
Zero Calculator
I. Python app description

II. Python Shell window

III. MicroPython Specification

3.1. Platform features and abilities

IV. LVGL Library

4.1. Zero Micropython + LVGL implementation

4.1.1. Keyboard support from LVGL

4.2. Zero Micropython module objects overview

4.3. Zero Micropython + LVGL examples

4.3.1. Importing library and show help

4.3.2. Arc

4.3.3. Arc + task

4.3.4. Bar

4.3.5. Button matrix

4.3.6. Buttons

4.3.7. Canvas

4.3.8. Chart

4.3.9. Checkbox

4.3.10. Manual drawing

4.3.11. Gauge

4.3.12. Label

4.3.13. Label shadow

4.3.14. Label change

4.3.15. Led

4.3.16. Line

4.3.17. List

4.3.18. LMeter

4.3.19. MessageBox

4.3.20. Preloader

4.3.21. Roller

4.3.22. Slider

4.3.23. Spinbox

4.3.24. Switch

4.3.25. Table

4.3.26. Tabview

4.3.27. Textarea simple

4.3.28. Textarea password

4.3.29. Tileview

V. Documentation changelog

v2.27.1 (2025-12-29)

v2.27.0 (2025-12-15)

v2.26.0 (2025-10-16)

v2.25.0 (2025-09-11)

MicroPython User Manual (v2.27.1 dated 30.12.2025)

MicroPython is an implementation of the Python language written in C and designed to run on

microcontrollers. More information about the MicroPython project can be found on the project website1, in the

project documentation,2 and in the project repository3.

Zero Calculator is able to interpret the MicroPython language. MicroPython is highly platform-dependent. This

affects the modules and language features available for this platform. The language functions and features

available to the user are described in the MicroPython Specification section.

I. Python app description

Python app is a separate Zero Calculator mode that contains its own screens and keyboard processing different

from other modes.

To enter Python app, press the prgm key, then select Python App (2).

Python app contains three tabs (use ◀ and ▶ to switch between tabs): EXEC, SHELL, DEL.

The EXEC tab contains a sorted list of .py files located in the /exchange folder. Files can also be

located in subfolders. A file can be selected by using ▲ and ▼ . The name of the selected file is

displayed in the tooltip in the header of the screen. Pressing enter or the button corresponding to the

file activates the execution of the selected file in Python Shell window.

1.

https://www.micropython.org/
https://docs.micropython.org/en/latest/
https://github.com/micropython/micropython

The SHELL tab. By pressing enter in this tab, the user can enter Python Shell window.

The DEL tab contains the same list of files as the EXEC tab. File activation in this tab opens the

selection confirmation menu: Cancel (cancel deletion) and Delete (delete the selected file). Use ▲ and

▼ to select an action and enter to activate it. Closing the menu (by using clear , quit or other

buttons) is equivalent to activating Cancel.

To exit from Python app, press clear , quit , or buttons that open other windows (not related to Python app).

II. Python Shell window

Python Shell window contains a history block and a command input block.

Initially, the history block contains a welcome message, which includes MicroPython header with its version

and the platform header with its version. The text of the commands entered by the user along with the

interpreter's interactive prompt and the text of the command execution result are saved to the history. The

history can contain up to 2048 symbols. As the history is filled in, older content is truncated. The maximum

count of visible lines in the history block is 15. The maximum count of symbols in one line is 45. If the string is

longer than specified, then its content will be transferred to the following lines. The history block has vertical

scrolling. Scrolling is performed by using alpha + ▲ and alpha + ▼ . The amount of scrolling is 3 lines.

Also, adding information to the history block automatically scrolls it to the end.

The command input block is located at the bottom of the screen. It is used to enter commands for the Python

interpreter. Command execution is started after pressing enter . After this, the control over the platform will

2.

3.

be passed to the Python interpreter. This means that the calculator screen will not be updated (except the

print() command), the keyboard will not respond, and the internal processes of the calculator will stop until

the command is interpreted. This implementation is needed to maximize the speed of command interpretation.

Interrupting command interpretation can be done with on or physical platform reset (the reset button on the

backside of the calculator). Command executionplaces its text to the command history (except for an empty

command). The command history can contain up to 20 commands. Pressing ▲ extracts the previous command

from the command history and places it to the command input block. If there is no previous command, the

button is ignored. Pressing ▼ extracts the next command from the command history and places it to the

command input block. If there is no next command, then an empty string is placed to the command input block.

The command input block has horizontal scrolling. Scrolling is done automatically by trying to move the cursor

beyond the input field by using ◀ and ▶ .

Commands entered by the user are executed in the same context of the Python interpreter. The context and the

history of commands and results are reset after closing Python Shell window or shutting down the platform.

Keyboard processing in Python Shell window is different from keyboard processing in other modes of Zero

Calculator. Below is the list of buttons, symbols, combinations, and the logic of processing thereof:

2nd , alpha work similarly to other Zero Calculator modes.

on throws KeyboardInterrupt interruption at the moment of interpreting the command.

▲ , ▶ , ▼ , ◀ Their work is described above.

2nd + ◀ , 2nd + ▶ moves the cursor to the beginning or end of the command input block.

alpha + ▲ , alpha + ▼ scrolls the history block.

quit exits Python Shell window and switches to Python app.

off switches off Zero Calculator.

del removes previous symbol.

clear clears command input block.

^ , , , (,) , ÷ , × , - , + , . , 0 - 9 , { , } ,] , [, u , v , w , " , ? , : insert the

corresponding character into the command input block.

A - Z insert the corresponding case-sensitive letter into the command input block.

sto→ inserts = into the command input block.

(-) inserts _ into the command input block.

π inserts pi into the command input block.

2nd + ÷ inserts \ into the command input block.

2nd + + inserts ' into the command input block.

2nd + sto→ inserts ! into the command input block.

⎵ inserts space into the command input block.

θ inserts @ into the command input block.

Buttons, symbols, and combinations that are not included in this list are not processed in Python Shell window.

The physical keyboard of the platform does not allow for entering certain characters (~ , # , $, % , & , < ,

> , |), but the Python interpreter is able to process them. These characters can only be entered in the Zero

Calculator emulator using a physical keyboard.

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

III. MicroPython Specification

Zero Calculator includes MicroPython v1.23.0 dated 05.31.2024 which is built for the ARM Cortex-M4

architecture (without emulators). This build implements Python 3.4 and some featured functions of Python 3.5

and above (comparison4). This MicroPython build has the following building options (the options order is set

by the configuration file mpconfig.h5):

[Enabled] In-progress/breaking changes slated for the MicroPython 2.x release

(MICROPY_PREVIEW_VERSION_2).

Used minimal port with disabling all optional features (MICROPY_CONFIG_ROM_LEVEL =

MICROPY_CONFIG_ROM_LEVEL_MINIMUM).

Default allocation memory settings (MICROPY_ALLOC_... , MICROPY_GC_... ,

MICROPY_OBJ_...).

[Enabled] Passing allocated memory region size to realloc/free functions

(MICROPY_MALLOC_USES_ALLOCATED_SIZE).

16 bytes allocate initially when creating new chunks to store parse nodes

(MICROPY_ALLOC_PARSE_CHUNK_INIT).

Maximum length of a path in the filesystem is 256 symbols (MICROPY_ALLOC_PATH_MAX).

[Disabled] Supporting loading of persistent code (mpy) (default)

(MICROPY_PERSISTENT_CODE_LOAD).

[Enabled] Ability to interpret Python commands (MICROPY_ENABLE_COMPILER).

[Disabled] Optimizations and calculations during compilation (minimal port)

(MICROPY_COMP_CONST_FOLDING , MICROPY_COMP_CONST_TUPLE ,

MICROPY_COMP_CONST_LITERAL , MICROPY_COMP_MODULE_CONST , MICROPY_COMP_CONST ,

MICROPY_COMP_DOUBLE_TUPLE_ASSIGN , MICROPY_COMP_TRIPLE_TUPLE_ASSIGN ,

MICROPY_COMP_RETURN_IF_EXPR).

[Enabled] Collect memory allocation stats (functions micropython.mem_total ,

micropython.mem_current , micropython.mem_peak)(MICROPY_MEM_STATS).

[Disabled] Debug settings (default) (MICROPY_DEBUG_PRINTERS , MICROPY_DEBUG_VERBOSE ,

MICROPY_DEBUG_MP_OBJ_SENTINELS , MICROPY_DEBUG_PARSE_RULE_NAME ,

MICROPY_DEBUG_VM_STACK_OVERFLOW , MICROPY_DEBUG_VALGRIND).

[Disabled] Optimizations (default, minimal port) (MICROPY_OPT_COMPUTED_GOTO ,

MICROPY_OPT_LOAD_ATTR_FAST_PATH , MICROPY_OPT_MAP_LOOKUP_CACHE ,

MICROPY_OPT_MAP_LOOKUP_CACHE_SIZE , MICROPY_OPT_MPZ_BITWISE ,

MICROPY_OPT_MATH_FACTORIAL).

[Enabled] Import of external modules (files) (MICROPY_ENABLE_EXTERNAL_IMPORT).

[Enabled] File reader for importing files (MICROPY_READER_VFS).

[Enabled] Garbage collector with default settings (MICROPY_ENABLE_GC).

[Enabled] Calling finalisers in the garbage collector (__del__) (MICROPY_ENABLE_FINALISER).

[Disabled] Separate allocator for the Python stack (default) (MICROPY_ENABLE_PYSTACK).

[Disabled] Emergency exception buffer (default) (MICROPY_ENABLE_EMERGENCY_EXCEPTION_BUF).

[Enabled] Keyboard interrupt (MICROPY_KBD_EXCEPTION).

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

https://docs.micropython.org/en/latest/genrst/index.html
https://github.com/micropython/micropython/blob/master/py/mpconfig.h

[Enabled] Input helper functions (MICROPY_HELPER_REPL).

Allow enabling debug prints after each entered command (MICROPY_REPL_INFO).

[Disabled] Auto indent (MICROPY_REPL_AUTO_INDENT).

[Enabled] Event-driven input functions (MICROPY_REPL_EVENT_DRIVEN).

Count of commands keeped in Python history: 0 (MICROPY_READLINE_HISTORY_SIZE).

[Disabled] Terminal VT100 (MICROPY_HAL_HAS_VT100).

long int is an arbitrary precision integer type (MICROPY_LONGINT_IMPL =

MICROPY_LONGINT_IMPL_MPZ).

[Disabled] Processing line numbers of the source (minimal port) (MICROPY_ENABLE_SOURCE_LINE).

[Disabled] Doc strings (__doc__) (default), (MICROPY_ENABLE_DOC_STRING).

[Enabled] Print basic error and exception details (MICROPY_ERROR_REPORTING =

MICROPY_ERROR_REPORTING_NORMAL).

[Disabled] Warnings (default) (MICROPY_WARNINGS , MICROPY_WARNINGS_CATEGORY).

float is double (MICROPY_FLOAT_IMPL = MICROPY_FLOAT_IMPL_DOUBLE).

[Enabled] Complex numbers (MICROPY_PY_BUILTINS_COMPLEX).

[Disabled] High-quality hash for float and complex numbers (minimal port)

(MICROPY_FLOAT_HIGH_QUALITY_HASH).

[Disabled] Features which improve CPython compatibility (minimal port)

(MICROPY_CPYTHON_COMPAT).

[Disabled] Full checks as done by CPython (minimal port) (MICROPY_FULL_CHECKS).

[Disabled] POSIX-semantics non-blocking streams (default, minimal port)

(MICROPY_STREAMS_NON_BLOCK , MICROPY_STREAMS_POSIX_API).

[Disabled] Calling __init__ when importing builtin modules for the first time (minimal port)

(MICROPY_MODULE_BUILTIN_INIT).

[Disabled] Built-in modules having sub-packages (minimal port)

(MICROPY_MODULE_BUILTIN_SUBPACKAGES).

[Disabled] Module-level __getattr__ (minimal port) (MICROPY_MODULE_GETATTR).

[Disabled] Setting __name__ to '__main__' when importing file (default)

(MICROPY_MODULE_OVERRIDE_MAIN_IMPORT).

[Disabled] Frozen modules (default) (MICROPY_MODULE_FROZEN).

[Disabled] Overriding builtins in the builtins module (minimal port)

(MICROPY_CAN_OVERRIDE_BUILTINS).

[Enabled] Checking that the self argument of a builtin method has the correct type

(MICROPY_BUILTIN_METHOD_CHECK_SELF_ARG).

[Enabled] Using internally defined errno's (MICROPY_USE_INTERNAL_ERRNO).

[Disabled] Using internally defined *printf() functions (MICROPY_USE_INTERNAL_PRINTF).

[Disabled] Asynchronously aborting to the top level (default) (MICROPY_ENABLE_VM_ABORT).

[Disabled] Internal scheduler (minimal port) (MICROPY_ENABLE_SCHEDULER ,

MICROPY_SCHEDULER_STATIC_NODES).

[Enabled] Virtual file system (more in Platform features and abilities) (MICROPY_VFS).

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

[Disabled] Multiple inheritance of Python classes (minimal port)

(MICROPY_MULTIPLE_INHERITANCE).

[Enabled] Implementing attributes on functions (MICROPY_PY_FUNCTION_ATTRS).

[Disabled] Descriptors __get__ , __set__ , __delete__ (minimal port)

(MICROPY_PY_DESCRIPTORS).

[Disabled] Class __delattr__ , __setattr__ methods (minimal port)

(MICROPY_PY_DELATTR_SETATTR).

[Disabled] Async/await (minimal port) (MICROPY_PY_ASYNC_AWAIT).

[Enabled] F-strings (MICROPY_PY_FSTRINGS).

[Disabled] Assignment expressions with := (minimal port) (MICROPY_PY_ASSIGN_EXPR).

[Disabled] Non-standard .pend_throw() method for generators (minimal port)

(MICROPY_PY_GENERATOR_PEND_THROW).

[Disabled] Warning when comparing str and bytes objects (default)

(MICROPY_PY_STR_BYTES_CMP_WARN).

[Disabled] Methods bytes.hex and bytes.fromhex (minimal port)

(MICROPY_PY_BUILTINS_BYTES_HEX).

[Disabled] Unicode strings (minimal port) (MICROPY_PY_BUILTINS_STR_UNICODE).

[Disabled] Check for valid UTF-8 when converting bytes to str (minimal port)

(MICROPY_PY_BUILTINS_STR_UNICODE_CHECK).

[Enabled] Method str.count() (MICROPY_PY_BUILTINS_STR_COUNT).

[Enabled] Operator str % (...) (MICROPY_PY_BUILTINS_STR_OP_MODULO).

[Disabled] Methods str.center() , str.partition() , str.rpartition() ,

str.splitlines() (minimal port) (MICROPY_PY_BUILTINS_STR_CENTER ,

MICROPY_PY_BUILTINS_STR_PARTITION , MICROPY_PY_BUILTINS_STR_SPLITLINES).

[Enabled] Type bytearray (MICROPY_PY_BUILTINS_BYTEARRAY).

[Disabled] Methods dict.fromkeys() (minimal port)

(MICROPY_PY_BUILTINS_DICT_FROMKEYS).

[Enabled] Type memoryview (MICROPY_PY_BUILTINS_MEMORYVIEW).

[Disabled] Property memoryview.itemsize (minimal port)

(MICROPY_PY_BUILTINS_MEMORYVIEW_ITEMSIZE).

[Enabled] Type set (MICROPY_PY_BUILTINS_SET).

[Enabled] slice ([a:b]) (MICROPY_PY_BUILTINS_SLICE).

[Disabled] Properties slice.start , slice.stop , slice.step (minimal port)

(MICROPY_PY_BUILTINS_SLICE_ATTRS).

[Disabled] Methods slice.indices(len) (minimal port)

(MICROPY_PY_BUILTINS_SLICE_INDICES).

[Disabled] Type frozenset (minimal port) (MICROPY_PY_BUILTINS_FROZENSET).

[Disabled] Type property (minimal port) (MICROPY_PY_BUILTINS_PROPERTY).

[Disabled] Properties range.start , range.stop , range.step (minimal port)

(MICROPY_PY_BUILTINS_RANGE_ATTRS).

[Disabled] Comparing (inequality/equality) range objects (minimal port)

(MICROPY_PY_BUILTINS_RANGE_BINOP).

[Disabled] Calling next() with second argument (minimal port) (MICROPY_PY_BUILTINS_NEXT2).

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

[Enabled] Function round(int, int) (MICROPY_PY_BUILTINS_ROUND_INT).

[Disabled] Supporting complete set of special methods for user classes (minimal port)

(MICROPY_PY_ALL_SPECIAL_METHODS).

[Disabled] Supporting all inplace arithmetic operation methods for user classes (__imul__ and

another) (minimal port) (MICROPY_PY_ALL_INPLACE_SPECIAL_METHODS).

[Disabled] Supportingreverse arithmetic operation methods for user classes (__radd__ and another)

(minimal port) (MICROPY_PY_REVERSE_SPECIAL_METHODS).

[Disabled] Function compile() (minimal port) (MICROPY_PY_BUILTINS_COMPILE).

[Enabled] Function and type enumerate() (MICROPY_PY_BUILTINS_ENUMERATE).

[Enabled] Functions eval , exec (MICROPY_PY_BUILTINS_EVAL_EXEC).

[Disabled] Python 2 function execfile() (minimal port) (MICROPY_PY_BUILTINS_EXECFILE).

[Disabled] Function filter() (minimal port) (MICROPY_PY_BUILTINS_FILTER).

[Enabled] Function reversed() (MICROPY_PY_BUILTINS_REVERSED).

[Disabled] Constant "NotImplemented" (minimal port)

(MICROPY_PY_BUILTINS_NOTIMPLEMENTED).

[Disabled] Function input() (MICROPY_PY_BUILTINS_INPUT).

[Enabled] Functions min , max (MICROPY_PY_BUILTINS_MIN_MAX).

[Disabled] Function pow(int, int, int) (minimal port) (MICROPY_PY_BUILTINS_POW3).

[Enabled] Function help() (MICROPY_PY_BUILTINS_HELP ,

MICROPY_PY_BUILTINS_HELP_TEXT , MICROPY_PY_BUILTINS_HELP_MODULES).

[Disabled] Variable __FILE__ (minimal port) (MICROPY_PY___FILE__).

[Enabled] Functions micropython.mem_total , micropython.mem_current ,

micropython.mem_peak , micropython.stack_use (MICROPY_PY_MICROPYTHON_MEM_INFO ,

MICROPY_PY_MICROPYTHON_STACK_USE).

[Disabled] Function micropython.heap_locked (minimal port)

(MICROPY_PY_MICROPYTHON_HEAP_LOCKED).

[Enabled] Module array (MICROPY_PY_ARRAY).

[Disabled] Slice assignments for array (a[0:2] = b) (minimal port)

(MICROPY_PY_ARRAY_SLICE_ASSIGN).

[Enabled] Type attrtuple (space-efficient namedtuple) (MICROPY_PY_ATTRTUPLE).

[Enabled] Module collections (MICROPY_PY_COLLECTIONS).

[Disabled] Types collections.deque , collections.OrderedDict (minimal port)

(MICROPY_PY_COLLECTIONS_DEQUE , MICROPY_PY_COLLECTIONS_ORDEREDDICT).

[Disabled] Methods namedtuple._asdict() (minimal port)

(MICROPY_PY_COLLECTIONS_NAMEDTUPLE__ASDICT).

[Enabled] Module math (MICROPY_PY_MATH).

[Disabled] Addition math module constants without math.pi , math.e (minimal port)

(MICROPY_PY_MATH_CONSTANTS).

[Disabled] Addition math module functions math.erf , math.erfc , math.gamma ,

math.lgamma , math.factorial , math.isclose (minimal port)

(MICROPY_PY_MATH_SPECIAL_FUNCTIONS , MICROPY_PY_MATH_SPECIAL_FUNCTIONS ,

MICROPY_PY_MATH_FACTORIAL , MICROPY_PY_MATH_ISCLOSE).

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

[Disabled] Fixes for math module functions math.atan2 , math.fmod , math.modf , math.pow

(default) (MICROPY_PY_MATH_ATAN2_FIX_INFNAN , MICROPY_PY_MATH_FMOD_FIX_INFNAN ,

MICROPY_PY_MATH_MODF_FIX_NEGZERO , MICROPY_PY_MATH_POW_FIX_NAN).

[Enabled] Module cmath (MICROPY_PY_CMATH).

[Enabled] Module micropython (MICROPY_PY_MICROPYTHON).

[Enabled] Module gc (MICROPY_PY_GC).

[Enabled] Module io (MICROPY_PY_IO).

[Disabled] Classes io.IOBase , io.BufferedWriter (minimal port) (MICROPY_PY_IO_IOBASE ,

MICROPY_PY_IO_BUFFEREDWRITER).

[Enabled] Module struct (MICROPY_PY_STRUCT).

[Enabled] Module sys (MICROPY_PY_SYS).

[Disabled] Constants, properties and functions sys.maxsize , sys.exc_info , sys.executable ,

sys.intern , sys.atexit , sys.ps1 , sys.ps2 , sys.settrace , sys.getsizeof ,

sys.stdin , sys.stdout , sys.stderr , sys.tracebacklimit (default, minimal port)

(MICROPY_PY_SYS_MAXSIZE , MICROPY_PY_SYS_EXC_INFO , MICROPY_PY_SYS_EXECUTABLE ,

MICROPY_PY_SYS_INTERN , MICROPY_PY_SYS_ATEXIT , MICROPY_PY_SYS_PS1_PS2 ,

MICROPY_PY_SYS_SETTRACE , MICROPY_PY_SYS_GETSIZEOF , MICROPY_PY_SYS_STDFILES ,

MICROPY_PY_SYS_STDIO_BUFFER , MICROPY_PY_SYS_TRACEBACKLIMIT).

[Enabled] Dictionary sys.modules (default) (MICROPY_PY_SYS_MODULES).

[Enabled] Function sys.exit (default) (MICROPY_PY_SYS_EXIT).

[Enabled] Lists sys.path , sys.argv (MICROPY_PY_SYS_PATH , MICROPY_PY_SYS_ARGV).

[Enabled] Module errno (MICROPY_PY_ERRNO).

[Enabled] Dictionary errno.errorcode (default) (MICROPY_PY_ERRNO_ERRORCODE).

[Disabled] Module select (minimal port) (MICROPY_PY_SELECT).

[Disabled] Module time (minimal port) (MICROPY_PY_TIME).

[Disabled] Module _thread (MICROPY_PY_THREAD).

[Disabled] Module asyncio (minimal port) (MICROPY_PY_ASYNCIO).

[Disabled] Module uctypes (minimal port) (MICROPY_PY_UCTYPES).

[Disabled] Module deflate (minimal port) (MICROPY_PY_DEFLATE).

[Disabled] Module json (minimal port) (MICROPY_PY_JSON).

[Enabled] Module os (MICROPY_PY_OS).

[Disabled] Function os.statvfs (MICROPY_PY_OS_STATVFS).

[Enabled] Function os.uname (MICROPY_PY_OS_UNAME).

[Enabled] Constant os.sep (MICROPY_PY_OS_SEP).

[Disabled] Module re (minimal port) (MICROPY_PY_RE).

[Disabled] Module heapq (minimal port) (MICROPY_PY_HEAPQ).

[Disabled] Module hashlib (minimal port) (MICROPY_PY_HASHLIB).

[Disabled] Module cryptolib (minimal port) (MICROPY_PY_CRYPTOLIB).

[Disabled] Module binascii (minimal port) (MICROPY_PY_BINASCII).

[Disabled] Module random (minimal port) (MICROPY_PY_RANDOM).

[Disabled] Module machine (MICROPY_PY_MACHINE).

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

[Disabled] Module lwip (MICROPY_PY_LWIP).

[Disabled] Module ssl (default) (MICROPY_PY_SSL).

[Disabled] Module vfs (MICROPY_PY_VFS).

[Disabled] Module websocket (default) (MICROPY_PY_WEBSOCKET).

[Disabled] Module framebuf (minimal port) (MICROPY_PY_FRAMEBUF).

[Disabled] Module btree (default) (MICROPY_PY_BTREE).

[Disabled] Module _onewire (default) (MICROPY_PY_ONEWIRE).

[Disabled] Module platform (minimal port) (MICROPY_PY_PLATFORM).

3.1. Platform features and abilities

Regardless of the running of the script file or Python Shell, a heap area is allocated for MicroPython interpreter.

The heap area size is equal to half the volume of all free RAM, but no more than 4MB (4194304 bytes).

MicroPython interpreter can manage a virtual file system. The virtual filesystem root folder (/) is at

/exchange . A recursive script search in EXEC tab of Python app is also performed through this path. The

io and os modules can interact with the file system and files. Running a script file or Python Shell has some

differences:

Running /a/b/c.py Running Python Shell

Welcome message: Running /a/b/c.py

sys.argv = ['/a/b/c.py'] sys.argv = []

sys.path = ['','/a/b'] sys.path = ['']

os.getcwd() = '/a/b' os.getcwd() = '/'

First traceback level: c.py First traceback level: <stdin>

The implementation of the following modules depends on the current platform:

sys (more6), implemented:

argv <list>

path <list>

version <string>

version_info <tuple>

•

•

•

•

•

•

•

•

•

◦

◦

◦

◦

https://docs.micropython.org/en/latest/library/sys.html

implementation <namedtuple>

platform <string>

byteorder <string>

exit <function> (Calling this function will exit Python Shell window and return to the main

screen of Zero Calculator. The argument passed to the function will be converted into a string and

inserted into the editor.)

modules <dict>

print_exception <function>

os (more7), implemented:

sep <string>

uname <function>

chdir <function>

getcwd <function> (current directory may not exist if you delete it after switching to it)

listdir <function> (if argument is not passed, outputs the contents of the current catalog .)

mkdir <function> (also creates child directories if they don't exist)

remove <function> (deletes the file if it exists)

rename <function> (movement is performed only to existing paths)

rmdir <function> (deletes an empty directory if it exists)

stat <function> (returns <tuple>, 0th item (st_mode): 0x8000 - file, 0x4000 - directory, 6th

item (st_size): file size in bytes (directory size is 0), 8th item (st_mtime): file change

timestamp (Zero Calculator uses FAT file system), other items are 0).

statvfs <function> (throws an exception when used)

unlink <function> (deletes the file if it exists)

ilistdir <function>

errno (more8), implemented:

errorcode <dict>

EPERM <int> (operation not permitted)

ENOENT <int> (no such file or directory)

EIO <int> (i/o error)

EBADF <int> (bad file number)

EAGAIN <int> (try again)

ENOMEM <int> (out of memory)

EACCES <int> (permission denied)

EEXIST <int> (file exists)

ENODEV <int> (no such device)

ENOTDIR <int> (not a directory)

EISDIR <int> (is a directory)

EINVAL <int> (invalid argument)

EROFS <int> (read-only file system)

EOPNOTSUPP <int> (operation not supported on transport endpoint)

EADDRINUSE <int> (address already in use)

ECONNABORTED <int> (software caused connection abort)

ECONNRESET <int> (connection reset by peer)

ENOBUFS <int> (no buffer space available)

◦

◦

◦

◦

◦

◦

•

◦

◦

◦

◦

◦

◦

◦

◦

◦

◦

◦

◦

◦

•

◦

◦

◦

◦

◦

◦

◦

◦

◦

◦

◦

◦

◦

◦

◦

◦

◦

◦

◦

https://docs.micropython.org/en/latest/library/os.html
https://docs.micropython.org/en/latest/library/errno.html

ENOTCONN <int> (transport endpoint is not connected)

ETIMEDOUT <int> (connection timed out)

ECONNREFUSED <int> (connection refused)

EHOSTUNREACH <int> (no route to host)

EALREADY <int> (operation already in progress)

EINPROGRESS <int> (operation now in progress)

EFAILED <int> (Zero Calculator internal error, it is mainly used if the file system cannot

process the request)

micropython (more9) , implemented:

const <function>

opt_level <function>

mem_total <function>

mem_current <function>

mem_peak <function>

mem_info <function>

qstr_info <function>

stack_use <function>

heap_lock <function>

heap_unlock <function>

kbd_intr <function> (is not processed because Zero Calculator uses internal processing of

keyboard interruption)

To get more detailed information about the available data types, functions, methods, and modules, use the

function help() . Also refer to the online documentation of Python10 and MicroPython2 (modules

description11, differences from Python4).

◦

◦

◦

◦

◦

◦

◦

•

◦

◦

◦

◦

◦

◦

◦

◦

◦

◦

◦

https://docs.micropython.org/en/latest/library/micropython.html
https://docs.python.org/3/index.html
https://docs.micropython.org/en/latest/
https://docs.micropython.org/en/latest/library/index.html
https://docs.micropython.org/en/latest/library/index.html
https://docs.micropython.org/en/latest/genrst/index.html

IV. LVGL Library

Micropython support using the LVGL (LittlevGV) library version v6.1.2.

LittlevGL is a free and open-source graphics library providing everything you need to create embedded GUI

with easy-to-use graphical elements, beautiful visual effects and low memory footprint.

To get more information about the LVGL library refer to the online documentation of LVLG12

This documentation provides both basic library information and detailed descriptions with examples for each

type of graphical object.

4.1. Zero Micropython + LVGL implementation

To work with LVGL library you need to import it by calling the command import lvgl . The base (parent)

object for drawing is the screen. Access to this object can be obtained by calling the scr_act function. This

object occupies the entire display excluding the header. It is forbidden to delete this object, change its position

or size. However, you can use your own design functions with this object (an example will be given below).

This screen is hidden by default and it is possible to use show and hide functions to show it. When the

Python script execution is finished, but the draw screen is still open, it is possible to close it using the quit

key. Interrupting script execution is also available by pressing the on key. The rest of the information on

LVGL can be found at the provided link to the LVGL documentation and the examples below. The Python

examples in the official documentation have a slightly different API, so it is recommended to use the examples

in this document. You can also use the help function to get information on LVGL.

4.1.1. Keyboard support from LVGL

To support keyboard input, register an LVGL indev device with type KEYPAD and read callback

lvgl.keypad_read . Graphical objects that are to be controlled from the keyboard must be added to a

group , and the group is bound to the indev . Below is a table of how the physical calculator buttons are

bound to the LVGL input device:

Phisical key LVGL key Action

▲ LV_KEY_UP Increase value or move upwards

▼ LV_KEY_DOWN Decrease value or move downwards

▶ LV_KEY_RIGHT Increase value or move the the right

◀ LV_KEY_LEFT Decrease value or move the the left

del LV_KEY_BACKSPACE Delete a character on the left

clear LV_KEY_ESC Close or exit

enter LV_KEY_ENTER Triggers LV_EVENT_PRESSED/CLICKED events

alpha + ▲ LV_KEY_HOME Go to the beginning/top (E.g. in a Text area)

alpha + ▼ LV_KEY_END Go to the end (E.g. in a Text area)

https://docs.lvgl.io/6.1/

Phisical key LVGL key Action

2nd + ◀ LV_KEY_PREV Focus on the previous object

2nd + ▶ LV_KEY_NEXT Focus on the next object

Read more information about input devices and LVGL groups in the LVGL documentation13

The creation and use of input devices is shown in some examples below.

4.2. Zero Micropython module objects overview

keypad_read -- <mp_keypad_read>

show -- <function>

hide -- <function>

get_header_height -- <function>

__name__ -- lvgl

obj -- <class 'obj'>

cont -- <class 'cont'>

btn -- <class 'btn'>

imgbtn -- <class 'imgbtn'>

label -- <class 'label'>

img -- <class 'img'>

line -- <class 'line'>

page -- <class 'page'>

list -- <class 'list'>

chart -- <class 'chart'>

table -- <class 'table'>

cb -- <class 'cb'>

cpicker -- <class 'cpicker'>

bar -- <class 'bar'>

slider -- <class 'slider'>

led -- <class 'led'>

btnm -- <class 'btnm'>

ddlist -- <class 'ddlist'>

roller -- <class 'roller'>

ta -- <class 'ta'>

canvas -- <class 'canvas'>

win -- <class 'win'>

tabview -- <class 'tabview'>

tileview -- <class 'tileview'>

mbox -- <class 'mbox'>

lmeter -- <class 'lmeter'>

gauge -- <class 'gauge'>

sw -- <class 'sw'>

arc -- <class 'arc'>

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

https://docs.lvgl.io/6.1/overview/indev.html#keypad-and-encoder

preload -- <class 'preload'>

spinbox -- <class 'spinbox'>

color_make -- <function>

color_hex -- <function>

color_hex3 -- <function>

style_anim_set_time -- <function>

style_anim_set_ready_cb -- <function>

style_anim_set_playback -- <function>

style_anim_clear_playback -- <function>

style_anim_set_repeat -- <function>

style_anim_clear_repeat -- <function>

style_anim_create -- <function>

scr_act -- <function>

mem_init -- <function>

mem_deinit -- <function>

mem_alloc -- <function>

mem_free -- <function>

mem_realloc -- <function>

mem_defrag -- <function>

mem_get_size -- <function>

task_core_init -- <function>

task_handler -- <function>

task_create_basic -- <function>

task_create -- <function>

task_enable -- <function>

task_get_idle -- <function>

trigo_sin -- <function>

bezier3 -- <function>

atan2 -- <function>

sqrt -- <function>

async_call -- <function>

color_hsv_to_rgb -- <function>

color_rgb_to_hsv -- <function>

tick_get -- <function>

tick_elaps -- <function>

anim_core_init -- <function>

anim_del -- <function>

anim_count_running -- <function>

anim_speed_to_time -- <function>

style_init -- <function>

style_anim_init -- <function>

style_anim_set_styles -- <function>

init -- <function>

event_send -- <function>

event_send_func -- <function>

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

event_get_data -- <function>

signal_send -- <function>

group_init -- <function>

group_create -- <function>

group_remove_obj -- <function>

group_focus_obj -- <function>

indev_init -- <function>

indev_read_task -- <function>

indev_get_act -- <function>

indev_get_obj_act -- <function>

debug_check_null -- <function>

debug_check_obj_type -- <function>

debug_check_obj_valid -- <function>

debug_check_style -- <function>

debug_check_str -- <function>

debug_log_error -- <function>

theme_get_current -- <function>

txt_get_size -- <function>

txt_get_next_line -- <function>

txt_get_width -- <function>

txt_is_cmd -- <function>

txt_ins -- <function>

txt_cut -- <function>

draw_get_buf -- <function>

draw_free_buf -- <function>

draw_aa_get_opa -- <function>

draw_aa_ver_seg -- <function>

draw_aa_hor_seg -- <function>

draw_px -- <function>

draw_fill -- <function>

draw_letter -- <function>

draw_map -- <function>

draw_rect -- <function>

draw_label -- <function>

draw_line -- <function>

draw_triangle -- <function>

draw_polygon -- <function>

draw_arc -- <function>

draw_img -- <function>

RES -- <class 'LV_RES'>

TASK_PRIO -- <class 'LV_TASK_PRIO'>

OPA -- <class 'LV_OPA'>

INDEV_TYPE -- <class 'LV_INDEV_TYPE'>

INDEV_STATE -- <class 'LV_INDEV_STATE'>

FONT_SUBPX -- <class 'LV_FONT_SUBPX'>

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

ANIM -- <class 'LV_ANIM'>

BORDER -- <class 'LV_BORDER'>

SHADOW -- <class 'LV_SHADOW'>

BIDI_DIR -- <class 'LV_BIDI_DIR'>

DESIGN -- <class 'LV_DESIGN'>

EVENT -- <class 'LV_EVENT'>

SIGNAL -- <class 'LV_SIGNAL'>

ALIGN -- <class 'LV_ALIGN'>

DRAG_DIR -- <class 'LV_DRAG_DIR'>

PROTECT -- <class 'LV_PROTECT'>

KEY -- <class 'LV_KEY'>

GROUP_REFOCUS_POLICY -- <class 'LV_GROUP_REFOCUS_POLICY'>

FONT_FMT_TXT_CMAP -- <class 'LV_FONT_FMT_TXT_CMAP'>

LAYOUT -- <class 'LV_LAYOUT'>

FIT -- <class 'LV_FIT'>

TXT_FLAG -- <class 'LV_TXT_FLAG'>

TXT_CMD_STATE -- <class 'LV_TXT_CMD_STATE'>

SB_MODE -- <class 'LV_SB_MODE'>

CURSOR -- <class 'LV_CURSOR'>

FONT_FMT_TXT -- <class 'LV_FONT_FMT_TXT'>

SYMBOL -- <class 'LV_SYMBOL'>

C_Pointer -- <class 'C_Pointer'>

area_t -- <class 'lv_area_t'>

style_t -- <class 'lv_style_t'>

style_body_t -- <class 'lv_style_body_t'>

color16_t -- <class 'lv_color16_t'>

color16_ch_t -- <class 'lv_color16_ch_t'>

style_body_border_t -- <class 'lv_style_body_border_t'>

style_body_shadow_t -- <class 'lv_style_body_shadow_t'>

style_body_padding_t -- <class 'lv_style_body_padding_t'>

style_text_t -- <class 'lv_style_text_t'>

font_t -- <class 'lv_font_t'>

font_glyph_dsc_t -- <class 'lv_font_glyph_dsc_t'>

style_image_t -- <class 'lv_style_image_t'>

style_line_t -- <class 'lv_style_line_t'>

task_t -- <class 'lv_task_t'>

ll_t -- <class 'lv_ll_t'>

obj_type_t -- <class 'lv_obj_type_t'>

point_t -- <class 'lv_point_t'>

img_header_t -- <class 'lv_img_header_t'>

img_decoder_dsc_t -- <class 'lv_img_decoder_dsc_t'>

img_decoder_t -- <class 'lv_img_decoder_t'>

img_dsc_t -- <class 'lv_img_dsc_t'>

img_cache_entry_t -- <class 'lv_img_cache_entry_t'>

chart_series_t -- <class 'lv_chart_series_t'>

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

color_hsv_t -- <class 'lv_color_hsv_t'>

_lv_mp_int_wrapper -- <class '_lv_mp_int_wrapper'>

anim_t -- <class 'lv_anim_t'>

mem_monitor_t -- <class 'lv_mem_monitor_t'>

indev_drv_t -- <class 'lv_indev_drv_t'>

indev_data_t -- <class 'lv_indev_data_t'>

indev_t -- <class 'lv_indev_t'>

indev_proc_t -- <class 'lv_indev_proc_t'>

indev_proc_types_t -- <class 'lv_indev_proc_types_t'>

indev_proc_types_pointer_t -- <class 'lv_indev_proc_types_pointer_t'>

indev_proc_types_keypad_t -- <class 'lv_indev_proc_types_keypad_t'>

group_t -- <class 'lv_group_t'>

theme_t -- <class 'lv_theme_t'>

theme_style_t -- <class 'lv_theme_style_t'>

theme_style_btn_t -- <class 'lv_theme_style_btn_t'>

theme_style_imgbtn_t -- <class 'lv_theme_style_imgbtn_t'>

theme_style_label_t -- <class 'lv_theme_style_label_t'>

theme_style_img_t -- <class 'lv_theme_style_img_t'>

theme_style_line_t -- <class 'lv_theme_style_line_t'>

theme_style_bar_t -- <class 'lv_theme_style_bar_t'>

theme_style_slider_t -- <class 'lv_theme_style_slider_t'>

theme_style_sw_t -- <class 'lv_theme_style_sw_t'>

theme_style_cb_t -- <class 'lv_theme_style_cb_t'>

theme_style_cb_box_t -- <class 'lv_theme_style_cb_box_t'>

theme_style_btnm_t -- <class 'lv_theme_style_btnm_t'>

theme_style_btnm_btn_t -- <class 'lv_theme_style_btnm_btn_t'>

theme_style_mbox_t -- <class 'lv_theme_style_mbox_t'>

theme_style_mbox_btn_t -- <class 'lv_theme_style_mbox_btn_t'>

theme_style_page_t -- <class 'lv_theme_style_page_t'>

theme_style_ta_t -- <class 'lv_theme_style_ta_t'>

theme_style_spinbox_t -- <class 'lv_theme_style_spinbox_t'>

theme_style_list_t -- <class 'lv_theme_style_list_t'>

theme_style_list_btn_t -- <class 'lv_theme_style_list_btn_t'>

theme_style_ddlist_t -- <class 'lv_theme_style_ddlist_t'>

theme_style_roller_t -- <class 'lv_theme_style_roller_t'>

theme_style_tabview_t -- <class 'lv_theme_style_tabview_t'>

theme_style_tabview_btn_t -- <class 'lv_theme_style_tabview_btn_t'>

theme_style_tileview_t -- <class 'lv_theme_style_tileview_t'>

theme_style_table_t -- <class 'lv_theme_style_table_t'>

theme_style_win_t -- <class 'lv_theme_style_win_t'>

theme_style_win_btn_t -- <class 'lv_theme_style_win_btn_t'>

theme_group_t -- <class 'lv_theme_group_t'>

draw_label_txt_sel_t -- <class 'lv_draw_label_txt_sel_t'>

draw_label_hint_t -- <class 'lv_draw_label_hint_t'>

color_t -- <class 'lv_color16_t'>

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

font_code_saver_12 -- struct lv_font_t

font_code_saver_16 -- struct lv_font_t

font_unscii8_8 -- struct lv_font_t

style_scr -- struct lv_style_t

style_transp -- struct lv_style_t

style_transp_fit -- struct lv_style_t

style_transp_tight -- struct lv_style_t

style_plain -- struct lv_style_t

style_plain_color -- struct lv_style_t

style_pretty -- struct lv_style_t

style_pretty_color -- struct lv_style_t

style_btn_rel -- struct lv_style_t

style_btn_pr -- struct lv_style_t

style_btn_tgl_rel -- struct lv_style_t

style_btn_tgl_pr -- struct lv_style_t

style_btn_ina -- struct lv_style_t

_nesting -- struct _lv_mp_int_wrapper

LvReferenceError -- <class 'LvReferenceError'>

4.3. Zero Micropython + LVGL examples

4.3.1. Importing library and show help

import lvgl as lv

help(lv)

4.3.2. Arc

import lvgl as lv

Create style for the Arcs

style = lv.style_t()

style.copy(lv.style_plain)

style.line.color = lv.color_make(0x00, 0xFF, 0xFF) # Arc color

style.line.width = 8 # Arc width

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

Create an Arc

arc = lv.arc(lv.scr_act(), None)

arc.set_style(lv.arc.STYLE.MAIN, style) # Use the new style

arc.set_angles(90, 60)

arc.set_size(150, 150)

arc.align(None, lv.ALIGN.CENTER, 0, 0)

lv.show()

print("LVGL drawing finished")

4.3.3. Arc + task

import lvgl as lv

Create an arc which acts as a loader.

class loader_arc(lv.arc):

def __init__(self, parent, color=lv.color_hex(0x00FF80),

width=8, style=lv.style_plain, rate=20):

super().__init__(parent, None)

self.a = 0

self.rate = rate

Create style for the Arcs

self.style = lv.style_t()

self.style.copy(style)

self.style.line.color = color

self.style.line.width = width

Create an Arc

self.set_angles(180, 180)

self.set_style(self.STYLE.MAIN, self.style)

Spin the Arc

self.spin()

def spin(self):

Create an `lv_task` to update the arc.

lv.task_create(self.task_cb, self.rate, lv.TASK_PRIO.LOWEST, {})

An `lv_task` to call periodically to set the angles of the arc

def task_cb(self, task):

self.a+=5

if self.a >= 359: self.a = 359

if self.a < 180: self.set_angles(180-self.a, 180)

else: self.set_angles(540-self.a, 180)

if self.a == 359:

self.a = 0

task._del()

Create a loader arc

loader_arc = loader_arc(lv.scr_act())

loader_arc.align(None, lv.ALIGN.CENTER, 0, 0)

lv.show()

print("LVGL drawing finished")

4.3.4. Bar

import lvgl as lv

bar1 = lv.bar(lv.scr_act(), None)

bar1.set_size(200, 30)

bar1.align(None, lv.ALIGN.CENTER, 0, 0)

bar1.set_anim_time(2500)

bar1.set_value(100, lv.ANIM.ON)

lv.show()

print("LVGL drawing finished")

4.3.5. Button matrix

import lvgl as lv

Keyboard register

keyboardDriver = lv.indev_drv_t()

keyboardDriver.init()

keyboardDriver.type = lv.INDEV_TYPE.KEYPAD

keyboardDriver.read_cb = lv.keypad_read

keyboard = keyboardDriver.register()

Create groupe for keyboard handled objects

group = lv.group_create()

keyboard.set_group(group)

def event_handler(obj, event):

if event == lv.EVENT.VALUE_CHANGED:

txt = obj.get_active_btn_text()

print("%s was pressed" % txt)

btnm1 = lv.btnm(lv.scr_act(), None)

btnm1.set_map(["1", "2", "3", "4", "5", "\n",

"6", "7", "8", "9", "0", "\n",

"Action1", "Action2", ""])

btnm1.set_btn_width(10, 2) # Make "Action1" twice as wide as "Action2"

btnm1.align(None, lv.ALIGN.CENTER, 0, 0)

btnm1.set_event_cb(event_handler)

group.add_obj(btnm1)

lv.show()

print("LVGL drawing finished")

4.3.6. Buttons

import lvgl as lv

def event_handler(obj, event):

if event == lv.EVENT.CLICKED:

print("Button clicked")

btn1 = lv.btn(lv.scr_act(), None)

btn1.align(None, lv.ALIGN.CENTER, 0, -40)

btn1.set_event_cb(event_handler)

label = lv.label(btn1, None)

label.set_text("Button")

btn2 = lv.btn(lv.scr_act(), None)

callback can be lambda:

btn2.set_event_cb(lambda obj, event: print("Toggled") if event == lv.EVENT.VALUE_CHANGED else None)

btn2.align(None, lv.ALIGN.CENTER, 0, 40)

btn2.set_toggle(True)

btn2.toggle()

btn2.set_fit2(lv.FIT.NONE, lv.FIT.TIGHT)

label = lv.label(btn2, None)

label.set_text("Toggled")

Keyboard register

keyboardDriver = lv.indev_drv_t()

keyboardDriver.init()

keyboardDriver.type = lv.INDEV_TYPE.KEYPAD

keyboardDriver.read_cb = lv.keypad_read

keyboard = keyboardDriver.register()

Create groupe for buttons

group = lv.group_create()

group.add_obj(btn1)

group.add_obj(btn2)

keyboard.set_group(group)

lv.show()

print("LVGL drawing finished")

4.3.7. Canvas

import lvgl as lv

CANVAS_WIDTH = 200

CANVAS_HEIGHT = 150

style = lv.style_t()

style.copy(lv.style_plain)

style.body.main_color = lv.color_make(0xFF,0,0)

style.body.grad_color = lv.color_make(0x80,0,0)

style.body.radius = 4

style.body.border.width = 2

style.body.border.color = lv.color_make(0xFF,0xFF,0xFF)

style.body.shadow.color = lv.color_make(0xFF,0xFF,0xFF)

style.body.shadow.width = 4

style.line.width = 2

style.line.color = lv.color_make(0,0,0)

style.text.color = lv.color_make(0,0,0xFF)

CF.TRUE_COLOR requires 4 bytes per pixel

cbuf = bytearray(CANVAS_WIDTH * CANVAS_HEIGHT * 4)

canvas = lv.canvas(lv.scr_act(), None)

canvas.set_buffer(cbuf, CANVAS_WIDTH, CANVAS_HEIGHT, lv.img.CF.TRUE_COLOR)

canvas.align(None, lv.ALIGN.CENTER, 0, 0)

canvas.fill_bg(lv.color_make(0xC0, 0xC0, 0xC0))

canvas.draw_rect(70, 60, 100, 70, style)

canvas.draw_text(40, 20, 100, style, "Some text on text canvas", lv.label.ALIGN.LEFT)

Test the rotation. It requires an other buffer where the original image is stored.

So copy the current image to buffer and rotate it to the canvas

img = lv.img_dsc_t()

img.data = cbuf[:]

img.header.cf = lv.img.CF.TRUE_COLOR

img.header.w = CANVAS_WIDTH

img.header.h = CANVAS_HEIGHT

canvas.fill_bg(lv.color_make(0xC0, 0xC0, 0xC0))

canvas.rotate(img, 30, 0, 0, CANVAS_WIDTH // 2, CANVAS_HEIGHT // 2)

lv.show()

4.3.8. Chart

import lvgl as lv

Create a chart

chart = lv.chart(lv.scr_act(), None)

chart.set_size(200, 150)

chart.align(None, lv.ALIGN.CENTER, 0, 0)

chart.set_type(lv.chart.TYPE.POINT | lv.chart.TYPE.LINE) # Show lines and points too

chart.set_series_opa(lv.OPA._70) # Opacity of the data series

chart.set_series_width(4) # Line width and point radious

chart.set_range(0, 100)

Add two data series

ser1 = chart.add_series(lv.color_make(0xFF, 0x00, 0x00))

ser2 = chart.add_series(lv.color_make(0x00, 0x80, 0x00))

Set points on 'dl1'

chart.set_points(ser1, [10, 10, 10, 10, 10, 10, 10, 30, 70, 90])

Set points on 'dl2'

chart.set_points(ser2, [90, 70, 65, 65, 65, 65, 65, 65, 65, 65])

lv.show()

print("LVGL drawing finished")

4.3.9. Checkbox

import lvgl as lv

Keyboard register

keyboardDriver = lv.indev_drv_t()

keyboardDriver.init()

keyboardDriver.type = lv.INDEV_TYPE.KEYPAD

keyboardDriver.read_cb = lv.keypad_read

keyboard = keyboardDriver.register()

Create groupe for keyboard handled objects

group = lv.group_create()

keyboard.set_group(group)

def event_handler(obj, event):

if event == lv.EVENT.VALUE_CHANGED:

print("State: %s" % ("Checked" if obj.is_checked() else "Unchecked"))

cb = lv.cb(lv.scr_act(), None)

cb.set_text("I agree to terms")

cb.align(None, lv.ALIGN.CENTER, 0, 0)

cb.set_event_cb(event_handler)

group.add_obj(cb)

lv.show()

print("LVGL drawing finished")

4.3.10. Manual drawing

import lvgl as lv

scr = lv.scr_act()

Height of persistent header on screen

header_height = lv.get_header_height()

print("Screen width: ", scr.get_width())

print("Screen height: ", scr.get_height())

print("Header height: ", header_height)

def draw_cb(obj, mask, mode):

if mode == lv.DESIGN.DRAW_MAIN:

objArea = lv.area_t()

obj.get_coords(objArea)

Fill bg

bgColor = lv.color_make(0xFF, 0xFF, 0xFF)

lv.draw_fill(objArea, mask, bgColor, lv.OPA._100)

styleLine = lv.style_t()

styleLine.copy(lv.style_plain)

styleLine.line.color = lv.color_make(0xFF, 0x00, 0x00)

styleLine.line.width = 3

styleLine.line.rounded = 1

Draw hor line (in coordinates of display (320x240))

horLinePoint1 = { "x": objArea.x1, "y": objArea.y1 + int(objArea.get_height() / 2) }

horLinePoint2 = { "x": objArea.x2, "y": objArea.y1 + int(objArea.get_height() / 2) }

lv.draw_line(horLinePoint1, horLinePoint2, mask, styleLine, lv.OPA._100)

Draw ver line (in coordinates of display (320x240))

verLinePoint1 = { "x": objArea.x1 + int(objArea.get_width() / 2), "y": objArea.y1 }

verLinePoint2 = { "x": objArea.x1 + int(objArea.get_width() / 2), "y": objArea.y2 }

lv.draw_line(verLinePoint1, verLinePoint2, mask, styleLine, lv.OPA._100)

Draw four pixels

pxColor = lv.color_make(0x00, 0x00, 0x00)

lv.draw_px(objArea.x1 + 50, objArea.y1 + 50, mask, pxColor, lv.OPA._100)

lv.draw_px(objArea.x1 + 50, objArea.y2 - 50, mask, pxColor, lv.OPA._100)

lv.draw_px(objArea.x2 - 50, objArea.y1 + 50, mask, pxColor, lv.OPA._100)

lv.draw_px(objArea.x2 - 50, objArea.y2 - 50, mask, pxColor, lv.OPA._100)

Draw rectangle

styleRect = lv.style_t()

styleRect.copy(lv.style_plain)

styleRect.body.main_color = lv.color_make(0x00, 0xFF, 0x00)

styleRect.body.grad_color = lv.color_make(0x00, 0xFF, 0x00)

styleRect.body.radius = 5

rectArea = lv.area_t()

rectArea.set(objArea.x1 + 60, objArea.y1 + 60, objArea.x1 + 100, objArea.y1 + 100)

lv.draw_rect(rectArea, mask, styleRect, lv.OPA._100)

Draw label

labelStyle = lv.style_t()

labelStyle.copy(lv.style_plain)

labelStyle.text.color = lv.color_make(0x00, 0xFF, 0xFF)

labelOffset = {"x": 0, "y": 0}

labelArea = lv.area_t()

labelArea.set(objArea.x1 + 180, objArea.y1 + 60, objArea.x2, objArea.y1 + 80)

lv.draw_label(labelArea, mask, labelStyle, lv.OPA._100, "Label", 0, labelOffset, None, None, l

v.BIDI_DIR.LTR)

Draw triangle

styleRect.body.main_color = lv.color_make(0xFF, 0x00, 0x00)

trigPoints = [{"x":200, "y":150},

{"x":240, "y":150},

{"x":240, "y":200}]

lv.draw_triangle(trigPoints, mask, styleRect, lv.OPA._100)

Draw polygon

styleRect.body.main_color = lv.color_make(0x00, 0x00, 0xFF)

polyPoints = [{"x":100, "y":150},

{"x":140, "y":150},

{"x":140, "y":200},

{"x":100, "y":220}]

lv.draw_polygon(polyPoints, len(polyPoints), mask, styleRect, lv.OPA._100)

return True

else:

return False

scr.set_design_cb(draw_cb)

print("Main draw finished")

lv.show()

4.3.11. Gauge

import lvgl as lv

Create a style

style = lv.style_t()

style.copy(lv.style_pretty_color)

style.body.main_color = lv.color_hex3(0x666) # Line color at the beginning

style.body.grad_color = lv.color_hex3(0x666) # Line color at the end

style.body.padding.left = 10 # Scale line length

style.body.padding.inner = 8 # Scale label padding

style.body.border.color = lv.color_hex3(0x333) # Needle middle circle color

style.line.width = 3

style.text.color = lv.color_hex3(0xFFFFFF)

style.line.color = lv.color_hex3(0xF00) # Line color after the critical value

Describe the color for the needles

needle_colors = [

lv.color_make(0x00, 0x00, 0xFF),

lv.color_make(0xFF, 0xA5, 0x00),

lv.color_make(0x80, 0x00, 0x80)

]

Create a gauge

gauge1 = lv.gauge(lv.scr_act(), None)

gauge1.set_style(lv.gauge.STYLE.MAIN, style)

gauge1.set_needle_count(len(needle_colors), needle_colors)

gauge1.set_size(150, 150)

gauge1.align(None, lv.ALIGN.CENTER, 0, 20)

Set the values

gauge1.set_value(0, 10)

gauge1.set_value(1, 20)

gauge1.set_value(2, 30)

lv.show()

print("LVGL drawing finished")

4.3.12. Label

import lvgl as lv

label1 = lv.label(lv.scr_act(), None)

label1.set_long_mode(lv.label.LONG.BREAK) # Break the long lines

label1.set_recolor(True) # Enable re-coloring by commands in the text

label1.set_align(lv.label.ALIGN.CENTER) # Center aligned lines

Use special symbol \377 to set text color

label1.set_text("\377008080 Re-color\377 \3770000ff words\377 \3776666ff of a\377 label " +

"and wrap long text automatically.")

label1.set_width(150)

label1.align(None, lv.ALIGN.CENTER, 0, -30)

label2 = lv.label(lv.scr_act(), None)

label2.set_long_mode(lv.label.LONG.SROLL_CIRC) # Circular scroll

label2.set_width(150)

label2.set_text("It is a circularly scrolling text. ")

label2.align(None, lv.ALIGN.CENTER, 0, 30)

lv.show()

print("LVGL drawing finished")

4.3.13. Label shadow

import lvgl as lv

Create a style for the shadow

label_style = lv.style_t()

label_style.copy(lv.style_plain)

label_style.text.opa = lv.OPA._50

Create a label for the shadow first (it's in the background)

shadow_label = lv.label(lv.scr_act(), None)

shadow_label.set_style(lv.label.STYLE.MAIN, label_style)

Create the main label

main_label = lv.label(lv.scr_act(), None)

main_label.set_text("A simple method to create\n" +

"shadows on text\n" +

"It even works with\n\n" +

"newlines and spaces.")

Set the same text for the shadow label

shadow_label.set_text(main_label.get_text())

Position the main label

main_label.align(None, lv.ALIGN.CENTER, 0, 0)

Shift the second label down and to the right by 1 pixel

shadow_label.align(main_label, lv.ALIGN.IN_TOP_LEFT, 1, 1)

lv.show()

print("LVGL drawing finished")

4.3.14. Label change

import lvgl as lv

Create three labels to demonstrate the alignments.

labels = []

`lv_label_set_align` is not required to align the object itslef.

It's used only when the text has multiple lines

Create a label on the top.

No additional alignment so it will be the reference

label = lv.label(lv.scr_act(), None)

label.align(None, lv.ALIGN.IN_TOP_MID, 0, 5)

label.set_align(lv.label.ALIGN.CENTER)

labels.append(label)

Create a label in the middle.

`lv_obj_align` will be called every time the text changes

to keep the middle position

label = lv.label(lv.scr_act(), None)

label.align(None, lv.ALIGN.CENTER, 0, 0)

label.set_align(lv.label.ALIGN.CENTER)

labels.append(label)

Create a label in the bottom.

Enable auto realign.

label = lv.label(lv.scr_act(), None)

label.set_auto_realign(True)

label.align(None, lv.ALIGN.IN_BOTTOM_MID, 0, -5)

label.set_align(lv.label.ALIGN.CENTER)

labels.append(label)

class TextChanger:

"""Changes texts of all labels every second"""

def __init__(self, labels,

texts=["Text", "A very long text", "A text with\nmultiple\nlines"],

rate=1000):

self.texts = texts

self.labels = labels

self.rate = rate

self.counter = 0

def start(self):

lv.task_create(self.task_cb, self.rate, lv.TASK_PRIO.LOWEST, None)

def task_cb(self, task):

for label in labels:

label.set_text(self.texts[self.counter])

Manually realaign `labels[1]`

if len(self.labels) > 1:

self.labels[1].align(None, lv.ALIGN.CENTER, 0, 0)

self.counter = self.counter + 1

print("Counter: ", self.counter)

if self.counter >= len(self.texts):

task._del()

print("Task deleted")

text_changer = TextChanger(labels)

text_changer.start()

lv.show()

print("LVGL drawing finished")

4.3.15. Led

import lvgl as lv

Create a style for the LED

style_led = lv.style_t()

style_led.copy(lv.style_pretty_color)

style_led.body.radius = 800 # large enough to draw a circle

style_led.body.main_color = lv.color_make(0xb5, 0x0f, 0x04)

style_led.body.grad_color = lv.color_make(0x50, 0x07, 0x02)

style_led.body.border.color = lv.color_make(0xfa, 0x0f, 0x00)

style_led.body.border.width = 3

style_led.body.border.opa = lv.OPA._30

style_led.body.shadow.color = lv.color_make(0xb5, 0x0f, 0x04)

style_led.body.shadow.width = 5

Create a LED and switch it OFF

led1 = lv.led(lv.scr_act(), None)

led1.set_style(lv.led.STYLE.MAIN, style_led)

led1.align(None, lv.ALIGN.CENTER, -80, 0)

led1.off()

Copy the previous LED and set a brightness

led2 = lv.led(lv.scr_act(), led1)

led2.align(None, lv.ALIGN.CENTER, 0, 0)

led2.set_bright(190)

Copy the previous LED and switch it ON

led3 = lv.led(lv.scr_act(), led1)

led3.align(None, lv.ALIGN.CENTER, 80, 0)

led3.on()

lv.show()

4.3.16. Line

import lvgl as lv

Create an array for the points of the line

line_points = [{"x":5, "y":5},

{"x":70, "y":70},

{"x":120, "y":10},

{"x":180, "y":60},

{"x":240, "y":10}]

Create new style (thick dark blue)

style_line = lv.style_t()

style_line.copy(lv.style_plain)

style_line.line.color = lv.color_make(0x00, 0x3b, 0x75)

style_line.line.width = 3

style_line.line.rounded = 1

Copy the previous line and apply the new style

line1 = lv.line(lv.scr_act(), None)

line1.set_points(line_points, len(line_points)) # Set the points

line1.set_style(lv.line.STYLE.MAIN, style_line)

line1.align(None, lv.ALIGN.CENTER, 0, 0)

lv.show()

4.3.17. List

import lvgl as lv

Keyboard register

keyboardDriver = lv.indev_drv_t()

keyboardDriver.init()

keyboardDriver.type = lv.INDEV_TYPE.KEYPAD

keyboardDriver.read_cb = lv.keypad_read

keyboard = keyboardDriver.register()

Create groupe for keyboard handled objects

group = lv.group_create()

keyboard.set_group(group)

Create a list

list1 = lv.list(lv.scr_act(), None)

list1.set_size(160, 200)

list1.align(None, lv.ALIGN.CENTER, 0, 0)

Add buttons to the list

def event_handler(obj, event):

if event == lv.EVENT.CLICKED:

print("Clicked: %s" % list1.get_btn_text(obj))

list_btn = list1.add_btn(None, "New")

list_btn.set_event_cb(event_handler)

list_btn = list1.add_btn(None, "Open")

list_btn.set_event_cb(event_handler)

list_btn = list1.add_btn(None, "Delete")

list_btn.set_event_cb(event_handler)

list_btn = list1.add_btn(None, "Edit")

list_btn.set_event_cb(event_handler)

list_btn = list1.add_btn(None, "Save")

list_btn.set_event_cb(event_handler)

group.add_obj(list1)

lv.show()

4.3.18. LMeter

import lvgl as lv

Create a style for the line meter

style_lmeter = lv.style_t()

style_lmeter.copy(lv.style_pretty_color)

style_lmeter.line.width = 2

style_lmeter.line.color = lv.color_hex(0xc0c0c0) # Silver

style_lmeter.body.main_color = lv.color_hex(0x91bfed) # Light blue

style_lmeter.body.grad_color = lv.color_hex(0x04386c) # Dark blue

style_lmeter.body.padding.left = 16 # Line length

Create a line meter

lmeter = lv.lmeter(lv.scr_act(), None)

lmeter.set_range(0, 100) # Set the range

lmeter.set_value(80) # Set the current value

lmeter.set_scale(240, 31) # Set the angle and number of lines

lmeter.set_style(lv.lmeter.STYLE.MAIN, style_lmeter) # Apply the new style

lmeter.set_size(150, 150)

lv.show()

4.3.19. MessageBox

import lvgl as lv

Keyboard register

keyboardDriver = lv.indev_drv_t()

keyboardDriver.init()

keyboardDriver.type = lv.INDEV_TYPE.KEYPAD

keyboardDriver.read_cb = lv.keypad_read

keyboard = keyboardDriver.register()

Create groupe for keyboard handled objects

group = lv.group_create()

keyboard.set_group(group)

def event_handler(obj, event):

if event == lv.EVENT.VALUE_CHANGED:

print("Button: %s" % lv.mbox.get_active_btn_text(obj))

mbox1 = lv.mbox(lv.scr_act(), None)

mbox1.set_text("A message box with two buttons.")

mbox1.add_btns(["Apply", "Close", ""])

mbox1.set_width(200)

mbox1.set_event_cb(event_handler)

mbox1.align(None, lv.ALIGN.CENTER, 0, 0) # Align to the corner

group.add_obj(mbox1)

lv.show()

4.3.20. Preloader

import lvgl as lv

Create a style for the Preloader

style = lv.style_t()

style.copy(lv.style_plain)

style.line.width = 10 # 10 px thick arc

style.line.color = lv.color_hex3(0x258) # Blueish arc color

style.body.border.color = lv.color_hex3(0xBBB) # Gray background color

style.body.border.width = 10

style.body.padding.left = 0

Create a Preloader object

preload = lv.preload(lv.scr_act(), None)

preload.set_size(100, 100)

preload.align(None, lv.ALIGN.CENTER, 0, 0)

preload.set_style(lv.preload.STYLE.MAIN, style)

lv.show()

4.3.21. Roller

import lvgl as lv

Keyboard register

keyboardDriver = lv.indev_drv_t()

keyboardDriver.init()

keyboardDriver.type = lv.INDEV_TYPE.KEYPAD

keyboardDriver.read_cb = lv.keypad_read

keyboard = keyboardDriver.register()

Create groupe for keyboard handled objects

group = lv.group_create()

keyboard.set_group(group)

def event_handler(obj, event):

if event == lv.EVENT.VALUE_CHANGED:

option = " "*10

obj.get_selected_str(option, len(option))

print("Selected month: %s" % option.strip())

roller1 = lv.roller(lv.scr_act(), None)

roller1.set_options("\n".join([

"January",

"February",

"March",

"April",

"May",

"June",

"July",

"August",

"September",

"October",

"November",

"December"]), lv.roller.MODE.INIFINITE)

roller1.set_visible_row_count(4)

roller1.align(None, lv.ALIGN.CENTER, 0, 0)

roller1.set_event_cb(event_handler)

group.add_obj(roller1)

lv.show()

4.3.22. Slider

import lvgl as lv

Keyboard register

keyboardDriver = lv.indev_drv_t()

keyboardDriver.init()

keyboardDriver.type = lv.INDEV_TYPE.KEYPAD

keyboardDriver.read_cb = lv.keypad_read

keyboard = keyboardDriver.register()

Create groupe for keyboard handled objects

group = lv.group_create()

keyboard.set_group(group)

Create a label below the slider

slider_label = lv.label(lv.scr_act(), None)

slider_label.set_text("0")

slider_label.set_auto_realign(True)

def slider_event_cb(obj, event):

if event == lv.EVENT.VALUE_CHANGED:

slider_label.set_text("%u" % obj.get_value())

Create a slider in the center of the display

slider = lv.slider(lv.scr_act(), None)

slider.set_width(200)

slider.align(None, lv.ALIGN.CENTER, 0, 0)

slider.set_event_cb(slider_event_cb)

slider.set_range(0, 100)

slider_label.align(slider, lv.ALIGN.OUT_BOTTOM_MID, 0, 10)

Create an informative label

info = lv.label(lv.scr_act(), None)

info.set_text("""Welcome to the slider+label demo!

Move the slider and see that the label

updates to match it.""")

info.align(None, lv.ALIGN.IN_TOP_LEFT, 10, 10)

group.add_obj(slider)

lv.show()

4.3.23. Spinbox

import lvgl as lv

Keyboard register

keyboardDriver = lv.indev_drv_t()

keyboardDriver.init()

keyboardDriver.type = lv.INDEV_TYPE.KEYPAD

keyboardDriver.read_cb = lv.keypad_read

keyboard = keyboardDriver.register()

Create groupe for keyboard handled objects

group = lv.group_create()

keyboard.set_group(group)

def event_handler(obj, event):

if event == lv.EVENT.VALUE_CHANGED:

print("Value: %d" % obj.get_value())

elif event == lv.EVENT.CLICKED:

For simple test: Click the spinbox to increment its value

obj.increment()

spinbox = lv.spinbox(lv.scr_act(), None)

spinbox.set_digit_format(5, 3)

spinbox.step_prev()

spinbox.set_width(100)

spinbox.align(None, lv.ALIGN.CENTER, 0, 0)

spinbox.set_event_cb(event_handler)

group.add_obj(spinbox)

lv.show()

4.3.24. Switch

import lvgl as lv

Keyboard register

keyboardDriver = lv.indev_drv_t()

keyboardDriver.init()

keyboardDriver.type = lv.INDEV_TYPE.KEYPAD

keyboardDriver.read_cb = lv.keypad_read

keyboard = keyboardDriver.register()

Create groupe for keyboard handled objects

group = lv.group_create()

keyboard.set_group(group)

def event_handler(obj, event):

if event == lv.EVENT.VALUE_CHANGED:

print("State: %s" % ("On" if obj.get_state() else "Off"))

Create styles for the switch

bg_style = lv.style_t()

indic_style = lv.style_t()

knob_on_style = lv.style_t()

knob_off_style = lv.style_t()

bg_style.copy(lv.style_pretty)

bg_style.body.radius = 800

bg_style.body.padding.top = 6

bg_style.body.padding.bottom = 6

indic_style.copy(lv.style_pretty_color)

indic_style.body.radius = 800

indic_style.body.main_color = lv.color_hex(0x9fc8ef)

indic_style.body.grad_color = lv.color_hex(0x9fc8ef)

indic_style.body.padding.left = 0

indic_style.body.padding.right = 0

indic_style.body.padding.top = 0

indic_style.body.padding.bottom = 0

knob_off_style.copy(lv.style_pretty)

knob_off_style.body.radius = 800

knob_off_style.body.shadow.width = 4

knob_off_style.body.shadow.type = lv.SHADOW.BOTTOM

knob_on_style.copy(lv.style_pretty_color)

knob_on_style.body.radius = 800

knob_on_style.body.shadow.width = 4

knob_on_style.body.shadow.type = lv.SHADOW.BOTTOM

Create a switch and apply the styles

sw1 = lv.sw(lv.scr_act(), None)

sw1.set_style(lv.sw.STYLE.BG, bg_style)

sw1.set_style(lv.sw.STYLE.INDIC, indic_style)

sw1.set_style(lv.sw.STYLE.KNOB_ON, knob_on_style)

sw1.set_style(lv.sw.STYLE.KNOB_OFF, knob_off_style)

sw1.align(None, lv.ALIGN.CENTER, 0, -50)

sw1.set_event_cb(event_handler)

Copy the first switch and turn it ON

sw2 = lv.sw(lv.scr_act(), None)

sw2.set_style(lv.sw.STYLE.BG, bg_style)

sw2.set_style(lv.sw.STYLE.INDIC, indic_style)

sw2.set_style(lv.sw.STYLE.KNOB_ON, knob_on_style)

sw2.set_style(lv.sw.STYLE.KNOB_OFF, knob_off_style)

sw2.on(lv.ANIM.ON)

sw2.align(None, lv.ALIGN.CENTER, 0, 50)

sw2.set_event_cb(lambda o,e: None)

group.add_obj(sw1)

group.add_obj(sw2)

lv.show()

4.3.25. Table

import lvgl as lv

Create a normal cell style

style_cell1 = lv.style_t()

style_cell1.copy(lv.style_plain)

style_cell1.body.border.width = 1

style_cell1.body.border.color = lv.color_make(0,0,0)

Crealte a header cell style

style_cell2 = lv.style_t()

style_cell2.copy(lv.style_plain)

style_cell2.body.border.width = 1

style_cell2.body.border.color = lv.color_make(0,0,0)

style_cell2.body.main_color = lv.color_make(0xC0, 0xC0, 0xC0)

style_cell2.body.grad_color = lv.color_make(0xC0, 0xC0, 0xC0)

table = lv.table(lv.scr_act(), None)

table.set_style(lv.table.STYLE.CELL1, style_cell1)

table.set_style(lv.table.STYLE.CELL2, style_cell2)

table.set_style(lv.table.STYLE.BG, lv.style_transp_tight)

table.set_col_cnt(2)

table.set_row_cnt(4)

table.align(None, lv.ALIGN.CENTER, 0, 0)

Make the cells of the first row center aligned

table.set_cell_align(0, 0, lv.label.ALIGN.CENTER)

table.set_cell_align(0, 1, lv.label.ALIGN.CENTER)

Make the cells of the first row TYPE = 2 (use `style_cell2`)

table.set_cell_type(0, 0, 2)

table.set_cell_type(0, 1, 2)

Fill the first column

table.set_cell_value(0, 0, "Name")

table.set_cell_value(1, 0, "Apple")

table.set_cell_value(2, 0, "Banana")

table.set_cell_value(3, 0, "Citron")

Fill the second column

table.set_cell_value(0, 1, "Price")

table.set_cell_value(1, 1, "$7")

table.set_cell_value(2, 1, "$4")

table.set_cell_value(3, 1, "$6")

lv.show()

4.3.26. Tabview

import lvgl as lv

Keyboard register

keyboardDriver = lv.indev_drv_t()

keyboardDriver.init()

keyboardDriver.type = lv.INDEV_TYPE.KEYPAD

keyboardDriver.read_cb = lv.keypad_read

keyboard = keyboardDriver.register()

Create groupe for keyboard handled objects

group = lv.group_create()

keyboard.set_group(group)

Create a Tab view object

tabview = lv.tabview(lv.scr_act(), None)

Add 3 tabs (the tabs are page (lv_page) and can be scrolled

tab1 = tabview.add_tab("Tab 1")

tab2 = tabview.add_tab("Tab 2")

tab3 = tabview.add_tab("Tab 3")

Add content to the tabs

label = lv.label(tab1, None)

label.set_text("""This the first tab

If the content

of a tab

become too long

the it

automatically

become

scrollable.""")

label = lv.label(tab2, None)

label.set_text("Second tab")

label = lv.label(tab3, None)

label.set_text("Third tab")

group.add_obj(tabview)

lv.show()

4.3.27. Textarea simple

import lvgl as lv

Keyboard register

keyboardDriver = lv.indev_drv_t()

keyboardDriver.init()

keyboardDriver.type = lv.INDEV_TYPE.KEYPAD

keyboardDriver.read_cb = lv.keypad_read

keyboard = keyboardDriver.register()

Create groupe for keyboard handled objects

group = lv.group_create()

keyboard.set_group(group)

def event_handler(obj, event):

if event == lv.EVENT.VALUE_CHANGED:

print("Value: %s" % obj.get_text())

ta1 = lv.ta(lv.scr_act(), None)

ta1.set_size(200, 100)

ta1.align(None, lv.ALIGN.CENTER, 0, 0)

ta1.set_cursor_type(lv.CURSOR.BLOCK)

ta1.set_text("A text in a Text Area") # Set an initial text

ta1.set_event_cb(event_handler)

group.add_obj(ta1)

lv.show()

print("LVGL drawing finished")

4.3.28. Textarea password

import lvgl as lv

Keyboard register

keyboardDriver = lv.indev_drv_t()

keyboardDriver.init()

keyboardDriver.type = lv.INDEV_TYPE.KEYPAD

keyboardDriver.read_cb = lv.keypad_read

keyboard = keyboardDriver.register()

Create groupe for keyboard handled objects

group = lv.group_create()

keyboard.set_group(group)

HOR_RES = lv.scr_act().get_width()

print("HOR_RES = %d" % HOR_RES)

Create the password box

pwd_ta = lv.ta(lv.scr_act(), None)

pwd_ta.set_text("")

pwd_ta.set_pwd_mode(True)

pwd_ta.set_one_line(True)

pwd_ta.set_width(HOR_RES // 2 - 20)

pwd_ta.set_pos(5, 20)

Create a label and position it above the text box

pwd_label = lv.label(lv.scr_act(), None)

pwd_label.set_text("Password:")

pwd_label.align(pwd_ta, lv.ALIGN.OUT_TOP_LEFT, 0, 0)

group.add_obj(pwd_ta)

lv.show()

print("LVGL drawing finished")

4.3.29. Tileview

import lvgl as lv

Keyboard register

keyboardDriver = lv.indev_drv_t()

keyboardDriver.init()

keyboardDriver.type = lv.INDEV_TYPE.KEYPAD

keyboardDriver.read_cb = lv.keypad_read

keyboard = keyboardDriver.register()

Create groupe for keyboard handled objects

group = lv.group_create()

keyboard.set_group(group)

valid_pos = [{"x":0, "y": 0}, {"x": 0, "y": 1}, {"x": 1,"y": 1}]

resolution of the screen

HOR_RES = lv.scr_act().get_width()

VER_RES = lv.scr_act().get_height()

tileview = lv.tileview(lv.scr_act(), None)

tileview.set_valid_positions(valid_pos, len(valid_pos))

tileview.set_edge_flash(True)

Tile1: just a label

tile1 = lv.obj(tileview, None)

tile1.set_size(HOR_RES, VER_RES)

tile1.set_style(lv.style_pretty)

tileview.add_element(tile1)

label = lv.label(tile1, None)

label.set_text("Tile 1")

label.align(None, lv.ALIGN.CENTER, 0, 0)

Tile2: a list

lst = lv.list(tileview, None)

lst.set_size(HOR_RES, VER_RES)

lst.set_pos(0, VER_RES)

lst.set_scroll_propagation(True)

lst.set_sb_mode(lv.SB_MODE.OFF)

tileview.add_element(lst)

list_btn = lst.add_btn(None, "One")

tileview.add_element(list_btn)

list_btn = lst.add_btn(None, "Two")

tileview.add_element(list_btn)

list_btn = lst.add_btn(None, "Three")

tileview.add_element(list_btn)

list_btn = lst.add_btn(None, "Four")

tileview.add_element(list_btn)

list_btn = lst.add_btn(None, "Five")

tileview.add_element(list_btn)

list_btn = lst.add_btn(None, "Six")

tileview.add_element(list_btn)

list_btn = lst.add_btn(None, "Seven")

tileview.add_element(list_btn)

list_btn = lst.add_btn(None, "Eight")

tileview.add_element(list_btn)

Tile3: a button

tile3 = lv.obj(tileview, None)

tile3.set_size(HOR_RES, VER_RES)

tile3.set_pos(HOR_RES, VER_RES)

tileview.add_element(tile3)

btn = lv.btn(tile3, None)

btn.align(None, lv.ALIGN.CENTER, 0, 0)

label = lv.label(btn, None)

label.set_text("Button")

group.add_obj(tileview)

lv.show()

V. Documentation changelog

v2.27.1 (2025-12-29)

Added lvgl micropython module objects overview.•

v2.27.0 (2025-12-15)

Enabled functions attributes and enumerate build options.

Fixed deleting and closing (leak) objects of opened files.

Fixed memory leaks in functions of os module (chdir, mkdir, remove, unlink, rename, rmdir, stat, ilistdir,

open) in case of OSError generation.

Enabled builtin function reversed(.

Enabled builtin function help(.

v2.26.0 (2025-10-16)

Added changelog documentation generating.

Change styling.

Added table of content.

Added f-strings.

v2.25.0 (2025-09-11)

Fix typo mistakes.

https://www.micropython.org/ ↩

https://docs.micropython.org/en/latest/ ↩↩

https://github.com/micropython/micropython ↩

https://docs.micropython.org/en/latest/genrst/index.html ↩↩

https://github.com/micropython/micropython/blob/master/py/mpconfig.h ↩

https://docs.micropython.org/en/latest/library/sys.html ↩

https://docs.micropython.org/en/latest/library/os.html ↩

https://docs.micropython.org/en/latest/library/errno.html ↩

https://docs.micropython.org/en/latest/library/micropython.html ↩

https://docs.python.org/3/index.html ↩

https://docs.micropython.org/en/latest/library/index.html ↩

https://docs.lvgl.io/6.1 ↩

https://docs.lvgl.io/6.1/overview/indev.html#keypad-and-encoder ↩

•

•

•

•

•

•

•

•

•

•

1.

2.

3.

4.

5.

6.

7.

8.

9.

10.

11.

12.

13.

	Zero Calculator
	MicroPython User Manual (v2.27.1 dated 30.12.2025)
	Python app description
	Python Shell window
	MicroPython Specification
	Platform features and abilities

	LVGL Library
	Zero Micropython + LVGL implementation
	Keyboard support from LVGL

	Zero Micropython module objects overview
	Zero Micropython + LVGL examples
	Importing library and show help
	Arc
	Arc + task
	Bar
	Button matrix
	Buttons
	Canvas
	Chart
	Checkbox
	Manual drawing
	Gauge
	Label
	Label shadow
	Label change
	Led
	Line
	List
	LMeter
	MessageBox
	Preloader
	Roller
	Slider
	Spinbox
	Switch
	Table
	Tabview
	Textarea simple
	Textarea password
	Tileview

	Documentation changelog
	v2.27.1 (2025-12-29)
	v2.27.0 (2025-12-15)
	v2.26.0 (2025-10-16)
	v2.25.0 (2025-09-11)

