant
nodes, double-click the node tile.

This tile represents a service node. The yellow icon and border represent
the node's availability state, ATRISK.

This tile represents a service node with a global policy. The red arrow
and the red border of the tile represent the node's availability state,
DOWN.

Impact Policies dialog box
In the Impact Policies dialog box, add or edit state triggers for contextual or global policies.

Browser interface resources

55

To prevent sending service events when changes affect a node, check Suppress service events (not shown).
Choose this option when a service node is used solely to group child nodes.

If a custom state provider is not associated with a node, the dialog box does not contain the option to edit the
custom state provider.

For a policy or custom state provider, click Add or Edit to access options.

Edit Policy options
Use the Edit Policy options to add or edit state triggers for contextual or global policies.

To add a trigger, in the lower-left corner click Add. On the right side of the dialog box, modify the trigger fields
(described in the following table), and then click Save Changes.

Field Description

My state will be The new state, if the trigger applies. Possible states: DOWN, DEGRADED,
ATRISK, UP.

If The conditions that trigger a state change. To specify a percentage rather than an
absolute value, click %.

Zenoss Service Impact User Guide

56

Field Description

Of type Restrict the type of child node to which the trigger applies. Types other than Any
are exclusive.

Are The state of child nodes that cause an evaluation of this trigger. Possible states:
DOWN, DEGRADED, ATRISK, UP.

Edit Custom State Provider options
Use a custom state provider to add state triggers (rules) for custom device and component service model
members. You can customize Resource Manager to gather state data from events that belong to other classes.
For example, customize state providers to define state triggers for members that are monitored through
customized classes that the ZenVMware and CiscoUCS ZenPacks provide.

Field Description

Event Class Choose the Resource Manager event class to monitor. You can configure one
event class per device.

Event severity fields
(Critical, Error, Warning,
Info, Debug, Clear)

Choose the state for this member if the event severity is observed. Possible states
are UP, ATRISK, DEGRADED, DOWN.

Apply to Choose the nodes (components) to which the state override applies.

■ This node only: The selected component on the specific device.
■ Nodes of the same type on the same device: The same component type on

the same device. If a component is associated with another device, it is not
affected in that context.

■ Nodes of the same type in the same device class: The same component type
on any device with the same device class.

■ Nodes of the same type system-wide: The same component type, regardless
of the device or the device class.

Browser interface resources

57

Logical node details view
The logical node details view enables you to create and edit customizable members that capture specific
Resource Manager event states.

Logical nodes allow you to represent multiple resources or services; they rarely relate to events from a single
member. For resources that Resource Manager monitors, logical nodes enable you to capture event states from
arbitrary classes. Logical nodes might be external events from third-party monitoring products that are not
monitored by Resource Manager.

For example, a bookstore website uses a third-party financial service to process credit cards. Resource Manager
has no access to that third-party environment, but the monitoring systems forward events to Resource Manager.
Their member names are prefixed with FincCC (that is, FincCC-AppSvr01, FincCC-AppSvr02, FincCC-
OraDB01, and so on). To match events from that system and relate them to the "bookstore" service, you create a
logical node that matches any event with a resource name that includes the prefix FincCC.

A logical node can be a child of a service model member, but no other type.

Criteria

The Criteria rules allow you to define event triggers and associate the triggers with availability and
performance states.

Availability state

In Events for this node in this event class, specify the event class or subclass that is associated with the trigger.

The following examples illustrate how to specify event classes.

/Status

Only the /Status class.

Zenoss Service Impact User Guide

58

/Status/Web

Only the Web subclass of /Status

/Status/

The /Status class and all of its subclasses.

In will result in these availability states, map event severity levels to availability states.

Performance State

The fields and options in this area differ only in that the mapping of event severity levels to performance states
uses different states.

Configuring Service Impact

59

Configuring Service Impact 5
This chapter describes the Service Impact configuration options.

Production state propagation threshold
Service Impact relies on device production states to decide whether to propagate availability and performance
states within a service graph.

The following table characterizes the device production states that are available in Resource Manager.

Production state Devices monitored? Appear on dashboard?

Production Yes Yes

Pre-Production Yes No

Test Yes No

Maintenance Yes Might appear

Decommissioned No No

Devices are displayed in the Impact View as determined by production state and production state propagation
threshold. Each threshold setting indicates which states are considered to be "in production." For example:

■ The threshold value Production indicates that only production-level devices are to be considered "in
production."

■ The threshold value Decommissioned indicates that devices in all production states are to be considered "in
production."

In the Impact View, background color indicates the node's production state. In the following table,

■ FALSE indicates that the node is displayed with a gray background, and its state is not propagated upwards
to other members.

■ TRUE indicates that the node is displayed with a white background, and interacts with other members as "in
production."

Device
production
state

Threshold=
Production

Threshold=
Pre-Production

Threshold=
Test

Threshold=
Maintenance

Threshold=
Decommissioned

Decommissioned FALSE FALSE FALSE FALSE TRUE

Zenoss Service Impact User Guide

60

Device
production
state

Threshold=
Production

Threshold=
Pre-Production

Threshold=
Test

Threshold=
Maintenance

Threshold=
Decommissioned

Maintenance FALSE FALSE FALSE TRUE TRUE

Test FALSE FALSE TRUE TRUE TRUE

Pre-Production FALSE TRUE TRUE TRUE TRUE

Production TRUE TRUE TRUE TRUE TRUE

For more information about production states, refer to the Zenoss Resource Manager Administration Guide.

Configuring the production state propagation threshold

The default value of the Service Impact production state propagation threshold is Production. You can select a
different production state for the threshold.Zenoss recommends changing this threshold only during installation.

1 Log in to the Resource Manager browser interface as a user with ZenManager or Manager privileges.
2 Select the ADVANCED tab, and then click the Impact link in the left column.

3 From the Production State Propagation Threshold list, select a new production state, and then click Save.
Devices are evaluated against the new threshold at the next modelling interval. To update all devices before
the next modelling interval, perform a graph update.

Service Impact server configuration files

The $IMPACT_HOME/etc directory contains Service Impact server configuration files.

$IMPACT_HOME/etc/zenoss-dsa-amqpconf.properties

This file contains properties for the Service Impact host's connection to the RabbitMQ server.

$IMPACT_HOME/etc/zenoss-dsa.env

This file contains the JVM_ARGS variable definition.

$IMPACT_HOME/etc/zenoss-dsa.properties

This file contains general Service Impact configuration properties, including properties for backups, log file
management, and remote debugging.

Note Configuration settings and their associated default values might appear commented out in the file;
however, they are automatically activated at installation. To modify the default value, you must first uncomment
the setting. Before you change values in any file in this directory, consult with Zenoss Support.

Configuring Service Impact

61

Configuration file best practices

Zenoss recommends that you edit configurations through the Control Center browser interface. Using this
method, edits are preserved and pushed to the Service Impact container when restarted. When Service Impact
restarts, a new container is created. Any changes applied using the command are lost when Service Impact is
restarted.

Use the Control Center browser interface to edit and preserve changes to /opt/zenoss_impact/etc/
logback.xml. Modifying logback.xml in the Control Center browser interface requires a restart of the
Service Impact service for the logging changes to take effect. If you use the command line to implement logging
changes, they are implemented immediately; however, the changes made using the command line are lost when
Service Impact is restarted.

The following sections describe how to edit Service Impact configuration files for Resource Manager 5.x and
4.2.x.

Editing server configuration files with Control Center (Resource Manager 5.2.x and
later)

To test changes in a pre-production environment, modify configuration file settings directly in the container.
When Service Impact is restarted, all settings are returned to their default value.

This procedure describes how to use Control Center to edit Service Impact server configuration files with
Resource Manager 5.2.x and later.

1 Log in to the Control Center master host as root, or as a user with superuser privileges.
2 In the Applications table, click Zenoss.resmgr.
3 Scroll down to the Services list and select Impact.
4 Under Configuration Files, click Edit to the right of /opt/zenoss/etc/dsa.zenoss-

dsa.properties.

The zenoss-dsa.properties file is displayed in the Edit Configuration window.

Note Modifying properties might change the performance of Service Impact. Before you modify default
values, consult Zenoss Support.

5 Make changes and then click Save.
6 To activate the changes, restart Service Impact.

Editing server configuration files in the Impact container (Resource Manager 4.2.5)

1 Log in to the Impact container as the zenossimpact user.

a Log in to the Control Center master host as a user with serviced CLI privileges.
b Start an interactive session in the Impact container.

serviced service attach impact

c In the new session, switch user to zenossimpact.

su - zenossimpact

2 Log in to the Service Impact server host as zenossimpact.
3 Change directory to the configuration properties directory.

cd $IMPACT_HOME/etc

Zenoss Service Impact User Guide

62

4 Edit configuration files.
5 Restart Service Impact, and then log off the Service Impact server host.

a Restart the Service Impact.

service zenoss_impact restart

b Log off.

exit

Targeted graph update

Occasionally, Service Impact receives information about an unknown component or device that is needed for an
event. When this occurs, a targeted graph update is performed.

To rapidly update its knowledge of an unknown entity and its impact model, Service Impact targets modeling
of only that entity's subgraphs. To allow the modeling workflow to complete, a "placeholder" is immediately
created for the unknown entity. Impact graphs are quickly refreshed without delay to event processing.

The targeted graph update allows mission-critical event and service event monitoring and alerting to resume
with minimal downtime. During the restore and rebuild of the Neo4j graph database, service event processing
resumes quickly, regardless of the size and number of service models.

You can tune targeted graph updates by changing configuration parameters.

Targeted graph update occurs automatically and requires no user intervention. However, in unusual
circumstances, Zenoss Support might recommend the following actions:

■ Adjusting configuration parameters to better tune performance.
■ Repairing information by manually rebuilding impact models with missing entities and impact relationships.

Tuning targeted graph update
Adjusting targeted graph update settings might cause performance degradation. Change settings only if
instructed to do so by Zenoss Support.

1 To change settings, open the /opt/zenoss_impact/etc/zenoss-dsa.properties configuration
file.

For instructions, see Editing server configuration files with Control Center (Resource Manager 5.2.x and
later) on page 61.

2 To change the number of nodes that Service Impact processes per batch job, increase or decrease the value
of dsa.zenoss.batch_size=100.

By default, 100 nodes are processed in one update job.
3 To change the frequency of targeted updates, increase or decrease the value of

dsa.zenoss.time_period=30.

By default, the targeted updates occur every 30 seconds as needed.
4 After changing values, save the file.
5 To activate the changes, restart Service Impact.

Manually rebuilding an impact graph

Service Impact graphs are regularly updated automatically, and rarely require manual actions. However, in
unusual circumstances, the Service Impact data store might have inconsistencies that require a manual rebuild of
an impact graph to rediscover children of the problem node.

Configuring Service Impact

63

For best performance, do not manually rebuild an impact graph during a time that overlaps a maintenance
window. The graph update and maintenance window operations use the same target graph database. Performing
them together might lengthen the time to complete the operations, and might result in transaction rollbacks. For
more information about manually rebuilding a graph, refer to the Zenoss Service Impact User Guide.

Entities that are defined in the Resource Manager object database (ZODB) are normally synchronized and
defined in the Service Impact Neo4j datastore. You can manually check consistency between the ZODB and the
datastore, and if necessary, rebuild a subset of or all service models.

The manual options allow more granular repair to just a subset of entity impact graphs for all service contexts
in which the entity participates. This approach can be much faster than repairing all information. However, if a
large amount of entity information must be repaired, rebuilding all with one action might be faster.

To check for consistency between the Resource Manager ZODB and the Service Impact Neo4j datastore, run the
following command:

zenimpactgraph run --check

To update impact dependencies for one or more entity nodes for all service contexts in which they participate,
run the following command

zenimpactgraph run --update --sb <node_name | node_id | node_path>
 --direction <0 | 1> --depth <0 | integer>

Commands for zenimpactgraph run update are as follows:

■ Specify the subgraph by name, path, or ID.

--sb=SUBGRAPH, --sub-graph=SUBGRAPH

The node path must start with /zport/dmd/. Separate multiple nodes with a comma.
■ Specify the maximum traversal depth level of the graph to update.

--depth=DEPTH

If no depth is specified, the default is to update all nodes in the graph, regardless of the number. Specify an
integer value to limit the maximum levels of the graph to be updated.

■ Specify the traversal direction:

--direction=DIRECTION

0 indicates INCOMING, to discover or rediscover all nodes that impact the target node. If no direction is
specified, the default is INCOMING.

1 indicates OUTGOING, to discover or rediscover all nodes that the target node impacts.

1 Log in to the Control Center master host as a user with serviced CLI privileges.
2 Connect to the zenimpactstate container as the zenoss user.

serviced service attach zenimpactstate su - zenoss

3 Run zenimpactgraph run update with commands.

See the following examples.

Zenoss Service Impact User Guide

64

Example 1: Basic command using defaults

The following commands use default values to discover nodes for the target node. The target
node is specified by name, vxchnge-vcenter-02.zenoss.loc. All nodes that impact
the target node (incoming direction) and all nodes that the target node impacts (outgoing
direction) are discovered. All levels of the graph will be updated (unlimited depth).

zenimpactgraph run --update --sb vxchnge-vcnter-02.zenoss.loc

Example 2: Discover outgoing nodes for the named subgraph

The following commands discover all nodes that are impacted by the target node, vxchnge-
vcenter-02.zenoss.loc. All levels of the graph will be updated (unlimited depth).

zenimpactgraph run --update --sb vxchnge-
vcenter-02.zenoss.loc --direction 1

Example 3: Discover incoming nodes for the named subgraph

The following commands discover all nodes that impact the target node, vSphere, and limit
the updates to a depth of 10 levels of the graph.

zenimpactgraph run --update --sb vSphere --direction 0 --
depth 10

Example 4: Discover outgoing nodes for the subgraph at the specified path

The following commands discover all nodes that are impacted by the target node, vxchnge-
vcenter-02.zenoss.loc, and limit the updates to a depth of 100 levels of the graph.

zenimpactgraph run --update --sb /zport/dmd/Devices/vSphere/
devices/vSphere
--direction 1 --depth 100

Example 5: Discover incoming nodes for the subgraph at the specified path

The following commands discover all nodes that impact the target node, vxchnge-
vcenter-02.zenoss.loc. All levels of the graph will be updated (unlimited depth).

zenimpactgraph run -update --sb /zport/dmd/Devices/vSphere/
devices/vxchnge-vcenter-02.zenoss.loc
--direction 0

	Contents
	About this guide
	Introduction to Service Impact
	Terminology and concepts
	Service events
	Service models, nodes, and graphs
	Dynamic service context
	Organizers and organizing groups

	State propagation policies
	State triggers
	Actual and derived state
	How policies work

	Service model definition process

	Tutorial: Creating a service model
	Define the service to model
	Tutorial devices and member types
	Introduction to the tutorial environment

	Create logical node and subservice members for Internet connections
	Create logical node
	Create a subservice member for one Internet connection
	Create a subservice member for the other Internet connection
	Create service member to represent redundant paths to the Internet
	Add a policy to the Internet connection member

	Create members for major network segments
	Create summary members for critical paths
	Create a member for the network service
	Create a member for the service model
	Send events to fake devices
	Remove tutorial service model members

	Exporting service models from one system to another
	Exporting a service model
	Importing service model definitions
	Preparing to import
	Initiating the import
	Reconciling originating and target system entities
	Attempting to reconcile
	Canceling the service model reconcile
	Adding the service models to the target system
	Future export scenarios and machine learning
	zenimpactimport
	Example export file
	Example import results file

	Browser interface resources
	Adding an Impact Services portlet
	Service Impact home page
	Tree view area
	Primary view area

	Members view
	Add to Service dialog box
	Impact Events
	Impact View
	Node tile

	Impact Policies dialog box
	Edit Policy options
	Edit Custom State Provider options

	Logical node details view

	Configuring Service Impact
	Production state propagation threshold
	Configuring the production state propagation threshold

	Service Impact server configuration files
	Configuration file best practices
	Editing server configuration files with Control Center (Resource Manager 5.2.x and later)
	Editing server configuration files in the Impact container (Resource Manager 4.2.5)

	Targeted graph update
	Tuning targeted graph update
	Manually rebuilding an impact graph

