Zero Calculator

1. Python app description
II. Python Shell window
III. MicroPython Specification
3.1. Platform features and abilities
IV. LVGL Library
4.1. Zero Micropython + LVGL implementation
4.1.1. Keyboard support from LVGL
4.2. Zero Micropython module objects overview
4.3. Zero Micropython + LVGL examples

4.3.1. Importing library and show help
4.3.2. Arc

4.3.3. Arc + task
4.3.4. Bar

4.3.5. Button matrix
4.3.6. Buttons

4.3.7. Canvas

4.3.8. Chart

4.3.9. Checkbox
4.3.10. Manual drawing
4.3.11. Gauge
4.3.12. Label
4.3.13. Label shadow
4.3.14. Label change
4.3.15. Led

4.3.16. Line

4.3.17. List

4.3.18. LMeter
4.3.19. MessageBox
4.3.20. Preloader
4.3.21. Roller
4.3.22. Slider
4.3.23. Spinbox
4.3.24. Switch
4.3.25. Table

4.3.26. Tabview

4.3.27. Textarea simple
4.3.28. Textarea password
4.3.29. Tileview
V. Documentation changelog

v2.27.1 (2025-12-29)

v2.27.0 (2025-12-15)

v2.26.0 (2025-10-16)

v2.25.0 (2025-09-11)

MicroPython User Manual (v2.27.1 dated 30.12.2025)

MicroPython is an implementation of the Python language written in C and designed to run on

microcontrollers. More information about the MicroPython project can be found on the project website!, in the

project documentation,2 and in the project rep_ository3.

Zero Calculator is able to interpret the MicroPython language. MicroPython is highly platform-dependent. This
affects the modules and language features available for this platform. The language functions and features
available to the user are described in the MicroPython Specification section.

I. Python app description

Python app is a separate Zero Calculator mode that contains its own screens and keyboard processing different
from other modes.

To enter Python app, press the key, then select Python App ().
NORMAL FLOAT AUTO REAL RADIAN NAT

1: ZeroBasic App
EfPython App

Python app contains three tabs (use n and u to switch between tabs): EXEC, SHELL, DEL.

1. The EXEC tab contains a sorted list of .py files located in the /exchange folder. Files can also be
located in subfolders. A file can be selected by using u and n The name of the selected file is
displayed in the tooltip in the header of the screen. Pressing or the button corresponding to the
file activates the execution of the selected file in Python Shell window.

NORMAL FLOAT AUTO REAL RADIAN NAT
print.py

=48 SHELL DEL

1: 4.py
2:BB.py
3:a/bad.py

Ma/print.py

5:exit.py
6: hello.PY
7: hw.py

https://www.micropython.org/
https://docs.micropython.org/en/latest/
https://github.com/micropython/micropython

2. The SHELL tab. By pressing in this tab, the user can enter Python Shell window.

3. The DEL tab contains the same list of files as the EXEC tab. File activation in this tab opens the
selection confirmation menu: Cancel (cancel deletion) and Delete (delete the selected file). Use u and
n to select an action and to activate it. Closing the menu (by using , quit or other
buttons) is equivalent to activating Cancel.

NORMAL FLOAT AUTO REAL RADIAN NAT
bad.py

EXEC SHELL pIEN
1:4.py

2:BB.py
Efa/bad.py
4:a/print.py

Cancel

_ Delete
:ex1it.py

: hello.PY
: hw.py

To exit from Python app, press , quit , or buttons that open other windows (not related to Python app).

I1. Python Shell window

Python Shell window contains a history block and a command input block.

NORMAL FLOAT AUTO REAL RADIAN NAT

.1-6-g11e37c29

Initially, the history block contains a welcome message, which includes MicroPython header with its version
and the platform header with its version. The text of the commands entered by the user along with the
interpreter's interactive prompt and the text of the command execution result are saved to the history. The
history can contain up to 2048 symbols. As the history is filled in, older content is truncated. The maximum
count of visible lines in the history block is 15. The maximum count of symbols in one line is 45. If the string is
longer than specified, then its content will be transferred to the following lines. The history block has vertical
scrolling. Scrolling is performed by using + u and + n The amount of scrolling is 3 lines.
Also, adding information to the history block automatically scrolls it to the end.

The command input block is located at the bottom of the screen. It is used to enter commands for the Python
interpreter. Command execution is started after pressing . After this, the control over the platform will

be passed to the Python interpreter. This means that the calculator screen will not be updated (except the
print() command), the keyboard will not respond, and the internal processes of the calculator will stop until
the command is interpreted. This implementation is needed to maximize the speed of command interpretation.
Interrupting command interpretation can be done with or physical platform reset (the reset button on the
backside of the calculator). Command executionplaces its text to the command history (except for an empty
command). The command history can contain up to 20 commands. Pressing u extracts the previous command
from the command history and places it to the command input block. If there is no previous command, the
button is ignored. Pressing n extracts the next command from the command history and places it to the
command input block. If there is no next command, then an empty string is placed to the command input block.
The command input block has horizontal scrolling. Scrolling is done automatically by trying to move the cursor
beyond the input field by using n and u
Commands entered by the user are executed in the same context of the Python interpreter. The context and the
history of commands and results are reset after closing Python Shell window or shutting down the platform.
Keyboard processing in Python Shell window is different from keyboard processing in other modes of Zero
Calculator. Below is the list of buttons, symbols, combinations, and the logic of processing thereof:

. , work similarly to other Zero Calculator modes.
. throws KeyboardInterrupt interruption at the moment of interpreting the command.

. u, u, n, n Their work is described above.

. + n, + u moves the cursor to the beginning or end of the command input block.

. + n, + n scrolls the history block.

* quit exits Python Shell window and switches to Python app.
» off switches off Zero Calculator.

. removes previous symbol.

. clears command input block.

-,.,.,.,a,,.,,.,n-a, {,3},1,[,u, v,w, "™, ?, : insertthe
corresponding character into the command input block.

* A - Z insert the corresponding case-sensitive letter into the command input block.

. inserts = into the command input block.

* @§@N inserts _ into the command input block.

* 1 inserts pi into the command input block.

 2nd |3 a inserts \ into the command input block.

. + inserts ' into the command input block.

 2nd |3 inserts ! into the command input block.

 _ inserts space into the command input block.

* 0 inserts @ into the command input block.

Buttons, symbols, and combinations that are not included in this list are not processed in Python Shell window.
The physical keyboard of the platform does not allow for entering certain characters (~, #, $, %, &, <,
>, |), but the Python interpreter is able to process them. These characters can only be entered in the Zero

Calculator emulator using a physical keyboard.

II1. MicroPython Specification

Zero Calculator includes MicroPython v1.23.0 dated 05.31.2024 which is built for the ARM Cortex-M4
architecture (without emulators). This build implements Python 3.4 and some featured functions of Python 3.5

and above (comparison4). This MicroPython build has the following building options (the options order is set
by the configuration file mpconfig.hS):

* [Enabled] In-progress/breaking changes slated for the MicroPython 2.x release
(MICROPY_PREVIEW_VERSION_2).

* Used minimal port with disabling all optional features (MICROPY_CONFIG_ROM_LEVEL =
MICROPY_CONFIG_ROM_LEVEL_MINIMUM).

* Default allocation memory settings (MICROPY_ALLOC ..., MICROPY_GC ...,
MICROPY_OBJ_...)

* [Enabled] Passing allocated memory region size to realloc/free functions
(MICROPY_MALLOC_USES_ALLOCATED_SIZE).

* 16 bytes allocate initially when creating new chunks to store parse nodes
(MICROPY_ALLOC_PARSE_CHUNK_INIT).

» Maximum length of a path in the filesystem is 256 symbols (MICROPY_ALLOC_PATH_MAX).

* [Disabled] Supporting loading of persistent code (mpy) (default)
(MICROPY_PERSISTENT_CODE_LOAD).

* [Enabled] Ability to interpret Python commands (MICROPY_ENABLE_COMPILER).

* [Disabled] Optimizations and calculations during compilation (minimal port)

(MICROPY_COMP_CONST_FOLDING, MICROPY_COMP_CONST_TUPLE,
MICROPY_COMP_CONST_LITERAL, MICROPY_COMP_MODULE_CONST, MICROPY_COMP_CONST,
MICROPY_COMP_DOUBLE_TUPLE_ASSIGN, MICROPY_COMP_TRIPLE_TUPLE_ASSIGN,

MICROPY_COMP_RETURN_IF_EXPR).

*[Enabled] Collect memory allocation stats (functions micropython.mem_total,

micropython.mem_current , micropython.mem_peak)(MICROPY_MEM_STATS).

* [Disabled] Debug settings (default) (MICROPY_DEBUG_PRINTERS, MICROPY_DEBUG_VERBOSE ,
MICROPY_DEBUG_MP_OBJ_SENTINELS, MICROPY_DEBUG_PARSE_RULE_NAME ,
MICROPY_DEBUG_VM_STACK_OVERFLOW, MICROPY_DEBUG_VALGRIND).

* [Disabled] Optimizations (default, minimal port) (MICROPY_OPT_COMPUTED_GOTO,
MICROPY_OPT_LOAD_ATTR_FAST_PATH, MICROPY_OPT_MAP_LOOKUP_CACHE,
MICROPY_OPT_MAP_LOOKUP_CACHE_SIZE , MICROPY_OPT_MPZ_BITWISE,
MICROPY_OPT_MATH_FACTORIAL).

* [Enabled] Import of external modules (files) (MICROPY_ENABLE_EXTERNAL_IMPORT).

* [Enabled] File reader for importing files (MICROPY_READER_VFS).

* [Enabled] Garbage collector with default settings (MICROPY_ENABLE_GC).

* [Enabled] Calling finalisers in the garbage collector (_del__) (MICROPY_ENABLE_FINALISER).

» [Disabled] Separate allocator for the Python stack (default) (MICROPY_ENABLE_PYSTACK).

* [Disabled] Emergency exception buffer (default) (MICROPY_ENABLE_EMERGENCY_EXCEPTION_BUF).
* [Enabled] Keyboard interrupt (MICROPY_KBD_EXCEPTION)

https://docs.micropython.org/en/latest/genrst/index.html
https://github.com/micropython/micropython/blob/master/py/mpconfig.h

* [Enabled] Input helper functions (MICROPY_HELPER_REPL).

+ Allow enabling debug prints after each entered command (MICROPY_REPL_INFO).

* [Disabled] Auto indent (MICROPY_REPL_AUTO_INDENT).

* [Enabled] Event-driven input functions (MICROPY_REPL_EVENT_DRIVEN).

* Count of commands keeped in Python history: 0 (MICROPY_READLINE_HISTORY_SIZE).

* [Disabled] Terminal VT100 (MICROPY_HAL_HAS_VT100).

* long int is an arbitrary precision integer type (MICROPY_LONGINT_IMPL =
MICROPY_LONGINT_IMPL_MPZ).

* [Disabled] Processing line numbers of the source (minimal port) (MICROPY_ENABLE_SOURCE_LINE).
« [Disabled] Doc strings (__doc___) (default), (MICROPY_ENABLE_DOC_STRING).

* [Enabled] Print basic error and exception details (MICROPY_ERROR_REPORTING =
MICROPY_ERROR_REPORTING_NORMAL).

'U)Eabhd]VVaHﬂngS(ddhuh)(MICROPY_WARNINGS, MICROPY_WARNINGS_CATEGORY).
» float is double (MICROPY_FLOAT_IMPL = MICROPY_FLOAT_IMPL_DOUBLE).
* [Enabled] Complex numbers (MICROPY_PY_BUILTINS_COMPLEX).

* [Disabled] = High-quality = hash for float and complex numbers (minimal port)
(MICROPY_FLOAT_HIGH_QUALITY_HASH).

* [Disabled] Features which improve CPython compatibility (minimal port)
(MICROPY_CPYTHON_COMPAT).

* [Disabled] Full checks as done by CPython (minimal port) (MICROPY_FULL_CHECKS).

* [Disabled] POSIX-semantics non-blocking streams (default, minimal port)
(MICROPY_STREAMS_NON_BLOCK , MICROPY_STREAMS_POSIX_API).

* [Disabled] Calling _ init when importing builtin modules for the first time (minimal port)
(MICROPY_MODULE_BUILTIN_INIT).

* [Disabled] Built-in modules having sub-packages (minimal port)
(MICROPY_MODULE_BUILTIN_SUBPACKAGES).
* [Disabled] Module-level _ getattr__ (minimal port) (MICROPY_MODULE_GETATTR).

* [Disabled] Setting __hame__ to '__main__' when importing file (default)
(MICROPY_MODULE_OVERRIDE_MAIN_IMPORT).

* [Disabled] Frozen modules (default) (MICROPY_MODULE_FROZEN).

* [Disabled] Overriding builtins in the builtins module (minimal port)
(MICROPY_CAN_OVERRIDE_BUILTINS).

* [Enabled] Checking that the self argument of a builtin method has the correct type
(MICROPY_BUILTIN_METHOD_CHECK_SELF_ARG).

* [Enabled] Using internally defined errno's (MICROPY_USE_INTERNAL_ERRNO).

* [Disabled] Using internally defined *printf() functions (MICROPY_USE_INTERNAL_PRINTF).
* [Disabled] Asynchronously aborting to the top level (default) (MICROPY_ENABLE_VM_ABORT).

* [Disabled] Internal scheduler (minimal port) (MICROPY_ENABLE_SCHEDULER,
MICROPY_SCHEDULER_STATIC_NODES).

* [Enabled] Virtual file system (more in Platform features and abilities) (MICROPY_VFS).

* [Disabled] Multiple inheritance of Python classes (minimal

(MICROPY_MULTIPLE_INHERITANCE).

* [Enabled] Implementing attributes on functions (MICROPY_PY_FUNCTION_ATTRS).
* [Disabled] Descriptors __get_ , _ set_, _ delete__ (minimal port)
(MICROPY_PY_DESCRIPTORS).
* [Disabled] Class __delattr__, _
(MICROPY_PY_DELATTR_SETATTR).
* [Disabled] Async/await (minimal port) (MICROPY_PY_ASYNC_AWAIT).
* [Enabled] F-strings (MICROPY_PY_FSTRINGS).

setattr__ methods (minimal port)

* [Disabled] Assignment expressions with := (minimal port) (MICROPY_PY_ASSIGN_EXPR).

* [Disabled] Non-standard .pend_throw() method for generators (minimal port)
(MICROPY_PY_GENERATOR_PEND_THROW).
* [Disabled] Warning when comparing str and bytes objects (default)
(MICROPY_PY_STR_BYTES_CMP_WARN).
* [Disabled] Methods bytes.hex and bytes.fromhex (minimal port)
(MICROPY_PY_BUILTINS_BYTES_HEX).
* [Disabled] Unicode strings (minimal port) (MICROPY_PY_BUILTINS_STR_UNICODE).
» [Disabled] Check for valid UTF-8 when converting bytes to str (minimal port)
(MICROPY_PY_BUILTINS_STR_UNICODE_CHECK).
* [Enabled] Method str.count() (MICROPY_PY_BUILTINS_STR_COUNT).
* [Enabled] Operator str % (...) (MICROPY_PY_BUILTINS_STR_OP_MODULO).

port)

* [Disabled] Methods str.center(), str.partition(), str.rpartition(),
str.splitlines() (minimal port) (MICROPY_PY_BUILTINS_STR_CENTER,

MICROPY_PY_BUILTINS_STR_PARTITION, MICROPY_PY_BUILTINS_STR_SPLITLINES).

« [Enabled] Type bytearray (MICROPY_PY_BUILTINS_BYTEARRAY).

* [Disabled] Methods dict.fromkeys() (minimal
(MICROPY_PY_BUILTINS_DICT_FROMKEYS).

* [Enabled] Type memoryview (MICROPY_PY_BUILTINS_MEMORYVIEW).

* [Disabled] Property memoryview.itemsize (minimal
(MICROPY_PY_BUILTINS_MEMORYVIEW_ITEMSIZE).

« [Enabled] Type set (MICROPY_PY_BUILTINS_SET).
* [Enabled] slice ([a:b]) (MICROPY_PY_BUILTINS_SLICE).

* [Disabled] Properties slice.start, slice.stop, slice.step (minimal port)
(MICROPY_PY_BUILTINS_SLICE_ATTRS).

* [Disabled] Methods slice.indices(len) (minimal
(MICROPY_PY_BUILTINS_SLICE_INDICES).

* [Disabled] Type frozenset (minimal port) (MICROPY_PY_BUILTINS_FROZENSET).

* [Disabled] Type property (minimal port) (MICROPY_PY_BUILTINS_PROPERTY).
* [Disabled] Properties range.start, range.stop, range.step (minimal port)
(MICROPY_PY_BUILTINS_RANGE_ATTRS).
* [Disabled] Comparing (inequality/equality) range objects (minimal port)
(MICROPY_PY_BUILTINS_RANGE_BINOP).

port)

port)

port)

* [Disabled] Calling next() with second argument (minimal port) (MICROPY_PY_BUILTINS_NEXT2).

* [Enabled] Function round(int, int) (MICROPY_PY_BUILTINS_ROUND_INT).

* [Disabled] Supporting complete set of special methods for wuser classes (minimal port)

(MICROPY_PY_ALL_SPECIAL_METHODS).

* [Disabled] Supporting all inplace arithmetic operation methods for user classes (__imul__ and

another) (minimal port) (MICROPY_PY_ALL_INPLACE_SPECIAL_METHODS).

* [Disabled] Supportingreverse arithmetic operation methods for user classes (__radd__ and another)

(minimal port) (MICROPY_PY_REVERSE_SPECIAL_METHODS).
* [Disabled] Function compile() (minimal port) (MICROPY_PY_BUILTINS_COMPILE).

* [Enabled] Function and type enumerate() (MICROPY_PY_BUILTINS_ENUMERATE).
* [Enabled] Functions eval, exec (MICROPY_PY_BUILTINS_EVAL_EXEC).

* [Disabled] Python 2 function execfile() (minimal port) (MICROPY_PY_ BUILTINS_ EXECFILE).

* [Disabled] Function filter() (minimal port) (MICROPY_PY_BUILTINS_ FILTER).

* [Enabled] Function reversed() (MICROPY_PY_BUILTINS_REVERSED).
* [Disabled] Constant "NotImplemented" (minimal port)
(MICROPY_PY_BUILTINS_NOTIMPLEMENTED).
* [Disabled] Function input() (MICROPY_PY_BUILTINS_INPUT).
* [Enabled] Functions min, max (MICROPY_PY_BUILTINS_MIN_MAX).

* [Disabled] Function pow(int, int, int) (minimal port) (MICROPY_PY_BUILTINS_POW3).

« [Enabled] Function help() (MICROPY_PY_BUILTINS_HELP,

MICROPY_PY_BUILTINS_HELP_TEXT, MICROPY_PY_BUILTINS_HELP_MODULES).
* [Disabled] Variable _ FILE__ (minimal port) (MICROPY_PY__ FILE_).

* [Enabled] Functions micropython.mem_total, micropython.mem_current,
micropython.mem_peak , micropython.stack _use (MICROPY_PY_MICROPYTHON_MEM_INFO,

MICROPY_PY_MICROPYTHON_STACK_USE).

* [Disabled] Function micropython.heap_locked (minimal
(MICROPY_PY_MICROPYTHON_HEAP_LOCKED).

* [Enabled] Module array (MICROPY_PY_ARRAY).

* [Disabled] Slice assignments for array (a[@:2] = b) (minimal port)
(MICROPY_PY_ARRAY_SLICE_ASSIGN).
* [Enabled] Type attrtuple (space-efficient namedtuple) (MICROPY_PY_ATTRTUPLE).
* [Enabled] Module collections (MICROPY_PY_COLLECTIONS).
* [Disabled] Types collections.deque, collections.OrderedDict (minimal port)
(MICROPY_PY_COLLECTIONS_DEQUE , MICROPY_PY_COLLECTIONS_ORDEREDDICT).
* [Disabled] Methods namedtuple._asdict() (minimal
(MICROPY_PY_COLLECTIONS_NAMEDTUPLE__ASDICT).
* [Enabled] Module math (MICROPY_PY_MATH).
* [Disabled] Addition math module constants without math.pi, math.e (minimal port)
(MICROPY_PY_MATH_CONSTANTS).

* [Disabled] Addition math module functions math.erf, math.erfc, math.gamma,

math.lgamma, math.factorial, math.isclose (minimal port)

(MICROPY_PY_MATH_SPECIAL_FUNCTIONS, MICROPY_PY_MATH_SPECIAL_FUNCTIONS,

MICROPY_PY_MATH_FACTORIAL , MICROPY_PY_MATH_ISCLOSE).

port)

port)

* [Disabled] Fixes for math module functions math.atan2, math.fmod, math.modf, math.pow
(default) (MICROPY_PY_MATH_ATAN2_FIX_INFNAN, MICROPY_PY_MATH_FMOD_FIX_INFNAN,
MICROPY_PY_MATH_MODF_FIX_NEGZERO, MICROPY_PY_MATH_POW_FIX_NAN).

* [Enabled] Module cmath (MICROPY_PY_CMATH).

* [Enabled] Module micropython (MICROPY_PY_MICROPYTHON).

* [Enabled] Module gc (MICROPY_PY_GC).

* [Enabled] Module io (MICROPY_PY_IO).

« [Disabled] Classes

io.IOBase, io.BufferedWriter (minimal port) (MICROPY_PY_IO_IOBASE,

MICROPY_PY_IO_BUFFEREDWRITER).

* [Enabled] Module struct (MICROPY_PY_STRUCT).

* [Enabled] Module sys (MICROPY_PY_SYS).

* [Disabled] Constants, properties and functions sys.maxsize, sys.exc_info, sys.executable,

sys.intern, sys.atexit, sys.psl, sys.ps2, sys.settrace, sys.getsizeof,

sys.stdin, sys

.stdout, sys.stderr, sys.tracebacklimit (default, minimal port)

(MICROPY_PY_SYS_MAXSIZE , MICROPY_PY_SYS_EXC_INFO, MICROPY_PY_SYS_EXECUTABLE,
MICROPY_PY_SYS_INTERN, MICROPY_PY_SYS_ATEXIT, MICROPY_PY_SYS_PS1 _PS2,
MICROPY_PY_SYS_SETTRACE , MICROPY_PY_SYS_GETSIZEOF , MICROPY_PY_SYS_STDFILES,
MICROPY_PY_SYS_STDIO_BUFFER, MICROPY_PY_SYS TRACEBACKLIMIT).

* [Enabled] Dictionary sys.modules (default) (MICROPY_PY_SYS_MODULES).

 [Enabled] Function

sys.exit (default) (MICROPY_PY_SYS_EXIT).

« [Enabled] Lists sys.path, sys.argv (MICROPY_PY_SYS_PATH, MICROPY_PY_SYS_ARGV).

* [Enabled] Module errno (MICROPY_PY_ERRNO).

* [Enabled] Dictionary errno.errorcode (default) (MICROPY_PY_ERRNO_ERRORCODE).

« [Disabled] Module

« [Disabled] Module
* [Disabled] Module
* [Disabled] Module
* [Disabled] Module
* [Disabled] Module

« [Disabled] Module

select (minimal port) (MICROPY_PY_SELECT).

time (minimal port) (MICROPY_PY_TIME).
_thread (MICROPY_PY_THREAD).

asyncio (minimal port) (MICROPY_PY_ASYNCIO).
uctypes (minimal port) (MICROPY_PY_UCTYPES).
deflate (minimal port) (MICROPY_PY_DEFLATE).

json (minimal port) (MICROPY_PY_JSON).

* [Enabled] Module os (MICROPY_PY_0S).

* [Disabled] Function os.statvfs (MICROPY_PY_OS_STATVFS).

* [Enabled] Function
 [Enabled] Constant
* [Disabled] Module

* [Disabled] Module
* [Disabled] Module
« [Disabled] Module
* [Disabled] Module
* [Disabled] Module
* [Disabled] Module

os.uname (MICROPY_PY_OS_UNAME).
os.sep (MICROPY_PY_OS_SEP).
re (minimal port) (MICROPY_PY_RE).

heapqg (minimal port) (MICROPY_PY_HEAPQ).

hashlib (minimal port) (MICROPY_PY_HASHLIB).
cryptolib (minimal port) (MICROPY_PY_CRYPTOLIB).
binascii (minimal port) (MICROPY_PY_BINASCII).
random (minimal port) (MICROPY_PY_RANDOM).
machine (MICROPY_PY_MACHINE).

* [Disabled] Module 1wip (MICROPY_PY_LWIP).

* [Disabled] Module ss1 (default) (MICROPY_PY_SSL).

* [Disabled] Module vfs (MICROPY_PY_VFS).

* [Disabled] Module websocket (default) (MICROPY_PY_WEBSOCKET).

* [Disabled] Module framebuf (minimal port) (MICROPY_PY_FRAMEBUF).
* [Disabled] Module btree (default) (MICROPY_PY_BTREE).

* [Disabled] Module _onewire (default) (MICROPY_PY_ONEWIRE).

* [Disabled] Module platform (minimal port) (MICROPY_PY_PLATFORM).

3.1. Platform features and abilities

Regardless of the running of the script file or Python Shell, a heap area is allocated for MicroPython interpreter.
The heap area size is equal to half the volume of all free RAM, but no more than 4MB (4194304 bytes).
MicroPython interpreter can manage a virtual file system. The virtual filesystem root folder (/) is at

/exchange . A recursive script search in EXEC tab of Python app is also performed through this path. The

io and os modules can interact with the file system and files. Running a script file or Python Shell has some
differences:

Running /a/b/c.py Running Python Shell

Welcome message: Running /a/b/c.py

sys.argv = ['/a/b/c.py'] sys.argv = []

sys.path = ['','/a/b'] sys.path = ['']
os.getcwd() = '/a/b' os.getcwd() = '/'

First traceback level: c.py First traceback level: <stdin>

NORMAL FLOAT AUTO REAL RADIAN NAT NORMAL FLOAT AUTO REAL RADIAN NAT

Mic ython (with v2.8) v1

n (with
raphing Calculator v

phing Calculator v2.21.1-11-gd7e7b951

File
ZeroDivisio

The implementation of the following modules depends on the current platform:

* sys (moreG), implemented:

o argv <list>
o path <list>
° version <string>

o version_info <tuple>

https://docs.micropython.org/en/latest/library/sys.html

o implementation <namedtuple>

° platform <string>

o byteorder <string>

o exit <function> (Calling this function will exit Python Shell window and return to the main
screen of Zero Calculator. The argument passed to the function will be converted into a string and
inserted into the editor.)

o modules <dict>

o print_exception <function>

* os (m7), implemented:

° sep <string>

o uname <function>

o chdir <function>

o getcwd <function> (current directory may not exist if you delete it after switching to it)

o listdir <function> (if argument is not passed, outputs the contents of the current catalog .)

o mkdir <function> (also creates child directories if they don't exist)

o remove <function> (deletes the file if it exists)

o rename <function> (movement is performed only to existing paths)

o rmdir <function> (deletes an empty directory if it exists)

o stat <function> (returns <tuple>, Oth item (st_mode): 0x8000 - file, 0x4000 - directory, 6th
item (st_size): file size in bytes (directory size is 0), 8th item (st_mtime): file change
timestamp (Zero Calculator uses FAT file system), other items are 0).

o statvfs <function> (throws an exception when used)

o unlink <function> (deletes the file if it exists)

o ilistdir <function>
* errno (more8), implemented:

o errorcode <dict>

o EPERM <int> (operation not permitted)

o ENOENT <int> (no such file or directory)

o EIO <int> (i/o error)

o EBADF <int> (bad file number)

o EAGAIN <int> (try again)

o ENOMEM <int> (out of memory)

o EACCES <int> (permission denied)

o EEXIST <int> (file exists)

o ENODEV <int> (no such device)

o ENOTDIR <int> (not a directory)

o EISDIR <int> (is a directory)

o EINVAL <int> (invalid argument)

o EROFS <int> (read-only file system)

o EOPNOTSUPP <int> (operation not supported on transport endpoint)
o EADDRINUSE <int> (address already in use)

o ECONNABORTED <int> (software caused connection abort)
o ECONNRESET <int> (connection reset by peer)

o ENOBUFS <int> (no buffer space available)

https://docs.micropython.org/en/latest/library/os.html
https://docs.micropython.org/en/latest/library/errno.html

o ENOTCONN <int> (transport endpoint is not connected)

o ETIMEDOUT <int> (connection timed out)

o ECONNREFUSED <int> (connection refused)

o EHOSTUNREACH <int> (no route to host)

o EALREADY <int> (operation already in progress)

o EINPROGRESS <int> (operation now in progress)

o EFAILED <int> (Zero Calculator internal error, it is mainly used if the file system cannot

process the request)
* micropython (more9) , implemented:

o const <function>

o opt_level <function>

o mem_total <function>

o mem_current <function>
o mem_peak <function>

o mem_info <function>

o gstr_info <function>

o stack_use <function>

o heap_lock <function>

o heap_unlock <function>
o kbd_intr <function> (is not processed because Zero Calculator uses internal processing of

keyboard interruption)

To get more detailed information about the available data types, functions, methods, and modules, use the

function help() . Also refer to the online documentation of P;gthon10 and MicroPython? (modules

descriDtionn, differences from PVth0n4).

https://docs.micropython.org/en/latest/library/micropython.html
https://docs.python.org/3/index.html
https://docs.micropython.org/en/latest/
https://docs.micropython.org/en/latest/library/index.html
https://docs.micropython.org/en/latest/library/index.html
https://docs.micropython.org/en/latest/genrst/index.html

IV. LVGL Library

Micropython support using the LVGL (LittlevGV) library version v6.1.2.

LittlevGL is a free and open-source graphics library providing everything you need to create embedded GUI
with easy-to-use graphical elements, beautiful visual effects and low memory footprint.

To get more information about the LVGL library refer to the online documentation of LVLG'?

This documentation provides both basic library information and detailed descriptions with examples for each
type of graphical object.

4.1. Zero Micropython + LVGL implementation

To work with LVGL library you need to import it by calling the command import 1lvgl. The base (parent)
object for drawing is the screen. Access to this object can be obtained by calling the scr_act function. This
object occupies the entire display excluding the header. It is forbidden to delete this object, change its position
or size. However, you can use your own design functions with this object (an example will be given below).
This screen is hidden by default and it is possible to use show and hide functions to show it. When the
Python script execution is finished, but the draw screen is still open, it is possible to close it using the quit

key. Interrupting script execution is also available by pressing the key. The rest of the information on
LVGL can be found at the provided link to the LVGL documentation and the examples below. The Python
examples in the official documentation have a slightly different API, so it is recommended to use the examples
in this document. You can also use the help function to get information on LVGL.

4.1.1. Keyboard support from LVGL

To support keyboard input, register an LVGL indev device with type KEYPAD and read callback
lvgl.keypad_read . Graphical objects that are to be controlled from the keyboard must be added to a
group, and the group is bound to the indev . Below is a table of how the physical calculator buttons are
bound to the LVGL input device:

Phisical key LVGL key Action
LV_KEY_UP Increase value or move upwards

LV_KEY_DOWN Decrease value or move downwards

a
&
n LV_KEY_RIGHT Increase value or move the the right
n LV_KEY_LEFT Decrease value or move the the left
LV_KEY_BACKSPACE Delete a character on the left
clear LV_KEY_ESC Close or exit
enter LV_KEY_ENTER Triggers LV_EVENT_PRESSED/CLICKED events

alpha +n LV_KEY_HOME Go to the beginning/top (E.g. in a Text area)

alpha +° LV_KEY_END Go to the end (E.g. in a Text area)

https://docs.lvgl.io/6.1/

Phisical key LVGL key Action

+a LV_KEY_PREV Focus on the previous object
+° LV_KEY_NEXT Focus on the next object

Read more information about input devices and LVGL groups in the LVGL documentation™>

The creation and use of input devices is shown in some examples below.

4.2. Zero Micropython module objects overview

* keypad_read -- <mp_keypad_read>
» show -- <function>

* hide -- <function>

» get_header_height -- <function>
* __name__ --lvgl

* obj -- <class 'obj'>

* cont -- <class 'cont>

* btn -- <class 'btn">

* imgbtn -- <class 'imgbtn">
* label -- <class 'label™>

* img -- <class 'img'>

* line --<class 'line™>

* page -- <class 'page™

e list -- <class 'list™>

* chart -- <class 'chart>

* table --<class 'table™

* cb -- <class 'cb™>

» cpicker --<class 'cpicker>
* bar -- <class 'bar>

* slider --<class 'slider'>

* led -- <class 'led>

* btnm -- <class 'btnm">

* ddlist -- <class 'ddlist>

* roller --<class Toller'>

* ta -- <class 'ta'>

* canvas -- <class 'canvas™

* win -- <class 'win">

» tabview -- <class 'tabview"™
* tileview -- <class 'tileview'>
* mbox -- <class 'mbox">

* lmeter --<class lmeter>

* gauge -- <class 'gauge">

* sw -- <class 'sw"™

e arc --<class 'arc™>

https://docs.lvgl.io/6.1/overview/indev.html#keypad-and-encoder

preload --<class 'preload™>

spinbox -- <class 'spinbox'>
color_make -- <function>

color_hex -- <function>

color_hex3 -- <function>
style_anim_set_time -- <function>
style_anim_set_ready_cb -- <function>
style_anim_set_playback -- <function>
style_anim_clear_playback -- <function>
style_anim_set_repeat -- <function>
style_anim_clear_repeat -- <function>
style_anim_create -- <function>
scr_act -- <function>

mem_init -- <function>

mem_deinit -- <function>

mem_alloc -- <function>

mem_free -- <function>

mem_realloc -- <function>
mem_defrag -- <function>
mem_get_size -- <function>
task_core_init -- <function>
task_handler -- <function>
task_create_basic -- <function>
task_create -- <function>
task_enable -- <function>
task_get_idle -- <function>
trigo_sin -- <function>

bezier3 -- <function>

atan2 -- <function>

sqrt -- <function>

async_call -- <function>
color_hsv_to_rgb -- <function>
color_rgb_to_hsv -- <function>
tick_get -- <function>

tick_elaps -- <function>
anim_core_init -- <function>
anim_del -- <function>
anim_count_running -- <function>
anim_speed_to_time -- <function>
style_init -- <function>
style_anim_init -- <function>
style_anim_set_styles -- <function>
init -- <function>

event_send -- <function>

event_send_func -- <function>

event_get_data -- <function>
signal_send -- <function>
group_init -- <function>
group_create -- <function>
group_remove_obj -- <function>
group_focus_obj -- <function>
indev_init -- <function>
indev_read_task -- <function>
indev_get_act -- <function>
indev_get_obj_act -- <function>
debug_check_null -- <function>
debug_check_obj_type -- <function>
debug_check_obj_valid -- <function>
debug_check_style -- <function>
debug_check_str -- <function>
debug_log_error -- <function>
theme_get_current -- <function>
txt_get_size -- <function>
txt_get_next_1line -- <function>
txt_get_width -- <function>
txt_is_cmd -- <function>

txt_ins -- <function>

txt_cut -- <function>

draw_get_buf -- <function>
draw_free_buf -- <function>
draw_aa_get_opa -- <function>
draw_aa_ver_seg -- <function>
draw_aa_hor_seg -- <function>
draw_px -- <function>

draw_fill -- <function>

draw_letter -- <function>

draw_map -- <function>

draw_rect -- <function>

draw_label -- <function>

draw_1line -- <function>
draw_triangle -- <function>
draw_polygon -- <function>

draw_arc -- <function>

draw_img -- <function>

RES -- <class 'LV_RES">

TASK_PRIO -- <class 'LV_TASK_PRIO">
OPA -- <class 'LV_OPA"™>

INDEV_TYPE -- <class 'LV_INDEV_TYPE">
INDEV_STATE -- <class 'LV_INDEV_STATE">
FONT_SUBPX -- <class 'LV_FONT_SUBPX'>

ANIM -- <class 'LV_ANIM'">

BORDER -- <class 'LV_BORDER'>

SHADOW -- <class 'LV_SHADOW">

BIDI_DIR -- <class 'LV_BIDI_DIR">

DESIGN -- <class 'LV_DESIGN">

EVENT -- <class 'LV_EVENT">

SIGNAL -- <class 'LV_SIGNAL"

ALIGN -- <class 'LV_ALIGN">

DRAG_DIR -- <class 'LV_DRAG_DIR">

PROTECT -- <class 'LV_PROTECT">

KEY -- <class 'LV_KEY'>

GROUP_REFOCUS_POLICY -- <class 'LV_GROUP_REFOCUS_POLICY">
FONT_FMT_TXT_CMAP -- <class 'LV_FONT_FMT_TXT_CMAP">
LAYOUT -- <class 'LV_LAYOUT">

FIT --<class 'LV_FIT">

TXT_FLAG -- <class 'LV_TXT_FLAG'>

TXT_CMD_STATE -- <class 'LV_TXT_CMD_STATE'>
SB_MODE -- <class 'LV_SB_MODE'">

CURSOR -- <class 'LV_CURSOR">

FONT_FMT_TXT -- <class 'LV_FONT_FMT_TXT">

SYMBOL -- <class 'LV_SYMBOL'>

C_Pointer --<class 'C_Pointer'>

area_t -- <class 'lv_area_t">

style_t -- <class 'lv_style_t">

style_body_t -- <class 'lv_style_body_t">

colori16_t --<class 'lv_colorl6_t">

color16_ch_t -- <class'lv_colorl6_ch_t'>
style_body_border_t --<class 'lv_style_body_border_t">
style_body_shadow_t -- <class 'lv_style_body_shadow_t">
style_body_padding_t -- <class lv_style_body_padding_t">
style_text_t --<class'lv_style_text t'>

font_t -- <class 'lv_font_t">

font_glyph_dsc_t -- <class 'lv_font_glyph_dsc_t">
style_image_t -- <class 'lv_style_image_t">
style_line_t --<class 'lv_style_line_t">

task_t -- <class 'lv_task_t">

11 _t --<class'lv_1l t>

obj_type_t --<class 'lv_obj_type_t>

point_t -- <class 'lv_point_t">

img_header_t -- <class 'lv_img_header_t">
img_decoder_dsc_t -- <class 'lv_img_decoder_dsc_t">
img_decoder_t -- <class 'lv_img_decoder_t">

img_dsc_t -- <class lv_img dsc_t">

img_cache_entry_t -- <class 'lv_img_cache_entry_t">

chart_series_t --<class 'lv_chart_series_t'>

color_hsv_t --<class lv_color_hsv_t>

_lv_mp_int_wrapper --<class'_lv_mp_int_wrapper™

anim_t -- <class 'lv_anim_t">

mem_monitor_t -- <class'lv_mem_monitor t>

indev_drv_t --<class 'lv_indev_drv_t'>

indev_data_t -- <class 'lv_indev_data_t">

indev_t -- <class lv_indev_t™>

indev_proc_t -- <class 'lv_indev_proc_t">

indev_proc_types_t -- <class 'lv_indev_proc_types_t">
indev_proc_types_pointer_t -- <class 'lv_indev_proc_types_pointer_t'>
indev_proc_types_keypad_t -- <class 'lv_indev_proc_types_keypad_t">
group_t -- <class 'lv_group_t">

theme_t -- <class 'lv_theme t'>

theme_style_t -- <class 'lv_theme_style_t">
theme_style_btn_t -- <class 'lv_theme_style_btn_t">
theme_style_imgbtn_t -- <class lv_theme_style_imgbtn_t">
theme_style_label_t -- <class 'lv_theme_style_label_t">
theme_style_img_t -- <class 'lv_theme_style_img_t'>
theme_style_line_t -- <class 'lv_theme_style_line_t">
theme_style_bar_t -- <class 'lv_theme_style_bar_t">
theme_style_slider_t -- <class lv_theme_style_slider_t">
theme_style_sw_t -- <class 'lv_theme_style_sw_t'>
theme_style_cb_t -- <class 'lv_theme_style_cb_t">
theme_style_cb_box_t -- <class lv_theme_style_cb_box_t">
theme_style_btnm_t -- <class 'lv_theme_style_btnm_t">
theme_style_btnm_btn_t -- <class 'lv_theme_style_btnm_btn_t">
theme_style_mbox_t -- <class 'lv_theme_style_mbox_t">
theme_style_mbox_btn_t -- <class lv_theme_style_mbox_btn_t">
theme_style_page_t -- <class 'lv_theme_style_page_t">
theme_style_ta_t -- <class 'lv_theme_style_ta_t">
theme_style_spinbox_t -- <class 'lv_theme_style_spinbox_t'>
theme_style_list_t -- <class 'lv_theme_style_list_t">
theme_style list_btn_t -- <class lv_theme_style_list_btn_t">
theme_style_ddlist_t -- <class lv_theme_style_ddlist_t">
theme_style_roller_t -- <class 'lv_theme_style_roller_t">
theme_style_tabview_t -- <class 'lv_theme_style_tabview_t'>
theme_style tabview_btn_t -- <class 'lv_theme_style_tabview_btn_t">
theme_style_tileview_ t --<class 'lv_theme_style_tileview_t">
theme_style_table_t -- <class 'lv_theme_style_table_t">
theme_style win_t -- <class 'lv_theme_style_win_t™>
theme_style_win_btn_t -- <class 'lv_theme_style_win_btn_t">
theme_group_t -- <class 'lv_theme_group_t">
draw_label_txt_sel_t --<class lv_draw_label_txt_sel _t™>
draw_label_hint_t -- <class 'lv_draw_label_hint_t">

color_t --<class'lv_colorl6_t'>

» font_code_saver_12 --struct lv_font_t
» font_code_saver_16 --struct Iv_font_t
e font_unscii8_8 --structlv_font t

» style_scr --structlv_style_t

» style_transp --structlv_style_t

» style_transp_fit --structlv_style_t

» style_transp_tight --structlv_style_t
» style_plain --struct Iv_style_t

» style_plain_color --structlv_style_t

» style pretty --structlv_style_t

» style_pretty_color --structlv_style_t
* style_btn_rel --structlv_style_t

* style_btn_pr --structlv_style_t

» style_btn_tgl rel --structlv_style_t

» style_btn_tgl_pr --structlv_style_t

» style_btn_ina --structlv_style_t

* _nesting --struct _lv_mp_int_wrapper

e LvReferenceError -- <class 'LvReferenceError'>

4.3. Zero Micropython + LVGL examples

4.3.1. Importing library and show help

import 1lvgl as 1lv
help(lv)

NORMAL FLOAT AUTO REAL RADIAN NAT

Ir er

/ReferenceErro

4.3.2. Arc

import 1lvgl as 1lv

style = lv.style_t()

style.copy(lv.style_plain)
style.line.color = lv.color_make(0x00, OxFF, OXFF)
style. line.width = 8

arc = lv.arc(lv.scr_act(), None)
arc.set_style(lv.arc.STYLE.MAIN, style)
arc.set_angles(90, 60)
arc.set_size(150, 150)

arc.align(None, 1lv.ALIGN.CENTER, 0, 0)

lv.show()
print("LVGL drawing finished")

PYTHON

4.3.3. Arc + task

import 1lvgl as 1lv

class loader_arc(lv.arc):

def __init_ (self, parent, color=1lv.color_hex(0x00FF80),
width=8, style=1lv.style_plain, rate=20):
super().__init__ (parent, None)

self.a = 0

self.rate = rate

.style = lv.style_ t()
.style.copy(style)
.style.line.color color
.style.line.width width

.set_angles(180, 180)
.set_style(self.STYLE.MAIN, self.style)
self.spin()
spin(self):

lv.task_create(self.task_ch, self.rate, lv.TASK_PRIO.LOWEST, {})

task_ch(self, task):
self.a+=5
if self.a >= 359: self.a = 359

if self.a < 180: self.set_angles(180-self.a, 180)
else: self.set_angles(540-self.a, 180)

if self.a == 359:
self.a = 0
task._del()

loader_arc = loader_arc(lv.scr_act())
loader_arc.align(None, 1v.ALIGN.CENTER, 0, 0)

lv.show()
print("LVGL drawing finished")

4.3.4. Bar

import 1lvgl as 1lv

bari = lv.bar(lv.scr_act(), None)
barl.set_size(200, 30)

barl.align(None, lv.ALIGN.CENTER, 0, 0)
barl.set_anim_time(2500)
barl.set_value(100, lv.ANIM.ON)

1v.show()
print("LVGL drawing finished")

PYTHON

4.3.5. Button matrix

import lvgl as 1lv

keyboardDriver = lv.indev_drv_t()
keyboardDriver.init()

keyboardDriver.type = lv.INDEV_TYPE.KEYPAD
keyboardDriver.read_cb = 1lv.keypad_read
keyboard = keyboardDriver.register()

group = lv.group_create()
keyboard.set_group(group)

def event_handler(obj, event):
if event == 1v.EVENT.VALUE_CHANGED:

txt = obj.get_active_btn_text()
print("%s was pressed" % txt)

btnml = lv.btnm(1lv.scr_act(), None)

btnmi.set_map(["1", "2", "3", "4",6 "5" '"\n",
D@n, oD, Ogu Ogh oo OD\yo
"Action1", "Action2", ""])

btnmil.set_btn_width(10, 2)

btnml.align(None, 1lv.ALIGN.CENTER, 0, 0)

btnml.set_event_cb(event_handler)

group.add_obj(btnml)

Llv.show()
print("LVGL drawing finished")

PYTHON

Action1 Action?

4.3.6. Buttons

import 1lvgl as 1lv

def event_handler(obj, event):
if event == 1v.EVENT.CLICKED:
print("Button clicked")

btnli = lv.btn(lv.scr_act(), None)
btni.align(None, 1lv.ALIGN.CENTER, 0, -40)
btnl.set_event_cb(event_handler)

label = 1lv.label(btni1, None)
label.set_text("Button")

btn2 = lv.btn(lv.scr_act(), None)

btn2.set_event_cb(lambda obj, event: print("Toggled") if event == 1v.EVENT.VALUE_CHANGED else None)
btn2.align(None, 1v.ALIGN.CENTER, 0, 40)

btn2.set_toggle(True)

btn2.toggle()

btn2.set_fit2(1lv.FIT.NONE, lv.FIT.TIGHT)

label = 1lv.label(btn2, None)
label.set_text("Toggled")

keyboardDriver = lv.indev_drv_t()
keyboardDriver.init()

keyboardDriver.type = 1lv.INDEV_TYPE.KEYPAD
keyboardDriver.read_cb = 1lv.keypad_read
keyboard = keyboardDriver.register()

group = lv.group_create()
group.add_obj(btn1)
group.add_obj(btn2)
keyboard.set_group(group)

lv.show()
print("LVGL drawing finished")

PYTHON

Toggled

4.3.7. Canvas

import 1lvgl as 1lv

CANVAS_WIDTH 200
CANVAS_HEIGHT 150

style = lv.style_t()

style.copy(lv.style_plain)

style.body.main_color = lv.color_make(0xFF,0,0)
style.body.grad_color = lv.color_make(0x80,0,0)
style.body.radius = 4

style.body.border.width 2

style.body.border.color lv.color_make(OxFF, OXFF, OxFF)
style.body.shadow.color lv.color_make(OXFF, OXFF, OXFF)
style.body.shadow.width 4

style. line.width = 2

style. line.color lv.color_make(0,0,0)
style.text.color lv.color_make (0,0, OxFF)

cbuf = bytearray(CANVAS_WIDTH * CANVAS_HEIGHT * 4)

canvas = lv.canvas(lv.scr_act(), None)

canvas.set_buffer(cbuf, CANVAS_WIDTH, CANVAS_HEIGHT, 1lv.img.CF.TRUE_COLOR)
canvas.align(None, 1v.ALIGN.CENTER, 0, 0)
canvas.fill_bg(lv.color_make(0xCO, OxCO, 0xCO))

canvas.draw_rect(70, 60, 100, 70, style)

canvas.draw_text(40, 20, 100, style, "Some text on text canvas", 1lv.label.ALIGN.LEFT)

img = lv.img_dsc_t()
img.data = cbuf[:]
img.header.cf = 1lv.img.CF.TRUE_COLOR

img.header.w CANVAS_WIDTH
img.header.h CANVAS_HEIGHT

canvas.fill_bg(lv.color_make(0xCO, OxCO, OxCO))
canvas.rotate(img, 30, 0, 0, CANVAS_WIDTH // 2, CANVAS_HEIGHT // 2)

1v.show()

PYTHON

4.3.8. Chart

import 1lvgl as lv

chart = lv.chart(lv.scr_act(), None)

chart.set_size (200, 150)

chart.align(None, 1v.ALIGN.CENTER, 0, 0)
chart.set_type(lv.chart.TYPE.POINT | lv.chart.TYPE.LINE)
chart.set_series_opa(lv.OPA._70)
chart.set_series_width(4)

chart.set_range(0, 100)

= chart.add_series(lv.color_make(0xFF, 0x00, 0x00))
chart.add_series(1lv.color_make(0x00, 0x80, 0x00))

chart.set_points(seri, [10, 10, 10, 10, 10, 10, 10, 30, 70, 90])

chart.set_points(ser2, [90, 70, 65, 65, 65, 65, 65, 65, 65, 65])

lv.show()
print("LVGL drawing finished")

PYTHON

4.3.9. Checkbox

import 1lvgl as 1lv

keyboardDriver = lv.indev_drv_t()
keyboardDriver.init()

keyboardDriver.type = 1lv.INDEV_TYPE.KEYPAD
keyboardDriver.read_cb = 1lv.keypad_read
keyboard = keyboardDriver.register()

group = lv.group_create()
keyboard.set_group(group)

def event_handler(obj, event):
if event == 1v.EVENT.VALUE_CHANGED:
print("State: %s" % ("Checked" if obj.is_checked() else "Unchecked"))

cb = lv.cb(lv.scr_act(), None)
cb.set_text("I agree to terms")
cb.align(None, 1v.ALIGN.CENTER, 0, 0)
cb.set_event_ch(event_handler)

group.add_obj(ch)

lv.show()
print("LVGL drawing finished")

PYTHON

@I agree to terms

4.3.10. Manual drawing

import 1lvgl as 1lv

scr = lv.scr_act()

header_height = 1lv.get_header_height()

print("Screen width: ", scr.get_width())
print("Screen height: ", scr.get_height())

print("Header height: ", header_height)

def draw_cb(obj, mask, mode):
if mode == 1v.DESIGN.DRAW_MAIN:
objArea = lv.area_t()
obj.get_coords(objArea)

bgColor = lv.color_make(OxFF, OxFF, OXFF)
lv.draw_fill(objArea, mask, bgColor, 1lv.OPA._100)

styleLine = lv.style_t()
styleLine.copy(lv.style plain)

styleLine. line.color = 1lv.color_make(0OxFF, 0x00, 0x00)
styleLine. line.width = 3

styleLine. line.rounded = 1

horLinePointl = { "x": objArea.x1, "y": objArea.yl + int(objArea.get_height() / 2) }

horLinePoint2 = { "x": objArea.x2, "y": objArea.yl + int(objArea.get_height() / 2) }
lv.draw_line(horLinePoint1, horLinePoint2, mask, styleLine, 1lv.OPA._100)

verLinePointl = { "x": objArea.x1 + int(objArea.get_width() / 2), "y": objArea.yl }
verLinePoint2 = { "x": objArea.x1 + int(objArea.get_width() / 2), "y": objArea.y2 }
lv.draw_line(verLinePoint1, verLinePoint2, mask, stylelLine, 1lv.OPA._100)

pxColor = lv.color_make(0x00, 0x00, 0x00)

lv.draw_px(objArea.x1 + 50, objArea.yl + 50, pxColor, .OPA._100)
lv.draw_px(objArea.x1 + 50, objArea.y2 - 50, pxColor, .OPA._100)
lv.draw_px(objArea.x2 - 50, objArea.yl + 50, pxColor, .OPA._100)
lv.draw_px(objArea.x2 - 50, objArea.y2 - 50, pxColor, .OPA._100)

styleRect = lv.style_t()

styleRect.copy(lv.style_plain)

styleRect.body.main_color = lv.color_make(0x00, OXFF, 0x00)
styleRect.body.grad_color = lv.color_make(0x00, OxFF, 0x00)
styleRect.body.radius = 5

rectArea = lv.area_t()
rectArea.set(objArea.x1 + 60, objArea.yl + 60, objArea.x1l + 100, objArea.yl + 100)
lv.draw_rect(rectArea, mask, styleRect, 1lv.OPA._100)

labelStyle = lv.style_t()
labelStyle.copy(lv.style_plain)
labelStyle.text.color = lv.color_make(0x00, OxFF, OXFF)

labeloffset = {"x": 0, "y": 0}
labelArea = lv.area_t()

labelArea.set(objArea.x1 + 180, objArea.yl + 60, objArea.x2, objArea.yl + 80)
lv.draw_label(labelArea, mask, labelStyle, 1lv.OPA._100, "Label", 0, labeloffset, None, None, 1

Vv.BIDI_DIR.LTR)

styleRect.body.main_color = lv.color_make(OxFF, 0x00,
trigPoints = [{"x":200, "y":150},

{"x":240, "y":150},

{"x":240, "y":200}]
lv.draw_triangle(trigPoints, mask, styleRect, 1lv.OPA._100)

styleRect.body.main_color = 1lv.color_make(0x00, 0x00, OXFF)
polyPoints = [{"x":100, "y":150},

{"x":140, "y":150},

{"x":140, "y":200},

{"x":100, "y":220}]

lv.draw_polygon(polyPoints, len(polyPoints), mask, styleRect,

return True
else:
return False
scr.set_design_cb(draw_ch)

print("Main draw finished")

lv.show()

PYTHON

4.3.11. Gauge

import 1lvgl as 1lv

style = lv.style_t()
style.copy(lv.style_pretty color)
style.body.main_color = lv.color_hex3(0x666)
style.body.grad_color = 1lv.color_hex3(0x666)
style.body.padding. left = 10
style.body.padding.inner = 8
style.body.border.color = lv.color_hex3(0x333)
style. line.width = 3

style.text.color = lv.color_hex3(0xFFFFFF)
style.line.color lv.color_hex3(0xF00)

needle_colors = [
lv.color_make(0x00, 0x00, OxFF),
lv.color_make(OXFF, OxA5, 0x00),

1v.OPA.

.color_make(0x80, 0x00, 0x80)

gaugel = lv.gauge(lv.scr_act(), None)
gaugel.set_style(lv.gauge.STYLE.MAIN, style)
gaugel.set_needle_count(len(needle_colors), needle_colors)
gaugel.set_size(150, 150)

gaugel.align(None, 1v.ALIGN.CENTER, 0, 20)

gaugel.set_value(0, 10)
gaugel.set_value(1, 20)
gaugel.set_value(2, 30)

1v.show()
print("LVGL drawing finished")

PYTHON

4.3.12. Label

import 1lvgl as 1lv

labell = 1lv.label(lv.scr_act(), None)
label1.set_long_mode(lv. label.LONG.BREAK)
labell.set_recolor(True)
labell.set_align(1lv.label.ALIGN.CENTER)

labell.set_text("\377008080 Re-color\377 \3770000ff words\377 \3776666ff of a\377 label " +
"and wrap long text automatically.")

labell.set_width(150)

labell.align(None, 1v.ALIGN.CENTER, 0, -30)

label2 = 1lv.label(lv.scr_act(), None)
label2.set_long_mode(lv. label.LONG.SROLL_CIRC)
label2.set_width(150)

label2.set_text("It is a circularly scrolling text. ")
label2.align(None, 1v.ALIGN.CENTER, 0, 30)

1v.show()
print("LVGL drawing finished")

PYTHON

lLabel and
wrap long

text automatica
lly.

ing text. It

4.3.13. Label shadow

import 1lvgl as 1lv

label_style = lv.style_t()
label_style.copy(lv.style_plain)
label_style.text.opa = 1v.OPA._50

shadow_label = 1lv.label(lv.scr_act(), None)
shadow_label.set_style(lv.label.STYLE.MAIN, label_style)

main_label = 1lv.label(lv.scr_act(), None)
main_label.set_text("A simple method to create\n" +
"shadows on text\n" +
"It even works with\n\n" +
"newlines and spaces.")

shadow_label.set_text(main_label.get_text())

main_label.align(None, 1v.ALIGN.CENTER, 0, 0)

shadow_label.align(main_label, 1v.ALIGN.IN_TOP_LEFT, 1, 1)

lv.show()
print("LVGL drawing finished")

PYTHON

A simple method to create
shadows on text
It even works with

newlines and spaces.

4.3.14. Label change

import 1lvgl as 1lv

labels = []

label = 1lv.label(lv.scr_act(), None)
label.align(None, 1v.ALIGN.IN_TOP_MID, 0, 5)
label.set_align(1lv.label.ALIGN.CENTER)
labels.append(label)

label = 1lv.label(lv.scr_act(), None)
label.align(None, 1v.ALIGN.CENTER, 0, 0)
label.set_align(lv.label.ALIGN.CENTER)
labels.append(label)

label = 1lv.label(lv.scr_act(), None)
label.set_auto_realign(True)

label.align(None, 1v.ALIGN.IN_BOTTOM_MID, 0, -5)
label.set_align(lv.label.ALIGN.CENTER)
labels.append(label)

class TextChanger:
"""Changes texts of all labels every second"""
def __init_ (self, labels,
texts=["Text", "A very long text", "A text with\nmultiple\nlines"],
rate=1000):
self.texts = texts
self.labels = labels
self.rate = rate
self.counter = 0

start(self):
lv.task_create(self.task_ch, self.rate, 1lv.TASK_PRIO.LOWEST, None)

def task _cb(self, task):

for label in labels:
label.set_text(self.texts[self.counter])

if len(self.labels) > 1:
self.labels[1].align(None, 1v.ALIGN.CENTER, 0, 0)

self.counter = self.counter + 1
print("Counter: ", self.counter)
if self.counter >= len(self.texts):
task._del()
print("Task deleted")

text_changer = TextChanger (labels)
text_changer.start()

lv.show()
print("LVGL drawing finished")

PYTHON

A text with
multiple
Llines

A text with
multiple
Lines

A text with
multiple

lines

4.3.15. Led

import 1lvgl as 1lv

style_led = lv.style t()
style_led.copy(lv.style_pretty_color)

style_led.body.radius = 800

style_led.body.main_color = lv.color_make(0xb5, 0Ox0f, 0x04)
style_led.body.grad_color = lv.color_make(0x50, 0x07, 0x02)
style_led.body.border.color = lv.color_make(0xfa, 0x0f, 0x00)
style_led.body.border.width = 3

style_led.body.border.opa = lv.0PA._30
style_led.body.shadow.color = lv.color_make(0xb5, 0x0f, 0x04)
style_led.body.shadow.width = 5

ledl = lv.led(lv.scr_act(), None)
ledl.set_style(lv.led.STYLE.MAIN, style_led)
ledl.align(None, 1v.ALIGN.CENTER, -80, 0)
led1.off ()

= lv.led(lv.scr_act(), led1l)
.align(None, 1v.ALIGN.CENTER, 0, 0)
.set_bright(190)

led3 = lv.led(lv.scr_act(), ledl)
led3.align(None, Llv.ALIGN.CENTER, 80, 0)
led3.on()

lv.show()

PYTHON

4.3.16. Line

import 1lvgl as 1lv

line_points = [{"x":5, "y":5},
{"x":70, "y":70%},
{"x":120, "y":10},
{"x":180, "y":60},
{"x":240, "y":10}]

style_line = lv.style_t()
style_line.copy(lv.style_plain)

style_line.line.color = lv.color_make(0x00, 0x3b, 0x75)
style_line.line.width = 3

style_line.line.rounded = 1

linel = 1lv.line(lv.scr_act(), None)
linel.set_points(line_points, len(line_points))
linel.set_style(lv.line.STYLE.MAIN, style_line)
linel.align(None, 1lv.ALIGN.CENTER, 0, 0)

lv.show()

PYTHON

4.3.17. List

import 1lvgl as 1lv

keyboardDriver = 1lv.indev_drv_t()
keyboardDriver.init()

keyboardDriver.type = lv.INDEV_TYPE.KEYPAD
keyboardDriver.read_cb = 1lv.keypad_read
keyboard = keyboardDriver.register()

group = lv.group_create()
keyboard.set_group(group)

listl = lv.list(lv.scr_act(), None)
listl.set_size(160, 200)
listl.align(None, 1v.ALIGN.CENTER, 0, 0)

def event_handler(obj, event):
if event == 1v.EVENT.CLICKED:
print("Clicked: %s" % listl.get_btn_text(obj))

list_btn = listil.add_btn(None, "New")
list_btn.set_event_cb(event_handler)

list_btn = listil.add_btn(None, "Open")
list_btn.set_event_cb(event_handler)

list_btn = listil.add_btn(None, "Delete")
list_btn.set_event_cb(event_handler)

list_btn = listi.add_btn(None, "Edit")
list_btn.set_event_cb(event_handler)

list_btn = listil.add_btn(None, "Save")
list_btn.set_event_cb(event_handler)

group.add_obj(list1)

lv.show()

PYTHON

Delete

4.3.18. LMeter

import 1lvgl as 1lv

style_lmeter

style_lmeter.
style_lmeter.
style_lmeter.
style_lmeter.
style_lmeter.
style_lmeter.

= lv.style_t()
copy(lv.style_pretty_color)

line.width = 2

line.color = lv.color_hex(0xc0OcOcO)
body.main_color = lv.color_hex(0x91bfed)
body.grad_color = lv.color_hex(0x04386c)
body.padding. left = 16

lmeter = 1lv.lmeter(lv.scr_act(),

lmeter.set_range(0, 100)

lmeter.set_value(80)

lmeter.set_scale(240, 31)

lmeter.set_style(lv. lmeter.STYLE.MAIN, style_lmeter)
lmeter.set_size (150, 150)

lv.show()

PYTHON

S—
S—
—
—
—
/

4.3.19. MessageBox

import 1lvgl as 1lv

keyboardDriver = 1lv.indev_drv_t()
keyboardDriver.init()

keyboardDriver.type = 1lv.INDEV_TYPE.KEYPAD
keyboardDriver.read_cb = 1lv.keypad_read
keyboard = keyboardDriver.register()

group = lv.group_create()
keyboard.set_group(group)

def event_handler(obj, event):
if event == 1lv.EVENT.VALUE_CHANGED:
print("Button: %s" % lv.mbox.get_active_btn_text(obj))

mbox1 = lv.mbox(1lv.scr_act(), None)
mbox1.set_text("A message box with two buttons.")
mbox1.add_btns(["Apply", "Close", ""])
mbox1.set_width(200)
mbox1.set_event_cb(event_handler)
mbox1.align(None, 1v.ALIGN.CENTER, 0, 0)

group.add_obj(mbox1)

lv.show()

PYTHON

A message box with
two buttons.

4.3.20. Preloader

import 1lvgl as 1lv

style = lv.style_t()
style.copy(lv.style_plain)

style. line.width = 10

style.line.color = lv.color_hex3(0x258)

style.body.border.color lv.color_hex3(0xBBB)
style.body.border.width 10
style.body.padding. left (c]

preload = lv.preload(lv.scr_act(), None)

preload.set_size (100, 100)
preload.align(None, 1lv.ALIGN.CENTER, 0, 0)
preload.set_style(lv.preload.STYLE.MAIN, style)

lv.show()

PYTHON

4.3.21. Roller

import 1lvgl as 1lv

keyboardDriver = lv.indev_drv_t()
keyboardDriver.init()

keyboardDriver.type = Llv.INDEV_TYPE.KEYPAD
keyboardDriver.read_cb = 1lv.keypad_read
keyboard = keyboardDriver.register()

group = lv.group_create()
keyboard.set_group(group)

def event_handler(obj, event):
if event == 1v.EVENT.VALUE_CHANGED:
option = " "*10
obj.get_selected_str(option, len(option))
print("Selected month: %s" % option.strip())

rollerl = lv.roller(lv.scr_act(), None)
rollerl.set_options("\n".join([
"January",
"February",
"March",
"April",
"May",
"June",
"July",
"August",
"September",
"October",
"November",
"December"]), lv.roller.MODE.INIFINITE)

rollerl.set_visible row_count(4)
rollerl.align(None, 1lv.ALIGN.CENTER, 0, 0)
rollerl.set_event_cb(event_handler)

group.add_obj(roller1)

lv.show()

PYTHON

November

January

4.3.22. Slider

import 1lvgl as 1lv

keyboardDriver = lv.indev_drv_t()
keyboardDriver.init()

keyboardDriver.type = lv.INDEV_TYPE.KEYPAD
keyboardDriver.read_cb = 1lv.keypad_read
keyboard = keyboardDriver.register()

group = lv.group_create()
keyboard.set_group(group)

slider_label = 1lv.label(lv.scr_act(), None)
slider_label.set_text("0")
slider_label.set_auto_realign(True)

def slider_event_cb(obj, event):
if event == 1lv.EVENT.VALUE_CHANGED:
slider_label.set_text("%u" % obj.get_value())

slider = lv.slider(lv.scr_act(), None)
slider.set_width(200)

slider.align(None, 1v.ALIGN.CENTER, 0, 0)
slider.set_event_cb(slider_event_cb)
slider.set_range(0, 100)

slider_label.align(slider, 1lv.ALIGN.OUT_BOTTOM_MID, 0, 10)

info = 1lv.label(lv.scr_act(), None)
info.set_text("""Welcome to the slider+label demo!
Move the slider and see that the label

updates to match it.""")

info.align(None, 1v.ALIGN.IN_TOP_LEFT, 10, 10)

group.add_obj(slider)

1v.show()

PYTHON

Welcome to the slider+Llabel dem
Move the slider and see that th
updates to match it.

4.3.23. Spinbox

import 1lvgl as 1lv

keyboardDriver = lv.indev_drv_t()
keyboardDriver.init()

keyboardDriver.type = 1lv.INDEV_TYPE.KEYPAD
keyboardDriver.read_cb = 1lv.keypad_read
keyboard = keyboardDriver.register()

group = lv.group_create()
keyboard.set_group(group)

def event_handler(obj, event):
if event == 1v.EVENT.VALUE_CHANGED:
print("Value: %d" % obj.get_value())
elif event == 1lv.EVENT.CLICKED:

obj.increment()

spinbox = lv.spinbox(1lv.scr_act(), None)
spinbox.set_digit_format(5, 3)
spinbox.step_prev()

spinbox.set_width(100)

spinbox.align(None, 1lv.ALIGN.CENTER, 0, 0)
spinbox.set_event_cb(event_handler)

group.add_obj(spinbox)

Llv.show()

PYTHON

4.3.24. Switch

import 1lvgl as 1lv

keyboardDriver = lv.indev_drv_t()
keyboardDriver.init()

keyboardDriver.type = 1lv.INDEV_TYPE.KEYPAD
keyboardDriver.read_cb = 1lv.keypad_read
keyboard = keyboardDriver.register()

group = lv.group_create()
keyboard.set_group(group)

def event_handler(obj, event):
if event == 1lv.EVENT.VALUE_CHANGED:
print("State: %s" % ("On" if obj.get_state() else "Off"))

bg_style = lv.style_t()
indic_style = 1lv.style_t()
knob_on_style = lv.style_t()
knob_off_style = lv.style_t()

bg_style.copy(lv.style_pretty)
bg_style.body.radius = 800

bg_style.body.padding.top = 6
bg_style.body.padding.bottom =

indic_style.copy(lv.style_pretty color)
indic_style.body.radius = 800
indic_style.body.main_color = lv.color_hex(0x9fc8ef)
indic_style.body.grad_color = lv.color_hex(0x9fc8ef)
indic_style.body.padding. left = 0
indic_style.body.padding.right = 0@
indic_style.body.padding.top = 0
indic_style.body.padding.bottom = 0

knob_off_style.copy(lv.style_pretty)
knob_off_style.body.radius = 800
knob_off_style.body.shadow.width = 4
knob_off_style.body.shadow.type = 1lv.SHADOW.BOTTOM

knob_on_style.copy(lv.style_pretty_color)
knob_on_style.body.radius = 800
knob_on_style.body.shadow.width = 4

knob_on_style.body.shadow.

= lv.sw(lv.scr_act(),
.set_style(lv.sw.STYLE.
.set_style(lv.sw.STYLE.
.set_style(lv.sw.STYLE.
.set_style(lv.sw.STYLE.
.align(None,

1v.ALIGN.CENTER, 0,

type = lv.SHADOW.BOTTOM

None)

BG, bg_style)

INDIC, indic_style)
KNOB_ON, knob_on_style)
KNOB_OFF, knob_off_style)
-50)

.set_event_cb(event_handler)

sw2 = lv.sw(lv.scr_act(),
sw2.set_style(lv.sw.STYLE.
sw2.set_style(lv.sw.STYLE.
sw2.set_style(lv.sw.STYLE.
sw2.set_style(lv.sw.STYLE.
sw2.on(lv.ANIM.ON)

sw2.align(None,
sw2.set_event_cb(lambda o,

group.add_obj(sw1l)
group.add_obj(sw2)

1v.show()

PYTHON

4.3.25. Table

import 1lvgl as 1lv

style_celll =
style_cell1.
style_celll.
style_cell1.

lv.style_t()

style_cell2 =
style_cell2.
style_cell2.
style_cell2.
style_cell2.
style_cell2.

lv.style_t()

table = lv.table(lv.scr_act(),
table.set_style(lv.table.STYLE.CELL1,
table.set_style(lv.table.STYLE.CELLZ2,

1v.ALIGN.CENTER, O,

None)

BG, bg_style)

INDIC, indic_style)
KNOB_ON, knob_on_style)
KNOB_OFF, knob_off_style)

50)
e: None)

copy(lv.style_plain)
body.border.width = 1
body.border.color =

lv.color_make(0,0,0)

copy(lv.style_plain)

body.border .width = 1
body.border.color =
body.main_color =

lv.color_make(0,0,0)

None)
style_celll)
style_cell2)

lv.color_make(0xCO, OxCO, OXCO)
body.grad_color = lv.color_make(0xCO, 0xCO,

0XCO)

set_style(lv.table.STYLE.BG, lv.style_transp_tight)
set_col_cnt(2)

set_row_cnt(4)

align(None, 1v.ALIGN.CENTER, 0, 0)

set_cell_align(®, 0, 1lv.label.ALIGN.CENTER)
set_cell_align(®, 1, 1lv.label.ALIGN.CENTER)

set_cell_type(0, 0, 2)
set_cell_type(0, 1, 2)

set_cell_value(O, "Name")

set_cell_value(1, "Apple")
set_cell_value(2, "Banana")
set_cell_value(3, "Citron")

table.set_cell _value(0O, "Price")
table.set_cell_value(1, "$7")
table.set_cell_value(2, "$4")
table.set_cell_value(3, "$6")

lv.show()

PYTHON

Cieron 56—

4.3.26. Tabview

import 1lvgl as 1lv

keyboardDriver = lv.indev_drv_t()
keyboardDriver.init ()

keyboardDriver.type = 1lv.INDEV_TYPE.KEYPAD
keyboardDriver.read_cb = 1lv.keypad_read
keyboard = keyboardDriver.register()

group = lv.group_create()
keyboard.set_group(group)

tabview = lv.tabview(1lv.scr_act(), None)

tabl = tabview.add_tab("Tab 1")

tabview.add_tab("Tab 2")
tabview.add_tab("Tab 3")

label = 1lv.label(tabl, None)
label.set_text("""This the first tab

If the content
of a tab

become too long
the it
automatically
become
scrollable.""")

label = 1lv.label(tab2, None)
label.set_text("Second tab")

label = 1lv.label(tab3, None)
label.set_text("Third tab")

group.add_obj(tabview)

lv.show()

PYTHON

This the first tab

If the content
of a tab

become too long
the it
automatically
bhecome

4.3.27. Textarea simple

import 1lvgl as 1lv

keyboardDriver = 1lv.indev_drv_t()
keyboardDriver.init()

keyboardDriver.type = 1lv.INDEV_TYPE.KEYPAD
keyboardDriver.read_cb = 1lv.keypad_read
keyboard = keyboardDriver.register()

group = lv.group_create()
keyboard.set_group(group)

def event_handler(obj, event):
if event == 1v.EVENT.VALUE_CHANGED:
print("Value: %s" % obj.get_text())

= lv.ta(lv.scr_act(), None)
.set_size (200, 100)
.align(None, 1v.ALIGN.CENTER, 0, 0)

tal.set_cursor_type(lv.CURSOR.BLOCK)
tal.set_text("A text in a Text Area"
tal.set_event_cb(event_handler)

group.add_obj(tal)

1v.show()
print("LVGL drawing finished")

PYTHON

A text in a Text
Areaf124342554]}

4.3.28. Textarea password

import 1lvgl as 1lv

keyboardDriver = lv.indev_drv_t()
keyboardDriver.init ()

keyboardDriver.type = 1lv.INDEV_TYPE.KEYPAD
keyboardDriver.read_cb = 1lv.keypad_read
keyboard = keyboardDriver.register()

group = lv.group_create()
keyboard.set_group(group)

HOR_RES = lv.scr_act().get_width()
print("HOR_RES = %d" % HOR_RES)

pwd_ta = lv.ta(lv.scr_act(), None)
pwd_ta.set_text("")
pwd_ta.set_pwd_mode(True)
pwd_ta.set_one_line(True)
pwd_ta.set_width(HOR_RES // 2 - 20)
pwd_ta.set_pos(5, 20)

pwd_label = 1lv.label(lv.scr_act(), None)
pwd_label.set_text("Password:")
pwd_label.align(pwd_ta, 1v.ALIGN.OUT_TOP_LEFT, 0, 0)

group.add_obj(pwd_ta)

lv.show()
print("LVGL drawing finished")

PYTHON

Password:

4.3.29. Tileview

import 1lvgl as 1lv

keyboardDriver = lv.indev_drv_t()
keyboardDriver.init()

keyboardDriver.type = 1lv.INDEV_TYPE.KEYPAD
keyboardDriver.read_cb = 1lv.keypad_read
keyboard = keyboardDriver.register()

group = lv.group_create()
keyboard.set_group(group)

Validfpos = [{HXII:OI ||y|v: O}, {”X”: O, ||y||: 1}, {IIXH: 1,llyll: 1}]

HOR_RES lv.scr_act().get_width()
VER_RES lv.scr_act().get_height()

tileview = lv.tileview(lv.scr_act(), None)
tileview.set_valid_positions(valid_pos, len(valid_pos))
tileview.set_edge_flash(True)

tilel = lv.obj(tileview, None)
tilel.set_size(HOR_RES, VER_RES)
tilel.set_style(lv.style_pretty)
tileview.add_element(tilel)

label = 1lv.label(tilel, None)
label.set_text("Tile 1")
label.align(None, 1v.ALIGN.CENTER, 0, 0)

1st = lv.list(tileview, None)
lst.set_size(HOR_RES, VER_RES)
lst.set_pos(0, VER_RES)
lst.set_scroll_propagation(True)
lst.set_sb_mode(lv.SB_MODE.OFF)
tileview.add_element(1lst)

list_btn = 1lst.add_btn(None, "One")
tileview.add_element(list_btn)

list_btn = 1lst.add_btn(None, "Two")

tileview.add_element(list_btn)

list_btn = 1lst.add_btn(None, "Three")
tileview.add_element(list_btn)

list_btn = 1lst.add_btn(None, "Four")
tileview.add_element(list_btn)

list_btn = 1lst.add_btn(None, "Five")
tileview.add_element(list_btn)

list_btn = 1lst.add_btn(None, "Six")
tileview.add_element(list_btn)

list_btn = 1lst.add_btn(None, "Seven'")
tileview.add_element(list_btn)

list_btn = 1lst.add_btn(None, "Eight")
tileview.add_element(list_btn)

tile3 = lv.obj(tileview, None)
tile3.set_size(HOR_RES, VER_RES)
tile3.set_pos(HOR_RES, VER_RES)
tileview.add_element(tile3)

btn = lv.btn(tile3, None)
btn.align(None, 1v.ALIGN.CENTER, 0, 0)

label = 1lv.label(btn, None)
label.set_text("Button")

group.add_obj(tileview)

lv.show()

V. Documentation changelog

v2.27.1 (2025-12-29)

* Added lvgl micropython module objects overview.

v2.27.0 (2025-12-15)

* Enabled functions attributes and enumerate build options.

» Fixed deleting and closing (leak) objects of opened files.

* Fixed memory leaks in functions of os module (chdir, mkdir, remove, unlink, rename, rmdir, stat, ilistdir,
open) in case of OSError generation.

* Enabled builtin function reversed(.

* Enabled builtin function help(.

v2.26.0 (2025-10-16)
* Added changelog documentation generating.
* Change styling.

 Added table of content.
* Added f-strings.

v2.25.0 (2025-09-11)

» Fix typo mistakes.

.https://www.micropython.org/ <
.https://docs.micropython.org/en/latest/ <«
.https://github.com/micropython/micropython ¢«
.https://docs.micropython.org/en/latest/genrst/index.html €«
.https://github.com/micropython/micropython/blob/master/py/mpconfig.h <
.https://docs.micropython.org/en/latest/library/sys.html ¢
.https://docs.micropython.org/en/latest/library/os.html <
.https://docs.micropython.org/en/latest/library/errno.html

© 00 N O U1l kA W N

.https://docs.micropython.org/en/latest/library/micropython.html ¢

—_
o

.https://docs.python.org/3/index.html

11. https://docs.micropython.org/en/latest/library/index.html <

12. https://docs.lvgl.io/6.1«

13. https://docs.lvgl.io/6.1/0overview/indev.html#keypad-and-encoder <

	Zero Calculator
	MicroPython User Manual (v2.27.1 dated 30.12.2025)
	Python app description
	Python Shell window
	MicroPython Specification
	Platform features and abilities

	LVGL Library
	Zero Micropython + LVGL implementation
	Keyboard support from LVGL

	Zero Micropython module objects overview
	Zero Micropython + LVGL examples
	Importing library and show help
	Arc
	Arc + task
	Bar
	Button matrix
	Buttons
	Canvas
	Chart
	Checkbox
	Manual drawing
	Gauge
	Label
	Label shadow
	Label change
	Led
	Line
	List
	LMeter
	MessageBox
	Preloader
	Roller
	Slider
	Spinbox
	Switch
	Table
	Tabview
	Textarea simple
	Textarea password
	Tileview

	Documentation changelog
	v2.27.1 (2025-12-29)
	v2.27.0 (2025-12-15)
	v2.26.0 (2025-10-16)
	v2.25.0 (2025-09-11)

