
Zero Calculator
I. Lexical structure of the ZeroBasic language

1.1. Processing mathematically formatted expressions

1.2. Lexical structure of Main screen expressions

1.3. Lexical structure of an expression

1.4. Lexical structure of a script file (zcb)

1.5. The structure of lexemes common to a file and an expression

II. Syntactic structure of the ZeroBasic language

III. Interpretation of the ZeroBasic language

3.1. Data types

3.2. Fractions

3.3. Variables

3.3.1. Predefined constants

3.3.2. Readonly variables

3.3.3. Y-functions variables

3.3.4. Strings

3.3.5. Lists

3.3.6. Matrices

3.3.7. The Ans variable

3.4. Assignment

3.5. Conversion

3.6. Commands

3.6.1. Lists-related commands

clrAllLists

ClrList

List▶matr

Matr▶list

resize

setUpEditor

SortA

SortD

3.6.2. Time-related Commands

setTmFmt

setDtFmt

3.6.3. Input/Output-related commands

Disp

DispGraph

DispTable

Output

Prompt

Pause

Wait

Select

3.6.4. Y-functions related commands

FnOff

FnOn

PlotsOff

PlotsOn

3.6.5. Statistical Commands

1-VarStats

2-VarStats

Med-Med

LinReg[ax+b]

LinReg[a+bx]

QuadReg

CubicReg

QuartReg

LnReg

ExpReg

PwrReg

Logistic

SinReg

Manual-Fit

ANOVA

3.6.6. Distribution draw commands

ShadeNorm

Shade_t

Shadeχ²

ShadeF

3.6.7. Draw commands

ClrDraw

Line

Horizontal

Vertical

Tangent

DrawF

Shade

DrawInv

Circle

Text

TextColor

Pt_On

Pt_Off

Pt_Change

Pxl_On

Pxl_Off

Pxl_Change

StorePic

RecallPic

StoreGDB

RecallGDB

3.6.8. Various commands

Equ▶String

String▶Equ

ClearEntries

clrHome

delPrgm

delVar

Fill

3.7. Functions

3.7.1. List indexing

3.7.2. Matrix indexing

3.7.3. Ans indexing

Dec, Imag types

List type

Matr Type

3.7.4. Y-functions

3.7.5. Math Functions

sqrt, √

³√ (cube root)

root, ⁿ√

fMin

fMax

nDeriv

fnInt

summ, Σ

exp

ln

log

logBASE, log

3.7.6. Numeric functions

abs

sign

round

ceil

floor, int

iPart

fPart

min

max

lcm

gcd

remainder, rem

3.7.7. Trigonometric and hyperbolic functions

sin

asin, sin⁻¹

sinh

arsinh, sinh⁻¹

cos

acos, cos⁻¹

cosh

arcosh, cosh⁻¹

tan

atan, tan⁻¹

tanh

artanh, tanh⁻¹

3.7.8. Complex numbers related functions

conj

real, Re

imag, Im

angle, Arg

cmplx_polar

3.7.9. Probability functions

rand

randInt

randIntNoRep

randBin

randNorm

nCr

nPr

3.7.10. Coordinate conversion functions

P▶Rx

P▶Ry

R▶Pr

R▶Pθ

3.7.11. Lists (and matrices) related functions

dim

seq

cumSum

ΔList

augment

mean

median

variance

stdDev

sum

prod

3.7.12. Matrices related functions

det

transpose

identity

inverse

randM

ref

rref

rowSwap

row+

*row

*row+

3.7.13. Distribution functions

normalpdf

normalcdf

invNorm

invT

tpdf

tcdf

χ²pdf, pdftw

χ²cdf, cdftw

Fpdf

Fcdf

binompdf

binomcdf

invBinom

poissonpdf

poissoncdf

geometpdf

geometcdf

3.7.14. Time functions

startTmr

checkTmr

getTime

setTime

getTmFmt

getTmStr

getDate

setDate

getDtFmt

getDtStr

timeCnv

dayOfWk

dbd

3.7.15. Various functions

existPrgm

Pxl_Test

getKey

Input

expr

inString

length

sub

toString, eval

3.8. Conditional statement

3.9. Conditional loop

3.10. Iterative loop

3.11. Calling a script file

3.12. Operations

3.12.1. Postfix operations

Factorial

Conversion to radians

Conversion to seconds

Conversion to minutes

Conversion to degrees

3.12.2. Exponentiation

3.12.3. Unary operations

Unary minus

Logical negation

3.12.4. Multiplication and division

Multiplication

Division

3.12.5. Addition and subtraction

Addition

Subtraction

3.12.6. Comparison operations

Equality

Inequality

Greater

Greater or equal

Less

Less or equal

3.12.7. Logical operations

Logical AND

Logical OR

Exclusive OR

IV. Text description of lexical structure of Main screen expressions

V. Text description of lexical structure of an expression

VI. Text description of lexical structure of a script file

VII. Text description of the structure of lexemes common to a file and an expression

VIII. Text description of syntactic structure of the ZeroBasic language

IX. Documentation changelog

v2.27.1 (2025-12-29)

v2.27.0 (2025-12-15)

v2.26.0 (2025-10-16)

v2.25.0 (2025-09-11)

ZeroBasic User Manual (v2.27.1 dated 12.29.2025)

ZeroBasic is a programming language used for working with Zero Calculator. Zero Calculator supports three

modes for working with the ZeroBasic language: the expression mode, the main screen expression mode, and

the script file mode. Each mode has its own characteristics in processing the ZeroBasic language.

I. Lexical structure of the ZeroBasic language

The lexical structure of the ZeroBasic language describes the methods and rules for extracting a set of lexemes

from the source code, which are then transformed into tokens. For example, the lexemes 14 , -8.5 , 6E-1

are converted into the Number token. The lexemes [A] , FooBar , Ans , L₀ are converted into the

Identifier token.

1.1. Processing mathematically formatted expressions

Zero Calculator has two modes for displaying expressions: Classic and Natural. You can switch modes in

MODE window.

The Classic mode implies inputting expressions according to the lexical structure of the ZeroBasic language.

The Natural mode allows mathematical formatting for certain expressions.

Name Natural Classic

Matrix [[A,B]\n[C,D]]

Common Fraction ((A)∕(B)) (' ∕ ' \x9D)

Mixed Fraction (1␣2∕3) ('␣' \xA0) (' ∕ ' \x9D)

Absolute Value abs(A)

Square Root √(A) ('√' \x7F)

Name Natural Classic

Root with Power ⁿ√(A,B) ('ⁿ√' \xA1)

Exponentiation 5^(A)

Logarithm logBASE(B,A)

Derivative nDeriv(B,A,C)

Integral fnInt(C,D,A,B)

Sum Σ(D,A,B,C) ('Σ' \xA2)

Permutations nPr(n,r)

Combinations nCr(n,r)

1.2. Lexical structure of Main screen expressions

The lexical scheme for main screen expressions is shown below (text description of the structure in EBNF

format is available at the end of the document):

The lexical scheme of an expression (stmt) is discussed further in the section Lexical structure of

expressions.

1.3. Lexical structure of an expression

In addition to the Main screen, Zero Calculator has many screens and modes where you can enter a single

expression. A part of the lexical scheme of single expression is presented below (text description of the

structure in EBNF format is available at the end of the document). The other part of the scheme is common to

both expressions and the script file (the name of common tokens begins with a capital letter) and is discussed in

the section The structure of lexemes common to a file and an expression.

1.4. Lexical structure of a script file (zcb)

Using the language construct call (Calling the script file) allows you to interpret the contents of .zcb file

in the global ZeroBasic context. The lexical structure of the file has some differences from the structure of a

single expression:

Expression File

Command

processing

One command at the beginning of an expression One command at the beginning

of a line, (or several commands

which ending with ())

Spaces A regular space (\x20) will cause a syntax error (except

when processing a command lexeme)

expr can contain an unlimited

number of spaces

Equality = or == ==

Expression File

Insert * Inserting a * between two expr in some cases

Insert

) , } ,]

At the end of each block (the block boundary is →), the

lexemes of the missing closing brackets are added. The

insertion order is the reverse of the order of the opening

brackets

Part of the lexical scheme of a script file is presented below (text description of the structure in EBNF format is

available at the end of the document). The other part of the schema is common to both expressions and a script

file (the name of common tokens begins with a capital letter) and is discussed further in the section The

structure of lexemes common to a file and an expression.

1.5. The structure of lexemes common to a file and an expression

Part of the lexical schema is common to both expressions and a script file (the name of common lexemes

begins with a capital letter) is presented below (text description of the structure in EBNF format is available at

the end of the document).

II. Syntactic structure of the ZeroBasic language

The syntactic structure of the ZeroBasic language defines the rules for composing nodes of the Abstract Syntax

Tree (AST) from a set of tokens. The appropriate parsing method for a token set is selected top-down according

to the syntactic structure scheme. If the token set does not conform to the structure of the currently analyzed

node, parsing proceeds to the next node (if specified that a mismatch results in an error, the token set analysis

will return a syntax error).

The table below shows the mapping between lexical scheme nodes and the resulting tokens:

Token Lexical node

String String

Identifier OneSymbolIdentifier

MatrixIdentifier

PictureIdentifier

GDBIdentifier

StandardListIdentifier

CustomListIdentifier

Identifier

Imag Imag

Number Number

UND SymbolToken (␣ \xA0)

ND SymbolToken (/ \x9D)

Minute DegreePostfixOperator (' \x27)

Degree DegreePostfixOperator (° \xBF)

Factorial FactorialOrNotEquals (!)

Radian DegreePostfixOperator (r \xCA)

Second DegreePostfixOperator (ʺ \xD3)

UpperPower UpperPower

Power SymbolToken (^)

Not Not

Token Lexical node

UnaryMinus SymbolToken (- \x98)

Divide SymbolToken (/)

Mult SymbolToken (*)

Automatic insertion during lexical analysis of an expression

Minus SymbolToken (-)

StoreOrMinus (-)

Plus SymbolToken (+)

LessEquals LessOrLessEquals

Less LessOrLessEquals (<)

GreaterEquals GreaterOrGreaterEquals

Greater GreaterOrGreaterEquals (>)

NotEquals FactorialOrNotEquals

Equals equals

Xor Xor

Or Or

And And

ConvertingOp ConvertingOperator

Store StoreOrMinus

While While

End End

If If

Then Then

For For

In In

Do Do

Call Call

Command Command

Stmt Stmt (for an expression)

Stmt (for a script file)

Token Lexical node

] SymbolToken (])

Automatic insertion during lexical analysis of an expression

[SymbolToken ([)

} SymbolToken (})

Automatic insertion during lexical analysis of an expression

{ SymbolToken ({)

) SymbolToken ())

Automatic insertion during lexical analysis of an expression

(SymbolToken (()

stmt (() (for an expression and for a script file)

, SymbolToken (,)

Newline expr (for an expression and for a script file)

program (\n) (for a script file)

EndOfInput stmt (end of input) (for an expression)

program (end of input) (for a script file)

The syntactic scheme of the ZeroBasic language structure is presented below. (text description of the structure

in EBNF format is available at the end of the document):

III. Interpretation of the ZeroBasic language

3.1. Data types

The ZeroBasic language has two fundamental data types:

Decimal number (Dec), whose mantissa can contain up to 40 decimal digits. The decimal exponent of

the number is within the range of -32767 to 32767. Corresponds to the NumberStmt node. The lexical

structure of a number is described in the section The structure of lexemes common to a file and an

expression, under the Number block.

Character string (Str). Corresponds to the StringStmt node. The lexical structure of a string is

described in the section The structure of lexemes common to a file and an expression, under the String

block.

The language also includes three derived data types:

Complex number (Imag), whose imaginary and real parts are represented by decimal numbers.

Corresponds to the ImagStmt node.

List (array) (List) contains an unlimited number (limited only by available RAM) of decimal and/or

complex numbers. Zero-length lists are not supported. Corresponds to the ListStmt node.

Matrix (Matr) contains an unlimited number of lists (limited only by available RAM), which represent

the rows of the matrix and consist of decimal and/or complex numbers. The number of elements in each

list must be the same (otherwise, an INVALID DIMENSION error will occur). Zero-dimension matrices

are not supported. Corresponds to the MatrixStmt node.

3.2. Fractions

The evaluation of a fraction is performed with the highest priority (taking into account grouping parentheses).

Corresponds to the UNDStmt node. The symbol for a fraction with an integer part (␣) has the hexadecimal

representation \xA0. The symbol for a proper fraction (∕) has the hexadecimal representation \x9D. This

structure allows obtaining the result of an expression in the form of a proper fraction. The appearance of this

fraction depends on the Fraction type and Answers modes (changing is accessible via the MODE window).

The Dec data type supports non-negative float numbers as operands. If the <Denominator> is equal to 0, it

will result in a DIVIDE BY 0 error.

<Integer part:Dec> ␣ <Numerator:Dec> ∕ <Denominator:Dec> -> Dec

Equivalent to the expression <Integer part> + (<Numerator> / <Denominator>) .

3.3. Variables

A variable corresponds to the IdentStmt node. The lexical structure of a variable is described in the section

The structure of lexemes common to a file and an expression in the blocks MatrixIdentifier, PictureIdentifier,

GDBIdentifier, OneSymbolIdentifier, StandardListIdentifier, CustomListIdentifier, Identifier. The maximum

length of a variable name is 16 characters. Using a name longer than this will result in a NAME LENGTH

error. Variables are in the super-global scope, meaning any variable created in expression mode (or in other

•

•

•

•

•

modes) is accessible in other screens and modes, as well as during the execution of the script file. A variable

can be deleted in the MEMORY management window, as well as using variable deletion commands

(delVar , setUpEditor). Initially, a basic set of variables is available to the user. This set can be expanded

later through assignment. Creating a variable with a name that matches the name of a function or a command

will be generated in an error FUNCTION NAME. Some screens and applications (including settings screens)

provide the user with access to their settings through modification of corresponding variables. It is not possible

to change the data type of standard variables via assignment. The new value will either be ignored or a

DATA TYPE or DOMAIN error will be generated. If a variable is not defined, its value will be 0 (except in

certain cases, as described later). Variables with the lexical structure MatrixIdentifier always have and must

have the data type Matr. If such a variable is not defined, an UNDEFINED error will be generated. Variables

with the lexical structure StandardListIdentifier and CustomListIdentifier always have and must have the data

type List. If such a variable is not defined, an UNDEFINED error will be generated.

3.3.1. Predefined constants

This type of variable remains unchanged throughout the operation of the calculator. The values of these

variables are automatically initialized. An attempt to modify or delete it will result in an error

READ ONLY VAR.

Variable Type Value

pi Dec 3.141592653589793238462643383279502884

π (\xD2) Dec 3.141592653589793238462643383279502884

e (\xD0) Dec 2.718281828459045235360287471352662498

₁₀ (\xD5) Dec 10

LEFT Dec 1

CENTER Dec 2

RIGHT Dec 3

BLUE Dec 10

RED Dec 11

BLACK Dec 12

MAGENTA Dec 13

GREEN Dec 14

ORANGE Dec 15

BROWN Dec 16

NAVY Dec 17

LTBLUE Dec 18

YELLOW Dec 19

WHITE Dec 20

LTGRAY Dec 21

Variable Type Value

MEDGRAY Dec 22

GRAY Dec 23

DARKGRAY Dec 24

DARK Dec 25

CYAN Dec 26

3.3.2. Readonly variables

This type of variable cannot be modified by the user. Attempting to modify or delete it will result in a

READ ONLY VAR error. All of the variables listed below have the type Dec. These readonly variables are set by

statistical commands. Input these variables is possible through the VARS > Statistics… menu.

Variable Value

Tab XY

n (\xD7) number of data points

ⴳ (\xA9) mean of x values

Sx sample standard deviation of x

σx (\xABx) population standard deviation of x

ȳ (\xAA) mean of y values

Sy sample standard deviation of y

σy (\xABy) population standard deviation of y

minX minimum of x values

maxX maximum of x values

minY minimum of y values

maxY maximum of y values

Tab Σ

Σx (\xA2x) sum of x values

Σx² (\xA2x\xBD) sum of x² values

Σy (\xA2y) sum of y values

Σy² (\xA2y\xBD) sum of y² values

Σxy (\xA2xy) sum of x*y

Tab EQ

RegEQ regression equation (not read only)

a , b regression/fit coefficients

a - e polynomial, Logistic , and SinReg coefficients

Variable Value

r correlation coefficient

r² (r\xBD), R² (\xBE\xBD) coefficient of determination

Tab TEST

p p-value

z test statistics

t

χ² (\xD8\xBD)

F (\xD9)

df degrees of freedom

df₂ (df\xC2)

p̂ (\xB2) estimated sample proportion

p̂₁ (\xB2\xC1) estimated sample proportion for population 1

p̂₂ (\xB2\xC2) estimated sample proportion for population 2

s standard error about the line

ⴳ₁ (\xA9\xC1) sample mean of x values for sample 1 and sample 2

ⴳ₂ (\xA9\xC2)

Sx₁ (Sx\xC1) sample standard deviation of x for sample 1 and sample 2

Sx₂ (Sx\xC2)

Sxp pooled standard deviation

n₁ (\xD7\xC1) number of data points for sample 1 and sample 2

n₂ (\xD7\xC2)

lower confidence interval pair

upper

F₁ (F\xC1) used in 2-SampFTest

F₂ (F\xC2)

Tab PTS

x₁ (x\xC1) summary points (Med-Med only)

y₁ (y\xC1)

x₂ (x\xC2)

y₂ (y\xC2)

x₃ (x\xC3)

y₃ (y\xC3)

Q₁ (Q\xC1) 1st quartile (the median of points between minX and Med)

Variable Value

Med median

Q₃ (Q\xC3) 3rd quartile (the median of points between Med and maxX)

3.3.3. Y-functions variables

This type of variable is used in Y-function calculations. The variable responsible for the function value cannot

be modified. Its value is computed based on the assigned expression and the argument value (the argument

value is taken from the global context and is 0 by default). If the expression of a Y-function contains a direct

(Y₀=Y₀+1) or indirect (Y₀=Y₁ ; Y₁=Y₀) self-reference, an error Yn RECURSION will be generated. If the

expression of the function is not defined, an INVALID error will be generated. Using argument variables for

storing user-defined values is not recommended, since these variables may change due to being involved in

function value computations in other windows or applications.

Below is a table of function variables (interactions marked with * are not possible as described):

Number Function Argument

Functions, mode: Func

0 Y₀ (Y\xC0) X

...

9 Y₉ (Y\xC9)

Parametric function, mode: Par

0 X₀ₜ (X\xC0\xBC) T

1 Y₀ₜ (Y\xC0\xBC)

...

8 X₄ₜ (X\xC4\xBC)

9 Y₄ₜ (Y\xC4\xBC)

Polar functions, mode: Pol

0 r₀ (r\xC0) θ (\x99)

...

9 r₉ (r\xC9)

Sequences, mode: Seq

0 u n (\xDB)

1* u(nMin) nMin (\xDBMin)

2* u(nMin+1) nMin+1 (\xDBMin+1)

3 v n (\xDB)

4* v(nMin) nMin (\xDBMin)

5* v(nMin+1) nMin+1 (\xDBMin+1)

6 w n (\xDB)

Number Function Argument

7* w(nMin) nMin (\xDBMin)

8* w(nMin+1) nMin+1 (\xDBMin+1)

Deleting argument variables is the same as deleting other variables. Deleting a function variable will clear the

corresponding expression.

3.3.4. Strings

The calculator includes predefined zero-length string variables: Str₀ to Str₉ (Str\xC0 - Str\xC9). The type

of predefined string variables cannot be changed. Deleting these variables will clear their contents.

3.3.5. Lists

The calculator includes predefined zero-length list variables: L₀ to L₆ (\xA6\xC0 - \xA6\xC6). Using zero-

length lists will result in an INVALID DIMENSION error. User-defined lists follow the CustomListIdentifier

lexical structure and have a maximum name length of 8 characters (including special L characters). Accessing

an undefined variable with the StandardListIdentifier or CustomListIdentifier lexical structure will result in an

UNDEFINED error.

3.3.6. Matrices

The calculator has predefined zero-dimensional matrix variables: [A] - [J] . Using zero-dimensional

matrices will result in an INVALID DIMENSION error. User-defined matrices must conform to the lexical

structure of MatrixIdentifier, with a maximum name length of 8 characters (including square brackets). Using

overly long names will trigger a NAME LENGTH error. Accessing an undefined variable matching the lexical

structure of MatrixIdentifier will result in an UNDEFINED error.

3.3.7. The Ans variable

The Ans variable contains a copy of the result of the previous valid expression (excluding Done) entered on

the home screen. Note that expressions on the home screen can be separated by the : character.

Manual assignment of a variable Ans (including attempts to modify list or matrix elements) will result in an

READ ONLY VAR error. Assigning a list value to the variable Ans , as well as using the construct

<Size:Dec> →dim(Ans) , will lead to the creation or modification of the variable ⌞Ans . Assigning a matrix

value to the variable Ans , as well as using the construct <Height, Width:List> →dim(Ans) , will lead to

the creation or modification of the variable [Ans] .

3.4. Assignment

Assigning a new value to constants, the Ans variable, readonly variables will result in a READ ONLY VAR

error, except in cases of assigning a list or a matrix. Creating a variable with a name that matches the name of a

function or a command will be generated in an error FUNCTION NAME. Assigning a data type other than the

one expected to predefined variables (strings, lists, matrices) will result in a DATA TYPE or DOMAIN error.

Assigning incompatible data types to variables with lexical structures StandardListIdentifier,

CustomListIdentifier and MatrixIdentifier ([[1]]→⌞B , {1}→[C]) will result in a DATA TYPE error.

Assignment corresponds to the StoreStmt node. It allows placing the result of an expression into a variable.

<Value:Dec|Imag> → var

This construct allows assigning a numerical value to a variable, screen parameter, or application

parameter. The length of the variable name is limited to 16 characters.

<Value:Str> → var

This construct allows assigning a string value to a variable, screen parameter, or application parameter.

The length of the variable name is limited to 16 characters. If the variable name matches a function

variable, the string contents will replace the corresponding function expression.

<Value:List> → L₀

This construct allows assigning a list value to the variable L₀ .

If the list variable does not conform to the syntax of StandardListIdentifier or CustomListIdentifier, an

attempt will be made to convert it to a correct syntax (A : ⌞A , 1 : error, [A] : error, aBCdeFG :

⌞aBCdeFG , aBCdeFGh : name length error). The exception is the TblInput variable.

<Value:Dec|Imag> → L₀ (<Index:Dec>)

This construct allows assigning a value to a list element. The list variable (L₀) must conform to the

lexical structure StandardListIdentifier or CustomListIdentifier. The exception is the TblInput

variable. The value <Index> must be an integer greater than 0 but not exceeding the size of the list. If

<Index> is 1 greater than the size of the list, <Value> will be appended to the end of the list.

<Size:Dec> → dim(⌞ist)

This construct allows changing the size of the list ⌞ist . If the list ⌞ist does not exist, this construct

will create a new list with size <Size> . The value <Size> must be an integer between 0 and 999.

New list elements are initialized to 0.

If the list variable does not conform to the syntax of StandardListIdentifier or CustomListIdentifier, an

attempt will be made to convert it to a correct syntax (A : ⌞A , 1 : error, [A] : error, aBCdeFG :

⌞aBCdeFG , aBCdeFGh : name length error).

The exception is the TblInput variable. Using the construction <Size:Dec> → dim(TblInput)

will lead to the modification elements of the list TblInput . The list will be filled with values starting

from the value TblStart with the step value ΔTbl (\x9ATbl).

<Value:Matr> → [A]

This construct allows assigning a matrix value to the variable [A] .

If the matrix variable does not conform to the syntax of MatrixIdentifier, an attempt will be made to

convert it to correct syntax (A : [A] , [A : error, A] : error, 1 : error, ⌞A : error, aBCdeF :

[aBCdeF] , aBCdeFGh : name length error).

<Value:Dec|Imag> → [A] (<Row:Dec> , <Column:Dec>)

This construct allows assigning a value to a matrix element. The matrix variable ([A]) must conform

to the lexical structure MatrixIdentifier. The value <Row> must be an integer greater than 0 but not

exceeding the matrix height. The value <Column> must be an integer greater than 0 but not exceeding

the matrix width.

<Height, Width:List> → dim([A])

This construct allows changing the size of the matrix [A] . The list <Height, Width> must consist

of two integer elements, which are within the range from 0 to 99. The first element is the new height of

the matrix, and the second element is the new width of the matrix. Using only one zero dimension will

result in the INVALID DIMENSION error. If the matrix [A] does not exist, this construct will create a

new matrix with the sizes specified in <Height, Width> . New matrix elements are initialized to 0.

If the matrix variable does not conform to the syntax of MatrixIdentifier, an attempt will be made to

convert it to correct syntax (A : [A] , [A : error, A] : error, 1 : error, ⌞A : error, aBCdeF :

[aBCdeF] , aBCdeFGh : name length error).

file:///builds/internal-projects/a091-graphing-calculator/lexical-special-ident

3.5. Conversion

Value conversion is part of the StoreStmt node and corresponds to the ConvertingOp token. All

conversion commands start with the conversion character ▶ , whose hexadecimal representation is \xDA. The

command may also include the characters ▶ and ◀ , with hexadecimal representations \x9E and \x9F,

respectively.

The following operations are available:

<Value:Dec|Imag|List|Matr> ▶Frac

Enables representation of numeric values as common fractions. The format of the fraction (mixed or

improper) depends on the current Fraction type mode.

<Value:Dec|Imag|List|Matr> ▶Dec

Enables representation of numeric values as decimal fractions with a dot.

<Value:Dec|Imag|List|Matr> ▶n/d◀▶Un/d

Converts numbers represented as mixed fractions to improper fractions, improper fractions to mixed

fractions, and all other numbers to fractions.

<Value:Dec|Imag|List|Matr> ▶F◀▶D

Converts numbers represented as common fractions to decimal fractions with a point, and numbers

represented as decimal fractions to common fractions.

<Value:Dec|Imag|List|Matr> ▶Polar

Converts a complex number in algebraic form to exponential form z=re^(𝑖φ) . The angle φ depends on

the current angle unit mode (Radian or Degree).

<Value:Dec|Imag|List|Matr> ▶Rect

Converts a complex number in exponential form to algebraic form z=a+b𝑖 . Conversion is not possible in

Degree mode.

<Value:Dec> ▶DMS

Converts a value to its string representation in degree measure. Takes the current angle mode into account.

If the mode is Radian, the <Value> is first converted to degrees (<Value> * 180 / π) and then

formatted as a degree measure.

3.6. Commands

Corresponds to the CommandStmt node. A command is a special type of function with a different syntax (it

may use a space instead of parentheses) and can be used only once in an expression. Commands are case-

sensitive. The result of executing a command is the Done. Commands generate the following errors (unless

otherwise specified):

SYNTAX if any <Ident> parameter does not match the IdentStmt node.

DATA TYPE

if a parameter type is incorrect.

if a variable name does not match the variable type. See the Variables section for details on

variable types and naming.

ARGUMENT if the number of arguments is less or more than expected.

NAME LENGTH if the length of a variable name exceeds the defined range. See the Variables section

for details on ranges.

eval break if the On button is pressed.

3.6.1. Lists-related commands

c l rAl lL i s t s

clrAllLists

Sets all lists to zero length.

ClrLis t

ClrList <Identₙ:List> , ...

Sets all provided lists to zero length.

ERRORS:

UNDEFINED if any of the variables are not found.

Lis t▶matr

(List\x9Ematr) List▶matr <Ident Listₙ:List> , ... , <Ident Matrix:Matr>

Constructs the matrix <Ident Matrix> from the values of the lists <Ident Listₙ> . The list values

are arranged vertically — the first list occupies the leftmost column of the matrix, the last list occupies the

rightmost column. The first element of each list is placed at the top of the matrix, the last element at the

bottom. The resulting matrix has a size of m x n , where m is the maximum length among the lists, and

n is the number of lists provided. If a list has fewer than m elements, missing values are replaced with 0.

•

•

◦

◦

•

•

•

•

ERRORS:

UNDEFINED if any of the <Ident Listₙ> variables are not found.

INVALID DIMENSION if any of <Ident Listₙ> lists is zero-length.

Matr▶ l i s t

(Matr\x9Elist) Matr▶list <Matrix:Matr> , <Column:Dec> , <Ident List:List>

Extracts the values of column <Column> from the matrix <Matrix> and places them into the list

<Ident List> . The value of <Column> must be an integer within the range from 1 to the number of

columns in the matrix <Matrix> .

ERRORS:

INVALID DIMENSION if the value of <Column> is out of bounds.

(Matr\x9Elist) Matr▶list <Matrix:Matr> , <Ident Listₙ:List> , ...

Sequentially (left to right) extracts the column values from the matrix <Matrix> and places them into the

corresponding lists <Ident Listₙ> . If the number of lists is less than the number of columns, extraction

stops. If the number of columns is less than the number of list variables provided, the remaining variables

are ignored (including their type).

•

•

•

ERRORS:

UNDEFINED if any of the variables <Ident Listₙ> are not found.

res i ze

resize <Ident:List> , <Size:Dec>

Sets the size of list <Ident> to <Size> . The value of <Size> must be an integer in the range from 0 to

999. If <Size> is greater than the current list length, the new elements are initialized with 0. This

command is equivalent to <Size>→dim(<Ident>) (see section Assignment), except it does not create a

new list.

ERRORS:

UNDEFINED if the list <Ident> is not found.

INVALID DIMENSION if the value of <Size> is out of range.

resize <Ident:Matr> , <Height:Dec> , <Width:Dec>

Changes the size of the matrix <Ident> . <Height> is the new height, <Width> is the new width. The

value of <Height> must be in the range 0 to 99. The value of <Width> must also be in the range 0 to

99. If the new size is greater than the current size, new elements are initialized with 0. This command is

equivalent to {<Height>,<Width>}→dim(<Ident>) (see section Assignment), except it does not create

a new matrix.

ERRORS:

UNDEFINED if the matrix <Ident> is not found.

INVALID DIMENSION

if <Height> is out of bounds.

if <Width> is out of bounds.

if only one of the values <Height> or <Width> is equal to 0.

se tUpEdi tor

setUpEditor

Deletes all lists, then recreates lists L₀ to L₆ with zero length. Saves changes to calculator memory.

setUpEditor <Identₙ> , ...

Attempts to create lists with the names <Identₙ> . Lists with names that cannot be converted to valid list

names (see section Lists) will not be created. Saves changes to calculator memory.

•

•

•

•

•

◦

◦

◦

Sor tA

SortA <Ident MainList:List>

Performs sorting of values in the list <Ident MainList> in ascending order. The comparison of all

numbers is done based on their absolute value.

SortA <Ident MainList:List> , <Identₙ:List> , ...

Additional lists <Identₙ> must have the same size as <Ident MainList> . The order of elements in

the additional lists is changed according to the order of elements in <Ident MainList:List> .

This command is relatively quiet and does not alert the user about errors (the only check is that all

arguments are nodes of IdentStmt).

Sor tD

SortD <Ident MainList:List>

SortD <Ident MainList:List> , <Identₙ:List> , ...

This command works similarly to the SortA command, with the difference that the sorting is done in

descending order.

3.6.2. Time-related Commands

se tTmFmt

setTmFmt <Format:Dec>

Sets the clock format. <Format> should be either 12 or 24.

ERRORS:

DOMAIN if the value <Format> is not 12 or 24.•

se tDtFmt

setDtFmt <Format:Dec>

Sets the date display format.

<Format> = 1 - M/D/Y

<Format> = 2 - D/M/Y

<Format> = 3 - Y/M/D

ERRORS:

DOMAIN if the value <Format> is not 1, 2, or 3.

3.6.3. Input/Output-related commands

Disp

Disp

Opens the home window. Outputs empty string. If the number of output lines exceeds 100, the older lines

will be removed.

ERRORS:

INVALID if the command is not called within a script file.

Disp <Valueₙ:Any> , ...

Opens the home window. Outputs the formatted value of the variables <Valueₙ> to the main screen in

Classic format (see the section Processing mathematically formatted expressions for more details). Each

value is output on a new line. If the number of output lines exceeds 100, the older lines will be removed.

ERRORS:

INVALID if the command is not called within a script file.

DispGraph

DispGraph

Opens or updates the graph window.

ERRORS:

INVALID if the command is not called within a script file.

DispTab le

DispTable

•

•

•

•

•

•

•

Opens or updates the table window.

ERRORS:

INVALID if the command is not called within a script file.

Output

Output <Row:Dec> <Col:Dec> <Value:Any>

Outputs the formatted value of the variable <Value> to the current screen in Classic format (see the

section Processing mathematically formatted expressions) at the specified location. The coordinates of the

point are given by the integer values <Row> and <Col> . The value <Row> must be between 1 and 12.

The value <Col> must be between 1 and 32.

The result of the program will be erased by subsequent screen updates. It is recommended to use together

with the commands DispGraph and Pause .

ERRORS:

INVALID if the command is not called within a script file.

DATA TYPE if the value of <Row> or <Col> is not an integer.

INVALID DIMENSION if the values of <Row> or <Col> are out of the specified range.

Prompt

Prompt <Identₙ:Any> , ...

The function allows sequentially assigning values to variables <Identₙ> during script file execution

using user input. Unlike assignment, this function does not attempt to convert the variable name to the

correct syntax. It is similar to the Input(function.

ERRORS:

INVALID

if nothing was entered (empty input).

if used call of script file

if used some command

•

•

•

•

•

◦

◦

◦

if the command is not called within a script file.

DATA TYPE if the result of the user input expression has a different type than the variable

<Ident Var> .

Various errors related to assignment.

Pause

Pause

Pauses the program execution until the user presses the Enter key on the keyboard.

ERRORS:

INVALID if the command is not called within a script file.

Pause <Value:Any>

Outputs the value <Value> using the Disp command and then passes control to the Pause command

without parameters.

ERRORS:

INVALID if the command is not called within a script file.

Pause <Value:Any> , <Delay:Dec>

Outputs the value <Value> using the Disp . Pauses the program execution until the user presses the

Enter key or the specified delay time elapses. The delay time is specified in <Delay> seconds. The

value of <Delay> must be an integer and greater than 0.

ERRORS:

INVALID if the command is not called within a script file.

DATA TYPE if the value of <Delay> is out of the specified range.

Wai t

Wait <Delay:Dec>

Pauses the program execution until the specified delay time elapses. The delay time is specified in

<Delay> seconds. The value of <Delay> must be greater than 0.001. The value <Delay> is rounded

down to the thousandth place (0.00298 -> 0.002). The maximum delay time is 100 seconds and does not

depend on the value <Delay> .

ERRORS:

INVALID if the command is not called within a script file.

DOMAIN if the value of <Delay> is out of the specified range.

◦

•

•

•

•

•

•

•

•

Se lec t

Select <Ident ListX:List> , <Ident ListY:List>

This command works only with linear () and scatter () statistical graphs. This command opens a

window where the user selects a statistical graph using the ▼ and ▲ buttons. Then, using the ◀ , ▶ and

Enter buttons, the left boundary of the range is selected. Then, similarly, the right boundary of the range

is selected. As a result of the selection, the X coordinates of the points within the selected range are placed

into the list <Ident ListX> , and the corresponding Y coordinates are placed into the list

<Ident ListY> . The command tries to convert the variables <Ident ListX> and <Ident ListY>

to the lexical structure of list variables (X -> ⌞X). The lists used by the selected graph will be replaced by

<Ident ListX> and <Ident ListY> .

ERRORS:

INVALID if the command cannot be executed.

3.6.4. Y-functions related commands

FnOff

FnOff

Disables the display of all Y-functions according to the current mode (Func, Par, Pol, Seq).

FnOff <Funcₙ:Dec> , ...

Sequentially disables the display of Y-functions with the corresponding indexes <Funcₙ> . In Par mode, it

disables a couple of functions Xₙₜ, Yₙₜ. In Seq mode, disable functions 0, 3 and 6 will disable the

corresponding three functions (0,1,2; 3,4,5; 6,7,8). <Funcₙ> must be an integer and located in the range

from 0 to 9.

ERRORS:

DOMAIN if the value of <Funcₙ> exceeds the specified limits.

FnOn

FnOn

Enables the display of all Y-functions according to the current mode (Func, Par, Pol, Seq).

FnOn <Funcₙ:Dec> , ...

Sequentially enables the display of Y-functions with corresponding indices <Funcₙ> . In Par mode, it

enables a pair of functions Xₙₜ, Yₙₜ. <Funcₙ> must be an integer and within the range from 0 to 9.

•

•

ERRORS:

DOMAIN if the value of <Funcₙ> is out of the specified range.

Plo t sOff

PlotsOff

Disables the display of all statistical functions.

PlotsOff <StatPlotₙ:Dec> , ...

Sequentially disables the display of statistical functions with corresponding indices <StatPlotₙ> .

<StatPlotₙ> must be an integer and within the range from 1 to 3.

ERRORS:

DOMAIN if the value of <StatPlotₙ> is out of the specified range.

Plo t sOn

PlotsOn

Enables the display of all statistical functions.

PlotsOn <StatPlotₙ:Dec> , ...

Sequentially enables the display of statistical functions with corresponding indices <StatPlotₙ> .

<StatPlotₙ> must be an integer and within the range from 1 to 3.

ERRORS:

DOMAIN if the value of <StatPlotₙ> is out of the specified range.

3.6.5. Statistical Commands

These commands operate with statistical variables. By default, these commands use the first list in the

MEMORY > Mem Management/Delete… > List as the list <Ident X> , the second list in MEMORY >

Mem Management/Delete… > List as the list <Ident Y> , and the list of the same length as the number of

values, filled with values of 1, as the list <Ident Freq> . The list <Ident Freq> indicates how many

times the corresponding point appears in the analyzed dataset.

1-VarS ta t s

(\xDF\xDEVarStats) 1-VarStats

1-VarStats

•

•

•

1-VarStats <Ident X:List>

1-VarStats <Ident X:List> , <Ident Freq:List>

1-VarStats (one-variable statistics) analyzes data with one measured variable.

If the command was not called within a script file, a screen with the measurement results will open.

It sets the following statistical variables: ⴳ , Sx , σx , Σx , Σx² , n , Q₁ , Q₃ , Med , minX , maxX .

ERRORS:

UNKNOWN if the command cannot be executed.

INVALID DIMENSION if the list <Ident X> has a zero length.

DIM MISMATCH if the length of the list <Ident Freq> does not match the length of the list

<Ident X> .

2-VarS ta t s

(\xE0\xDEVarStats) 2-VarStats

2-VarStats

2-VarStats <Ident X:List>

2-VarStats <Ident X:List> , <Ident Y:List>

2-VarStats <Ident X:List> , <Ident Y:List> , <Ident Freq:List>

2-VarStats (two-variable statistics) analyzes paired data. <Ident X> is the independent variable.

<Ident Y> is the dependent variable.

If the command was not called within a script file, a screen with the measurement results will open.

It sets the following statistical variables: n , Σxy , ⴳ , Sx , σx , Σx , Σx² , minX , maxX , ȳ , Sy ,

σy , Σy , Σy² , minY , maxY .

ERRORS:

UNKNOWN if the command cannot be executed.

INVALID DIMENSION if the lists <Ident X> or <Ident Y> have zero size.

DIM MISMATCH if the lengths of the lists <Ident X> , <Ident Y> , and <Ident Freq> do

not match.

Med-Med

(Med\xDEMed) Med-Med

Med-Med

Med-Med <Ident X:List>

Med-Med <Ident X:List> , <Ident Y:List>

•

•

•

•

•

•

Med-Med <Ident X:List> , <Ident Y:List> , <Ident Yfunc:Func>

Med-Med <Ident X:List> , <Ident Y:List> , <Ident Freq:List>

Med-Med <Ident X:List> , <Ident Y:List> , <Ident Freq:List> , <Ident Yfunc:Func>

Med-Med (median-median) fits the model equation y=ax+b to the data using the median-median line

(resistant line) technique, calculating the summary points x1, y1, x2, y2, x3 and y3. Med-Med calculates

values for a (slope) and b (y-intercept). If the argument <Ident Yfunc> is set, which is a Y-function

variable, the command will assign the function the expression aX+b with the set coefficients.

If the command was not called within a script file, a screen with the measurement results will open.

It sets the following statistical variables: a , b .

ERRORS:

UNKNOWN if the command cannot be executed.

STATISTICAL if the command cannot be executed.

INVALID DIMENSION if the lists <Ident X> or <Ident Y> have zero size.

DIM MISMATCH if the lengths of the lists <Ident X> , <Ident Y> and <Ident Freq> do not

match.

LinReg[ax+b]

(LinReg\xE1ax\xCEb\xE2) LinReg[ax+b]

LinReg[ax+b]

LinReg[ax+b] <Ident X:List>

LinReg[ax+b] <Ident X:List> , <Ident Y:List>

LinReg[ax+b] <Ident X:List> , <Ident Y:List> , <Ident Yfunc:Func>

LinReg[ax+b] <Ident X:List> , <Ident Y:List> , <Ident Freq:List>

LinReg[ax+b] <Ident X:List> , <Ident Y:List> , <Ident Freq:List> ,

<Ident Yfunc:Func>

LinReg[ax+b] (linear regression) fits the model equation y=ax+b to the data using a least-squares fit. It

calculates values for a (slope) and b (y-intercept). When mode Stat diagnostics is On , it also calculates

values for r² and r . If the argument <Ident Yfunc> is set, which is a Y-function variable, the

command will assign the function the expression aX+b with the set coefficients.

If the command was not called within a script file, a screen with the measurement results will open.

Sets the following statistical variables: a , b , [r² , r].

ERRORS:

UNKNOWN if the command execution is impossible.

STATISTICAL if the command execution is impossible.

•

•

•

•

•

•

INVALID DIMENSION if the lists <Ident X> or <Ident Y> have a zero size.

DIM MISMATCH if the lengths of the lists <Ident X> , <Ident Y> and <Ident Freq> are

not equal.

LinReg[a+bx]

(LinReg\xE1a\xCEbx\xE2) LinReg[a+bx]

LinReg[a+bx]

LinReg[a+bx] <Ident X:List>

LinReg[a+bx] <Ident X:List> , <Ident Y:List>

LinReg[a+bx] <Ident X:List> , <Ident Y:List> , <Ident Yfunc:Func>

LinReg[a+bx] <Ident X:List> , <Ident Y:List> , <Ident Freq:List>

LinReg[a+bx] <Ident X:List> , <Ident Y:List> , <Ident Freq:List> ,

<Ident Yfunc:Func>

LinReg[a+bx] (linear regression) fits the model equation y=a+bx to the data using a least-squares fit. It

calculates values for a (y-intercept) and b (slope). When mode Stat diagnostics is On, it also calculates

values for r² and r . If the argument <Ident Yfunc> is set, which is a Y-function variable, the

command will assign the function the expression a+bX with the set coefficients.

If the command was not called within a script file, a screen with the measurement results will open.

Sets the following statistical variables: a , b , [r² , r].

ERRORS:

UNKNOWN if the command execution is impossible.

STATISTICAL if the command execution is impossible.

INVALID DIMENSION if the lists <Ident X> or <Ident Y> have a zero size.

DIM MISMATCH if the lengths of the lists <Ident X> , <Ident Y> and <Ident Freq> are

not equal.

QuadReg

QuadReg

QuadReg <Ident X:List>

QuadReg <Ident X:List> , <Ident Y:List>

QuadReg <Ident X:List> , <Ident Y:List> , <Ident Yfunc:Func>

QuadReg <Ident X:List> , <Ident Y:List> , <Ident Freq:List>

QuadReg <Ident X:List> , <Ident Y:List> , <Ident Freq:List> , <Ident Yfunc:Func>

•

•

•

•

•

•

QuadReg (quadratic regression) fits the second-degree polynomial y=ax²+bx+c to the data. It calculates

values for a , b and c . When mode Stat diagnostics is On, it also calculates values for R² . For three

data points, the equation is a polynomial fit. For four or more, it is a polynomial regression. At least three

data points are required. If the argument <Ident Yfunc> is set, which is a Y-function variable, the

command will assign the function the expression aX²+bX+c with the set coefficients.

If the command was not called within a script file, a screen with the measurement results will open.

It sets the following statistical variables: a , b , c , [R²].

ERRORS:

UNKNOWN if the command execution is impossible.

STATISTICAL if the command execution is impossible.

INVALID DIMENSION if the lists <Ident X> or <Ident Y> have a zero size.

DIM MISMATCH if the lengths of the lists <Ident X> , <Ident Y> and <Ident Freq> are

not equal.

CubicReg

CubicReg

CubicReg <Ident X:List>

CubicReg <Ident X:List> , <Ident Y:List>

CubicReg <Ident X:List> , <Ident Y:List> , <Ident Yfunc:Func>

CubicReg <Ident X:List> , <Ident Y:List> , <Ident Freq:List>

CubicReg <Ident X:List> , <Ident Y:List> , <Ident Freq:List> , <Ident Yfunc:Func>

CubicReg (cubic regression) fits the third-degree polynomial y=ax³+bx²+cx+d to the data. It calculates

values for a , b , c and d . When mode Stat diagnostics is On, it also calculates values for R² . For

four points, the equation is a polynomial fit. For five or more, it is a polynomial regression. At least four

points are required. If the argument <Ident Yfunc> is set, which is a Y-function variable, the command

will assign the function the expression aX³+bX²+cX+d with the set coefficients.

If the command was not called within a script file, a screen with the measurement results will open.

It sets the following statistical variables: a , b , c , d , [R²].

ERRORS:

UNKNOWN if the command execution is impossible.

STATISTICAL if the command execution is impossible.

INVALID DIMENSION if the lists <Ident X> or <Ident Y> have a zero size.

DIM MISMATCH if the lengths of the lists <Ident X> , <Ident Y> and <Ident Freq> are

not equal.

•

•

•

•

•

•

•

•

Quar tReg

QuartReg

QuartReg <Ident X:List>

QuartReg <Ident X:List> , <Ident Y:List>

QuartReg <Ident X:List> , <Ident Y:List> , <Ident Yfunc:Func>

QuartReg <Ident X:List> , <Ident Y:List> , <Ident Freq:List>

QuartReg <Ident X:List> , <Ident Y:List> , <Ident Freq:List> , <Ident Yfunc:Func>

QuartReg (quartic regression) fits the fourth-degree polynomial y=ax⁴+bx³+cx²+dx+e to the data. It

calculates values for a , b , c , d and e . When mode Stat diagnostics is On, it also calculates values

for R² . For five points, the equation is a polynomial fit. For six or more, it is a polynomial regression. At

least five points are required. If the argument <Ident Yfunc> is set, which is a Y-function variable, the

command will assign the function the expression aX⁴+bX³+cX²+dX+e with the set coefficients.

If the command was not called within a script file, a screen with the measurement results will open.

It sets the following statistical variables: a , b , c , d , e , [R²].

ERRORS:

UNKNOWN if the command execution is impossible.

STATISTICAL if the command execution is impossible.

INVALID DIMENSION if the lists <Ident X> or <Ident Y> have a zero size.

DIM MISMATCH if the lengths of the lists <Ident X> , <Ident Y> and <Ident Freq> are

not equal.

LnReg

LnReg

LnReg <Ident X:List>

LnReg <Ident X:List> , <Ident Y:List>

LnReg <Ident X:List> , <Ident Y:List> , <Ident Yfunc:Func>

LnReg <Ident X:List> , <Ident Y:List> , <Ident Freq:List>

LnReg <Ident X:List> , <Ident Y:List> , <Ident Freq:List> , <Ident Yfunc:Func>

LnReg (logarithmic regression) fits the model equation y=a+b*ln(x) to the data using a least-squares

fit and transformed values ln(x) and y. It calculates values for a and b . When mode Stat diagnostics is

On, it also calculates values for r² and r . If the argument <Ident Yfunc> is set, which is a Y-

function variable, the command will assign the function the expression a+b*ln(X) with the set

coefficients.

•

•

•

•

If the command was not called within a script file, a screen with the measurement results will open.

It sets the following statistical variables: a , b , [r , r²].

ERRORS:

UNKNOWN if the command execution is impossible.

STATISTICAL if the command execution is impossible.

DOMAIN if the list <Ident X> has a negative value.

INVALID DIMENSION if the lists <Ident X> or <Ident Y> have a zero size.

DIM MISMATCH if the lengths of the lists <Ident X> , <Ident Y> and <Ident Freq> are

not equal.

ExpReg

ExpReg

ExpReg <Ident X:List>

ExpReg <Ident X:List> , <Ident Y:List>

ExpReg <Ident X:List> , <Ident Y:List> , <Ident Yfunc:Func>

ExpReg <Ident X:List> , <Ident Y:List> , <Ident Freq:List>

ExpReg <Ident X:List> , <Ident Y:List> , <Ident Freq:List> , <Ident Yfunc:Func>

ExpReg (exponential regression) fits the model equation y=abx to the data using a least-squares fit and

transformed values x and ln(y). It calculates values for a and b . When mode Stat diagnostics is On*, it

also calculates values for r² and r . If the argument <Ident Yfunc> is set, which is a Y-function

variable, the command will assign the function the expression a*b^X with the set coefficients.

If the command was not called within a script file, a screen with the measurement results will open.

It sets the following statistical variables: a , b , [r , r²].

ERRORS:

UNKNOWN if the command execution is impossible.

STATISTICAL if the command execution is impossible.

DOMAIN if the lists <Ident Y> or <Ident X> have a negative value.

INVALID DIMENSION if the lists <Ident X> or <Ident Y> have a zero size.

DIM MISMATCH if the lengths of the lists <Ident X> , <Ident Y> and <Ident Freq> are

not equal.

PwrReg

PwrReg

PwrReg <Ident X:List>

PwrReg <Ident X:List> , <Ident Y:List>

•

•

•

•

•

•

•

•

•

•

PwrReg <Ident X:List> , <Ident Y:List> , <Ident Yfunc:Func>

PwrReg <Ident X:List> , <Ident Y:List> , <Ident Freq:List>

PwrReg <Ident X:List> , <Ident Y:List> , <Ident Freq:List> , <Ident Yfunc:Func>

PwrReg (exponential regression) fits the model equation y=axb to the data using a least-squares fit and

transformed values ln(x) and ln(y). It calculates values for a and b . When mode Stat diagnostics is On*,

it also calculates values for r² and r . If the argument <Ident Yfunc> is set, which is a Y-function

variable, the command will assign the function the expression aX^b with the set coefficients.

If the command was not called within a script file, a screen with the measurement results will open.

It sets the following statistical variables: a , b , [r , r²].

ERRORS:

UNKNOWN if the command execution fails.

STATISTICAL if the command execution fails.

DOMAIN if the lists <Ident Y> or <Ident X> contain negative values.

INVALID DIMENSION if the lists <Ident X> or <Ident Y> have zero size.

DIM MISMATCH if the lengths of the lists <Ident X> , <Ident Y> , and <Ident Freq> are

not equal.

Logis t i c

Logistic

Logistic <Ident X:List>

Logistic <Ident X:List> , <Ident Y:List>

Logistic <Ident X:List> , <Ident Y:List> , <Ident Yfunc:Func>

Logistic <Ident X:List> , <Ident Y:List> , <Ident Freq:List>

Logistic <Ident X:List> , <Ident Y:List> , <Ident Freq:List> , <Ident Yfunc:Func>

Logistic fits the model equation y=c/(1+a*e-b*x) to the data using an iterative least-squares fit. It

calculates values for a , b and c . If the argument <Ident Yfunc> is set, which is a Y-function

variable, the command will assign the function the expression c/(1+ae^(-(bX))) with the set

coefficients.

If the command was not called within a script file, a screen with the measurement results will open.

It sets the following statistical variables: a , b , c .

ERRORS:

UNKNOWN if the command execution is impossible.

STATISTICAL if the command execution is impossible.

INVALID DIMENSION if the lists <Ident X> or <Ident Y> have a zero size.

•

•

•

•

•

•

•

•

DIM MISMATCH if the lengths of the lists <Ident X> , <Ident Y> and <Ident Freq> are

not equal.

SinReg

SinReg

SinReg <Ident X:List>

SinReg <Ident X:List> , <Ident Y:List>

SinReg <Ident X:List> , <Ident Y:List> , <Ident Yfunc:Func>

SinReg <Ident X:List> , <Ident Y:List> , <Ident Freq:List>

SinReg <Ident X:List> , <Ident Y:List> , <Ident Freq:List> , <Ident Yfunc:Func>

SinReg (sinusoidal regression) fits the model equation y=a*sin(b*x+c)+d to the data using an

iterative least-squares fit. It calculates values for a , b , c and d .At least four data points are required. At

least two data points per cycle are required in order to avoid aliased frequency estimates. The output of

SinReg is always in radians, regardless of the Radian/Degree mode setting. If the argument

<Ident Yfunc> is set, which is a Y-function variable, the command will assign the function the

expression a sin(bX+c)+d with the set coefficients.

If the command was not called within a script file, a screen with the measurement results will open.

It sets the following statistical variables: a , b , c , d .

ERRORS:

UNKNOWN if the command execution is impossible.

STATISTICAL if the command execution is impossible.

INVALID DIMENSION if the lists <Ident X> or <Ident Y> have a zero size.

DIM MISMATCH if the lengths of the lists <Ident X> , <Ident Y> and <Ident Freq> are

not equal.

Manual -Fi t

(Manual\xDEFit) Manual-Fit

Manual-Fit

Manual-Fit <Ident Yfunc:Func>

By default, the first Y-function is used for storage. Opens the graph window and allows the user to select 2

points on the screen, through which a straight line will be drawn. The function expression Y=mX+b

defining the specified line will be stored in <Ident Yfunc> .

ERRORS:

mX+b func calculate error if the function calculation fails.

•

•

•

•

•

•

ANOVA

ANOVA <Ident Population:List> , <Ident Populationₙ:List> , ...

ANOVA computes a one-way analysis of variance for comparing the means of two or more populations. The

ANOVA procedure for comparing these means involves analysis of the variation in the sample data. The null

hypothesis H₀: μ1=μ2=...=μk is tested against the alternative Ha: not all μ1...μk are equal.

If the command was not called within a script file, a screen with the measurement results will open. SS is

sum of squares and MS is mean square.

It sets the following statistical variables: F , p , Sxp .

3.6.6. Distribution draw commands

These commands include the argument <Color:Dec> , which defines the color of graph. Default color is

BLUE (10). If the value of <Color> is not an integer or does not match a valid color, a DOMAIN error will be

generated.

ShadeNorm

ShadeNorm <lower:Dec> , <upper:Dec>

ShadeNorm <lower:Dec> , <upper:Dec> , <Mu:Dec>

ShadeNorm <lower:Dec> , <upper:Dec> , <Mu:Dec> , <Sigma:Dec>

ShadeNorm <lower:Dec> , <upper:Dec> , <Mu:Dec> , <Sigma:Dec> , <Color:Dec>

ShadeNorm draws the normal density function specified by mean <Mu> and standard deviation

<Sigma> and shades the area between <lower> and <upper> . The defaults are <Mu> = 0, <Sigma>

= 1.

ERRORS:

DOMAIN if the value <Sigma> is less or equal 0.•

Shade_ t

Shade_t <lower:Dec> , <upper:Dec>

Shade_t <lower:Dec> , <upper:Dec> , <df:Dec>

Shade_t <lower:Dec> , <upper:Dec> , <df:Dec> , <Color:Dec>

Shade_t draws the density function for the Student-t distribution specified by <df> (degrees of

freedom) and shades the area between <lower> and <upper> . The default is <df> = 1.

ERRORS:

DOMAIN if the value <df> is less or equal 0.

Shadeχ ²

(Shade\xD8\xBD) Shadeχ² <lower:Dec> , <upper:Dec>

Shadeχ² <lower:Dec> , <upper:Dec> , <df:Dec>

Shadeχ² <lower:Dec> , <upper:Dec> , <df:Dec> , <Color:Dec>

Shadeχ² draws the density function for the χ² (chi-square) distribution specified by <df> (degrees of

freedom) and shades the area between <lower> and <upper> . The default is <df> = 1.

•

ERRORS:

DOMAIN if the value <df> is less or equal 0.

ShadeF

(Shade\xD8\xBD) ShadeF <lower:Dec> , <upper:Dec>

ShadeF <lower:Dec> , <upper:Dec> , <Numerator df:Dec>

ShadeF <lower:Dec> , <upper:Dec> , <Numerator df:Dec> , <Denominator df:Dec>

ShadeF <lower:Dec> , <upper:Dec> , <Numerator df:Dec> , <Denominator df:Dec> ,

<Color:Dec>

ShadeF draws the density function for the F distribution specified by <Numerator df> (degrees of

freedom) and <Denominator df> and shades the area between <lower> and <upper> . The defaults

are <Numerator df> = 1, <Denominator df> = 1.

ERRORS:

DOMAIN

if the value <Numerator df> is less or equal 0.

if the value <Denominator df> is less or equal 0.

3.6.7. Draw commands

These commands may include the argument <Color:Dec> , which defines the color of graph. Default color is

BLUE (10). If the value of <Color> is not an integer or does not match a valid color, a DOMAIN error will be

generated.

These commands may also include the argument <Style:Dec> , which defines the line style. Defualt line

style is Thin Line (0). <Style> can take the following values (unless otherwise specified). Using an invalid

value will result in a DOMAIN error.

•

•

◦

◦

Name Value Icon Example

Thin Line 0

Bold Line 1

Thin Dots 2

Name Value Icon Example

Bold Dots 3

Draw Point 4

Draw Point Line 5

Fill Below 6

Fill Above 7

Name Value Icon Example

Uneqal Below 8

Uneqal Above 9

ClrDraw

ClrDraw

Clears the graph window of elements drawn by commands (does not affect the rendering of active Y-

functions). If the command is called from a script file, the graph window will not be updated. To update the

graph window, you need to call the command DispGraph .

Line

Line <X1:Dec> , <Y1:Dec> , <X2:Dec> , <Y2:Dec>

Line <X1:Dec> , <Y1:Dec> , <X2:Dec> , <Y2:Dec> , <Color:Dec>

Line <X1:Dec> , <Y1:Dec> , <X2:Dec> , <Y2:Dec> , <Color:Dec> , <Style:Dec>

Adds a line segment drawing to the graph window. Opens the graph window if the command is called

outside of a script file. If the command is called from a script file, the graph window will not be updated.

To update the graph window, you need to call the command DispGraph . The values <X1> and <Y1>

correspond to the coordinates of the first end. The values <X2> and <Y2> correspond to the coordinates

of the second end.

Usable styles: Thin Line , Bold Line , Fill Below , Fill Above .

Hor i zon ta l

Horizontal <Y:Dec>

Horizontal <Y:Dec> , <Color:Dec>

Horizontal <Y:Dec> , <Color:Dec> , <Style:Dec>

Adds a horizontal straight line drawing to the graph window. Opens the graph window if the command is

called outside of a script file. If the command is called from a script file, the graph window will not be

updated. To update the graph window, you need to call the command DispGraph . The value <Y>

corresponds to the coordinate through which the horizontal line passes.

Usable styles: Thin Line , Bold Line , Fill Below , Fill Above .

Ver t i ca l

Vertical <X:Dec>

Vertical <X:Dec> , <Color:Dec>

Vertical <X:Dec> , <Color:Dec> , <Style:Dec>

Adds a vertical straight line drawing to the graph window. Opens the graph window if the command is

called outside of a script file. If the command is called from a script file, the graph window will not be

updated. To update the graph window, you need to call the command DispGraph . The value <X>

corresponds to the coordinate through which the vertical line passes.

Usable styles: Thin Line , Bold Line .

Tangent

Tangent <Func> , <X/θ/T:Dec>

Tangent <Func> , <X/θ/T:Dec> , <Color:Dec>

Tangent <Func> , <X/θ/T:Dec> , <Color:Dec> , <Style:Dec>

Adds the drawing of the function <Func> and the tangent line to the graph of the function at the point

<X/θ/T> on the graph window. Opens the graph window if the command is called outside of a script file.

If the command is called from a script file, the graph window will not be updated. To update the graph

window, you need to call the command DispGraph . The command works only in Func and Pol modes.

<Func> can be an expression (1+X^2), a string ("sin(θ)"), a Y-function variable (Y₁), or a variable

containing a string with an expression (Str₂).

ERRORS:

Various calculation errors related to the computation of values.

NOT IMPLEMENT if the current mode is Seq.

•

•

DOMAIN

if the value <X/θ/T> is less than θmin (\x99min) or greater than θmax (\x99max) (screen

Window) in Pol mode.

if the value <X/θ/T> is less than Xmin or greater than Xmax (screen Window) in Func

mode.

if the value <X/θ/T> is less than Tmin or greater than Tmax (screen Window) in Par

mode.

NONREAL ANS if it is impossible to calculate the function or derivative value at the point

<X/θ/T> or the calculated value is complex.

FUNC MODE MISMATCH if the current display mode differs from the display mode in which the

command was originally invoked.

DrawF

DrawF <Func>

DrawF <Func> , <Color:Dec>

Adds the drawing of the function <Func> on the graph window. Opens the graph window if the

command is called outside of a script file. If the command is called from a script file, the graph window

will not be updated. To update the graph window, you need to call the command DispGraph . <Func>

can be an expression (1+X^2), a string ("sin(θ)"), a Y-function variable (Y₁), or a variable containing

a string with an expression (Str₂).

ERRORS:

Various calculation errors related to the computation of values.

Shade

Shade <Lower Func> , <Upper Func>

Shade <Lower Func> , <Upper Func> , <X Left:Dec>

Shade <Lower Func> , <Upper Func> , <X Left:Dec> , <X Right:Dec>

Shade <Lower Func> , <Upper Func> , <X Left:Dec> , <X Right:Dec> , <Color:Dec>

Shade <Lower Func> , <Upper Func> , <X Left:Dec> , <X Right:Dec> , <Color:Dec> ,

<Opacity:Dec>

Adds the drawing of two functions <Lower Func> and <Upper Func> , as well as the shaded area with

the geometric locus of points with coordinates <Lower Func> ≤ Y ≤ <Upper Func> , <X Left> ≤ X

≤ <X Right> , on the graph window. Opens the graph window if the command is called outside of a

script file. If the command is called from a script file, the graph window will not be updated. To update the

graph window, you need to call the command DispGraph . <Lower Func> and <Upper Func> can

be an expression (1+X^2), a string ("sin(θ)"), a Y-function variable (Y₁), or a variable containing a

string with an expression (Str₂). If <X Right> is less than <X Left> , the area will not be shaded.

<Opacity> is the transparency value of the shaded area and ranges from 0 to 1.

•

◦

◦

◦

•

•

•

The defaults are <X Left> = Xmin (window Window), <X Right> = Xmax (window Window),

<Opacity> = 1.

ERRORS:

Various calculation errors related to the computation of values.

DOMAIN if the value <Opacity> exceeds the specified limits.

DrawInv

DrawInv <Func>

DrawInv <Func> , <Color:Dec>

Adds the drawing of the function, the mirror function <Func> with respect to Y=X (X values are

projected onto the Y-axis, Y values are projected onto the X-axis), on the graph window. Opens the graph

window if the command is called outside of a script file. If the command is called from a script file, the

graph window will not be updated. To update the graph window, you need to call the command

DispGraph . <Func> can be an expression (1+X^2), a string ("sin(θ)"), a Y-function variable

(Y₁), or a variable containing a string with an expression (Str₂).

ERRORS:

Various calculation errors related to the computation of values.

•

•

•

Circ le

Circle <X:Dec> , <Y:Dec> , <Radius:Dec>

Circle <X:Dec> , <Y:Dec> , <Radius:Dec> , <Color:Dec>

Circle <X:Dec> , <Y:Dec> , <Radius:Dec> , <Color:Dec> , <Style:Dec>

Adds the drawing of a circle to the graph window. Opens the graph window if the command is called

outside of a script file. The values <X> and <Y> correspond to the center of the circle. The value

<Radius> corresponds to the radius of the circle and must not be less than 0.

Usable styles: Thin Line .

ERRORS:

DOMAIN if the value <Radius> is less than 0.

Tex t

Text <Y:Dec> , <X:Dec> , <Valueₙ:Any> , ...

Adds the drawing of text to the graph window. Opens the graph window if the command is called outside

of a script file. The size of each character is 18 pixels in height and 10 pixels in width. If the command is

called from a script file, the graph window will not be updated. To update the graph window, you need to

call the command DispGraph . The values <X> and <Y> correspond to the coordinates of the upper-left

pixel of the first character. The drawing area is 195 pixels in height and 320 pixels in width (it is possible

to place part of the first character under the left and top border of the frame). The origin is located in the

upper-left corner (0, 0), Y values increase from top to bottom, and X values increase from left to right. The

values <Valueₙ> are converted to a string representation and displayed sequentially. The text color is set

by the command TextColor .

ERRORS:

DOMAIN

if the value of <X> or <Y> is not an integer.

if the value of <X> is less than -9 or greater than 319.

if the value of <Y> is less than -17 or greater than 194.

•

•

◦

◦

◦

Tex tColor

TextColor

Returns the name of the current text color (Text).

TextColor <Color:Dec>

Sets the current text color (Text). This value persists even after the calculator is rebooted.

TextColor <Color:Dec> , <Y:Dec> , <X:Dec> , <Valueₙ:Any> , ...

Similar to the Text command, but also allows specifying the text color. Does not set the current color.

Pt_On

Pt_On <X:Dec> , <Y:Dec>

Pt_On <X:Dec> , <Y:Dec> , <Point style:Dec>

Pt_On <X:Dec> , <Y:Dec> , <Point style:Dec> , <Color:Dec>

Adds the drawing of a point on the graph window. Opens the graph window if the command is called not

from a script file. If the command is called from a script file, the graph window will not be updated. To

update the graph window, you need to call the command DispGraph . The value <Point style>

determines the style of the displayed point:

Name Value Icon

Thin Point 0

Bold Point 1

Plus 2

Box 3

ERRORS:

DOMAIN if the value <Point style> is less than 0 or greater than 3.

Pt_Off

Pt_Off <X:Dec> , <Y:Dec>

Pt_Off <X:Dec> , <Y:Dec> , <Point style:Dec>

Adds the drawing of a point with the background color on the graph window. Opens the graph window if

the command is called not from a script file. If the command is called from a script file, the graph window

will not be updated. To update the graph window, you need to call the command DispGraph . The value

<Point Style> determines the style of the displayed point, which is described in detail in the command

Pt_On .

ERRORS:

DOMAIN if the value <Point style> is less than 0 or greater than 3.

Pt_Change

Pt_Change <X:Dec> , <Y:Dec>

Pt_Change <X:Dec> , <Y:Dec> , <Point style:Dec>

Pt_Change <X:Dec> , <Y:Dec> , <Point style:Dec> , <Color:Dec>

Adds the drawing of an inverse point to the graph window. Opens the graph window if the command is not

called from a script file. If the command is called from a script file, the graph window will not be updated.

To update the graph window, you need to call the command DispGraph . Inversion means that if the color

of the pixel under the point matches the point's color, the pixel color will be replaced with the background

color. Otherwise, it will be set to the point's color. The value <Point style> determines the style of the

displayed point, which is described in detail in the command Pt_On .

ERRORS:

DOMAIN if the value of <Point style> is less than 0 or greater than 3.

Pxl_On

Pxl_On <X:Dec> , <Y:Dec>

Pxl_On <X:Dec> , <Y:Dec> , <Color:Dec>

Adds the drawing of a pixel to the graph window. Opens the graph window if the command is not called

from a script file. If the command is called from a script file, the graph window will not be updated. To

update the graph window, you need to call the command DispGraph . The values of <X> and <Y>

correspond to the pixel coordinates. The rendering area size is 195 pixels in height and 320 pixels in

width. The origin is located in the top-left corner (0, 0); Y-axis values increase from top to bottom, and X-

axis values increase from left to right.

•

•

•

ERRORS:

DOMAIN

if the value of <X> or <Y> is not an integer.

if the value of <X> is less than 0 or greater than 319.

if the value of <Y> is less than 0 or greater than 194.

Pxl_Off

Pxl_Off <X:Dec> , <Y:Dec>

Adds the drawing of a pixel with background color to the graph window. Opens the graph window if the

command is not called from a script file. If the command is called from a script file, the graph window will

not be updated. To update the graph window, you need to call the command DispGraph . The values of

<X> and <Y> correspond to the pixel coordinates. The rendering area size is 195 pixels in height and

320 pixels in width. The origin is located in the top-left corner (0, 0); Y-axis values increase from top to

bottom, and X-axis values increase from left to right.

ERRORS:

DOMAIN

if the value of <X> or <Y> is not an integer.

if the value of <X> is less than 0 or greater than 319.

if the value of <Y> is less than 0 or greater than 194.

Pxl_Change

Pxl_Change <X:Dec> , <Y:Dec>

Pxl_Change <X:Dec> , <Y:Dec> , <Color:Dec>

Adds the drawing of an inverse pixel to the graph window. Opens the graph window if the command is not

called from a script file. If the command is called from a script file, the graph window will not be updated.

To update the graph window, you need to call the command DispGraph . Inversion means that if the color

of the pixel under the point matches the point's color, the pixel's color will be replaced with the background

color. Otherwise, the point's color will be set. The values of <X> and <Y> correspond to the pixel

coordinates. The drawing area size is 195 pixels in height and 320 pixels in width. The origin is located in

the top-left corner (0, 0); Y-axis values increase from top to bottom, and X-axis values increase from left to

right.

ERRORS:

DOMAIN

if the value of <X> or <Y> is not an integer.

if the value of <X> is less than 0 or greater than 319.

if the value of <Y> is less than 0 or greater than 194.

•

◦

◦

◦

•

◦

◦

◦

•

◦

◦

◦

StorePic

StorePic <Index:Dec>

Saves all displayed function graphs and graphic elements added using commands to the variable Pic0 to

Pic9 . Opens the graph window if the command is not called from a script file. The value of <Index>

specifies the number of the Pic variable and must be in the range from 0 to 9.

The command will not be executed if an error is generated while rendering other commands or functions.

ERRORS:

DOMAIN

if the value of <Index> is not an integer.

if the value of <Index> is less than 0 or greater than 9.

Reca l lP ic

RecallPic <Index:Dec>

Restores all saved function graphs and graphic elements added using commands from the variable Pic0 to

Pic9 . Clears current list of commands. Opens the graph window if the command is not called from a

script file. The value of <Index> specifies the number of the Pic variable and must be in the range from

0 to 9.

ERRORS:

UNDEFINED if the saved data could not be retrieved.

FUNC MODE MISMATCH if the data was saved in another function mode.

DOMAIN

if the value of <Index> is not an integer.

if the value of <Index> is less than 0 or greater than 9.

StoreGDB

StoreGDB <Index:Dec>

Saves the parameters of the graph window (WINDOW window), including zoom settings, format settings

(FORMAT window), function graph style mode (Thin, Thick, D-Thin, D-Thick), function mode (Func,

Par, Pol, Seq), and all functions into a variable GDB0 to GDB9 . The value of <Index> specifies the

number of the GDB variable and must be in the range from 0 to 9.

ERRORS:

DOMAIN

if the value of <Index> is not an integer.

if the value of <Index> is less than 0 or greater than 9.

•

◦

◦

•

•

•

◦

◦

•

◦

◦

Reca l lGDB

RecallGDB <Index:Dec>

Restores the parameters of the graph window (WINDOW window), including zoom settings, format

settings (FORMAT window), function graph style mode (Thin, Thick, D-Thin, D-Thick), function mode

(Func, Par, Pol, Seq), and all functions from the variable GDB0 to GDB9 . The value of <Index>

specifies the number of the GDB variable and must be in the range from 0 to 9.

ERRORS:

UNDEFINED if the saved data could not be retrieved.

DOMAIN

if the value of <Index> is not an integer.

if the value of <Index> is less than 0 or greater than 9.

3.6.8. Various commands

Equ▶Str ing

(Equ\x9EString) Equ▶String <Ident Yfunc:Func> , <Ident Var:Str>

Saves the expression of the Y-function <Ident Yfunc> to the string variable <Ident Var> .

Str ing▶Equ

(String\x9EEqu) String▶Equ <Var:Str> , <Ident Yfunc:Func>

Replaces the expression of the Y-function <Ident Yfunc> with the expression in the string variable

<Var> .

ClearEntr i e s

ClearEntries

Clears the contents of the main screen history.

c l rHome

clrHome

Clears the main screen from the content. Fills the screen with the default color (depends on the mode

Dark mode).

de lPrgm

delPrgm <Programₙ:Str> , ...

•

•

◦

◦

Deletes ZeroBasic programs from the file system. Since the data type of the argument <Programₙ> is Str,

it is not possible to work with programs whose names contain double quotes ("). <Programₙ>

corresponds to a file named .zcb . The search for programs is performed in the /exchange/ path,

excluding subdirectories, within the calculator's file system.

ERRORS:

no such program if one of the files is not found (previous files will be deleted, subsequent ones will

not).

de lVar

delVar <Identₙ> , ...

Deletes and clears the value of the passed variables from the calculator's memory. More details in the

section Variables. The TblInput list will be cleared, not removed.

ERRORS:

READ ONLY VAR if one of the parameters constant, or a readonly variable (previous parameters will

be processed, subsequent ones will not).

Fi l l

Fill <Value:Dec|Imag> , <Ident:List|Matr>

Replaces the values of the matrix or list <Ident> with the argument <Value> .

ERRORS:

UNDEFINED if the matrix or list with the name <Ident> is not found.

3.7. Functions

Corresponds to the FnCallStmt node. Functions are case-sensitive. The result of a function execution can

have a different type and can be used within expressions.

Functions generate the following errors (unless stated otherwise):

SYNTAX if one of the parameters <Ident> does not correspond to the IdentStmt node.

DATA TYPE

if the type of one of the parameters is incorrect.

if the variable name does not match the variable type. More details about variable types and

naming conventions can be found in the Variables section.

ARGUMENT if the number of arguments is less than or greater than the expected number.

NAME LENGTH if the length of the used variables exceeds the specified range. More details about the

ranges can be found in the Variables section.

INVALID DIMENSION

if the list argument contains no elements.

•

•

•

•

•

◦

◦

•

•

•

◦

if the matrix argument has a zero size.

eval break if the On button is pressed.

UNDEFINED

if the list argument does not exist.

if the matrix argument does not exist.

3.7.1. List indexing

Indexing a list refers to retrieving the value of a specified element from the list. The syntax of this operation is

similar to a function call, provided that the identifier (IdentStmt) matches the lexical structure of

StandardListIdentifier or CustomListIdentifier. The exception is the TblInput variable.

⌞ist(<Index:Dec>) -> Dec|Imag

ERRORS:

UNDEFINED if the list does not exist.

DATA TYPE if the value of <Index> is not an integer.

INVALID DIMENSION if the value of <Index> is less than 1 or greater than the list length.

3.7.2. Matrix indexing

Matrix indexing refers to retrieving the value of a specified element from a matrix. The syntax of this operation

is similar to a function call, provided that the identifier (IdentStmt) matches the lexical structure of

MatrixIdentifier.

[M](<Row:Dec> <Column:Dec>) -> Dec|Imag

ERRORS:

UNDEFINED if the matrix does not exist.

DATA TYPE if the value of <Row> or <Column> is not an integer.

INVALID DIMENSION

if the value of <Row> is less than 1 or greater than the height of the matrix.

if the value of <Column> is less than 1 or greater than the width of the matrix.

3.7.3. Ans indexing

The Ans variable is characterized by the absence of strict typing. Therefore, indexing Ans depends on the

type of its content. The syntax of this operation is similar to a function call. If Ans does not exist in the current

context, an UNDEFINED error will be generated. Indexing Ans when it contains a string will result in a

DATA TYPE error.

Dec , Imag t ypes

Ans(<Value:Dec|Imag|List|Matr>) -> Dec|Imag|List|Matr

◦

•

•

◦

◦

•

•

•

•

•

•

◦

◦

Similar to the multiplication operation between a number and the <Value> variable.

Lis t t ype

The operation is similar to list indexing.

Ans(<Index:Dec>) -> Dec|Imag

ERRORS:

DATA TYPE if the value of <Index> is not an integer.

INVALID DIMENSION if the value of <Index> is less than 1 or greater than the list length.

Matr Type

The operation is similar to matrix indexing.

Ans(<Index Row:Dec> <Index Column:Dec>) -> Dec|Imag

ERRORS:

DATA TYPE if the value of <Index Row> or <Index Column> is not an integer.

INVALID DIMENSION

if the value of <Index Row> is less than 1 or greater than the height of the matrix.

if the value of <Index Column> is less than 1 or greater than the width of the matrix.

3.7.4. Y-functions

Y₀(<X:Dec|Imag>) -> Dec|Imag

X₀ₜ(<T:Dec|Imag>) -> Dec|Imag

r₀(<θ:Dec|Imag>) -> Dec|Imag

u(<n:Dec|Imag>) -> Dec|Imag

This type of functions evaluates the expression of the corresponding Y-function. A list of Y-functions and their

arguments is provided in the table in the section Y-function variables. Before evaluation, the value of the

argument <X> , <T> , <θ> , <n> replaces the value of the variable corresponding to the argument of the Y-

function. If the Y-function expression (except for sequences, Seq) contains a direct (Y₀=Y₀+1) or indirect

(Y₀=Y₁ ; Y₁=Y₀) reference to its own value, an error Yn RECURSION will be generated. If the expression of

the used function is not defined, an error INVALID will be generated.

•

•

•

•

◦

◦

3.7.5. Math Functions

sqr t , √

Synonym: (\x7F) √(...

sqrt(<Value:Dec>) -> Dec|Imag

Returns the result of extracting the square root of the number <Value>

ERRORS:

NONREAL ANS if the current mode is Real and the result is a complex number.

sqrt(<Value:Imag>) -> Imag

Returns the result of extracting the square root of the complex number <Value>

sqrt(<Value:List>) -> List

Returns a list composed of elements to which the specified operation was applied.

sqrt(<Value:Matr>) -> Matr

Returns a matrix composed of elements to which the specified operation was applied.

³√ (cube roo t)

(\xD1\x7F) ³√(<Value:Dec>) -> Dec

(\xD1\x7F) ³√(<Value:Imag>) -> Imag

(\xD1\x7F) ³√(<Value:List>) -> List

(\xD1\x7F) ³√(<Value:Matr>) -> Matr

Returns the result of extracting the cube root from the number(s) <Value> . The function is analogous to

the expression root(<Value> , 3) .

roo t , ⁿ√

Synonym: (\xA1) ⁿ√(...

root(<Value:Dec> , <Index:Dec>) -> Dec|Imag

Returns the result of extracting the root of degree <Index> from the number <Value> . This is analogous

to the expression <Value> ^(1/ <Index>) .

•

ERRORS:

DOMAIN if the value of <Index> is 0.

NONREAL ANS if the current mode is Real, and the result is a complex number.

root(<Value:Imag> , <Index:Dec|Imag>) -> Imag

ERRORS:

DOMAIN if the value of <Index> is 0.

root(<Value:List> , <Index:Dec|Imag>) -> List

Returns a list formed from the elements over which the specified operation is performed.

ERRORS:

DOMAIN if the value of <Index> is 0.

root(<Value:Matr> , <Index:Dec|Imag>) -> Matr

Returns a matrix formed from the elements over which the specified operation is performed.

ERRORS:

DOMAIN if the value of <Index> is 0.

fMin

fMin(<Func:Func> , <Ident Var:Dec> , <Lower:Dec> , <Upper:Dec>) -> Dec

fMin(return the value at which the local minimum value of <Func> with respect to <Ident Var>

occurs, between <Lower> and <Upper> values for <Ident Var> . The accuracy is 1e-6 .

<Func> can be an expression (1+X^2) or a variable of a Y-function (Y₁).

ERRORS:

Various calculation errors related to computing values.

bound if the value of <Lower> is greater than the value of <Upper>

fMax

fMax(<Func:Func> , <Ident Var:Dec> , <Lower:Dec> , <Upper:Dec>) -> Dec

fMax(return the value at which the local maximum value of <Func> with respect to <Ident Var>

occurs, between <Lower> and <Upper> values for <Ident Var> . The accuracy is 1e-6 .

•

•

•

•

•

•

•

<Func> can be an expression (1+X^2) or a variable of a Y-function (Y₁).

ERRORS:

Various calculation errors related to computing values.

bound if the value of <Lower> is greater than the value of <Upper>

nDer iv

nDeriv(<Func:Func> , <Ident Var:Dec> , <Value:Dec>) -> Dec

nDeriv(<Func:Func> , <Ident Var:Dec> , <Value:Dec> , <Tolerance:Dec>) -> Dec

nDeriv(returns an approximate derivative of <Func> with respect to <Ident Var> , given the

<Value> at which to calculate the derivative and <Tolerance> . By default, the value of

<Tolerance> is 1e-3 . nDeriv(uses the symmetric difference quotient method, which approximates

the numerical derivative value as the slope of the secant line through these points.

 f(x + ε) - f(x - ε)

f'(x) = ━━━━━━━━━━━━━━━━━━━━━
 2ε

As <Tolerance> becomes smaller, the approximation usually becomes more accurate. <Func> can be

an expression (1+X^2) or a variable of a Y-function (Y₁).

ERRORS:

Various calculation errors related to computing values.

fnIn t

fnInt(<Func:Func> , <Ident Var:Dec> , <Lower:Dec> , <Upper:Dec>) -> Dec

fnInt(returns the numerical integral (Gauss–Legendre quadrature method) of <Func> with respect to

<Ident Var> , given <Lower> limit, <Upper> limit. The calculation uses abs(<Upper> -

<Lower>)*5 partitions, but no more than 500. <Func> can be an expression (1+X^2) or a variable of a

Y-function (Y₁).

ERRORS:

Various calculation errors related to computing values.

summ, Σ

Synonym: (\xA2) Σ(...

summ(<Func:Func> , <Ident Var:Dec> , <Lower:Dec> , <Upper:Dec>) -> Dec

summ(returns the sum of the results of calculating <Func> for <Ident Var> . <Ident Var> takes

values from <Lower> to <Upper> with a step of 1. <Func> can be an expression (1+X^2) or a

variable of a Y-function (Y₁).

•

•

•

•

ERRORS:

Various calculation errors related to the computation of values.

INCREMENT if the value of <Lower> is greater than the value of <Upper> .

exp

exp(<Value:Dec|Imag>) -> Dec|Imag

Returns the result of raising the number e to the power of <Value> . Equivalent to the expression

e^ <Value> .

exp(<Value:List>) -> List

Returns a list formed from elements to which the specified operation was applied.

ln

ln(<Value:Dec|Imag>) -> Dec|Imag

Returns the result of calculating the natural logarithm of the number <Value> .

ERRORS:

DOMAIN if the value of <Value> is equal to 0.

ln(<Value:List>) -> List

Returns a list formed from elements to which the specified operation was applied.

l og

log(<Value:Dec|Imag>) -> Dec|Imag

Returns the result of calculating the common (base-10) logarithm of the number <Value> .

ERRORS:

DOMAIN if the value of <Value> is equal to 0.

log(<Value:List>) -> List

Returns a list formed from elements to which the specified operation was applied.

•

•

•

•

l ogBASE, log

Synonym: log(...

logBASE(<Value:Dec|Imag> , <Index:Dec|Imag>) -> Dec|Imag

Returns the result of calculating the logarithm of the number <Value> with base <Index> . Equivalent to

the expression log₁₀(<Value>) / log₁₀(<Index>) .

ERRORS:

DOMAIN

if the value of <Value> is equal to 0.

if the value of <Index> is equal to 0.

DIVIDE BY 0 if the value of <Index> is equal to 1

logBASE(<Value:List> , <Index:Dec|Imag>) -> List

Returns a list formed from elements to which the specified operation was applied.

3.7.6. Numeric functions

abs

abs(<Value:Dec|Imag>) -> Dec

Returns the absolute value of the number <Value> .

abs(<Value:List>) -> List

Returns a list formed from elements to which the specified operation was applied.

s ign

sign(<Value:Dec>) -> Dec

Returns:

-1 if <Value> is less than 0.

0 if <Value> is equal to 0.

1 if <Value> is greater than 0.

sign(<Value:List>) -> List

Returns a list formed from elements to which the specified operation was applied.

•

◦

◦

•

•

•

•

round

round(<Value:Dec|Imag>) -> Dec|Imag

round(<Value:Dec|Imag> , <Digits:Dec>) -> Dec|Imag

Rounds the value <Value> (both imaginary and real parts separately) to <Digits> digits after the

decimal point. If <Digits> is 0, the value <Value> is rounded to the nearest integer. If <Digits> is

less than 0, the value <Value> is rounded to the corresponding decimal digit (including it). By default,

<Digits> is 0.

ERRORS:

DATA TYPE if the value of <Digits> is not an integer.

round(<Value:List>) -> List

round(<Value:List> , <Digits:Dec>) -> List

Returns a list formed from elements to which the specified operation was applied.

round(<Value:Matr>) -> Matr

round(<Value:Matr> , <Digits:Dec>) -> Matr

Returns a matrix formed from elements to which the specified operation was applied.

ce i l

ceil(<Value:Dec|Imag>) -> Dec|Imag

Rounds the value (both imaginary and real parts separately) <Value> up to the smallest integer such that

ceil(x) ≥ x .

ceil(<Value:List>) -> List

Returns a list formed from elements to which the specified operation was applied.

f loor, in t

Synonym: int(...

floor(<Value:Dec|Imag>) -> Dec|Imag

•

Rounds the value (both imaginary and real parts separately) <Value> down to the largest integer such that

floor(x) ≤ x .

The synonym int(may be misleading, as it suggests that this function returns the integer part of a

number. This is not the case. The function that returns the integer part is iPart(.

floor(<Value:List>) -> List

Returns a list formed from elements to which the specified operation was applied.

iPar t

iPart(<Value:Dec|Imag>) -> Dec|Imag

Returns the integer part of the value <Value> (real and imaginary parts separately).

iPart(<Value:List>) -> List

Returns a list formed from elements to which the specified operation was applied.

iPart(<Value:Matr>) -> Matr

Returns a matrix formed from elements to which the specified operation was applied.

fPar t

fPart(<Value:Dec|Imag>) -> Dec|Imag

Returns the fractional part of the value <Value> (both imaginary and real parts separately).

fPart(<Value:List>) -> List

Returns a list composed of elements to which the specified operation was applied.

fPart(<Value:Matr>) -> Matr

Returns a matrix composed of elements to which the specified operation was applied.

min

min(<A:Dec> , <B:Dec>) -> Dec

Returns the smaller number between the values <A> and .

min(<Numbers:List>) -> Dec

Returns the smaller number from the values in the list <Numbers> .

min(<Value:Dec> , <Numbers:List>) -> List

min(<Numbers:List> , <Value:Dec>) -> List

Returns a list formed from the results of applying the specified operation between the number <Value>

and the corresponding element in the list <Numbers> .

ERRORS:

DATA TYPE if the list <Numbers> contains a complex number.

min(<A:List> , <B:List>) -> List

Returns a list formed from the results of applying the specified operation between the corresponding

elements of the lists <A> and .

ERRORS:

DATA TYPE

if the list <A> contains a complex number.

if the list contains a complex number.

DIM MISMATCH if the lengths of lists <A> and are different.

max

max(<A:Dec> , <B:Dec>) -> Dec

Returns the largest number between the values <A> and .

max(<Numbers:List>) -> Dec

Returns the largest number from the values in the list <Numbers> .

max(<Value:Dec> , <Numbers:List>) -> List

max(<Numbers:List> , <Value:Dec>) -> List

Returns a list formed from the results of applying the specified operation between the number <Value>

and the corresponding element in the list <Numbers> .

•

•

◦

◦

•

ERRORS:

DATA TYPE if the list <Numbers> contains a complex number.

max(<A:List> , <B:List>) -> List

Returns a list formed from the results of applying the specified operation between the corresponding

elements of the lists <A> and .

ERRORS:

DATA TYPE

if the list <A> contains a complex number.

if the list contains a complex number.

DIM MISMATCH if the lengths of lists <A> and are different.

l cm

lcm(<A:Dec> , <B:Dec>) -> Dec

lcm(returns the least common multiple of <A> and . <A> and must be nonnegative integers.

ERRORS:

DOMAIN

if <A> or is not an integer.

if <A> or is less than 0.

lcm(<Value:Dec> , <Numbers:List>) -> List

lcm(<Numbers:List> , <Value:Dec>) -> List

Returns a list formed from the results of applying the specified operation between the number <Value>

and the corresponding element in the list <Numbers> .

ERRORS:

DATA TYPE if the list <Numbers> contains a complex number.

lcm(<A:List> , <B:List>) -> List

Returns a list formed from the results of applying the specified operation between the corresponding

elements of the lists <A> and .

•

•

◦

◦

•

•

◦

◦

•

ERRORS:

DATA TYPE

if the list <A> contains a complex number.

if the list contains a complex number.

DIM MISMATCH if the lengths of lists <A> and are different.

gcd

gcd(<A:Dec> , <B:Dec>) -> Dec

gcd(returns the greatest common divisor of <A> and . <A> and <A> must be nonnegative

integers.

ERRORS:

DOMAIN

if <A> or is not an integer.

if <A> or is less than 0.

gcd(<Value:Dec> , <Numbers:List>) -> List

gcd(<Numbers:List> , <Value:Dec>) -> List

Returns a list formed from the results of applying the specified operation between the number <Value>

and the corresponding element in the list <Numbers> .

ERRORS:

DATA TYPE if the list <Numbers> contains a complex number.

gcd(<A:List> , <B:List>) -> List

Returns a list formed from the results of applying the specified operation between the corresponding

elements of the lists <A> and .

ERRORS:

DATA TYPE

if the list <A> contains a complex number.

if the list contains a complex number.

DIM MISMATCH if the lengths of lists <A> and are different.

remainder, r em

Synonym: rem(...

•

◦

◦

•

•

◦

◦

•

•

◦

◦

•

remainder(<Dividend:Dec> , <Divisor:Dec>) -> Dec

Returns the remainder of dividing <Dividend> by <Divisor> .

ERRORS:

DIVIDE BY 0 if the value of <Divisor> is 0.

3.7.7. Trigonometric and hyperbolic functions

s in

sin(<Value:Dec>) -> Dec

Returns the sinus of <Value> . The result depends on the current Radian or Degree mode.

sin(<Value:Imag>) -> Imag

Returns the sinus of <Value> .

sin(<Value:List>) -> List

Returns a list formed from the elements after applying the specified operation.

as in , s in ⁻ ¹

Synonym: (sin\xD4) sin⁻¹(...

asin(<Value:Dec>) -> Dec

Returns the inverse sinus of <Value> . The value of <Value> must be located in the range from -1 to 1.

The result depends on the current Radian or Degree mode.

ERRORS:

DOMAIN if the value of <Value> is less than -1 or greater than 1.

asin(<Value:Imag>) -> Imag

Returns the inverse sinus of <Value> .

asin(<Value:List>) -> List

Returns a list formed from the elements after applying the specified operation.

•

•

s inh

sinh(<Value:Dec|Imag>) -> Dec|Imag

Returns the hyperbolic sinus of <Value> .

sinh(<Value:List>) -> List

Returns a list formed from the elements after applying the specified operation.

ars inh , s inh⁻ ¹

Synonym: (sinh\xD4) sinh⁻¹(...

arsinh(<Value:Dec|Imag>) -> Dec|Imag

Returns the inverse hyperbolic sinus of <Value> .

arsinh(<Value:List>) -> List

Returns a list formed from the elements after applying the specified operation.

cos

cos(<Value:Dec>) -> Dec

Returns the cosinus of <Value> . The result depends on the current Radian or Degree mode.

cos(<Value:Imag>) -> Imag

Returns the cosinus of <Value> .

cos(<Value:List>) -> List

Returns a list formed from the elements after applying the specified operation.

acos , cos ⁻ ¹

Synonym: (cos\xD4) cos⁻¹(...

acos(<Value:Dec>) -> Dec

Returns the inverse cosinus of <Value> . The value of <Value> must be located in the range from -1 to

1. The result depends on the current Radian or Degree mode.

ERRORS:

DOMAIN if the value of <Value> is less than -1 or greater than 1.

acos(<Value:Imag>) -> Imag

Returns the inverse cosinus of <Value> .

acos(<Value:List>) -> List

Returns a list formed from the elements after applying the specified operation.

cosh

cosh(<Value:Dec|Imag>) -> Dec|Imag

Returns the hyperbolic cosinus of <Value> .

cosh(<Value:List>) -> List

Returns a list formed from the elements after applying the specified operation.

arcosh , cosh ⁻ ¹

Synonym: (cosh\xD4) cosh⁻¹(...

arcosh(<Value:Dec>) -> Dec

Returns the inverse hyperbolic cosinus of <Value> . The value of <Value> must be greater than or equal

to 1.

ERRORS:

DOMAIN if the value of <Value> is less than 1.

arcosh(<Value:Imag>) -> Imag

Returns the inverse hyperbolic cosinus of <Value> .

arcos(<Value:List>) -> List

Returns a list formed from the elements after applying the specified operation.

•

•

t an

tan(<Value:Dec>) -> Dec

Returns the tangent of <Value> . The result depends on the current Radian or Degree mode.

tan(<Value:Imag>) -> Imag

Returns the tangent of <Value> .

tan(<Value:List>) -> List

Returns a list formed from the elements after applying the specified operation.

a tan , tan ⁻ ¹

Synonym: (tan\xD4) tan⁻¹(...

atan(<Value:Dec>) -> Dec

Returns the inverse tangent of <Value> . The result depends on the current Radian or Degree mode.

atan(<Value:Imag>) -> Imag

Returns the inverse tangent of <Value> .

atan(<Value:List>) -> List

Returns a list formed from the elements after applying the specified operation.

t anh

tanh(<Value:Dec|Imag>) -> Dec|Imag

Returns the hyperbolic tangent of <Value> .

tanh(<Value:List>) -> List

Returns a list formed from the elements after applying the specified operation.

ar tanh , tanh⁻ ¹

Synonym: (tanh\xD4) tanh⁻¹(...

artanh(<Value:Dec>) -> Dec

Returns the inverse hyperbolic tangent of <Value> . The value of <Value> must be greater than -1 and

less than 1.

ERRORS:

DOMAIN

if the value of <Value> less than or equal to -1.

if the value of <Value> greater than or equal to -1.

artanh(<Value:Imag>) -> Imag

Returns the inverse hyperbolic tangent of <Value> .

artan(<Value:List>) -> List

Returns a list formed from the elements after applying the specified operation.

3.7.8. Complex numbers related functions

con j

conj(<Value:Dec>) -> Dec

Returns the number <Value> .

conj(<Value:Imag>) -> Imag

Returns the complex conjugate of <Value> . Equivalent to the expression real(<Value>) -

imag(<Value>) .

conj(<Value:List>) -> List

Returns a list formed from the elements after applying the specified operation.

conj(<Value:Matr>) -> Matr

Returns a matrix formed from the elements after applying the specified operation.

•

◦

◦

rea l , Re

Synonym: Re(...

real(<Value:Dec>) -> Dec

Returns the number <Value> .

real(<Value:Imag>) -> Dec

Returns the real part of the complex number <Value> .

real(<Value:List>) -> List

Returns a list composed of elements to which the specified operation was applied.

real(<Value:Matr>) -> Matr

Returns a matrix composed of elements to which the specified operation was applied.

imag , Im

Synonym: Im(...

imag(<Value:Dec>) -> Dec

Returns 0.

imag(<Value:Imag>) -> Dec

Returns the imaginary part of the complex number <Value> .

imag(<Value:List>) -> List

Returns a list composed of elements to which the specified operation was applied.

imag(<Value:Matr>) -> Matr

Returns a matrix composed of elements to which the specified operation was applied.

ang le , Arg

Synonym: Arg(...

angle(<Value:Imag>) -> Imag

Returns the angle (also known as the polar angle) between the radius vector of the corresponding point and

the positive real axis. If <Value> is 0, it returns 0 (TI-84 compatibility). The result depends on the

current mode. In Radian mode, the function will return the angle in radians. In Degree mode, the function

will return the angle in degrees.

angle(<Value:List>) -> List

Returns a list composed of elements to which the specified operation was applied.

cmplx_po lar

cmplx_polar(<Value:Imag>) -> Imag

Converts the algebraic representation of the complex number <Value> to the exponential form

z=re^(𝑖φ) , where the value of φ depends on the current angle mode (Radian or Degree). Equivalent to

conversion.

cmplx_polar(<Value:List>) -> List

Returns a list composed of elements to which the specified operation was applied.

cmplx_polar(<Value:Matr>) -> Matr

Returns a matrix composed of elements to which the specified operation was applied.

3.7.9. Probability functions

rand

rand() -> Dec

Returns a pseudo-random decimal number in the range from 0 (inclusive) to 1 (exclusive), generated using

the Mersenne Twister (MT19937). Calling the function initializes the PRNG (sets the seed) based on the

number of milliseconds elapsed since the calculator was powered on.

rand(<Count:Dec>) -> List

Returns a list composed of values generated by the rand(function. Unlike multiple invocations of

rand(, the PRNG is initialized only once. The length of the resulting list is equal to <Count> .

ERRORS:

DATA TYPE if <Count> is not an integer.

DOMAIN if <Count> is less than 1.

randIn t

randInt(<Lower:Dec> , <Upper:Dec>) -> Dec

Returns a pseudo-random integer in the range from <Lower> (inclusive) to <Upper> (inclusive),

generated using the Mersenne Twister (MT19937). The function automatically swaps <Upper> and

<Lower> if <Upper> is less than <Lower> . Calling the function initializes the PRNG (sets the seed)

based on the number of milliseconds elapsed since the calculator was powered on.

ERRORS:

DOMAIN if <Lower> or <Upper> is not an integer.

randInt(<Lower:Dec> , <Upper:Dec> , <Count:Dec>) -> List

Returns a list composed of values generated by the function randInt(<Lower> , <Upper> . Unlike

multiple invocations of randInt(, the PRNG is initialized only once. The length of the resulting list is

equal to <Count> .

ERRORS:

DOMAIN

if <Count> is not an integer.

if <Count> is less than 1.

randIn tNoRep

randIntNoRep(<Lower:Dec> , <Upper:Dec>) -> Dec

The function is equivalent to randInt(<Lower> , <Upper> .

randIntNoRep(<Lower:Dec> , <Upper:Dec> , <Count:Dec>) -> List

Returns a list of non-repeating values generated by the randInt(<Lower> , <Upper> . Unlike multiple

calls to the randInt(function, in this case the PRNG is initialized only once. The resulting list length is

equal to <Count> . The function only works if the difference between <Upper> and <Lower> (the

function automatically swaps <Upper> and <Lower> if <Upper> is less than <Lower>) is greater

than or equal to <Count> - 1 .

•

•

•

•

◦

◦

ERRORS:

DOMAIN

if the <Count> value is not an integer.

if the <Count> value is less than 1.

if the difference between <Upper> and <Lower> is less than <Count> - 1 .

randBin

randBin(<Trials count:Dec> , <Probability:Dec>) -> Dec

Function returns a random integer from a specified Binomial distribution. The value of <Trials count>

must be an integer greater than or equal to one. The value of <Probability> (probability of success)

must be in the range from 0 (inclusive) to 1 (inclusive).

randBin(<Trials count:Dec> , <Probability:Dec> , <Count:Dec>) -> List

Returns a list of elements generated by the function randBin(<Trials count> , <Probability> .

Unlike multiple calls to the randBin(function, the PRNG is initialized only once. The resulting list

length is equal to <Count> .

ERRORS:

DOMAIN

if the <Trials count> value is not an integer.

if the <Trials count> value is less than 1.

if the <Probability> value is less than 0 or greater than 1.

if the <Count> value is not an integer.

if the <Count> value is less than 1.

randNorm

randNorm(<Mu:Dec> , <Sigma:Dec>) -> Dec

Function random real number from a specified Normal distribution. Each generated value could be any real

number, but most will be within the interval [<Mu> - 3(<Sigma>) , <Mu> + 3(<Sigma>)].

randNorm(<Mu:Dec> , <Sigma:Dec> , <Count:Dec>) -> List

Returns a list formed from the elements generated by the function randNorm(<Mu> , <Sigma> . Unlike

calling the function randNorm(multiple times, in this case the RNG is initialized once. The length of the

resulting list is equal to <Count> .

•

◦

◦

◦

•

◦

◦

◦

◦

◦

ERRORS:

DOMAIN

if the value of <Count> is not an integer.

if the value of <Count> is less than 1.

nCr

nCr(<N:Dec> , <R:Dec>) -> Dec

nCr(returns the number of combinations of <N> taken <R> at a time. <N> and <R> must be

nonnegative integers.

ERRORS:

DOMAIN

if the value of <N> or <R> is not an integer.

if the value of <N> or <R> is less than 0.

if the value of <N> is less than <R> .

nCr(<N:Dec> , <Rs:List>) -> List

Returns a list formed from the results of sequentially performing the specified operation between the

number <N> and the corresponding element of the list <Rs> .

ERRORS:

DATA TYPE if the list <Rs> contains a complex number.

nCr(<Ns:List> , <R:Dec>) -> List

Returns a list formed from the results of sequentially performing the specified operation between the

corresponding element of the list <Ns> and the number <R> .

ERRORS:

DATA TYPE if the list <Ns> contains a complex number.

nCr(<Ns:List> , <Rs:List>) -> List

Returns a list formed from the results of sequentially performing the specified operation between the

corresponding elements of the lists <Ns> and <Rs> .

•

◦

◦

•

◦

◦

◦

•

•

ERRORS:

DATA TYPE

if the list <Ns> contains a complex number.

if the list <Rs> contains a complex number.

DIM MISMATCH if the lengths of the lists <Ns> and <Rs> are different.

nPr

nPr(<N:Dec> , <R:Dec>) -> Dec

nPr(returns the number of permutations of <N> taken <R> at a time. <N> and <R> must be

nonnegative integers.

ERRORS:

DOMAIN

if the value of <N> or <R> is not an integer.

if the value of <N> or <R> is less than 0.

if the value of <N> is less than <R> .

nPr(<N:Dec> , <Rs:List>) -> List

Returns a list formed from the results of sequentially performing the specified operation between the

number <N> and the corresponding element of the list <Rs> .

ERRORS:

DATA TYPE if the list <Rs> contains a complex number.

nPr(<Ns:List> , <R:Dec>) -> List

Returns a list formed from the results of sequentially performing the specified operation between the

corresponding element of the list <Ns> and the number <R> .

ERRORS:

DATA TYPE if the list <Ns> contains a complex number.

nPr(<Ns:List> , <Rs:List>) -> List

Returns a list formed from the results of sequentially performing the specified operation between the

corresponding elements of the lists <Ns> and <Rs> .

•

◦

◦

•

•

◦

◦

◦

•

•

ERRORS:

DATA TYPE

if the list <Ns> contains a complex number.

if the list <Rs> contains a complex number.

DIM MISMATCH if the lengths of the lists <Ns> and <Rs> are different.

3.7.10. Coordinate conversion functions

These functions take two arguments. If the function has the following syntax: func(<A:Dec> ,

<B:List>) -> List , then the function returns a list composed of the results of sequentially applying the

specified operation between the number <A> and the corresponding element of the list .

If the function has the following syntax: func(<A:List> , <B:Dec>) -> List , then the function

returns a list composed of the results of sequentially applying the specified operation between each element of

the list <A> and the number .

If the function has the following syntax: func(<A:List> , <B:List>) -> List , then the function

returns a list composed of the results of sequentially applying the specified operation between corresponding

elements of the lists <A> and .

The result of these functions depends on the current angle unit mode, as the calculations use trigonometric

functions.

ERRORS:

DATA TYPE if the list <A> or contains a complex number.

DIM MISMATCH if the lengths of the lists <A> and differ.

P▶Rx

(P\x9ERx) P▶Rx(<r:Dec|List> , <θ:Dec|List>) -> Dec|List

Converts polar coordinates to rectangular coordinates and returns the X coordinate. Equivalent to the

expression <r> * cos(<θ>) .

P▶Ry

(P\x9ERy) P▶Ry(<r:Dec|List> , <θ:Dec|List>) -> Dec|List

Converts polar coordinates to rectangular coordinates and returns the Y coordinate. Equivalent to the

expression <r> * sin(<θ>) .

R▶Pr

(R\x9EPr) R▶Pr(<X:Dec|List> , <Y:Dec|List>) -> Dec|List

•

◦

◦

•

•

•

Converts rectangular coordinates to polar coordinates and returns the vector magnitude r . Equivalent to

the expression sqrt(<X> ^2 + <Y> ^2) .

R▶Pθ

(R\x9EP\x99) R▶Pθ(<X:Dec|List> , <Y:Dec|List>) -> Dec|List

Converts rectangular coordinates to polar coordinates and returns the angular component θ of the vector.

Equivalent to the expression atan(<Y> / <X>) . For the point with coordinates (0, 0), the angular

component θ is 0.

3.7.11. Lists (and matrices) related functions

d im

dim(<Value:List>) -> Dec

Returns the length of the passed list <Value> .

dim(<Value:Matr>) -> List

Returns a list of two elements. The first element is the height of the matrix <Value> . The second element

is the width of the matrix <Value> .

seq

seq(<Func:Func> , <Ident Var:Dec> , <From:Dec> , <To:Dec>) -> List

seq(<Func:Func> , <Ident Var:Dec> , <From:Dec> , <To:Dec> , <Step:Dec>) -> List

Returns a list in which each element is the result of evaluating <Func> with respect to <Ident Var> for

values ranging from <From> to <To> with a step of <Step> . By default, <Step> is 1. <Step> can

be a negative number, in which case <From> must be greater than <To> . <Func> can be an expression

(1+X^2) or a Y-function variable (Y₁).

ERRORS:

Various calculation errors related to value evaluation.

INCREMENT

if the value of <Step> is 0.

if the value of <Step> is greater than 0 and the value of <From> is greater than the value

of <To> .

if the value of <Step> is less than 0 and the value of <From> is less than the value of

<To> .

•

•

◦

◦

◦

cumSum

cumSum(<Value:List>) -> List

Returns a list composed of elements that are the sum of all previous elements and the current element of the

list <Value> .

cumSum(<Value:Matr>) -> Matr

Returns a new matrix with the same dimensions as the matrix <Value> . The function transforms each

column from top to bottom separately. Each column is sequentially composed of elements that are the sum

of all previous elements and the current element of the corresponding column in the matrix <Value> .

ΔLis t

(\x9AList) ΔList(<Value:List>) -> List

Returns a list containing the differences between consecutive elements in <Value> . ΔList(subtracts

the first element in <Value> from the second element, subtracts the second element from the third, and so

on. The result list of differences is always one element shorter than the original list <Value> .

ERRORS:

INVALID DIMENSION if the list <Value> contains fewer than two elements.

(\x9AList) ΔList(<Value:Matr>) -> Matr

Returns a new matrix with the same height as the matrix <Value> . The width of the new matrix is one

element less. The rows of the new matrix are the result of transforming the corresponding rows of the

matrix <Value> using the ΔList(function.

ERRORS:

INVALID DIMENSION if the width of the matrix <Value> is less than two.

augment

augment(<A:List> , <B:List>) -> List

Returns a list formed by the sequence of elements of list <A> , followed by the sequence of elements of list

 . (concatenates lists <A> and).

augment(<A:Matr> , <B:Matr>) -> Matr

•

•

Returns a matrix whose rows are formed by the sequence of elements of the corresponding rows of matrix

<A> , followed by the sequence of elements of the corresponding rows of matrix . (concatenates

matrices <A> and horizontally).

ERRORS:

DIM MISMATCH if the heights of matrices <A> and are not equal.

mean

mean(<Value:List>) -> Dec

Returns the arithmetic mean of the elements in the <Value> list. The elements must be of type Dec.

ERRORS:

DATA TYPE if the <Value> list contains a complex number.

mean(<Value:List> , <Freq:List>) -> Dec

Returns the arithmetic mean of the elements in the <Value> list, weighted by the frequencies specified in

the <Freq> list. Each element in the <Value> list corresponds to a number in the <Freq> list

indicating the number of occurrences of the corresponding element. Equivalent to the sum of the products of

the corresponding elements of the <Value> and <Freq> lists, divided by the sum of elements in the

<Freq> list.

ERRORS:

DATA TYPE if the <Value> or <Freq> list contains a complex number.

DIM MISMATCH if the lengths of the <Value> and <Freq> lists are not equal.

STATISTICAL if the <Freq> list contains a negative number.

median

median(<Value:List>) -> Dec

Returns the median value of the elements in the <Value> list. The elements must be of type Dec.

ERRORS:

DATA TYPE if the <Value> list contains a complex number.

median(<Value:List> , <Freq:List>) -> Dec

Returns the median value of the elements in the <Value> list, weighted by the frequencies specified in the

<Freq> list. Each element in the <Value> list corresponds to a number in the <Freq> list indicating

the number of occurrences of the corresponding element.

•

•

•

•

•

•

ERRORS:

DATA TYPE if the <Value> or <Freq> list contains a complex number.

DIM MISMATCH if the lengths of the <Value> and <Freq> lists are not equal.

DOMAIN

if the <Freq> list contains a non-integer element.

if the <Freq> list contains a negative number.

var iance

variance(<Value:List>) -> Dec

Returns the variance of the elements in <Value> .

ERRORS:

DATA TYPE if the list <Value> contains a complex number.

s tdDev

stdDev(<Value:List>) -> Dec

Returns standard deviation of the elements in <Value> .

ERRORS:

DATA TYPE if the list <Value> contains a complex number.

sum

sum(<Value:List>) -> Dec|Imag

sum(<Value:List> , <From:Dec>) -> Dec|Imag

sum(<Value:List> , <From:Dec> , <To:Dec>) -> Dec|Imag

Returns the sum of the elements of the list <Value> , starting from the element number <From> and

ending with the element number <To> . Element numbering starts at 1. By default, <From> is 1, and

<To> is the length of the list <Value> .

ERRORS:

INVALID DIMENSION if the list <Value> has zero length.

DOMAIN

if the value of <From> or <To> is not an integer.

if the value of <From> or <To> is less than 1.

prod

prod(<Value:List>) -> Dec|Imag

•

•

•

◦

◦

•

•

•

•

◦

◦

prod(<Value:List> , <From:Dec>) -> Dec|Imag

prod(<Value:List> , <From:Dec> , <To:Dec>) -> Dec|Imag

Returns the product of the elements of the list <Value> , starting from the element number <From> and

ending with the element number <To> . Element numbering starts at 1. By default, <From> is 1, and

<To> is the length of the list <Value> .

ERRORS:

INVALID DIMENSION if the list <Value> has zero length.

DOMAIN

if the value of <From> or <To> is not an integer.

if the value of <From> or <To> is less than 1.

3.7.12. Matrices related functions

de t

det(<Value:Matr>) -> Dec

Returns the determinant of a square matrix <Value> .

ERRORS:

INVALID DIMENSION if the matrix <Value> is not square.

t ranspose

transpose(<Value:Matr>) -> Matr

Returns a matrix in which each element (row, column) is swapped with the corresponding element (column,

row) of <Value> .

i den t i t y

identity(<Dimension:Dec>) -> Matr

Returns the identity matrix of <Dimension> rows x <Dimension> columns.

ERRORS:

INVALID DIMENSION

if the value <Dimension> is not an integer.

if the value <Dimension> is less than 1.

inverse

inverse(<Value:Matr>) -> Matr

•

•

◦

◦

•

•

◦

◦

Returns the inverse matrix for the matrix <Value> . Equivalent to the expression <Value> ⁻¹ .

ERRORS:

SINGULAR MATR if the matrix <Value> is singular.

randM

randM(<Rows:Dec> , <Columns:Dec>) -> Matr

Returns a matrix with <Rows> rows and <Columns> columns, filled with random integers from -9

(inclusive) to 9 (inclusive).

ERRORS:

INVALID DIMENSION

if the value <Rows> or if the value <Columns> is not an integer.

if the value <Rows> is less than 1.

if the value <Columns> is less than 1.

re f

ref(<Value:Matr>) -> Matr

Returns the row-echelon form of a real matrix <Value> .

ERRORS:

DATA TYPE if the matrix <Value> contains a complex number.

INVALID DIMENSION if the height of the matrix <Value> is greater than its width.

r re f

rref(<Value:Matr>) -> Matr

Returns the reduced row-echelon form of a real matrix <Value> .

ERRORS:

DATA TYPE if the matrix <Value> contains a complex number.

INVALID DIMENSION if the height of the matrix <Value> is greater than its width.

rowSwap

rowSwap(<Value:Matr> , <Row 1:Dec> , <Row 2:Dec>) -> Matr

Returns a matrix <Value> , where rows numbered <Row 1> and <Row 2> are swapped.

ERRORS:

DATA TYPE if the value of <Row 1> or <Row 2> is not an integer.

•

•

◦

◦

◦

•

•

•

•

•

INVALID DIMENSION

if the value of <Row 1> or <Row 2> is less than 1.

if the value of <Row 1> or <Row 2> exceeds the height of the matrix <Value> .

row+

(row\xCE) row+(<Value:Matr> , <Additional row:Dec> , <Row:Dec>) -> Matr

Returns a matrix <Value> , where the elements of the row numbered <Row> are added to the

corresponding elements of the row numbered <Additional row> .

ERRORS:

DATA TYPE if the value of <Additional row> or <Row> is not an integer.

INVALID DIMENSION

if the value of <Additional row> or <Row> is less than 1.

if the value of <Additional row> or <Row> exceeds the height of the matrix <Value> .

*row

(\xCDrow) *row(<Coefficient:Dec|Imag> , <Value:Matr> , <Row:Dec>) -> Matr

Returns a matrix <Value> , where the elements of the row numbered <Row> are multiplied by the value

<Coefficient> .

ERRORS:

DATA TYPE if the value of <Row> is not an integer.

INVALID DIMENSION

if the value of <Row> is less than 1.

if the value of <Row> exceeds the height of the matrix <Value> .

*row+

(\xCDrow\xCE) *row+(<Coefficient:Dec|Imag> , <Value:Matr> , <Row 1:Dec> ,

<Row 2:Dec>) -> Matr

Returns a matrix <Value> , where the elements of the row numbered <Row 2> are added to the

corresponding elements of the row numbered <Row 1> , multiplied by the value <Coefficient> .

ERRORS:

DATA TYPE if the value of <Row 1> or <Row 2> is not an integer.

INVALID DIMENSION

if the value of <Row 1> or <Row 2> is less than 1.

if the value of <Row 1> or <Row 2> exceeds the height of the matrix <Value> .

•

◦

◦

•

•

◦

◦

•

•

◦

◦

•

•

◦

◦

3.7.13. Distribution functions

normalpdf

normalpdf(<X:Dec>) -> Dec

normalpdf(<X:Dec> , <Mu:Dec>) -> Dec

normalpdf(<X:Dec> , <Mu:Dec> , <Sigma:Dec>) -> Dec

normalpdf(computes the probability density function (pdf) for the normal distribution by mean <Mu>

and standard deviation <Sigma> at a specified <X> value. The defaults are <Mu> = 0, <Sigma> = 1.

The probability density function (pdf) is:

 (x-μ)²
 - ━━━━━━
 1 2σ²
f(x) = ━━━━━━━ e
 ┌──┐
 σ ⎷2π

ERRORS:

DOMAIN if the value of <Sigma> is less than or equal to 0.

normalcdf

normalcdf(<Lower:Dec> , <Upper:Dec>) -> Dec

normalcdf(<Lower:Dec> , <Upper:Dec> , <Mu:Dec>) -> Dec

normalcdf(<Lower:Dec> , <Upper:Dec> , <Mu:Dec> , <Sigma:Dec>) -> Dec

normalcdf(computes the normal distribution probability between <Lower> and <Upper> for the

specified mean <Mu> and standard deviation <Sigma> . The defaults are <Mu> = 0, <Sigma> = 1.

ERRORS:

DOMAIN if the value of <Sigma> is less than or equal to 0.

invNorm

invNorm(<Area:Dec>) -> Dec

invNorm(<Area:Dec> , <Tail:Dec>) -> Dec|List

invNorm(<Area:Dec> , <Mu:Dec> , <Sigma:Dec>) -> Dec

invNorm(<Area:Dec> , <Mu:Dec> , <Sigma:Dec> , <Tail:Dec>) -> Dec|List

•

•

invNorm(computes the inverse cumulative normal distribution function for a given <Area> under the

normal distribution curve specified by mean <Mu> and standard deviation <Sigma> . The value of

<Tail> determines the region used for the calculation: 1 (LEFT) - the left area 2 (CENTER) - the central

area 3 (RIGHT) - the right area. If <Tail> is 2, the function will return a list consisting of two numbers.

The first number is the left boundary of the area, and the second is the right boundary of the area. The

defaults are <Mu> = 0, <Sigma> = 1, <Tail> = 1 (LEFT).

ERRORS:

DOMAIN

if the value of <Sigma> is less than or equal to 0.

if the value of <Area> is less than 0 or greater than 1.

invT

invT(<Area:Dec> , <df:Dec>) -> Dec

invT(computes the inverse cumulative Student-t probability function specified by Degree of Freedom,

<df> for a given <Area> under the curve. WRONG WORKING.

ERRORS:

DOMAIN

if the value of <df> is less than or equal to 0.

if the value of <Area> is less than 0 or greater than 1.

•

◦

◦

•

◦

◦

t pd f

tpdf(<X:Dec> , <df:Dec>) -> Dec

tpdf(computes the probability density function (pdf) for the Student-t distribution at a specified <X>

value. <df> is degrees of freedom.

ERRORS:

DOMAIN if the value of <df> is less than or equal to 0.

t cd f

tcdf(<Lower:Dec> , <Upper:Dec> , <df:Dec>) -> Dec

tcdf(computes the Student-t distribution probability between <Lower> and <Upper> for the

specified <df> (degrees of freedom).

ERRORS:

DOMAIN if the value of <df> is less than or equal to 0.

χ ²pdf , pd f tw

Synonym: pdftw(...

(\xD8\xBDpdf) χ²pdf(<X:Dec> , <df:Dec>) -> Dec

χ²pdf(computes the probability density function (pdf) for the χ² (chi-square) distribution at a specified

<X> value. <df> (degrees of freedom) must be an integer > 0.

ERRORS:

DOMAIN

if the value of <df> is less than or equal to 0.

if the value of <df> is not an integer.

(\xD8\xBDpdf) χ²pdf(<X:Dec> , <df:List>) -> List

Returns a list formed from the results of sequential operations between the number <X> and the

corresponding element of the list <df> .

ERRORS:

DATA TYPE if the list <df> contains a complex number.

(\xD8\xBDpdf) χ²pdf(<X:List> , <df:Dec>) -> List

•

•

•

◦

◦

•

Returns a list formed from the results of sequential operations between the number <df> and the

corresponding element of the list <X> .

ERRORS:

DATA TYPE if the list <X> contains a complex number.

(\xD8\xBDpdf) χ²pdf(<X:List> , <df:List>) -> List

Returns a list formed from the results of sequential operations between the corresponding elements of the

lists <X> and <df> .

ERRORS:

DATA TYPE

if the list <X> contains a complex number.

if the list <df> contains a complex number.

DIM MISMATCH if the lengths of the lists <X> and <df> are different.

χ ²cd f , cd f tw

Synonym: cdftw(...

(\xD8\xBDcdf) χ²cdf(<Lower:Dec> , <Upper:Dec> , <df:Dec>) -> Dec

χ²cdf(computes the χ² (chi-square) distribution probability between <Lower> and <Upper> for the

specified <df> (degrees of freedom).

ERRORS:

DOMAIN

if the value of <df> is less than or equal to 0.

if the value of <df> is not an integer.

Fpdf

(\xD9pdf) Fpdf(<X:Dec> , <Numerator df:Dec> , <Denominator df:Dec>) -> Dec

Fpdf(computes the probability density function (pdf) for the F distribution at a specified <X> value.

<Numerator df> (degrees of freedom) and <Denominator df> must be integers > 0.

ERRORS:

DOMAIN

if the value of <Numerator df> or <Denominator df> is less than or equal to 0.

if the value of <df> or <Denominator df> is not an integer.

•

•

◦

◦

•

•

◦

◦

•

◦

◦

Fcdf

(\xD9cdf) Fcdf(<Lower:Dec> , <Upper:Dec> , <Numerator df:Dec> ,

<Denominator df:Dec>) -> Dec

Fcdf(computes the F distribution probability between <Lower> and <Upper> for the specified

<Numerator df> (degrees of freedom) and <Denominator df> . <Numerator df> and

<Denominator df> must be integers > 0.

ERRORS:

DOMAIN

if the value of <Numerator df> or <Denominator df> is less than or equal to 0.

if the value of <df> or <Denominator df> is not an integer.

b inompdf

binompdf(<Trials count:Dec> , <Probability:Dec>) -> List

binompdf(computes a probability at X (list of probabilities from 0 to <Trials count>) for the

discrete binomial distribution with the specified <Trials count> and <Probability> of success (p)

on each trial. The probability density function (pdf) is:

 ⎛n⎞ x n-x
f(x)= ⎜ ⎟p (1-p) , x=0,1, ... , n
 ⎝r⎠

ERRORS:

DOMAIN

if the value of <Trials count> is not an integer.

if the value of <Trials count> is less than 1.

if the value of <Probability> is less than 0 or greater than 1.

binompdf(<Trials count:Dec> , <Probability:Dec> , <X:Dec>) -> Dec

binompdf(computes a probability at <X> for the discrete binomial distribution with the specified

<Trials count> and <Probability> of success (p) on each trial. If value of <X> is less than 0 or

more than <Trials count> , the function returns 0.

ERRORS:

DOMAIN

if the value of <Trials count> is not an integer.

if the value of <Trials count> is less than 1.

if the value of <Probability> is less than 0 or greater than 1.

if the value of <X> is not an integer.

•

◦

◦

•

◦

◦

◦

•

◦

◦

◦

◦

binompdf(<Trials count:Dec> , <Probability:Dec> , <X:List>) -> List

binompdf(computes a probability at each element from <X> list for the discrete binomial distribution

with the specified <Trials count> and <Probability> of success (p) on each trial. If the value of an

element from the <X> list is less than 0 or more than <Trials count> , the function returns 0.

ERRORS:

DATA TYPE if the list <X> contains a complex number.

DOMAIN

if the value of <Trials count> is not an integer.

if the value of <Trials count> is less than 1.

if the value of <Probability> is less than 0 or greater than 1.

if the list <X> contains a non-integer element.

b inomcdf

binomcdf(<Trials count:Dec> , <Probability:Dec>) -> List

binomcdf(computes a cumulative probability at X (list of probabilities from 0 to <Trials count>)

for the discrete binomial distribution with the specified <Trials count> and <Probability> of

success (p) on each trial.

ERRORS:

DOMAIN

if the value of <Trials count> is not an integer.

if the value of <Trials count> is less than 1.

if the value of <Probability> is less than 0 or greater than 1.

binomcdf(<Trials count:Dec> , <Probability:Dec> , <X:Dec>) -> Dec

binomcdf(computes a cumulative probability at <X> for the discrete binomial distribution with the

specified <Trials count> and <Probability> of success (p) on each trial. If the value of <X> is

less than 0, the function returns 0. If the value of <X> is greater than <Trials count> , the function

returns 1.

ERRORS:

DOMAIN

if the value of <Trials count> is not an integer.

if the value of <Trials count> is less than 1.

if the value of <Probability> is less than 0 or greater than 1.

if the value of <X> is not an integer.

•

•

◦

◦

◦

◦

•

◦

◦

◦

•

◦

◦

◦

◦

binomcdf(<Trials count:Dec> , <Probability:Dec> , <X:List>) -> List

binomcdf(computes a cumulative probability at each element from the <X> list for the discrete

binomial distribution with the specified <Trials count> and <Probability> of success (p) on each

trial. If the value of <X> is less than 0, the function returns 0. If the value of <X> is greater than

<Trials count> , the function returns 1.

ERRORS:

DATA TYPE if the list <X> contains a complex number.

DOMAIN

if the value of <Trials count> is not an integer.

if the value of <Trials count> is less than 1.

if the value of <Probability> is less than 0 or greater than 1.

if the list <X> contains a non-integer element.

invBinom

invBinom(<Area:Dec> , <Trials count:Dec> , <Probability:Dec>) -> Dec

invBinom(is the inverse binomial distribution function with the specified <Trials count> and

<Probability> of success (p) on each trial. It returns the smallest number of successful trials for which

the given probability <Area> in the binomial distribution is reached or exceeded.

ERRORS:

DOMAIN

if the value of <Trials count> is not an integer.

if the value of <Trials count> is less than 1.

if the value of <Probability> is less than 0 or greater than 1.

if the value of <Area> is less than 0 or greater than 1.

po i s sonpdf

poissonpdf(<Mu:Dec> , <X:Dec|List>) -> Dec|List

poissonpdf(computes a probability at <X> for the discrete Poisson distribution with the specified

mean <Mu> . If <X> is list, function return list of results. Value of <X> (or elements) should be integer. If

value of <X> (or elements) less than 0, function return 0. The probability density function (pdf) is:

 -μ x
 e μ
f(x)= ━━━━━
 x!

ERRORS:

DATA TYPE if the list <X> contains a complex number.

•

•

◦

◦

◦

◦

•

◦

◦

◦

◦

•

DOMAIN

if the value or element of the list <X> is not an integer.

if the value of <Mu> is less than or equal to 0.

po i s soncdf

poissoncdf(<Mu:Dec> , <X:Dec|List>) -> Dec|List

poissoncdf(computes a cumulative probability at <X> for the discrete Poisson distribution with the

specified mean <Mu> . If <X> is list, function return list of results. If value of <X> (or elements) less than

0, function return 0. Note: this function can take the fractional value of the argument <X> (or elements),

but calculation is performed only for integer part of value (TI-84 compatibility).

ERRORS:

DATA TYPE if the list <X> contains a complex number.

DOMAIN if the value of <Mu> is less than or equal to 0.

geometpdf

geometpdf(<Probability:Dec> , <X:Dec|List>) -> Dec|List

geometpdf(computes a probability at <X> , the number of the trial on which the first success occurs, for

the discrete geometric distribution with the specified <Probability> of success. If <X> is list, function

return list of results. Value of <X> (or elements) should be integer. If value of <X> (or elements) less than

1, function return 0. The probability density function (pdf) is:

 x-1
f(x)= p(1-p)

ERRORS:

DATA TYPE if the list <X> contains a complex number.

DOMAIN

if the value or an element of the list <X> is not an integer.

if the value of <Probability> is less than 0 or greater than 1.

geometcdf

geometcdf(<Probability:Dec> , <X:Dec|List>) -> Dec|List

geometcdf(computes a cumulative probability at <X> , the number of the trial on which the first

success occurs, for the discrete geometric distribution with the specified <Probability> of success. If

<X> is list, function return list of results. Value of <X> (or elements) should be integer. If value of <X>

(or elements) less than 1, function return 0.

•

◦

◦

•

•

•

•

◦

◦

ERRORS:

DATA TYPE if the list <X> contains a complex number.

DOMAIN

if the value or an element of the list <X> is not an integer.

if the value of <Probability> is less than 0 or greater than 1.

3.7.14. Time functions

s tar tTmr

startTmr() -> Dec

Returns the number of seconds elapsed since the device was powered on. This function is intended to be

used together with the checkTmr(function.

checkTmr

checkTmr(<Seconds:Dec>) -> Dec

Returns the difference between the number of seconds elapsed since the device was powered on and the

number <Seconds> . Used in combination with the startTmr(function to measure elapsed time.

ERRORS:

DOMAIN if the value of <Seconds> is less than 0.

ge tTime

getTime() -> List

Returns the current time in 24-hour format as a list, where the first number is the number of hours, the

second is the number of minutes, and the third is the number of seconds. The current time can be set via the

MODE screen in the Set clock menu or using the setTime(function.

se tTime

setTime(<Hours:Dec> , <Minutes:Dec> , <Seconds:Dec>) -> List

Sets the current platform time in 24-hour format. On success, returns the current time as a list (same format

as the getTime(function). (Some platforms may not allow changing the current time.)

ERRORS:

DOMAIN

if the value of <Hours> , <Minutes> , or <Seconds> is not an integer.

if the value of <Hours> is less than 0 or greater than 23.

if the value of <Minutes> is less than 0 or greater than 59.

if the value of <Seconds> is less than 0 or greater than 59.

•

•

◦

◦

•

•

◦

◦

◦

◦

ge tTmFmt

getTmFmt() -> Dec

Returns a number representing the current time format (12 or 24). The time format can be set in the MODE

screen under the Set clock menu or via the setTmFmt(command.

ge tTmStr

getTmStr() -> Str

getTmStr(<Format:Dec>) -> Str

Returns a string containing the current time. If <Format> is 12, the resulting time format will be 09:00

PM . If <Format> is 24, the resulting time format will be 21:00 . By default, the value of <Format> is

the result of the getTmFmt(function.

ERRORS:

DOMAIN if the value of <Format> is not 12 or 24.

ge tDate

getDate() -> List

Returns the current date as a list, where the first number is the year, the second is the month, and the third is

the day. The current date can be set via the MODE screen in the Set clock menu or using the setDate(

function.

se tDate

setDate(<Year:Dec> , <Month:Dec> , <Day:Dec>) -> List

Sets the current platform date. On success, returns the current date as a list (same format as the getDate(

function) (some platforms may not allow changing the current date).

ERRORS:

DOMAIN

if the value of <Year> , <Month> , or <Day> is not an integer.

if the value of <Year> is less than 2000 or greater than 2150.

if the value of <Month> is less than 1 or greater than 12.

if the value of <Day> is less than 1 or greater than 31.

ge tDtFmt

getDtFmt() -> Dec

•

•

◦

◦

◦

◦

Returns a number representing the current date format:

<Format> = 1 - M/D/Y

<Format> = 2 - D/M/Y

<Format> = 3 - Y/M/D

The current date format can be set in the MODE screen under the Set clock menu or via the setDtFmt(

command.

ge tDtS t r

getDtStr() -> Str

getDtStr(<Format:Dec>) -> Str

Returns a string containing the current date, formatted according to the specified format (all numbers in the

string will be two digits).

<Format> = 1 - M/D/Y

<Format> = 2 - D/M/Y

<Format> = 3 - Y/M/D

By default, the value of <Format> is the result of the getDtFmt(function.

ERRORS:

DOMAIN if the value of <Format> is not 1, 2, or 3.

t imeCnv

timeCnv(<Seconds:Dec>) -> List

Converts the number of seconds <Seconds> into a list, where the first number is the number of days, the

second is the number of remaining hours, the third is the number of remaining minutes, and the fourth is the

number of remaining seconds.

ERRORS:

DOMAIN if the value of <Seconds> is not an integer.

dayOfWk

dayOfWk(<Year:Dec> , <Month:Dec> , <Day:Dec>) -> Dec

Returns the weekday of the specified date. Sunday is the first day of the week, Monday is the second.

ERRORS:

DOMAIN

if the value of <Year> , <Month> , or <Day> is not an integer.

if the value of <Year> is less than 1900.

•

•

•

•

•

•

•

•

•

◦

◦

if the value of <Month> is less than 1 or greater than 12.

if the value of <Day> is less than 1 or greater than 31.

if the specified date does not exist (e.g., February 30).

dbd

dbd(<Date 1:Dec> , <Date 2:Dec>) -> Dec

Returns the difference in days between the dates <Date 2> and <Date 1> . Date formats are as follows:

MM.DDYY or DDMM.YY . This format imposes restrictions on the years used (from 1901 to 2000). For

example, 2.2889 represents February 28, 1989, and 3112 represents December 31, 2000.

ERRORS:

DOMAIN

if the value of <Date 1> or <Date 2> is less than 0.

if the value of <Date 1> or <Date 2> cannot be converted into an existing date (between

1901 and 2000).

dbd(<Date 1:Dec> , <Date 2:List>) -> List

Returns a list formed from the results of sequentially performing the specified operation between the

number <Date 1> and the corresponding element of the list <Date 2> .

ERRORS:

DATA TYPE if the list <Date 2> contains a complex number.

dbd(<Date 1:List> , <Date 2:Dec>) -> List

Returns a list formed from the results of sequentially performing the specified operation between the

corresponding element of the list <Date 1> and the number <Date 2> .

ERRORS:

DATA TYPE if the list <Date 1> contains a complex number.

dbd(<Date 1:List> , <Date 2:List>) -> List

Returns a list formed from the results of sequentially performing the specified operation between the

corresponding elements of the lists <Date 1> and <Date 2> .

ERRORS:

DATA TYPE

if the list <Date 1> contains a complex number.

◦

◦

◦

•

◦

◦

•

•

•

◦

if the list <Date 2> contains a complex number.

DIM MISMATCH if the lengths of the lists <Date 1> and <Date 2> are different.

3.7.15. Various functions

ex i s tPrgm

existPrgm(<Program:Str>) -> Dec

Returns 1 if a ZeroBasic program named .zcb exists in the file system; otherwise, returns 0. Since the

data type of the argument <Program> is Str, it is not possible to work with programs whose names

contain double quotes ("). <Program> corresponds to a file named .zcb . The search for programs is

performed in the /exchange/ path, excluding subdirectories, within the calculator's file system.

Pxl_Tes t

Pxl_Test(<X:Dec> , <Y:Dec>) -> Dec

Returns 0 if the pixel color in the graph window matches the background color. Otherwise, the function

returns 1. The values <X> and <Y> correspond to the pixel coordinates. The drawing area size is 195

pixels in height and 320 pixels in width. The origin is at the top-left corner (0, 0), the Y-axis values

increase from top to bottom, and the X-axis values increase from left to right.

ERRORS:

DOMAIN

if the value of <X> or <Y> is not an integer.

if the value of <X> is less than 0 or greater than 319.

if the value of <Y> is less than 0 or greater than 194.

ge tKey

getKey() -> Dec

Returns the number of the pressed key. If no key was pressed, the function returns 0. The function waits for

a key press for about 50 ms, so it is preferred to use this function within a loop that waits for a key press.

◦

•

•

◦

◦

◦

ERRORS:

INVALID if the command is not called inside a script file.

getKey(<Delay:Dec>) -> Dec

Returns the number of the pressed key. If no key was pressed, the function returns 0. The function waits for

a button press for seconds. The value of <Delay> must be greater than 0.001. The value <Delay> is

rounded down to the thousandth place (0.00298 -> 0.002). The maximum delay time is 100 seconds and

does not depend on the value <Delay> .

ERRORS:

INVALID if the command is not called inside a script file.

DOMAIN if the value of <Delay> is out of the specified range.

Input

Input() -> Done

•

•

•

Opens a modal window of the graph and activates the pointer for point selection. Pointer control is done

using the buttons ▼ , ▲ , ◀ , ▶ . After selecting a point using the Enter button, the function places the

pointer coordinates into the X and Y variables.

ERRORS:

INVALID if the command is not called inside a script file.

Input(<Ident Var:Any>) -> Any

Input(<Prompt:Str> , <Ident Var:Any>) -> Any

This function allows assigning a value to a variable <Ident Var> during the execution of the script file

via user input. Unlike assignment, this function does not attempt to convert the variable name to valid

syntax. If executed successfully, it returns the value assigned to the variable. The <Prompt> variable

contains a string that is displayed before the user input. By default, <Prompt> is "?". It is similar to the

Prompt command.

ERRORS:

INVALID

if nothing was entered (empty input).

if entered call of script file

if entered call of some command

if the command is not called inside a script file.

DATA TYPE if the result of the user input expression has a type different from the variable

<Ident Var> type.

Various errors related to assignment.

expr

expr(<Expression:Str>) -> Any

Executes the expression <Expression> in the current context, and returns the result of the expression.

Parsing is performed in the expression mode.

inS t r ing

inString(<Value:Str> , <Substr:Str>) -> Dec

inString(<Value:Str> , <Substr:Str> , <Start:Dec>) -> Dec

This function searches for the substring <Substr> within the string <Value> , starting from position

<Start> . By default, <Start> is 1 (the search starts from the first character, left to right). The search is

case-sensitive. The function returns the position of the first character of the found substring. If no match is

found, the function returns 0.

•

•

◦

◦

◦

◦

•

•

ERRORS:

DOMAIN

if the value of <Start> is not an integer.

if the value of <Start> is less than 1.

l eng th

length(<Value:Str>) -> Dec

Returns the length of the string <Value> .

sub

sub(<Value:Str> , <Start:Dec>) -> Str

sub(<Value:Str> , <Start:Dec> , <Length:Dec>) -> Str

This function returns a substring of <Value> starting from the character at position <Start> , with a

length of <Length> . By default, <Length> is the number of characters from <Start> to the end of

the string (it cuts the string to the end).

ERRORS:

DOMAIN

if the value of <Start> or <Length> is not an integer.

if the value of <Start> is less than 1.

if the value of <Length> is less than 0.

INVALID DIMENSION if the sum of the values of <Start> and <Length> minus 1 is greater

than the length of the string <Value> .

t oS t r ing , eva l

Synonym: eval(...

toString(<Value:Any>) -> Str

Returns the value of <Value> as a formatted string.

3.8. Conditional statement

Corresponds to the IfStmt node. The conditional statement allows implementing branching of expressions or

scripts.

if <Condition:Dec|Imag> then <True Expressions> [else <False Expressions>]

end

•

◦

◦

•

◦

◦

◦

•

If <Condition> is not equal to 0 (including the imaginary part), the <True Expressions> are

executed sequentially; otherwise, <False Expressions> are executed (if this block is provided).

<True Expressions> and <False Expressions> are multiple Stmt nodes, so they can also

contain conditional and other structures. The lexical and syntactical structure of the node implies its use in

script files (using spaces as separators, inputting multiline expressions). The node can also be used in

expressions with some limitations (it is necessary to separate control structures from other expressions).

Using the : separator on the main screen will also not yield a result, as expressions separated by it are

executed independently of each other (but within the same variable context). The result of executing the

construction is the result of the last executed expression.

3.9. Conditional loop

Corresponds to the WhileStmt node. A conditional loop allows repeating the execution of child expressions.

while <Condition:Dec|Imag> do <Expressions> end

If <Condition> is not equal to 0 (including the imaginary part), the <Expressions> are executed

sequentially, then the value of <Condition> is recalculated and the loop repeats. If <Condition> is

equal to 0 (including the imaginary part), the loop is terminated. <Expressions> is composed of several

Stmt nodes, so they can also contain nested loops and other structures. The lexical and syntactical

structure of the node implies its use in script files (using spaces as separators, inputting multiline

expressions). The node can also be used in expressions with some limitations (it is necessary to separate

control structures from other expressions). Using the : separator on the main screen will also not yield a

result, as expressions separated by it are executed independently of each other (but within the same variable

context). The result of executing the construction is 0. Interrupt the loop is possible by pressing the On

button.

3.10. Iterative loop

Corresponds to the ForStmt node. The iterative loop allows repeating the execution of child expressions.

for <Ident Var:Dec> in <Start:Dec> , <Finish:Dec> [, <Step:Dec>] do

<Expressions> end

Calculates the values of <Start> , <Finish> , and <Step> . By default, the value of <Step> is 1.

The variable <Ident Var> is assigned the value of <Start> . Then, if the value of the variable

<Ident Var> is less than <Finish> , the <Expressions> are executed sequentially; otherwise, the

loop terminates. After executing the <Expressions> nodes, the value of the variable <Ident Var> is

increased by the value of <Step> , and the loop repeats. Note that the comparison of the value of

<Ident Var> and <Finish> is strict, and the loop will not run if they are equal. After the loop

completes, the value of the variable <Ident Var> will be greater than or equal to <Finish> .

<Expressions> consists of several Stmt nodes, so they can also contain nested loops and other

structures. The lexical and syntactical structure of the node implies its use in script files (using spaces as

separators, inputting multiline expressions). The node can also be used in expressions with some limitations

(it is necessary to separate control structures from other expressions). Using the : separator on the main

screen will also not yield a result, as expressions separated by it are executed independently of each other

(but within the same variable context). The result of executing the construction is the value of the variable

<Ident Var> after the loop completes. Interrupt the loop is possible by pressing the On button.

3.11. Calling a script file

Corresponds to the CallStmt node. This construct is intended for executing script files in the global context

(ZeroBasic has only a global execution context). Using script files is similar to using subprograms or functions

(with some exceptions) in other programming languages. Interrupt the execution of the program or the

calculation of expressions are possible by pressing the On button.

call <Program:Str>

Since the data type of the argument <Program> is Str, it is not possible to work with programs whose

names contain double quotes ("). <Program> corresponds to a file named .zcb . The search for

programs is performed in the /exchange/ path, excluding subdirectories, within the calculator's file

system. The ZeroBasic application allows managing script files. Lexical analysis of a script file differs from

lexical analysis of expressions, for more details see the sections Lexical structure of expressions and Lexical

structure of a script file (zcb). The syntactical structure of a script file corresponds to the Program node,

which can contain several Stmt nodes, so they can also contain calls to script files and other constructs.

Expressions (nodes Stmt) are executed sequentially. The result of executing the construction is the result

of the last executed expression. Some functions take into account that they are called from a script file.

ERRORS:

No such program if the file is not found.

eval break if the On button is pressed.

SYNTAX if the file contains syntax errors.

Various errors related to program execution.

3.12. Operations

Below is a list of mathematical operations in the order of their execution priority. Equivalent operations are

grouped together. Expressions enclosed in parentheses (parentheses groups) have priority in the execution

order. All operations have left associativity (evaluated left to right), unless stated otherwise. Using incorrect

data types will result in a DATA TYPE error.

3.12.1. Postfix operations

Corresponds to the PostfixOp node. These constructions are operations, so they can be combined and

executed sequentially, which may not be immediately obvious. Expression 10!°"'r is a valid expression.

Factor ia l

Corresponds to the Factorial token.

•

•

•

•

<Base:Dec> ! -> Dec

Factorial of 0 is 1. The result is limited to the value 7.257415615e+306 (<Base> ≤ 170).

ERRORS:

DOMAIN

if the value of <Base> is not an integer.

if the value of <Base> is negative.

OVERFLOW if the result overflows.

Convers ion to rad ians

Corresponds to the Radian token.

<Value:Dec> (\xCA) r -> Dec

The expression is equivalent to <Value> / <Angle Measurement> . The value of <Angle

Measurement> is π/180 (≈ 0.0175) in Degree mode, and 1 in Radian mode.

Convers ion to seconds

Corresponds to the SecondPostfixOp node.

<Seconds:Dec> (\xD3) " -> Dec

The expression is equivalent to <Seconds> / 3600 .

Convers ion to minutes

Corresponds to the MinutePostfixOp node. This node will be connected to the following second node if a

second node exists.

<Minutes:Dec> (\x27) ' [<Seconds:Dec> (\xD3) "] -> Dec

The expression is equivalent to <Minutes> / 60 + <Seconds> / 3600 . By default, the value of

<Seconds> is 0.

The expression 30'25"" is equivalent to 30'(25")" . The expression 30'25°°" is equivalent to

30'((25°)°)" .

Convers ion to degrees

Corresponds to the DegreePostfixOp node. This node will be connected to the following minute or second

node if they exist.

<Degrees:Dec> (\xBF) ° [<Minutes:Dec> (\x27) '] [<Seconds:Dec> (\xD3) "] -> Dec

•

◦

◦

•

The expression is equivalent to (<Degrees> <Minutes> / 60 + <Seconds> / 3600) * <Angle

Measurement> . By default, the value of <Minutes> is 0, the value of <Seconds> is 0. The value of

<Angle Measurement> is 1 in Degree mode, and π/180 (≈ 0.0175) in Radian mode.

The expression 30°°30''30"" is equivalent to (30°)°(30')'(30")" .

3.12.2. Exponentiation

Corresponds to the ExponentStmt node. Raising 0 to the power of 0 will cause an error.

<Base:Dec> ^ <Exponent:Dec> -> Dec

The expression corresponds to the equivalent mathematical operation. Raising 0 to the power of 0 will cause

an error.

ERRORS:

DIVIDE BY 0 if the value of <Base> is negative and the value of <Exponent> is fractional.

DOMAIN if both <Base> and <Exponent> are 0.

<Base:Imag> ^ <Exponent:Imag> -> Imag

ERRORS:

DOMAIN if the Degree mode is active.

<Base:List> ^ <Exponent:Dec|Imag> -> List

The resulting list will be formed from the elements on which the specified operation is performed.

<Base:Matr> ^ <Exponent:Dec> -> Matr

Returns a matrix of the same dimension.

If the value of <Exponent> is 0, the operation returns the identity matrix.

If the value of <Exponent> is -1, the operation returns the matrix inverse of the matrix <Base> .

Generates the error SINGULAR MATR if the original matrix is singular.

If the value of <Exponent> is greater than 0, the operation performs matrix multiplication of the

matrix <Base> by itself <Exponent> times.

ERRORS:

INVALID DIMENSION if the matrix <Base> is not square or has zero size.

DOMAIN

if the value of <Exponent> is not an integer.

•

•

•

•

•

•

•

•

◦

if the value of <Exponent> is less than 0.

3.12.3. Unary operations

Corresponds to the UnaryStmt node.

Unary minus

- <Operand:Dec> -> Dec

Returns the opposite number.

- <Operand:Imag> -> Imag

Returns the opposite complex number.

- <Operand:List> -> List

The resulting list will be formed from the elements on which the specified operation is performed.

- <Operand:Matr> -> Matr

The resulting matrix will be formed from the elements on which the specified operation is performed.

Logica l nega t ion

The use of a space in this construction is only allowed in script file mode. To use the operator in expressions,

<Operand> should be separated by parentheses or special space (\xAC) (see more in the section Lexical

structure common for file and expression). The operator not is case-insensitive (not and NOT are

equivalent).

not <Operand:Dec|Imag> -> Dec

If the value of <Operand> is 0, it returns 1, otherwise it returns 0.

not <Operand:List> -> List

The resulting list will be formed from the elements on which the specified operation is performed.

3.12.4. Multiplication and division

Corresponds to the MultiplicationStmt node.

◦

Mul t ip l i ca t ion

<Multiplicand:Dec> * <Multiplier:Dec> -> Dec

The expression corresponds to the equivalent mathematical operation.

<Multiplicand:Imag> * <Multiplier:Imag> -> Dec|Imag

The expression corresponds to the equivalent mathematical operation for complex numbers.

<Multiplicand:List> * <Multiplier:Dec|Imag> -> List

<Multiplicand:Dec|Imag> * <Multiplier:List> -> List

The resulting list will be formed from the products of the elements with the number.

<Multiplicand:List> * <Multiplier:List> -> List

The resulting list will be formed from the products of corresponding list elements. The sizes of the lists

must match, otherwise the error DIM MISMATCH will be generated.

<Multiplicand:Matr> * <Multiplier:Dec|Imag> -> Matr

<Multiplicand:Dec|Imag> * <Multiplier:Matr> -> Matr

The resulting matrix will be formed from the products of elements with the number.

<Multiplicand:Matr> * <Multiplier:Matr> -> Matr

The operation performs matrix multiplication of matrix <Multiplicand> by <Multiplier> . The

width of <Multiplicand> must equal the height of <Multiplier> , otherwise the error

DIM MISMATCH will be generated. The height of the resulting matrix will be equal to the height of

<Multiplicand> , and the width will be equal to the width of <Multiplier> .

Div i s ion

The natural fraction symbol (∕ \x9D) in this case is interpreted as the division operator with subsequent

conversion of the result to a natural fraction. If <Divisor> is 0, this will result in an error DIVIDE BY 0.

<Dividend:Dec> / <Divisor:Dec> -> Dec

The expression corresponds to the equivalent mathematical operation.

<Dividend:Imag> / <Divisor:Imag> -> Dec|Imag

The expression corresponds to the equivalent mathematical operation for complex numbers.

<Dividend:List> / <Divisor:Dec|Imag> -> List

The resulting list will be formed from the elements of the list <Dividend> divided by <Divisor> .

<Dividend:Dec|Imag> / <Divisor:List> -> List

The resulting list will be formed from the elements of <Dividend> , divided by the elements of the list

<Divisor> .

<Dividend:List> / <Divisor:List> -> List

The resulting list will be formed from the ratios of the elements of the list <Dividend> to the

corresponding elements of the list <Divisor> . The sizes of the lists must match, otherwise an error

DIM MISMATCH will be generated.

3.12.5. Addition and subtraction

Corresponds to the AdditionStmt node.

Addi t ion

<Addend 1:Dec> + <Addend 2:Dec> -> Dec

The expression corresponds to the same mathematical operation.

<Addend 1:Imag> + <Addend 2:Imag> -> Dec|Imag

The expression corresponds to the same mathematical operation for complex numbers.

<Addend 1:List> + <Addend 2:Dec|Imag> -> List

<Addend 1:Dec|Imag> + <Addend 2:List> -> List

The resulting list will be formed from the sums of elements with the number.

<Addend 1:List> + <Addend 2:List> -> List

The resulting list will be formed from the sums of corresponding elements of the lists. The list sizes must

match, otherwise an error DIM MISMATCH will be generated.

<Addend 1:Matr> + <Addend 2:Matr> -> Matr

The resulting matrix will be formed from the sums of corresponding elements of the matrices. The matrix

sizes must match, otherwise an error DIM MISMATCH will be generated.

<Addend 1:Str> + <Addend 2:Str> -> Str

Concatenates two strings.

Subtrac t ion

<Minuend:Dec> - <Subtrahend:Dec> -> Dec

The expression corresponds to the same mathematical operation.

<Minuend:Imag> - <Subtrahend:Imag> -> Dec|Imag

The expression corresponds to the same mathematical operation for complex numbers.

<Minuend:List> - <Subtrahend:Dec|Imag> -> List

The resulting list will be formed from the elements of the list <Minuend> , from which <Subtrahend>

is subtracted.

<Minuend:Dec|Imag> - <Subtrahend:List> -> List

The resulting list will be formed from the set of differences <Minuend> and the elements

<Subtrahend> .

<Minuend:List> - <Subtrahend:List> -> List

The resulting list will be formed from the differences of corresponding elements of the lists. The list sizes

must match, otherwise an error DIM MISMATCH will be generated.

<Minuend:Matr> - <Subtrahend:Matr> -> Matr

The resulting matrix will be formed from the differences of corresponding elements of the matrices. The

matrix sizes must match, otherwise an error DIM MISMATCH will be generated.

3.12.6. Comparison operations

Corresponds to the CompareStmt node.

Equal i t y

The Equality operation is represented by = , but it can also appear as == in expressions.

<Value 1:Dec|Imag> = <Value 2:Dec|Imag> -> Dec

Returns 1 if the difference between <Value 1> and <Value 2> is less than or equal to 0, otherwise

returns 0.

<Value 1:List> = <Value 2:Dec|Imag> -> List

<Value 1:Dec|Imag> = <Value 2:List> -> List

The resulting list will be formed from elements that have undergone the Equality operation with the

specified number.

<Value 1:List> = <Value 2:List> -> List

The resulting list will be formed from the results of the specified operation between corresponding elements

of the lists. The list sizes must match; otherwise, a DIM MISMATCH error will be generated.

<Value 1:Matr> = <Value 2:Matr> -> Dec

Performs the Equality operation on corresponding elements of the matrices. If all corresponding elements

are equal, it returns 1; otherwise, it returns 0. The matrix sizes must match; otherwise, a DIM MISMATCH

error will be generated.

<Value 1:Str> = <Value 2:Str> -> Dec

Returns 1 if the strings are equal character by character, otherwise returns 0.

Inequa l i t y

The Inequality operation is represented by != or ≠ (\xB1). This operation is similar to the Equality operation,

except that the result is additionally subject to a Logical Negation. The expression

<Value 1> ≠ <Value 2> is equivalent to the expression not (<Value 1> = <Value 2>) .

Grea ter

<Value 1:Dec> > <Value 2:Dec> -> Dec

Returns 1 if the difference between <Value 1> and <Value 2> is greater than 0, otherwise returns 0.

<Value 1:List> > <Value 2:Dec> -> List

The resulting list will be formed from the elements of the list <Value 1> , where the Greater operation

was applied with <Value 2> .

<Value 1:Dec> > <Value 2:List> -> List

The resulting list will be formed from the set of results of Greater operations between <Value 1> and the

elements of the list <Value 2> .

<Value 1:List> > <Value 2:List> -> List

The resulting list will be formed from the results of Greater operations between corresponding elements of

the list <Value 1> and <Value 2> . The list sizes must match, otherwise a DIM MISMATCH error will

be generated.

ERRORS:

DATA TYPE if the list <Value 1> or <Value 2> contains a complex number.

Grea ter or equa l

The Greater or equal operation is represented by >= or ≥ (\x96).

<Value 1:Dec> ≥ <Value 2:Dec> -> Dec

Returns 1 if the difference between <Value 1> and <Value 2> is greater than or equal to 0, otherwise

returns 0.

<Value 1:List> ≥ <Value 2:Dec> -> List

The resulting list will be formed from the elements of the list <Value 1> , where the Greater or equal

operation was applied with <Value 2> .

<Value 1:Dec> ≥ <Value 2:List> -> List

•

The resulting list will be formed from the set of results of Greater or equal operations between

<Value 1> and the elements of the list <Value 2> .

<Value 1:List> ≥ <Value 2:List> -> List

The resulting list will be formed from the results of Greater or equal operations between corresponding

elements of the list <Value 1> and <Value 2> . The list sizes must match, otherwise a

DIM MISMATCH error will be generated.

ERRORS:

DATA TYPE if the list <Value 1> or <Value 2> contains a complex number.

Less

<Value 1:Dec> < <Value 2:Dec> -> Dec

Returns 1 if the difference between <Value 1> and <Value 2> is less than 0, otherwise returns 0.

<Value 1:List> < <Value 2:Dec> -> List

The resulting list will be formed from the elements of the list <Value 1> , where the Less operation was

applied with <Value 2> .

<Value 1:Dec> < <Value 2:List> -> List

The resulting list will be formed from the set of results of Less operations between <Value 1> and the

elements of the list <Value 2> .

<Value 1:List> < <Value 2:List> -> List

The resulting list will be formed from the results of Less Than operations between corresponding elements

of the list <Value 1> and <Value 2> . The list sizes must match, otherwise a DIM MISMATCH error

will be generated.

ERRORS:

DATA TYPE if the list <Value 1> or <Value 2> contains a complex number.

Less or equa l

The Less or equal operation is represented by <= or ≤ (\x95).

<Value 1:Dec> ≤ <Value 2:Dec> -> Dec

•

•

Returns 1 if the difference between <Value 1> and <Value 2> is less than or equal to 0, otherwise

returns 0.

<Value 1:List> ≤ <Value 2:Dec> -> List

The resulting list will be formed from the elements of the list <Value 1> , where the Less or equal

operation was applied with <Value 2> .

<Value 1:Dec> ≤ <Value 2:List> -> List

The resulting list will be formed from the set of results of Less or equal operations between <Value 1>

and the elements of the list <Value 2> .

<Value 1:List> ≤ <Value 2:List> -> List

The resulting list will be formed from the results of Less or equal operations between corresponding

elements of the list <Value 1> and <Value 2> . The list sizes must match, otherwise a

DIM MISMATCH error will be generated.

ERRORS:

DATA TYPE if the list <Value 1> or <Value 2> contains a complex number.

3.12.7. Logical operations

Corresponds to the LogicOrStmt and LogicAndStmt nodes. The Logical AND operation executed earlier

than the Logical OR and Exclusive OR operations.

Logica l AND

The use of space in this construction is allowed only in script file mode. To use the operation in expressions

<Value 1> and <Value 2> , separate them with parentheses or special space (\xAC) (more details in the

section The structure of lexemes common to a file and an expression). The operator and is case-insensitive

(and and AND are equivalent).

<Value 1:Dec> and <Value 2:Dec> -> Dec

Returns 1 if <Value 1> and <Value 2> are not equal to 0, otherwise 0.

<Value 1:List> and <Value 2:Dec> -> List

<Value 1:Dec> and <Value 2:List> -> List

•

The resulting list will be formed from the results of the specified operation between the list elements and the

number.

<Value 1:List> and <Value 2:List> -> List

The resulting list will be formed from the results of the specified operation between corresponding elements

of list <Value 1> and <Value 2> . The lists must have the same size, otherwise an error

DIM MISMATCH will be generated.

ERRORS:

DATA TYPE if the list <Value 1> or <Value 2> contains a complex number.

Logica l OR

The use of space in this construction is allowed only in script file mode. To use the operation in expressions

<Value 1> and <Value 2> , separate them with parentheses or special space (\xAC) (more details in the

section The structure of lexemes common to a file and an expression). The operator or is case-insensitive

(or and OR are equivalent).

<Value 1:Dec> or <Value 2:Dec> -> Dec

Returns 0 if <Value 1> and <Value 2> are both equal to 0, otherwise 1.

<Value 1:List> or <Value 2:Dec> -> List

<Value 1:Dec> or <Value 2:List> -> List

The resulting list will be formed from the results of the specified operation between the list elements and the

number.

<Value 1:List> or <Value 2:List> -> List

The resulting list will be formed from the results of the specified operation between corresponding elements

of list <Value 1> and <Value 2> . The lists must have the same size, otherwise an error

DIM MISMATCH will be generated.

ERRORS:

DATA TYPE if the list <Value 1> or <Value 2> contains a complex number.

•

•

Exclus ive OR

The use of space in this construction is allowed only in script file mode. To use the operation in expressions

<Value 1> and <Value 2> , separate them with parentheses or special space (\xAC) (more details in the

section The structure of lexemes common to a file and an expression). The operator xor is case-insensitive

(xor and XOR are equivalent).

<Value 1:Dec> xor <Value 2:Dec> -> Dec

Returns 0 if <Value 1> and <Value 2> are both 0 or <Value 1> and <Value 2> are both non-

zero, otherwise 1.

<Value 1:List> xor <Value 2:Dec> -> List

<Value 1:Dec> xor <Value 2:List> -> List

The resulting list will be formed from the results of the specified operation between the list elements and the

number.

<Value 1:List> xor <Value 2:List> -> List

The resulting list will be formed from the results of the specified operation between corresponding elements

of list <Value 1> and <Value 2> . The lists must have the same size, otherwise an error

DIM MISMATCH will be generated.

ERRORS:

DATA TYPE if the list <Value 1> or <Value 2> contains a complex number.•

IV. Text description of lexical structure of Main screen expressions

@startebnf
program = empty_prgm | (stmt (* [1] *), {":", stmt});
empty_prgm = ? end of input ?;
(* [1]: TI-84 is capable of processing empty stmt,
Zero Calculator interrupts program execution
upon encountering an empty stmt. *)
@endebnf

V. Text description of lexical structure of an expression

@startebnf
page 1x1
stmt = (
 Command, [
 (? space ? | "("),
 [exprList]
] |
 [exprList]
),
 ?)}] ? (* [1] *),
 ? end of input ?;
@endebnf

@startebnf
page 1x5
exprList = expr, { ? * ? (* [2] *), expr };

(* [1]: After lexical analysis, the list of lexemes is divided into blocks.
The block boundaries defined by [→]. At the end of each block, tokens
for any missing closing brackets ([)], []], [}]) are added.
The insertion order is the reverse of the opening brackets.
*)
(* [2]: An insertion of the [*] token between two [expr] occurs in
the following cases:
 previous [expr] next [expr] example

 - [Number], [Identifier] "3X"
 - [Number], [(] "3("
 - [Number], [{] "3{"
 - [Number], [[] "3["

 - [Imag], [Identifier] "iX"
 - [Imag], [(] "i("
 - [Imag], [{] "i{"
 - [Imag], [[] "i["
 - [Imag], [Imag] "ii"

 - [Identifier], [Number] "X5"
 - [Identifier], [Imag] "Xi"
 - [Identifier], [Identifier] "Xπ"
 - [Identifier], [{] "X{"
 - [Identifier], [[] "X["

 - [)], [(] ")("
 - [)], [{] "){"
 - [)], [[] ")["
 - [)], [Number] ")3"
 - [)], [Imag] ")i"
 - [)], [Identifier] ")X"
 - [)], [UnaryMinus] ")-"

 - [}], [Number] "}3"
 - [}], [Imag] "}i"
 - [}], [Identifier] "}X"
 - [}], [(] "}("
 - [}], [{] "}{"

 - [Identifier], [(] provided that [Identifier] is not
 a FunctionIdentifier,
 a CustomListIdentifier,
 a StandardListIdentifier,
 a MatrixIdentifier,
 'Ans', 'TblInput'
*)
@endebnf

@startebnf
page 1x1
expr = "\n" | Lexeme;

equals = "=", ["="];
@endebnf

VI. Text description of lexical structure of a script file

@startebnf
page 1x1
program = stmt, { "\n", stmt }, ? end of input ?;
@endebnf

@startebnf
page 1x2
stmt = Command, [
 (? space ? | "("),
 [exprList]
] |
 [exprList];

exprList = expr, { expr };
@endebnf

@startebnf
page 1x1
expr = { ? space ? }, ("\n" | Lexeme);
equals = "=", "=";
@endebnf

VII. Text description of the structure of lexemes common to a file and an
expression

@startebnf
page 1x3
Command = MatrixIdentifier |
 PictureIdentifier |
 GDBIdentifier |
 OneSymbolIdentifier |
 StandardListIdentifier |
 CustomListIdentifier |
 Identifier;
(* The command lexeme is formed only when
the textual content of the identifier
matches the command name (a complete list
is available in the Commands section)
or the [Call] token. *)
@endebnf

@startebnf
page 1x5
Lexeme = Comment |
 MatrixIdentifier |
 PictureIdentifier |
 GDBIdentifier |
 ConvertingOperator |
 SymbolToken |
 OneSymbolIdentifier |
 DegreePostfixOperator |
 UpperPower |
 StoreOrMinus |
 GreaterOrGreaterEquals |
 LessOrLessEquals |
 equals |
 NotEqualsOrFactorial |
 Imag |
 StandardListIdentifier |
 CustomListIdentifier |
 Number |
 Identifier |
 String;
@endebnf

@startebnf
page 1x1
Comment = ? // ? (* [2] *), [? any character ?];
(* [2]: A comment is treated as
"\n" character or end of input *)
@endebnf

@startebnf
page 1x1
MatrixIdentifier = "[", {Alpha}-, "]";
PictureIdentifier = "Pic", Digit;
GDBIdentifier = "GDB", Digit;
@endebnf

@startebnf

page 1x1

ConvertingOperator = "▶" (* [3] *), { Alpha | "▶" (* [4] *) | "◀" | "/" };
(* [3]: '▶' Conversion symbol (\xDA) *)
(* [4]: '▶' Right triangle arrow symbol (\x9E) *)
@endebnf

@startebnf
page 1x1
Imag = "i" (* Imaginary unit symbol (\xA5) *);
@endebnf

@startebnf
page 1x4
SymbolToken = "+" | "*" | "/" | "^" |
 "(" | ")" | "{" (* [5] *) | "}" |
 "[" (* [5] *) | "]" | "," |

 "∕" (* [6] *) | "␣" (* [7] *) | "-" (* [8] *);
(* [5]: The next character must not be
a closing bracket *)
(* [6]: '∕' Common fraction symbol (\x9D) *)

(* [7]: '␣' Mixed number fraction symbol (\xA0) *)
@endebnf

@startebnf
page 1x5
OneSymbolIdentifier = "ⁿ√" (* Root with degree symbol (\xA1) *) |
 "√" (* Square root symbol (\x7F) *) |
 "π" (* Pi symbol (\xD2) *) |
 "e" (* Euler's number symbol (\xD0) *) |

 "₁₀" (* Small number 10 symbol (\xD5) *) |
 "ȳ" (* Mean y symbol (\xAA) *) |
 "n" (* n in statistics symbol (\xD7) *) |
 "n" (* n in SEQUENCE graphs symbol (\xDB) *);
@endebnf

@startebnf
page 1x1
DegreePostfixOperator = "°" (* Degree symbol (\xBF) *) |
 "'" (* Minute symbol (\x27) *) |
 "ʺ" (* Second symbol (\xD3) *) |
 "r" (* Radian symbol (\xCA) *);
@endebnf

@startebnf
page 1x1

UpperPower = "⁻¹" (* Negative one power symbol (\x8A) *) |
 "'⁰' - '⁹'" (* (\x80 - \x89) *);
@endebnf

@startebnf
page 1x1
StoreOrMinus = "→" (* Assignment symbol (\xA8) *) |
 ("-", [">"]);
@endebnf

@startebnf
page 1x1
GreaterOrGreaterEquals = "≥" (* (\x96) *) |
 (">", ["="]);
@endebnf

@startebnf
page 1x1
LessOrLessEquals = "≤" (* (\x95) *) |
 ("<", ["="]);
@endebnf

@startebnf
page 1x1
equals = "=", ["="] (* In expressions mode *);
equals = "=", "=" (* In a script file mode *);
@endebnf

@startebnf
page 1x1
FactorialOrNotEquals = "≠" (* (\xB1) *) |
 ("!", ["="]);
@endebnf

@startebnf
page 1x1

StandardListIdentifier = "L" (* [9] *), "'₀' - '₆'" (* [10] *);
CustomListIdentifier = "⌞" (* [11] *), { Alpha }-;

@endebnf

@startebnf
page 1x3
Number = (
 {Digit, {"Digit separator" (* (\xDD) *)}}-,
 [NumberFraction],
 [NumberExponent]
) |
 (
 NumberFraction,
 [NumberExponent]
) |
 (
 "E" (* [12] *),
 (
 ("-" (* [8] *) | "+"), {Digit} |
 {Digit (* [13] *)}-
)
);
NumberFraction = ".", {Digit}-;
NumberExponent = "E" (* [12] *), ["-" (* [8] *) | "+"], {Digit};
@endebnf

@startebnf
page 1x5
Identifier = [? special space ? (* \xAC *)], (
 ThirdRoot |
 IdentifierSymb, { IdentifierSymb | "_" } |
 Not | And | Or | Xor | If | Then | Else | While | Do | For | In | Call | End
), [? special space ? (* \xAC *)];
ThirdRoot = "³" (* \xD1 *), "√" (* \x7F *);
@endebnf

@startebnf
page 1x11
IdentifierSymb = Alpha |
 "Δ" (* Delta symbol (\x9A) *) |

 "*" (* Asterisk symbol (custom) (\xCD) *) |

 "▶" (* Right triangle arrow symbol (\x9E) *) |
 "◀" (* Left triangle arrow symbol(\x9F) *) |
 "+" (* Plus symbol (custom) (\xCE) *) |
 "-" (* Dash symbol (custom) (\xDE) *) |
 "1" (* Cursive one symbol (\xDF) *) |
 "2" (* Cursive two symbol (\xE0) *) |
 "[" (* Cursive left bracket symbol (\xE1) *) |
 "]" (* Cursive right bracket symbol (\xE2) *) |
 "²" (* Superscript 2 symbol (\xBD) *) |

 "ₜ" (* Subscript tau symbol (\xBC) *) |
 "⁻¹" (* Inverse trig function symbol (\xD4) *) |
 "θ" (* Theta symbol (\x99) *) |
 "³" (* Cube root index symbol (\xD1) *) |
 "σ" (* Sigma symbol (\xAB) *) |
 "Σ" (* Summation symbol (\xA2) *) |
 "χ" (* Chi symbol (\xD8) *) |
 "R" (* R in statistics (\xBE) *) |

 "ⴳ" (* Mean x symbol (\xA9) *) |
 "p̂" (* Rho in statistics symbol (\xB2) *) |
 "F" (* F in statistics symbol (\xD9) *) |
 "Digit separator" (* (\xDD) *) |

 "'₀' - '₉'" (* Subscript digits (\xC0 - \xC9) *);
@endebnf

@startebnf
page 1x1
Not = ("N" | "n"), ("O" | "o"), ("T" | "t");
@endebnf

@startebnf
page 1x1
And = ("A" | "a"), ("N" | "n"), ("D" | "d");
@endebnf

@startebnf
page 1x1
Or = ("O" | "o"), ("R" | "r");
@endebnf

@startebnf
page 1x1
Xor = ("X" | "x"), ("O" | "o"), ("R" | "r");
@endebnf

@startebnf
page 1x1
If = ("I" | "i"), ("F" | "f");
@endebnf

@startebnf
page 1x1
Then = ("T" | "t"), ("H" | "h"), ("E" | "e"), ("N" | "n");
@endebnf

@startebnf
page 1x1
Else = ("E" | "e"), ("L" | "l"), ("S" | "s"), ("E" | "e");
@endebnf

@startebnf

page 1x1
While = ("W" | "w"), ("H" | "h"), ("I" | "i"), ("L" | "l"), ("E" | "e");
@endebnf

@startebnf
page 1x1
Do = ("D" | "d"), ("O" | "o");
@endebnf

@startebnf
page 1x1
For = ("F" | "f"), ("O" | "o"), ("R" | "r");
@endebnf

@startebnf
page 1x1
In = ("I" | "i"), ("N" | "n");
@endebnf

@startebnf
page 1x1
Call = ("C" | "c"), ("A" | "a"), ("L" | "l"), ("L" | "l");
@endebnf

@startebnf
page 1x1
End = ("E" | "e"), ("N" | "n"), ("D" | "d");
@endebnf

@startebnf
page 1x1
String = "ʺ" (* \x22 *),
 { "any character except 'ʺ' (\x22), '\n', '→' (\xA8), '->'" },
 ["ʺ" (* \x22 *)];
@endebnf

@startebnf
page 1x1
Alpha = UpperAlpha | LowerAlpha;
UpperAlpha = "'A' - 'Z'";
LowerAlpha = "'a' - 'z'";
Digit = "'0' - '9'";
@endebnf

@startebnf
page 1x4
(* [7]: '-' Unary minus symbol (\x98) *)
(* [8]: 'L' List symbol (\xA6) *)

(* [9]: '₀' - '₆' (\xC0 - \xC6) *)
(* [10]: '⌞' List symbol (\xA7) *)

(* [11]: 'E' Decimal exponent symbol (\xD6) *)
(* [12]: The third branch of a number also constitutes
the exponent part (NumberExponent), but in the first
two cases the order may be omitted due to mantissa
presence ('5E'). The third branch requires either
a sign of exponent or explicit exponent value
('E-', 'E6', 'E+7') *)

@endebnf

VIII. Text description of syntactic structure of the ZeroBasic language

@startebnf
page 1x1
Program = { "Newline" }, { Stmt }, "EndOfInput";
(* Entry point for syntax parsing of a script file *)
@endebnf

@startebnf
page 1x1
Stmt = (CommandStmt | IfStmt | WhileStmt | ForStmt | CallStmt | StoreStmt),
 { "Newline" },
 (
 ? EndOfInput ? | ? Newline ? | ? End ? | ? Else ?
 (* Token after Stmt token must be one of these tokens. *)
);
(* Entry point for syntax parsing of an expression
(The main screen independently splits the entered
command into expressions) *)
@endebnf

@startebnf
page 1x1
CommandStmt = "Command",
 (
 "(", [ExprStmt, { ",", ExprStmt }], ")" |
 [ExprStmt, { ",", ExprStmt }]
);
(* The marker for analyzing CommandStmt is the [Command]
token. Mismatch in the following syntax will lead to
an error. *)
@endebnf

@startebnf
page 1x1
IfStmt = "If", ExprStmt, { "Newline" }, "Then", { "Newline" }, { Stmt },
 ["Else", { "Newline" }, { Stmt }], "End";
(* The marker for analyzing IfStmt is the [If] token.
Mismatch in the following syntax will lead to an error. *)
@endebnf

@startebnf
page 1x1
WhileStmt = "While", ExprStmt, { "Newline" }, "Do", { "Newline" }, { Stmt }, "End";
(* The marker for analyzing WhileStmt is the [While] token.
Mismatch in the following syntax will lead to an error. *)
@endebnf

@startebnf
page 1x1
ForStmt = "For", IdentStmt, "In", ExprStmt, ",", ExprStmt, [",", ExprStmt],
 { "Newline" }, "Do", { "Newline" }, { Stmt }, "End";
(* The marker for analyzing ForStmt is the [For] token.
Mismatch in the following syntax will lead to an error. *)
@endebnf

@startebnf
page 1x1
CallStmt = "Call",

 (
 "(", ExprStmt, ")" |
 ExprStmt
);
(* The marker for analyzing CallStmt is the [Call] token.
Mismatch in the following syntax will lead to an error. *)
@endebnf

@startebnf
page 1x1
StoreStmt = ExprStmt, [
 "Store", IdentStmt, ["(", ExprStmt, [",", ExprStmt], ")"] |
 "ConvertingOp"
];
@endebnf

@startebnf
page 1x1
IdentStmt = "Identifier";
@endebnf

@startebnf
page 1x1
ExprStmt = LogicOrStmt;
@endebnf

@startebnf
page 1x1
LogicOrStmt = LogicAndStmt, { ("Or" | "Xor"), LogicAndStmt };
(* Execution order of logical operations is not specified.
Operations are executed sequentially. *)

LogicAndStmt = CompareStmt, { "And", CompareStmt };
@endebnf

@startebnf
page 1x2
CompareStmt = AdditionStmt, {
 ("Equals" |
 "NotEquals" |
 "Greater" |
 "GreaterEquals" |
 "Less" |
 "LessEquals"),
 AdditionStmt
 };
(* Execution order of comparison operations is not specified.
Operations are executed sequentially. *)
@endebnf

@startebnf
page 1x1
AdditionStmt = MultiplicationStmt, { ("Plus" | "Minus"), MultiplicationStmt };
@endebnf

@startebnf
page 1x1
MultiplicationStmt = UnaryStmt, { ("Mult" | "Divide" | "ND"), UnaryStmt |
 "Imag" };
@endebnf

@startebnf

page 1x1
UnaryStmt = [("Minus" | "UnaryMinus" | "Not"), UnaryStmt], ExponentStmt;
(* The [UnaryMinus] token is replaced by the [Minus] token *)
@endebnf

@startebnf
page 1x1
ExponentStmt = PostfixOpStmt, { "Power" , PostfixOpStmt | "UpperPower" };
(* The [UpperPower] token contains only a single
superscript digit *)
@endebnf

@startebnf
page 1x1
PostfixOpStmt = PrimaryStmt, { PostfixOp };
@endebnf

@startebnf
page 1x1
PostfixOp = DegreePostfixOp |
 MinutePostfixOp |
 SecondPostfixOp |
 "Radian" |
 "Factorial";
@endebnf

@startebnf
page 1x1
DegreePostfixOp = "Degree", [PrimaryStmt, ({MinutePostfixOp}- | {SecondPostfixOp}-)];
@endebnf

@startebnf
page 1x1
MinutePostfixOp = "Minute", [PrimaryStmt, {SecondPostfixOp}-];
@endebnf

@startebnf
page 1x1
SecondPostfixOp = "Second";
@endebnf

@startebnf
page 1x3
PrimaryStmt = UNDStmt |
 ImagStmt |
 VarOrFnCallStmt |
 GroupingStmt |
 ListStmt |
 MatrixStmt |
 UnaryStmt (* Only for [UnaryMinus] token *) |
 StringStmt;
@endebnf

@startebnf
page 1x1
UNDStmt = NumberStmt, ["UND", NumberStmt, "ND", NumberStmt];
@endebnf

@startebnf
page 1x1
NumberStmt = "Number";
ImagStmt = "Imag";

StringStmt = "String";
@endebnf

@startebnf
page 1x1
VarOrFnCallStmt = FnCallStmt | VarStmt;
FnCallStmt = IdentStmt, "(", [ExprStmt, { ",", ExprStmt }], ")";
VarStmt = IdentStmt;
@endebnf

@startebnf
page 1x1
GroupingStmt = "(", ExprStmt, ")";
@endebnf

@startebnf
page 1x1
ListStmt = "{", ExprStmt, { ("," | "Number"), ExprStmt }, "}";
(* The [Number] token is included in the subsequent
ExprStmt node. This analysis structure allows for
the following syntax in the script file:
{1,2,3}
{1 2 3} *)
@endebnf

@startebnf
page 1x2
MatrixStmt = MatrixVarStmt | "[", MatrixRow, { MatrixRow }, "]";
MatrixVarStmt = "[", "Identifier", "]";
(* The [Identifier] token must consist only of letters *)
MatrixRow = "[", ExprStmt, { ("," | "Number"), ExprStmt }, "]";
(* The [Number] token is included in the subsequent
ExprStmt node. This analysis structure allows for
the following syntax in the script file:
[[1,2,3]]
[[1 2 3]] *)
@endebnf

IX. Documentation changelog

v2.27.1 (2025-12-29)

Added information about errors in commands RecallPic and StorePic.

Fixed Tangent command working in Par functions mode.

v2.27.0 (2025-12-15)

Command delVar can remove variables Ans and TblInput.

Added information about using construction ->dim(on variable Ans.

Added information about modification list or matrix elements of Ans variable.

Construction ->dim(modify elements of TblInput variable.

Prohibited creation variables whose names match with commands and functions.

Changed lexing special vars (Ans, TblInput) to same as another identifiers.

Added information about returned errors for Input and Prompt commands.

•

•

•

•

•

•

•

•

•

v2.26.0 (2025-10-16)

Increased the limitation of the result of performing the factorial operation.

Added check of negative values for the factorial operation.

Increased the limitation of the result of performing the nCr(function.

Added interruption the execution of the program or the calculation of expressions by On button.

Changed names of commands 1-VarStats, 2-VarStats, Med-Med, LinReg[ax+b], LinReg[a+bx], Manual-

Fit.

Added several symbols to Identifier lexeme.

Changed parsing Newline tokens in syntax processing of Stmt, IfStmt, WhileStmt and ForStmt.

Changed lexical analysis for string lexeme (cancel of consuming newline character).

Changed lexical analysis for stmt, Command and Call lexemes.

Changed parsing Command and Call tokens.

Changed data type for command delPrgm(.

Added command existPrgm(.

Changed data type of argument of 'Call' construction.

Mixed fraction (UNDStmt) moved into PrimaryStmt.

Changed syntax scheme - PrimaryStmt process UnaryStmt only for UnaryMinus token.

Fixed order of execution of logical operators (and, or, xor).

v2.25.0 (2025-09-11)

Change description of Disp command (now command Disp can't interrupt Zerobasic execution).

Added changelog documentation generating.

Changed style for time functions and commands.

Changed description of command ClrDraw (not update graph window).

Added note that draw commands (ClrDraw, Line, Horizontal, Vertical, Tangent, DrawF, Shade,

DrawInv, Circle, Text, Pt_On, Pt_Off, Pt_Change, Pxl_On, Pxl_Off, Pxl_Change) not update graph

window if the command is called from a script file.

The command Wait can now handle millisecond delays.

The function getKey can now wait for a key press for the specified time.

Added out-of-bounds errors for commands Text, TextColor, Pxl_On, Pxl_Off, Pxl_change.

Fixed height of letters in Text command from 16 to 18.

Added string token clipping by ->.

Removed assignment "Done" to Ans after commands completion.

Added inverse hyperbolic functions (arsinh, arcosh, artanh).

Fix trigonometry functions description.

Fixed broken links from statistical variables to Readonly variables section.

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

	Zero Calculator
	ZeroBasic User Manual (v2.27.1 dated 12.29.2025)
	Lexical structure of the ZeroBasic language
	Processing mathematically formatted expressions
	Lexical structure of Main screen expressions
	Lexical structure of an expression
	Lexical structure of a script file (zcb)
	The structure of lexemes common to a file and an expression

	Syntactic structure of the ZeroBasic language
	Interpretation of the ZeroBasic language
	Data types
	Fractions
	Variables
	Predefined constants
	Readonly variables
	Y-functions variables
	Strings
	Lists
	Matrices
	The Ans variable

	Assignment
	Conversion
	Commands
	Lists-related commands
	clrAllLists
	ClrList
	List▶matr
	Matr▶list
	resize
	setUpEditor
	SortA
	SortD

	Time-related Commands
	setTmFmt
	setDtFmt

	Input/Output-related commands
	Disp
	DispGraph
	DispTable
	Output
	Prompt
	Pause
	Wait
	Select

	Y-functions related commands
	FnOff
	FnOn
	PlotsOff
	PlotsOn

	Statistical Commands
	1-VarStats
	2-VarStats
	Med-Med
	LinReg[ax+b]
	LinReg[a+bx]
	QuadReg
	CubicReg
	QuartReg
	LnReg
	ExpReg
	PwrReg
	Logistic
	SinReg
	Manual-Fit
	ANOVA

	Distribution draw commands
	ShadeNorm
	Shade_t
	Shadeχ²
	ShadeF

	Draw commands
	ClrDraw
	Line
	Horizontal
	Vertical
	Tangent
	DrawF
	Shade
	DrawInv
	Circle
	Text
	TextColor
	Pt_On
	Pt_Off
	Pt_Change
	Pxl_On
	Pxl_Off
	Pxl_Change
	StorePic
	RecallPic
	StoreGDB
	RecallGDB

	Various commands
	Equ▶String
	String▶Equ
	ClearEntries
	clrHome
	delPrgm
	delVar
	Fill

	Functions
	List indexing
	Matrix indexing
	Ans indexing
	Dec, Imag types
	List type
	Matr Type

	Y-functions
	Math Functions
	sqrt, √
	³√ (cube root)
	root, ⁿ√
	fMin
	fMax
	nDeriv
	fnInt
	summ, Σ
	exp
	ln
	log
	logBASE, log

	Numeric functions
	abs
	sign
	round
	ceil
	floor, int
	iPart
	fPart
	min
	max
	lcm
	gcd
	remainder, rem

	Trigonometric and hyperbolic functions
	sin
	asin, sin⁻¹
	sinh
	arsinh, sinh⁻¹
	cos
	acos, cos⁻¹
	cosh
	arcosh, cosh⁻¹
	tan
	atan, tan⁻¹
	tanh
	artanh, tanh⁻¹

	Complex numbers related functions
	conj
	real, Re
	imag, Im
	angle, Arg
	cmplx_polar

	Probability functions
	rand
	randInt
	randIntNoRep
	randBin
	randNorm
	nCr
	nPr

	Coordinate conversion functions
	P▶Rx
	P▶Ry
	R▶Pr
	R▶Pθ

	Lists (and matrices) related functions
	dim
	seq
	cumSum
	ΔList
	augment
	mean
	median
	variance
	stdDev
	sum
	prod

	Matrices related functions
	det
	transpose
	identity
	inverse
	randM
	ref
	rref
	rowSwap
	row+
	*row
	*row+

	Distribution functions
	normalpdf
	normalcdf
	invNorm
	invT
	tpdf
	tcdf
	χ²pdf, pdftw
	χ²cdf, cdftw
	Fpdf
	Fcdf
	binompdf
	binomcdf
	invBinom
	poissonpdf
	poissoncdf
	geometpdf
	geometcdf

	Time functions
	startTmr
	checkTmr
	getTime
	setTime
	getTmFmt
	getTmStr
	getDate
	setDate
	getDtFmt
	getDtStr
	timeCnv
	dayOfWk
	dbd

	Various functions
	existPrgm
	Pxl_Test
	getKey
	Input
	expr
	inString
	length
	sub
	toString, eval

	Conditional statement
	Conditional loop
	Iterative loop
	Calling a script file
	Operations
	Postfix operations
	Factorial
	Conversion to radians
	Conversion to seconds
	Conversion to minutes
	Conversion to degrees

	Exponentiation
	Unary operations
	Unary minus
	Logical negation

	Multiplication and division
	Multiplication
	Division

	Addition and subtraction
	Addition
	Subtraction

	Comparison operations
	Equality
	Inequality
	Greater
	Greater or equal
	Less
	Less or equal

	Logical operations
	Logical AND
	Logical OR
	Exclusive OR

	Text description of lexical structure of Main screen expressions
	Text description of lexical structure of an expression
	Text description of lexical structure of a script file
	Text description of the structure of lexemes common to a file and an expression
	Text description of syntactic structure of the ZeroBasic language
	Documentation changelog
	v2.27.1 (2025-12-29)
	v2.27.0 (2025-12-15)
	v2.26.0 (2025-10-16)
	v2.25.0 (2025-09-11)

