Zero Calculator

I. Lexical structure of the ZeroBasic language

1.1. Processing mathematically formatted expressions

1.2. Lexical structure of Main screen expressions

1.3. Lexical structure of an expression

1.4. Lexical structure of a script file (zcb)

1.5. The structure of lexemes common to a file and an expression

II. Syntactic structure of the ZeroBasic language

I11. Interpretation of the ZeroBasic language
3.1. Data types
3.2. Fractions
3.3. Variables
3.3.1. Predefined constants

3.3.2. Readonly variables

3.3.3. Y-functions variables
3.3.4. Strings

3.3.5. Lists

3.3.6. Matrices

3.3.7. The Ans variable

3.4. Assignment
3.5. Conversion

3.6. Commands
3.6.1. Lists-related commands
clrAllLists
ClrList

Listp-matr
Matrplist

resize

setUpEditor
SortA
SortD
3.6.2. Time-related Commands
setTmFmt
setDtFmt
3.6.3. Input/Output-related commands
Disp
DispGraph
DispTable
Output

Prompt
Pause

Wait
Select

3.6.4. Y-functions related commands
FnOff
FnOn

PlotsOff
PlotsOn

3.6.5. Statistical Commands
1-VarStats
2-VarStats
Med-Med

LinReg[ax+b
LinReg[atbx
QuadReg
CubicReg
QuartReg
LnReg
ExpReg
PwrRe
Logistic
SinReg
Manual-Fit
ANOVA

3.6.6. Distribution draw commands
ShadeNorm
Shade_t
Shadey?
ShadeF

3.6.7. Draw commands

ClrDraw
Line
Horizontal
Vertical
Tangent
DrawF
Shade
Drawlnv
Circle
Text
TextColor
Pt On
Pt_Off
Pt_Change
Pxl On
Pxl Off
Pxl_Change
StorePic
RecallPic
StoreGDB
RecallGDB
3.6.8. Various commands

Equp-String
Stringp-Equ

ClearEntries
clrHome
delPrgm
delVar
Fill
3.7. Functions

3.7.1. List indexing

3.7.2. Matrix indexing

3.7.3. Ans indexing
Dec, Imag types
List type

Matr Type
3.7.4. Y-functions

3.7.5. Math Functions

sqrt, V
3 (cube root)

root, n
fMin
Max
nDeriv
fnint
summ, X

€Xp
In

|

logBASE, log
3.7.6. Numeric functions

abs

sign
round
ceil
floor, int
iPart
fPart
min

max
Icm

ged
remainder, rem

3.7.7. Trigonometric and hyperbolic functions

sin

asin, sin™*
sinh

arsinh, sinh™!
cos

acos, cos™!
cosh

arcosh, cosh™

tan

atan, tan!

tanh
artanh, tanh!
3.7.8. Complex numbers related functions

conj
real, Re

imag, Im

angle, Arg

cmplx_polar
3.7.9. Probability functions

rand

randInt
randIntNoRep
randBin
randNorm
nCr
nPr

3.7.10. Coordinate conversion functions
PpRx
PRy
Rp-Pr
Rp-PH

3.7.11. Lists (and matrices) related functions

dim
seq
cumSum
AList
augment
mean
median
variance
stdDev
sum
prod
3.7.12. Matrices related functions
det
transpose
identity
inverse
randM
ref

rref
rowSwap
row+
*row

*row+

3.7.13. Distribution functions

normalpdf
normalcdf

invNorm
invT

tpdf

tedf

¥2pdf, pdftw
y2cdf, cdftw
Fpdf

Fcdf
binompdf
binomcdf
invBinom
poissonpdf
poissoncdf
geometpdf

geometcdf
3.7.14. Time functions

startTmr
checkTmr
getTime
setTime
getTmFmt
getTmStr
getDate
setDate
getDtFmt
getDtStr
timeCnv
dayOfWk
dbd
3.7.15. Various functions

existPrgm
Pxl Test

getKey
t

c 5
=

Xpr
inString
length
sub

toString, eval
3.8. Conditional statement
3.9. Conditional loop
3.10. Iterative loop
3.11. Calling a script file

3.12. Operations
3.12.1. Postfix operations

Factorial

Conversion to radians

Conversion to seconds

Conversion to minutes

Conversion to degrees

3.12.2. Exponentiation

3.12.3. Unary operations
Unary minus
Logical negation

3.12.4. Multiplication and division
Multiplication
Division

3.12.5. Addition and subtraction
Addition
Subtraction

3.12.6. Comparison operations

Equality
Inequality
Greater

Greater or equal
Less

Less or equal
3.12.7. Logical operations
Logical AND

Logical OR
Exclusive OR

IV. Text description of lexical structure of Main screen expressions

V. Text description of lexical structure of an expression

VI. Text description of lexical structure of a script file

VII. Text description of the structure of lexemes common to a file and an expression

VIII. Text description of syntactic structure of the ZeroBasic language
IX. Documentation changelog

v2.27.1 (2025-12-29)

v2.27.0 (2025-12-15)

v2.26.0 (2025-10-16)

v2.25.0 (2025-09-11)

ZeroBasic User Manual (v2.27.1 dated 12.29.2025)

ZeroBasic is a programming language used for working with Zero Calculator. Zero Calculator supports three
modes for working with the ZeroBasic language: the expression mode, the main screen expression mode, and

the script file mode. Each mode has its own characteristics in processing the ZeroBasic language.

I. Lexical structure of the ZeroBasic language

The lexical structure of the ZeroBasic language describes the methods and rules for extracting a set of lexemes
from the source code, which are then transformed into tokens. For example, the lexemes 14, -8.5, 6E-1
are converted into the Number token. The lexemes [A], FooBar, Ans, Le are converted into the

Identifier token.

1.1. Processing mathematically formatted expressions

Zero Calculator has two modes for displaying expressions: Classic and Natural. You can switch modes in
MODE window.

MODE

IR o< c

Normal jeasa\[e
Float B SN A

Radian LIRS

Func I3l 1=
IR D-Thick Thin D-Thin

a+bi rer(0i)

Fraction type: n/d [Q¥&s

The Classic mode implies inputting expressions according to the lexical structure of the ZeroBasic language.
The Natural mode allows mathematical formatting for certain expressions.

Name Natural Classic

Matrix A B [[A,B]\n[C,D]]
c5)

Common Fraction ((a)~(B)) ('/'\x9D)

Mixed Fraction (1,2-3) ('J'\xA0) ('/'\x9D)
|Al

Absolute Value abs (A)

Square Root V(a) (W'\X7F)

Name Natural Classic

Root with Power B ny (A, B) ('“\/’ \xAT1)

A
Exponentiation 57 (A)
Logarithm 10gBASE (B, A)
Derivative nDeriv (B, A, C)
Integral fnInt (C,D,A,B)
Sum %(D,A,B,C) ('X'\xA2)
Permutations nPr (n, r)
Combinations nCr (n, r)

1.2. Lexical structure of Main screen expressions

The lexical scheme for main screen expressions is shown below (text description of the structure in EBNF

format is available at the end of the document):

program

empty_prgm}

- e e .-y

[1]: TI-84 is capable of processing empty stmt,
Zero Calculator interrupts program execution
upon encountering an empty stmt.

The lexical scheme of an expression (stmt) is discussed further in the section Lexical structure of

expressions.

1.3. Lexical structure of an expression

In addition to the Main screen, Zero Calculator has many screens and modes where you can enter a single

expression. A part of the lexical scheme of single expression is presented below (text description of the

structure in EBNF format is available at the end of the document). The other part of the scheme is common to

both expressions and the script file (the name of common tokens begins with a capital letter) and is discussed in

the section The structure of lexemes common to a file and an expression.

stmt

—

exprList

1 Bk

-—F-

Y

The
for
The

[1]:

After lexical analysis, the list of lexemes is divided into blocks.
block boundaries defined by [»]. At the end of each block, tokens

any missing closing brackets ([)], [1], [}]) are added.
insertion order is the reverse of the opening brackets.

~

the

[2]:

An insertion of the [*] token between two [expr] occurs in

following cases:
previous [expr]

[Number],
[Number],
[Number],
[Number],

[Imag],
[Imag],
[Imag],
[Imag],
[Imag],

[Identifier],
[Identifier],
[Identifier],
[Identifier],

next [expr]

[Identifier]
[(]

({]
(0]

[Identifier]
(]

[{]

[[]

[Imag]

[Number]
[Imag]
[Identifier]
[{]

example

-3x-
-3(-
-3{-
-3[-

Iix.
li(l
li{l
li[l
Iiil

Ixs.
Ixi.
X"
-x{l

- |Identifier],

- DI,
- DI,
- DI,
- DI,
- DI,
- DI,
- DI,

- [}],
- [}].
- [}],
- [}],
- [},

- [Identifier],

L]

[(]

[{]

([l

[Number]
[Imag]
[Identifier]
[UnaryMinus]

[Number]
[Imag]
[Identifier]
[c]

[{]

[(] provided that
a FunctionIdentifier,
a CustomListIdentifier,
a StandardListIdentifier,
a MatrixIdentifier,

le.

l)(l
l){l
l)[l
-)3-
l)il
l)x-
I)_l

-}3-
-}i-
-}x-
-}(-
l}{l

[Identifier] is not

1.4. Lexical structure of a script file (zcb)

Using the language construct call (Calling the script file) allows you to interpret the contents of .zcb file

in the global ZeroBasic context. The lexical structure of the file has some differences from the structure of a

single expression:

Expression
Command One command at the beginning of an expression
processing
Spaces A regular space (\x20) will cause a syntax error (except

when processing a command lexeme)

Equality = or ==

File

One command at the beginning
of a line, (or several commands
which ending with ())

expr can contain an unlimited

number of spaces

Expression File

Insert * Insertinga * between two expr in some cases
Insert At the end of each block (the block boundary is -), the
N A lexemes of the missing closing brackets are added. The

insertion order is the reverse of the order of the opening
brackets

Part of the lexical scheme of a script file is presented below (text description of the structure in EBNF format is
available at the end of the document). The other part of the schema is common to both expressions and a script
file (the name of common tokens begins with a capital letter) and is discussed further in the section The

structure of lexemes common to a file and an expression.

program

stmt

expr

1.5. The structure of lexemes common to a file and an expression

Part of the lexical schema is common to both expressions and a script file (the name of common lexemes
begins with a capital letter) is presented below (text description of the structure in EBNF format is available at
the end of the document).

Command

H{Matrixldentifier}—r—m
L[Pi ctureldentifier)—b—J
‘-[GDBldentifier}—>—J

L(OneSymboIldentifier)—J
L[StandardListl dentifier})

L[CustomLi stldentifier]—)
‘~l IdentifierJl > J

The command lexeme is formed only when
the textuval content of the identifier
matches the command name (a complete list
is available in the Commands section)

or the [Call] token.

Lexeme

L[Matrixldentifier]—b—J

L[Pi ctureldentifier}—»—J

L[

\LGDBidentifier}—b—’
L[ConvertingOperator}—»—J
L[Sym bolToken]—»—J
L[Onesymbolldentifier)—b—J

L-fDegreePostfixOperator]—J

A J

UpperPower
L[StoreOrMinus}—»—J

L(GreaterOrGreaterEquals}J

L[LessOrLessEquaIs}—b—J

L[CustomLi stldentifier]—»—J
‘-l String } - =

A 4

Comment

ey character loe

[2]:

-\n-

A comment is treated as
character or end of input

Matrixidentifier

cr__

Pict

()

ureldentifier

Cr__

Pic —{ Digit|->—e

GDBldentifier

C*__

GDB —{Digit | >

ConvertingOperator

-

N <
/>

[3]: '»' conversion symbol (\xDA) B]

[4]: '»' Right triangle arrow symbol (\x9E) [ﬁ

Imag

O -

> >0

=

Imaginary unit symbol (\xAS) ﬁ

SymbolToken

(8]

B

[S]: The next character must not be
a closing bracket

[6]: '/* common fraction symbol (\x9D) B]

[7]: '_' Mixed number fraction symbol (\xA8) B]

OneSymbolldentifier

o > "V >

M
JI'

Root with degree symbol (\xA1) B]

> m > >

Square root symbol (\x7F) B]

R 1

n > >
i

J1
]\

Pi symbol (\xD2) B}

Y

> | e >
L

Euler's number symbol (\xD@) ﬁ

- -

Y

> 10 >

Il
]\

Small number 10 symbol (\xDS) B]

> [>

L);_‘ > >

J1
]\

Mean y symbol (\xAA) [ﬁ

> N >

Y

n in statistics symbol (\xD7) B]

. . .

Ll Ll

|
AI'

n in SEQUENCE graphs symbol (\xDB) b]

DegreePostfixOperator
. [o | .

o ~ > Lp,—‘ > —

Degree symbol (\xBF) ‘ﬁ
. - [V] - y

L L

Minute symbol (\x27) [ﬁ
- . o] . y

,w,

Second symbol (\xD3) [ﬁ
_ N [] N Y,

Radian symbol (\xCA) ﬁ

UpperPower

o . =y .

- -
L L

(\x80 - \x89) B]

StoreOrMinus

O

Y
i
Y

J
J\

Assignment symbol (\xA8) [ﬁ

JL

Y

-
17

GreaterOrGreaterEquals

J
I'I

(\x96)

|'l
J

(\x95)

equals

In expressions mode [ﬁ

equals

o—{=| N =)—>—>-o

/1
‘II

In a script file mode Ej

Factorial OrNotEquals

|
I
J\

(\xB1)

StandardListldentifier

o '? o' -6 | —_—

o i

I Il
I\ I
— —_—

[9]_‘51 [10]

CustomListlidentifier

A (D)

Number

O Digit separator P—lJ—-[(NumberFractlon}L-[{NumberExponent}]—,——H

(\xDD)
L[NumberFraction]—&NumberExponent}1 > ¥

YA

-

Y

)

J
Al

[12] 5

NumberFraction

o— .| (Digit)
NumberExponent

Identifier

ThirdRoot

/

IdentifierSymb

Not

Qo

IdentifierSymb

-

A

3
o

>
>

Y

=

A 4

=

Y

Y

| R

A 4

.

Y

w)

Y

Y

\

3

Y

.

HEEEHHEEEEHE

Cal

End

ThirdRoot

'
[vor Yy [Y

IdentifierSymb

o)

- > [Al >

> A >
4]

Delta symbol (\x9A) B}
e . [%]

A 4

>

]
/\

Asterisk symbol (custom) (\xCD) B]

> (o] >

> I_T_‘ >

J
J |I

Right triangle arrow symbol (\X9E) B]

- [< .

LTJ >

|
/\

Left triangle arrow symbol(\x9F) B]

- [T] -

-
L L L

J
J Il

Plus symbol (custom) (\XCE) B]

> [_] >

Y

> R -

|
)

Dash symbol (custom) (\XDE) [ﬁ

- m -

L L

A 4

/
/\

Cursive one symbol (\xDF) B]

Y

.
L 2 -
2]

|
J

Cursive two symbol (\xEO) B}

- -
>

Ll L

/
/\

Cursive left bracket symbol (\xE1l) B]

-

> B >

I\
]\

Cursive right bracket symbol (\xE2) B]

> 2] >

-
Ll L L

/
/\

Superscript 2 symbol (\xBD) B}

> [] >

Y

L t L

/
/\

Subscript tav symbol (\xBC) B}

-1

. .
Ll L

M
I\

Inverse trig function symbol (\xD4) B|

Theta symbol (\x99) [ﬁ

. s .

L Ll

|
/\

Cube root index symbol (\xD1) B]

- [? -

Y

-
L L L

Sigma symbol (\xAB) B]

Ry

Ll Ll

Y

Summation symbol (\xA2) B]

> @ > -
Chi symbol (\xD8) ﬁ
- Rl > -

Il
]\

R in statistics (\xBE) %

- [? -

-
L L L

Mean x symbol (\xA9) r\ﬁ

Ll p L

Il
]\

Rho in statistics symbol (\xB2) B]

Y

> [Fl >
i

|
J Il

F in statistics symbol (\xD9) B]

-
>

Digit separator >

(\xDD)

> o' -'g' >
f

subscript digits (\XCO - \xC9) |

Y

Else

[e] [] [c] —
c @ l_IILI @j E
While

[\ | [] [i] []
o nliy e nlily cu n Iy e ol -
Do

For
o E @ R
GG
In
o m N
1G]

Call

cl Al n
c w @ 7 L
Lﬂj L‘H]

String

»

o—»ﬂ—»—-(—q any character except ' (\x22), "\n', '=' (\xA8), '->'p—‘l—@—>~

I
J 1
—

\x22 E] \x22 5

Alpha

UpperAlpha

O—"A' 7' e

LowerAlpha

o_, Ial _ IZI '_H

Digit

00— '0'-'9' e

[7]: *-' Unary minus symbol (\x98) Iﬁ

[8]: 'L' List symbol (\xA6) H

[9]: "o' - 'o' (\XCO - \XC6) [ﬁ

[10]: *.* List symbol (\xA7) ')

[11]: 'E' Decimal exponent symbol (\xDé) B]

[12]: The third branch of a number also constitutes
the exponent part (NumberExponent), but in the first

two cases the order may be omitted due to mantissa
presence ('SE'). The third branch requires either
a sign of exponent or explicit exponent value
('E-', 'E6', "E+7")

II. Syntactic structure of the ZeroBasic language

The syntactic structure of the ZeroBasic language defines the rules for composing nodes of the Abstract Syntax
Tree (AST) from a set of tokens. The appropriate parsing method for a token set is selected top-down according
to the syntactic structure scheme. If the token set does not conform to the structure of the currently analyzed
node, parsing proceeds to the next node (if specified that a mismatch results in an error, the token set analysis
will return a syntax error).

The table below shows the mapping between lexical scheme nodes and the resulting tokens:

Token Lexical node
String String

Identifier OneSymbolldentifier

MatrixIdentifier
Pictureldentifier
GDBldentifier

StandardListIdentifier

CustomListldentifier

Identifier

Imag Imag
Number Number
UND SymbolToken (, \xAO0)
ND SymbolToken (/ \x9D)
Minute DegreePostfixOperator (' \x27)
Degree DegreePostfixOperator (° \xBF)
Factorial FactorialOrNotEquals (!)
Radian DegreePostfixOperator (r \xCA)
Second DegreePostfixOperator (" \xD3)

UpperPower UpperPower
Power SymbolToken (~)

Not Not

Token Lexical node

UnaryMinus SymbolToken (- \x98)

Divide SymbolToken (/)
Mult SymbolToken (*)

Automatic insertion during lexical analysis of an expression

Minus SymbolToken (-)
StoreOrMinus (-)

Plus SymbolToken (+)
LessEquals LessOrLessEquals
Less LessOrLessEquals (<)

GreaterEquals | GreaterOrGreaterEquals

Greater GreaterOrGreaterEquals (>)
NotEquals FactorialOrNotEquals

Equals equals

Xor Xor

Or Or

And And

ConvertingOp |~ ConvertingOperator

Store StoreOrMinus
While While

End End

If If

Then Then

For For

In In

Do Do

Call Call
Command Command
Stmt Stmt (for an expression)

Stmt (for a script file)

Token Lexical node

] SymbolToken (])

Automatic insertion during lexical analysis of an expression

[SymbolToken ([)
} SymbolToken (})

Automatic insertion during lexical analysis of an expression

{ SymbolToken ({)
) SymbolToken ())

Automatic insertion during lexical analysis of an expression
(SymbolToken (()
stmt (() (for an expression and for a script file)

, SymbolToken (,)

Newline expr (for an expression and for a script file)
program (\n) (for a script file)

EndOfInput stmt (end of input) (for an expression)

program (end of input) (for a script file)

The syntactic scheme of the ZeroBasic language structure is presented below. (text description of the structure
in EBNF format is available at the end of the document):

Program

. -
Ll Ll

Newline 1

' EndOfinput -»—e

Entry point for syntax parsing of a script file [ﬁ

Stmt

CommandStmt

IfStmt

m
3
[o}
(@]
=)
=]

©
c
[
Y
L]

=
o
£
=
o
Y

WhileStmt

ForStmt

CallStmt
‘ Token after Stmt token must be one of these tokens. Dj

Lk

StoreStmt

(The main screen independently splits the entered

Entry point for syntax parsing of an expression
command into expressions)

CommandStmt

A 4

.
>

.

Exprstmt

The marker for analyzing CommandStmt is the [Command]
token. Mismatch in the following syntax will lead to
an error.

1fStmt

ExprStmt Newline Then

The marker for analyzing IfStmt is the [If] token.
Mismatch in the following syntax will lead to an error.

WhileStmt

. .

L L

'St t' End

o—‘WhiIe HExprStmt Newline Do Newline

The marker for analyzing WhileStmt is the [While] token.
Mismatch in the following syntax will lead to an error.

ForStmt

dentStmtExprStmt ExprStmt I ExprStmt l Newline | m End

The marker for analyzing ForStmt is the [For] token.
Mismatch in the following syntax will lead to an error.

Callstmt

O— Call ;

Exprstmt

Exprstmt

The marker for analyzing CallStmt is the [Call] token.
Mismatch in the following syntax will lead to an error.

StoreStmt

A 4

o—{Exprstmt

Store HldentStmt

Y

ConvertingOp

IdentStmt

O— |dentifier —»—e

ExprStmt

o—{Logicorstmt '—»—o

LogicOrStmt

o—(LogicAndStmt Or T[LogicAndStmt])—LH
r

Xo

Execution order of logical operations is not specified.
Operations are executed sequentially.

LogicAndStmt

rCom pareStmt]—-LCAnd —[CompareStth—]hH

CompareStmt

rAdditionStmt]—-[-Lr Equals - {AdditionStthj—H

NotEquals ——
Greater —»—
GreaterEquals >

Less —’—J

LessEquals —

A 4

. (. _(_([

Operations are executed sequentially.

Execution order of comparison operations is not specified.j

AdditionStmt

-
L

o—{MuItipIicationStmt Plus ‘T{M uItipIicationStthJ—H
s

Minu

MultiplicationStmt

Y

O—{ UnaryStmt Mult |

Divide

UnaryStmt

ND |

Y
-

- Imag

UnaryStmt
- Minus | UnaryStmt ExponentStmt]—»—o
UnaryMinus

Not |

The [UnaryMinus] token is replaced by the [Minus] token B]

ExponentStmt

-
>

<
0—{ PostfixOpStmt Power —|PostfixOpStmt

UpperPower >

The [UpperPower] token contains only a single
superscript digit

PostfixOpStmt

-
.

O—| PrimaryStmt .'

PostfixOp

O—j—{DegreePostfixOp}—,-—»—o

L(MinutePostfix Op]—J

L[SecondPostfixOp}J
| Radian —»——

\J Factorial —»—/

DegreePost fixOp

O—Degree ~4£[Prim arystmt

MinutePostfixOp

Y

-

e

MinutePostfixOp

<

-

SecondPostfixOp

.
>

-

O— Minute g[[PrimaryStmt}—QSecondPostfixOp

pl..

SecondP ostfixOp

O— Second —»—e

PrimaryStmt
{imagstmt - .
{varorfncalistmt y
L[GroupingStmt} > y
{Liststmt } > y
Ll MatrixStmt } > /

Unary Stmt

StringStmt

UNDStmt

o—(Num berStmt]—-£ UND —[NumberStmt]—

ND

—[NumberStmt)]—o—o

NumberStmt

O— Number e

ImagStmt

O—lmag ——e

StringStmt

O— String ——e

VarOorFncCallStmt

Y

ExprsStmt

VarStmt

C ldentStmt

GroupingStmt

ol ({Emrsm))

ListStmt

Y

o—{1] B f‘

Number

The [Number] token is included in the subsequent
ExprStmt node. This analysis structure allows for
the following syntax in the script file:

{1,2,3}

{1 2 3}

MatrixStmt

rMatrixVarStmt} >0

]

MatrixRow MatrixRow

MatrixVarStmt
O—I)— |dentifier —E—»—o

The [Identifier] token must consist only of letters B]

MatrixRow
o— [—{Exprstmt j f Exprstmt
Number

The [Number] token is included in the subsequent
ExprStmt node. This analysis structure allows for
the following syntax in the script file:
[[1,2,3]]

[[12 3]]

II1. Interpretation of the ZeroBasic language

3.1. Data types

The ZeroBasic language has two fundamental data types:

* Decimal number (Dec), whose mantissa can contain up to 40 decimal digits. The decimal exponent of
the number is within the range of -32767 to 32767. Corresponds to the Numberstmt node. The lexical

structure of a number is described in the section The structure of lexemes common to a file and an

expression, under the Number block.
* Character string (Str). Corresponds to the StringStmt node. The lexical structure of a string is

described in the section The structure of lexemes common to a file and an expression, under the String
block.

The language also includes three derived data types:

* Complex number (/mag), whose imaginary and real parts are represented by decimal numbers.
Corresponds to the ImagStmt node.

* List (array) (Lisf) contains an unlimited number (limited only by available RAM) of decimal and/or
complex numbers. Zero-length lists are not supported. Corresponds to the ListStmt node.

* Matrix (Matr) contains an unlimited number of lists (limited only by available RAM), which represent
the rows of the matrix and consist of decimal and/or complex numbers. The number of elements in each
list must be the same (otherwise, an INVALID DIMENSION error will occur). Zero-dimension matrices
are not supported. Corresponds to the MatrixStmt node.

3.2. Fractions

The evaluation of a fraction is performed with the highest priority (taking into account grouping parentheses).
Corresponds to the UNDStmt node. The symbol for a fraction with an integer part (,) has the hexadecimal
representation \xAO. The symbol for a proper fraction (-~) has the hexadecimal representation \x9D. This
structure allows obtaining the result of an expression in the form of a proper fraction. The appearance of this
fraction depends on the Fraction type and Answers modes (changing is accessible via the MODE window).
The Dec data type supports non-negative float numbers as operands. If the <Denominator> is equal to 0, it
will result in a DIVIDE BY 0 error.

<Integer part:Dec> <Numerator:Dec> ~ <Denominator:Dec> -> Dec

[N}

Equivalent to the expression <Integer part> + (<Numerator> / <Denominator>) .

3.3. Variables

A variable corresponds to the TdentStmt node. The lexical structure of a variable is described in the section
The structure of lexemes common to a file and an expression in the blocks MatrixIdentifier, Pictureldentifier,
GDBIdentifier, OneSymbolldentifier, StandardListIdentifier, CustomListldentifier, Identifier. The maximum
length of a variable name is 16 characters. Using a name longer than this will result in a NAME LENGTH

error. Variables are in the super-global scope, meaning any variable created in expression mode (or in other

modes) is accessible in other screens and modes, as well as during the execution of the script file. A variable
can be deleted in the MEMORY management window, as well as using variable deletion commands
(delvar, setUpEditor). Initially, a basic set of variables is available to the user. This set can be expanded

later through assignment. Creating a variable with a name that matches the name of a function or a command

will be generated in an error FUNCTION NAME. Some screens and applications (including settings screens)

provide the user with access to their settings through modification of corresponding variables. It is not possible
to change the data type of standard variables via assignment. The new value will either be ignored or a
DATA TYPE or DOMAIN error will be generated. If a variable is not defined, its value will be 0 (except in
certain cases, as described later). Variables with the lexical structure MatrixIdentifier always have and must
have the data type Matr. If such a variable is not defined, an UNDEFINED error will be generated. Variables
with the lexical structure StandardListldentifier and CustomListldentifier always have and must have the data
type List. If such a variable is not defined, an UNDEFINED error will be generated.

3.3.1. Predefined constants

This type of variable remains unchanged throughout the operation of the calculator. The values of these
variables are automatically initialized. An attempt to modify or delete it will result in an error
READ ONLY VAR.

Variable Type Value

pi Dec 3.141592653589793238462643383279502884
n (\xD2) Dec 3.141592653589793238462643383279502884
e (\xD0) Dec 2.718281828459045235360287471352662498
10 (\xD5) Dec 10

LEET Dec 1
CENTER Dec 2
RIGHT Dec 3
BLUE Dec 10
RED Dec 11
BLACK Dec 12

MAGENTA Dec 13

GREEN Dec 14
ORANGE Dec 15
BROWN Dec 16
NAVY Dec 17
LTBLUE Dec 18
YELLOW Dec 19
WHITE Dec 20

LTGRAY Dec 21

Variable Type Value
MEDGRAY Dec 22
GRAY Dec 23
DARKGRAY Dec 24
DARK Dec 25
CYAN Dec 26

3.3.2. Readonly variables

This type of variable cannot be modified by the user. Attempting to modify or delete it will result in a
READ ONLY VAR error. All of the variables listed below have the type Dec. These readonly variables are set by
statistical commands. Input these variables is possible through the VARS > Statistics... menu.

Variable

Tab XY

n (\xD7)

X (\xA9)

Sx

ox (\xABXx)

7 (\xAA)

Sy

oy (\xABy)

minX

maxX

minY

maxyY
Tab X

sx (\XA2x)

sx2 (\xA2x\xBD)
sy (\xA2y)

sv? (\xA2y\xBD)
sxy (\xA2xy)
Tab EQ

RegEQ

Value

number of data points

mean of X values

sample standard deviation of x
population standard deviation of x
mean of y values

sample standard deviation of y
population standard deviation of y
minimum of x values

maximum of x values

minimum of y values

maximum of y values

sum of x values
sum of x2 values
sum of y values
sum of y? values

sum of x*y

regression equation (not read only)

regression/fit coefficients

polynomial, Logistic,and SinReg coefficients

Variable Value
r correlation coefficient

r> ('xBD), rR? (\XxBE\xBD) coefficient of determination

Tab TEST

p p-value

z test statistics
t

x? (\xD8\xBD)
F (\xD9)
df degrees of freedom

df2 (dfixC2)

p~ (\xB2) estimated sample proportion

p 1 (\xB2\xCl1) estimated sample proportion for population 1

p 2 (\xB2\xC2) estimated sample proportion for population 2

s standard error about the line

X1 (\xA9xC1) sample mean of x values for sample 1 and sample 2

X2 (\xA9\xC2)

Sx1 (Sx\xCl1) sample standard deviation of x for sample 1 and sample 2
Sx2 (Sx\xC2)

Sxp pooled standard deviation

n1 (\xD7\xC1) number of data points for sample 1 and sample 2
n2 (\xD7\xC2)

lower confidence interval pair

upper

F1 (F\xCl1) used in 2-SampFTest

F2 (F\xC2)
Tab PTS

x1 (x\=xC1) summary points (Med-Med only)

y1 (YCI)

x2 (x\xC2)

y2 (YxC2)

x3 (x\xC3)

ys (YxC3)

01 (Q\xC1) 1st quartile (the median of points between minx and Med)

Variable Value
Med median

03 (QxC3) 3rd quartile (the median of points between Med and maxX)

3.3.3. Y-functions variables

This type of variable is used in Y-function calculations. The variable responsible for the function value cannot
be modified. Its value is computed based on the assigned expression and the argument value (the argument
value is taken from the global context and is 0 by default). If the expression of a Y-function contains a direct
(Yo=Ye+1) or indirect (Ye=Y1 ; Y1=Ye) self-reference, an error Yn RECURSION will be generated. If the
expression of the function is not defined, an /NVALID error will be generated. Using argument variables for
storing user-defined values is not recommended, since these variables may change due to being involved in
function value computations in other windows or applications.

Below is a table of function variables (interactions marked with * are not possible as described):

Number Function Argument
Functions, mode: Func

0 Yo (Y\xCO0) X

9 Yo (Y\XC9)

Parametric function, mode: Par

0 Xot (XXCOXBC) T
1 Yor (Y\xCOXBC)
8 Xat (X\xC4\xBC)
9 var (Y\xC4\xBC)

Polar functions, mode: Pol

0 ro (rxC0) 6 (\x99)

9 ro (PxC9)

Sequences, mode: Seq

0 u n (\xDB)

1* u (nMin) nMin (\xDBMin)

2% u (nMin+1) nMin+1 (\xDBMin+1)
3 v n (\xDB)

4* v (nMin) nMin (\xDBMin)

5* v (nMin+1) nMin+1 (\xDBMin+1)

6 W n (\xDB)

Number Function Argument
7* w (nMin) nMin (\xDBMin)

8* w (nMin+1) nMin+1 (\xDBMin+1)

Deleting argument variables is the same as deleting other variables. Deleting a function variable will clear the
corresponding expression.

3.3.4. Strings

The calculator includes predefined zero-length string variables: Stre to Stro (Str\xCO - Str\xC9). The type

of predefined string variables cannot be changed. Deleting these variables will clear their contents.

3.3.5. Lists

The calculator includes predefined zero-length list variables: Le to Le (\xA6\xCO - \xA6\xC6). Using zero-
length lists will result in an INVALID DIMENSION error. User-defined lists follow the CustomlListldentifier
lexical structure and have a maximum name length of 8 characters (including special L characters). Accessing

an undefined variable with the StandardListldentifier or CustomListIdentifier lexical structure will result in an
UNDEFINED error.

3.3.6. Matrices

The calculator has predefined zero-dimensional matrix variables: [A] - [J] . Using zero-dimensional
matrices will result in an INVALID DIMENSION error. User-defined matrices must conform to the lexical
structure of MatrixIdentifier, with a maximum name length of 8 characters (including square brackets). Using

overly long names will trigger a NAME LENGTH error. Accessing an undefined variable matching the lexical
structure of MatrixIdentifier will result in an UNDEFINED error.

3.3.7. The Ans variable

The Ans variable contains a copy of the result of the previous valid expression (excluding Done) entered on

the home screen. Note that expressions on the home screen can be separated by the : character.
NORMAL FLOAT AUTO REAL RADIAN NAT

HISTORY

Manual assignment of a variable Ans (including attempts to modify list or matrix elements) will result in an

READ ONLY VAR error. Assigning a list value to the variable Ans, as well as using the construct

<Size:Dec> —dim (Ans) , will lead to the creation or modification of the variable _Ans . Assigning a matrix
value to the variable Ans , as well as using the construct <Height, Width:List>—-dim(Ans) , will lead to

the creation or modification of the variable [2Ans] .

3.4. Assignment

Assigning a new value to constants, the Ans variable, readonly variables will result in a READ ONLY VAR

error, except in cases of assigning a list or a matrix. Creating a variable with a name that matches the name of a
function or a command will be generated in an error FUNCTION NAME. Assigning a data type other than the

one expected to predefined variables (strings, lists, matrices) will result in a DATA TYPE or DOMAIN error.

Assigning incompatible data types to variables with lexical structures StandardListldentifier,
CustomListldentifier and MatrixIdentifier ([[1]]-.B, {1}-[C]) will result in a DATA TYPE error.

Assignment corresponds to the Storestmt node. It allows placing the result of an expression into a variable.
<Value:Dec| Imag> - var

This construct allows assigning a numerical value to a variable, screen parameter, or application
parameter. The length of the variable name is limited to 16 characters.

<Value:Str> - var

This construct allows assigning a string value to a variable, screen parameter, or application parameter.
The length of the variable name is limited to 16 characters. If the variable name matches a function

variable, the string contents will replace the corresponding function expression.

<Value:List> — Lo

This construct allows assigning a list value to the variable Lo .

If the list variable does not conform to the syntax of StandardListldentifier or CustomListldentifier, an

attempt will be made to convert it to a correct syntax (A: (A, 1:error, [A] : error, aBCdeFG :

LaBCdeFG, aBCdeFGh : name length error). The exception is the TblInput variable.

<Value:Dec|Imag> — Le (<Index:Dec>)

This construct allows assigning a value to a list element. The list variable (Lo) must conform to the

lexical structure StandardListldentifier or CustomListldentifier. The exception is the TblInput

variable. The value <Index> must be an integer greater than 0 but not exceeding the size of the list. If

<Index> is | greater than the size of the list, <value> will be appended to the end of the list.

<Size:Dec> - dim(rist)

This construct allows changing the size of the list List . If the list List does not exist, this construct
will create a new list with size <Size>. The value <Size> must be an integer between 0 and 999.
New list elements are initialized to 0.

If the list variable does not conform to the syntax of StandardListldentifier or CustomListldentifier, an

attempt will be made to convert it to a correct syntax (A: (A, 1:error, [A] : error, aBCdeFG :

LaBCdeFG, aBCdeFGh : name length error).

The exception is the TblInput variable. Using the construction <Size:Dec> - dim(TblInput)
will lead to the modification elements of the list TblTnput . The list will be filled with values starting
from the value TblStart with the step value ATbl (\x9ATbI).

<Value:Matr> - [A]

This construct allows assigning a matrix value to the variable [A] .

If the matrix variable does not conform to the syntax of Matrixldentifier, an attempt will be made to

convert it to correct syntax (A: [A], [A: error, A] : error, 1 : error, _A: error, aBCdeF :
[aBCdeF] , aBCdeFGh : name length error).

<Value:Dec|Imag> — [A] (<Row:Dec>, <Column:Dec>)

This construct allows assigning a value to a matrix element. The matrix variable ([A]) must conform
to the lexical structure MatrixIdentifier. The value <Row> must be an integer greater than 0 but not
exceeding the matrix height. The value <Column> must be an integer greater than 0 but not exceeding

the matrix width.

<Height, Width:List> - dim([A])

This construct allows changing the size of the matrix [A] . The list <Height, Width> must consist
of two integer elements, which are within the range from 0 to 99. The first element is the new height of
the matrix, and the second element is the new width of the matrix. Using only one zero dimension will
result in the INVALID DIMENSION error. If the matrix [A] does not exist, this construct will create a

new matrix with the sizes specified in <Height, Width> .New matrix elements are initialized to 0.

If the matrix variable does not conform to the syntax of Matrixldentifier, an attempt will be made to
convert it to correct syntax (A: [A], [A: error, A]: error, 1: error, LA : error, aBCdeF :
[aBCdeF] , aBCdeFGh : name length error).

file:///builds/internal-projects/a091-graphing-calculator/lexical-special-ident

3.5. Conversion

Value conversion is part of the StoreStmt node and corresponds to the | ConvertingOp token. All

conversion commands start with the conversion character » , whose hexadecimal representation is \xDA. The
command may also include the characters » and <, with hexadecimal representations \x9E and \x9F,

respectively.
The following operations are available:

<Value:Dec|Imag|List|Matr> WPFrac

Enables representation of numeric values as common fractions. The format of the fraction (mixed or

improper) depends on the current Fraction type mode.

<Value:Dec| Imag|List|Matr> w»Dec

Enables representation of numeric values as decimal fractions with a dot.

<Value:Dec| Imag|List|Matr> w»n/d€Un/d

Converts numbers represented as mixed fractions to improper fractions, improper fractions to mixed

fractions, and all other numbers to fractions.
NORMAL FLOAT AUTO REAL RADIAN NAT

<Value:Dec| Imag|List|Matr> »F€D

Converts numbers represented as common fractions to decimal fractions with a point, and numbers

represented as decimal fractions to common fractions.

NORMAL FLOAT AUTO REAL RADIAN NAT

<Value:Dec|Imag|List|Matr> WPPolar

Converts a complex number in algebraic form to exponential form z=re” (ip) . The angle ¢ depends on

the current angle unit mode (Radian or Degree).

<Value:Dec|Imag|List|Matr> WPRect

Converts a complex number in exponential form to algebraic form z=a+bi . Conversion is not possible in

Degree mode.

<Value:Dec> pPDMS

Converts a value to its string representation in degree measure. Takes the current angle mode into account.
If the mode is Radian, the <value> is first converted to degrees (<value> * 180 /) and then

formatted as a degree measure.
NORMAL FLOAT AUTO REAL RADIAN NAT

n»DMS

NORMAL FLOAT AUTO REAL DEGREE MNAT

50.20»DMS

180°0'0Q" 50°12'0"

3.6. Commands

Corresponds to the CommandStmt node. A command is a special type of function with a different syntax (it
may use a space instead of parentheses) and can be used only once in an expression. Commands are case-
sensitive. The result of executing a command is the Done. Commands generate the following errors (unless
otherwise specified):

* DATA TYPE

o if a parameter type is incorrect.
o if a variable name does not match the variable type. See the Variables section for details on

variable types and naming.
* ARGUMENT if the number of arguments is less or more than expected.
* NAME LENGTH if the length of a variable name exceeds the defined range. See the Variables section

for details on ranges.
e eval break if the button is pressed.

3.6.1. Lists-related commands

clrAllLists
clrAllLists

Sets all lists to zero length.

ClrList

ClrList <Identn:List>,

Sets all provided lists to zero length.
ERRORS:

* UNDEFINED if any of the variables are not found.

List»matr

(List\x9Ematr) Listematr <Ident Listn:List>, ..., <Ident Matrix:Matr>

are arranged vertically — the first list occupies the leftmost column of the matrix, the last list occupies the
rightmost column. The first element of each list is placed at the top of the matrix, the last element at the
bottom. The resulting matrix has a size of m x n, where m is the maximum length among the lists, and

n is the number of lists provided. If a list has fewer than m elements, missing values are replaced with 0.

NORMAL FLOAT AUTO REAL RADIAN NAT

{6,7,8,9}

HISTORY

Matrplist

(Matr\x9Elist) Matr»list <Matrix:Matr>, <Column:Dec>, <Ident List:List>

columns in the matrix <Matrix> .

ERRORS:

e INVALID DIMENSION if the value of <Column> is out of bounds.

(Matr\x9Elist) Matr»list <Matrix:Matr>, <Ident Listn:List>, ...

stops. If the number of columns is less than the number of list variables provided, the remaining variables

are ignored (including their type).
NORMAL FLOAT AUTO REAL RADIAN NAT

NORMAL FLOAT AUTO REAL RADIAN NAT

MatrPlist([A],L:-,L+,A,B)

ERRORS:

resize

resize <Ident:List>, <Size:Dec>

999. If <size> 1is greater than the current list length, the new elements are initialized with 0. This
command is equivalent to <Size>-dim(<Ident>) (see section Assignment), except it does not create a

new list.
ERRORS:

e UNDEFINED if the list <Ident> is not found.

* INVALID DIMENSION if the value of <size> is out of range.

resize <Ident:Matr>, <Height:Dec>, <Width:Dec>

value of <Height> must be in the range 0 to 99. The value of <Wwidth> must also be in the range 0 to
99. If the new size is greater than the current size, new elements are initialized with 0. This command is
equivalent to {<Height>,<Width>}-dim(<Ident>) (see section Assignment), except it does not create

a new matrix.
ERRORS:

e UNDEFINED if the matrix <Ident> is not found.

* INVALID DIMENSION

o if <Height> is out of bounds.

oif <width> is out of bounds.

o if only one of the values <Height> or <width> is equal to 0.
setUpEditor

setUpEditor

Deletes all lists, then recreates lists Lo to Le with zero length. Saves changes to calculator memory.

setUpEditor <Identn>,

names (see section Lists) will not be created. Saves changes to calculator memory.

SortA

SortA <Ident MainList:List>

numbers is done based on their absolute value.

SortA <Ident MainList:List>, <Identn:List>,

NORMAL FLOAT AUTO REAL RADIAN NAT

{2,9,0,5,3,7}

This command is relatively quiet and does not alert the user about errors (the only check is that all
arguments are nodes of IdentStmt).
SortD

SortD <Ident MainList:List>

This command works similarly to the SortA command, with the difference that the sorting is done in

descending order.

3.6.2. Time-related Commands

setTmFmt
setTmFmt <Format:Dec>
Sets the clock format. <Format> should be either 12 or 24.
ERRORS:

* DOMAIN if the value <Format> is not 12 or 24.

setDtFmt
setDtFmt <Format:Dec>
Sets the date display format.

e <Format> =1-M/D/Y
e <Format> =2-D/M/Y
e <Format> =3 -Y/M/D

ERRORS:

* DOMAIN if the value <Format> isnot 1,2, or 3.

3.6.3. Input/Output-related commands

Disp
Disp

Opens the home window. Outputs empty string. If the number of output lines exceeds 100, the older lines
will be removed.

ERRORS:

* INVALID if the command is not called within a script file.

Disp <Valuen:Any>, ...

Opens the home window. Outputs the formatted value of the variables <valuen> to the main screen in

Classic format (see the section Processing mathematically formatted expressions for more details). Each
value is output on a new line. If the number of output lines exceeds 100, the older lines will be removed.

ERRORS:

* INVALID if the command is not called within a script file.

DispGraph
DispGraph
Opens or updates the graph window.
ERRORS:

* INVALID if the command is not called within a script file.

DispTable

DispTable

Opens or updates the table window.
ERRORS:

* INVALID if the command is not called within a script file.

Output
Output <Row:Dec> <Col:Dec> <Value:Any>

Outputs the formatted value of the variable <value> to the current screen in Classic format (see the

section Processing mathematically formatted expressions) at the specified location. The coordinates of the

point are given by the integer values <Row> and <Col> . The value <Row> must be between 1 and 12.
The value <Col> must be between 1 and 32.
NORMAL FLOAT AUTO REAL RADIAN NAT

12345678901234567890123456789012
CHR # # R EREREH #

+

H H
+

+

4
+

+

3
4
)
6
7
8#
9
)
1
2

+:

The result of the program will be erased by subsequent screen updates. It is recommended to use together

with the commands DispGraph and Pause .

ERRORS:

* INVALID if the command is not called within a script file.
* DATA TYPE if the value of <Row> or <Col> is not an integer.
* INVALID DIMENSION if the values of <Row> or <Col> are out of the specified range.

Prompt

Prompt <Identn:Any>, ...

using user input. Unlike assignment, this function does not attempt to convert the variable name to the

correct syntax. It is similar to the Input (function.
ERRORS:

* INVALID
o if nothing was entered (empty input).

o if used call of script file
o if used some command

o if the command is not called within a script file.

* DATA TYPE if the result of the user input expression has a different type than the variable
<Ident Var>.

* Various errors related to assignment.

Pause
Pause
Pauses the program execution until the user presses the key on the keyboard.
ERRORS:

* INVALID if the command is not called within a script file.

Pause <Value:Any>

Outputs the value <value> using the Disp command and then passes control to the Pause command

without parameters.
ERRORS:

* INVALID if the command is not called within a script file.

Pause <Value:Any>, <Delay:Dec>

Outputs the value <value> using the Disp . Pauses the program execution until the user presses the

key or the specified delay time elapses. The delay time is specified in <Delay> seconds. The

value of <Delay> must be an integer and greater than 0.
ERRORS:
* INVALID if the command is not called within a script file.
* DATA TYPE if the value of <Delay> is out of the specified range.
Wait
Wait <Delay:Dec>

Pauses the program execution until the specified delay time elapses. The delay time is specified in
<Delay> seconds. The value of <Delay> must be greater than 0.001. The value <Delay> is rounded
down to the thousandth place (0.00298 -> 0.002). The maximum delay time is 100 seconds and does not
depend on the value <Delay> .

ERRORS:

* INVALID if the command is not called within a script file.
* DOMAIN if the value of <Delay> is out of the specified range.

Select

Select <Ident ListX:List>, <Ident ListY:List>

This command works only with linear () and scatter (E) statistical graphs. This command opens a
window where the user selects a statistical graph using the n and u buttons. Then, using the a, u and
buttons, the left boundary of the range is selected. Then, similarly, the right boundary of the range
is selected. As a result of the selection, the X coordinates of the points within the selected range are placed
into the list <Ident Listx>, and the corresponding Y coordinates are placed into the list

to the lexical structure of list variables (X -> _x). The lists used by the selected graph will be replaced by
<Ident Listx> and <Ident ListY>.

ERRORS:

e INVALID if the command cannot be executed.

3.6.4. Y-functions related commands

FnOff

FnOff

Disables the display of all Y-functions according to the current mode (Func, Par, Pol, Seq).

FnOff <Funcn:Dec>, ...

Sequentially disables the display of Y-functions with the corresponding indexes <Funcn> . In Par mode, it
disables a couple of functions X, Y. In Seq mode, disable functions 0, 3 and 6 will disable the
corresponding three functions (0,1,2; 3,4,5; 6,7,8). <Funcn> must be an integer and located in the range
from 0 to 9.

ERRORS:

* DOMAIN if the value of <Funcn> exceeds the specified limits.

FnOn
FnOn

Enables the display of all Y-functions according to the current mode (Func, Par, Pol, Seq).

FnOn <Funcn:Dec>, ...

Sequentially enables the display of Y-functions with corresponding indices <Funcn>. In Par mode, it

enables a pair of functions X, Yn. <Funcn> must be an integer and within the range from 0 to 9.

ERRORS:

* DOMAIN if the value of <Funcn> is out of the specified range.

Plots Off
PlotsOff

Disables the display of all statistical functions.

PlotsOff <StatPlotn:Dec>, ...

Sequentially disables the display of statistical functions with corresponding indices <StatPlotn> .

<StatPlotn> must be an integer and within the range from 1 to 3.
ERRORS:

* DOMAIN if the value of <statPlotn> is out of the specified range.

PlotsOn
PlotsOn

Enables the display of all statistical functions.

PlotsOn <StatPlotn:Dec>, ...

Sequentially enables the display of statistical functions with corresponding indices <StatPlotn> .

<StatPlotn> must be an integer and within the range from 1 to 3.
ERRORS:

* DOMAIN if the value of <statPlotn> is out of the specified range.

3.6.5. Statistical Commands

These commands operate with statistical variables. By default, these commands use the first list in the

times the corresponding point appears in the analyzed dataset.

1-VarStats
(\xDF\xDEVarStats) 1-varStats

1-VarStats

1-VarStats <Ident X:List>

1-VarStats (one-variable statistics) analyzes data with one measured variable.

If the command was not called within a script file, a screen with the measurement results will open.
It sets the following statistical variables: X, Sx, ox, %x, %x?, n, Q1, 03, Med, minX, maxX .

ERRORS:

« UNKNOWN if the command cannot be executed.

2-VarStats
(\xEO\xDEVarStats) 2-VarStats
2-VarStats

2-VarStats <Ident X:List>

2-VarStats <Ident X:List>, <Ident Y:List>

2-VarStats <Ident X:List>, <Ident Y:List>, <Ident Freq:List>

2-VarStats (two-variable statistics) analyzes paired data. <Ident X> is the independent variable.

If the command was not called within a script file, a screen with the measurement results will open.
It sets the following statistical variables: n, Txy, X, Sx, ox, Tx, Ix2, minX, maxX, §, Sy,

oy, 3y, 3y?, minY, maxY.
ERRORS:

e UNKNOWN if the command cannot be executed.
e INVALID DIMENSION if the lists <Ident X> or <Ident Y> have zero size.

not match.

Med-Med
(Med\xDEMed) Med-Med
Med-Med

Med-Med <Ident X:List>

Med-Med <Ident X:List>, <Ident Y:List>, <Ident Yfunc:Func>

Med-Med <Ident X:List>, <Ident Y:List>, <Ident Freq:List>

Med-Med <Ident X:List>, <Ident Y:List>, <Ident Freq:List>, <Ident Yfunc:Func>

Med-Med (median-median) fits the model equation y=ax+b to the data using the median-median line

(resistant line) technique, calculating the summary points x1, y1, x2, y2, x3 and y3. Med-Med calculates

variable, the command will assign the function the expression aX+b with the set coefficients.

If the command was not called within a script file, a screen with the measurement results will open.

It sets the following statistical variables: a, b .

ERRORS:

* UNKNOWN if the command cannot be executed.
o STATISTICAL if the command cannot be executed.
o INVALID DIMENSION if the lists <Ident X> or <Ident Y> have zero size.

match.

LinReg[ax+b]
(LinReg\xE1ax\xCEb\XE2) LinReg[ax+b]
LinReg[ax+Db]

LinReg[ax+b] <Ident X:List>

LinReg[ax+b] <Ident X:List>, <Ident Y:List>

LinReg[ax+tb] <Ident X:List>, <Ident Y:List>, <Ident Yfunc:Func>

LinReg[ax+b] <Ident X:List>, <Ident Y:List>, <Ident Freq:List>

LinReg[ax+b] <Ident X:List>, <Ident Y:List>, <Ident Freq:List>,

LinReg[ax+b] (linear regression) fits the model equation y=ax+b to the data using a least-squares fit. It
calculates values for a (slope) and b (y-intercept). When mode Stat diagnostics is On , it also calculates

values for r? and r. If the argument <Ident Yfunc> is set, which is a Y-function variable, the

command will assign the function the expression ax+b with the set coefficients.

If the command was not called within a script file, a screen with the measurement results will open.
Sets the following statistical variables: a, b,[r2, r].

ERRORS:

* UNKNOWN if the command execution is impossible.
» STATISTICAL if the command execution is impossible.

e INVALID DIMENSION if the lists <Ident X> or <Ident Y> have a zero size.

not equal.

LinReg[a+bx]
(LinReg\xE1a\xCEbx\XxE2) LinReg[a+bx]
LinReg[atbx]

LinReg[atbx] <Ident X:List>

LinReg[atbx] <Ident X:List>, <Ident Y:List>

LinReg[atbx] <Ident X:List>, <Ident Y:List>, <Ident Yfunc:Func>

LinReg[atbx] <Ident X:List>, <Ident Y:List>, <Ident Freq:List>

LinReg[a+bx] <Ident X:List>, <Ident Y:List>, <Ident Freq:List>,

LinReg[a+bx] (linear regression) fits the model equation y=a+bx to the data using a least-squares fit. It
calculates values for a (y-intercept) and b (slope). When mode Stat diagnostics is On, it also calculates

values for r2 and r . If the argument <Ident Yfunc> is set, which is a Y-function variable, the

command will assign the function the expression a+bX with the set coefficients.

If the command was not called within a script file, a screen with the measurement results will open.

Sets the following statistical variables: a, b,[r2, r].

ERRORS:

* UNKNOWN if the command execution is impossible.
» STATISTICAL if the command execution is impossible.
* INVALID DIMENSION if the lists <Ident X> or <Ident Y> have a zero size.

not equal.

QuadReg
QuadReg

QuadReg <Ident X:List>

QuadReg <Ident X:List>, <Ident Y:List>

QuadReg <Ident X:List>, <Ident Y:List>, <Ident Yfunc:Func>

QuadReg <Ident X:List>, <Ident Y:List>, <Ident Freq:List>

QuadReg <Ident X:List>, <Ident Y:List>, <Ident Freq:List>, <Ident Yfunc:Func>

QuadReg (quadratic regression) fits the second-degree polynomial y=ax2?+bx+c to the data. It calculates
values for a, b and c. When mode Stat diagnostics is On, it also calculates values for R? . For three

data points, the equation is a polynomial fit. For four or more, it is a polynomial regression. At least three

command will assign the function the expression ax?+bx+c with the set coefficients.

If the command was not called within a script file, a screen with the measurement results will open.
It sets the following statistical variables: a, b, c,[R?].

ERRORS:

* UNKNOJWN if the command execution is impossible.
» STATISTICAL if the command execution is impossible.
* INVALID DIMENSION if the lists <Ident X> or <Ident Y> have a zero size.

not equal.

CubicReg
CubicReg

CubicReg <Ident X:List>

CubicReg <Ident X:List>, <Ident Y:List>

CubicReg <Ident X:List>, <Ident Y:List>, <Ident Yfunc:Func>

CubicReg <Ident X:List>, <Ident Y:List>, <Ident Freq:List>

CubicReg <Ident X:List>, <Ident Y:List>, <Ident Freq:List>, <Ident Yfunc:Func>

CubicReg (cubic regression) fits the third-degree polynomial y=ax3+bx?+cx+d to the data. It calculates
values for a, b, c and d. When mode Stat diagnostics is On, it also calculates values for R? . For

four points, the equation is a polynomial fit. For five or more, it is a polynomial regression. At least four

will assign the function the expression aX?®+bX2+cX+d with the set coefficients.

If the command was not called within a script file, a screen with the measurement results will open.
It sets the following statistical variables: a, b, ¢, d,[R? |.

ERRORS:

* UNKNOJWN if the command execution is impossible.
o STATISTICAL if the command execution is impossible.
* INVALID DIMENSION if the lists <Ident X> or <Ident Y> have a zero size.

not equal.

QuartReg
QuartReg

QuartReg <Ident

QuartReg <Ident

QuartReg <Ident

QuartReg <Ident

QuartReg <Ident

X:List>

X:List>, <Ident Y:List>

X:List>, <Ident Y:List>, <Ident Yfunc:Func>

X:List>, <Ident Y:List>, <Ident Freq:List>

X:List>, <Ident Y:List>, <Ident Freq:List>, <Ident Yfunc:Func>

QuartReg (quartic regression) fits the fourth-degree polynomial y=ax*+bx®*+cx2+dx+e to the data. It

calculates values for a, b, ¢, d and e. When mode Stat diagnostics is On, it also calculates values

for r? . For five points, the equation is a polynomial fit. For six or more, it is a polynomial regression. At

command will assign the function the expression aX*+bX3+cx?+dX+e with the set coefficients.

If the command was not called within a script file, a screen with the measurement results will open.

It sets the following statistical variables: a, b, ¢, d, e,[R?].

ERRORS:

* UNKNOJWN if the command execution is impossible.
» STATISTICAL if the command execution is impossible.
o INVALID DIMENSION if the lists <Ident X> or <Ident Y> have a zero size.

not equal.

LnReg
LnReg

LnReg <Ident X:

LnReg <Ident X:

LnReg <Ident X:

LnReg <Ident X:

LnReg <Ident X:

List>

List>

List>

List>

List>

>

2

>

b

<Ident Y:

List>

List>, <Ident Yfunc:Func>

LnReg (logarithmic regression) fits the model equation y=a+b*1n (x) to the data using a least-squares

fit and transformed values In(x) and y. It calculates values for a and b . When mode Stat diagnostics is

function variable, the command will assign the function the expression a+b*1ln(X) with the set

coefficients.

If the command was not called within a script file, a screen with the measurement results will open.

It sets the following statistical variables: a, b,[r, r?].

ERRORS:

* UNKNOJWN if the command execution is impossible.
» STATISTICAL if the command execution is impossible.

not equal.

ExpReg

ExpReg

ExpReg

ExpReg

ExpReg

ExpReg

ExpReg

ExpReg

<Ident

X:

cList>

:List>

cList>

:List>

List>

b

>

b

>

<Ident Y:List>

(exponential regression) fits the model equation y=ab® fo the data using a least-squares fit and

transformed values x and In(y). It calculates values for a and b. When mode Stat diagnostics is On*, it

also calculates values for r?2

and r. If the argument <Ident Yfunc> is set, which is a Y-function

variable, the command will assign the function the expression a*b”x with the set coefficients.

If the command was not called within a script file, a screen with the measurement results will open.

It sets the following statistical variables: a, b,[r, r?].

ERRORS:

* UNKNOWN if the command execution is impossible.
» STATISTICAL if the command execution is impossible.

not equal.

PwrReg

PwrReg

PwrReg <Ident X:List>

PwrReg <Ident X:List>, <Ident Y:List>, <Ident Yfunc:Func>

PwrReg (exponential regression) fits the model equation y=axb to the data using a least-squares fit and

transformed values In(x) and In(y). It calculates values for a and b. When mode Stat diagnostics is On*,

variable, the command will assign the function the expression aX~b with the set coefficients.

If the command was not called within a script file, a screen with the measurement results will open.

It sets the following statistical variables: a, b,[r, r?].

ERRORS:

« UNKNOWN if the command execution fails.
o STATISTICAL if the command execution fails.

not equal.

Logistic
Logistic

Logistic <Ident X:List>

Logistic <Ident X:List>, <Ident Y:List>

Logistic <Ident X:List>, <Ident Y:List>, <Ident Yfunc:Func>

Logistic <Ident X:List>, <Ident Y:List>, <Ident Freq:List>

Logistic <Ident X:List>, <Ident Y:List>, <Ident Freq:List>, <Ident Yfunc:Func>

b*x)

Logistic fits the model equation y=c/ (1+a*e” to the data using an iterative least-squares fit. It

variable, the command will assign the function the expression c/ (1+ae” (-(bX))) with the set

coefficients.

If the command was not called within a script file, a screen with the measurement results will open.

It sets the following statistical variables: a, b, c.

ERRORS:

* UNKNOJWN if the command execution is impossible.
o STATISTICAL if the command execution is impossible.
* INVALID DIMENSION if the lists <Ident X> or <Ident Y> have a zero size.

not equal.

SinReg

SinReg

SinReg

SinReg

SinReg

SinReg

SinReg

SinReg

<Ident X:

<Ident X:

(sinusoidal

List>

:List>, <Ident Y:List>

:List>, <Ident Y:List>, <Ident Yfunc:Func>

:List>, <Ident Y:List>, <Ident Freq:List>

List>, <Ident Y:List>, <Ident Freq:List>, <Ident Yfunc:Func>

regression) fits the model equation y=a*sin (b*x+c)+d to the data using an

iterative least-squares fit. It calculates values for a, b, c and d .At least four data points are required. At

least two data points per cycle are required in order to avoid aliased frequency estimates. The output of

SinReg

is always

in radians, regardless of the Radian/Degree mode setting. If the argument

expression a sin (bx+c)+d with the set coefficients.

If the command was not called within a script file, a screen with the measurement results will open.

It sets the following statistical variables: a, b, c, d.

ERRORS:

* UNKNOJWN if the command execution is impossible.
» STATISTICAL if the command execution is impossible.
o INVALID DIMENSION if the lists <Ident X> or <Ident Y> have a zero size.

not equal.

Manual-Fit

(Manual\xDEFit) Manual-Fit

Manual-Fit

Manual-Fit <Ident Yfunc:Func>

By default, the first Y-function is used for storage. Opens the graph window and allows the user to select 2

points on the screen, through which a straight line will be drawn. The function expression Y=mX+b

ERRORS:

e mX+b func calculate error if the function calculation fails.

ANOVA

ANOVA <Ident Population:List>, <Ident Populationn:List>,...

ANOVA computes a one-way analysis of variance for comparing the means of two or more populations. The

ANOVA procedure for comparing these means involves analysis of the variation in the sample data. The null

hypothesis Ho: pl=p2=...=pk is tested against the alternative Ha: not all pul...uk are equal.

If the command was not called within a script file, a screen with the measurement results will open. SS is

sum of squares and MS is mean square.

It sets the following statistical variables: F, p, Sxp .

3.6.6. Distribution draw commands

These commands include the argument <Color:Dec>, which defines the color of graph. Default color is

BLUE (10). If the value of <Color> is not an integer or does not match a valid color, a DOMAIN error will be

generated.

ShadeNorm
ShadeNorm
ShadeNorm
ShadeNorm
ShadeNorm

ShadeNorm

<lower:Dec> ,

<lower:Dec>,

<lower:Dec> ,

<lower:Dec>,

<upper:

<upper:

<upper:

<upper:

Dec>

Dec>, <Mu:Dec>

Dec>, <Mu:Dec>, <Sigma:Dec>

Dec>, <Mu:Dec>, <Sigma:Dec>, <Color:Dec>

draws the normal density function specified by mean <Mu> and standard deviation

<Sigma> and shades the area between <lower> and <upper> . The defaults are <Mu> =0, <Sigma>
=1.
NORMAL FLOAT AUTO REAL DEGREE NAT

ShadeNorm(60,66,6

S@LELE

{Xmin, Xmax,Ymin, Ymax}

ERRORS:

* DOMAIN if the value

{55,72,-0.05,0.2}

0 REAL DEGREE NAT
supsdowns/quit

MAGENTA

<Sigma> is less or equal 0.

Shade_t
Shade t <lower:Dec>, <upper:Dec>
Shade t <lower:Dec>, <upper:Dec>, <df:Dec>
Shade t <lower:Dec>, <upper:Dec>, <df:Dec>, <Color:Dec>

Shade t draws the density function for the Student-t distribution specified by <df> (degrees of

freedom) and shades the area between <lower> and <upper> . The defaultis <df> =1.
NORMAL FLOAT AUTO REAL DEGREE NAT

Shade_t(-1,1e99,4,RED

NORMAL FLOAT AUTO REAL DEGREE MNAT
Use left/right/up/down/quit

{Xmin, Xmax,Ymin, Ymax}
{-5,5,-0.05,0.5}

low=-1, up=1e+39
ERRORS:

* DOMAIN if the value <df> is less or equal 0.

Shadey?
(Shade\xD8\xBD) Shadex?® <lower:Dec>, <upper:Dec>
Shadex? <lower:Dec>, <upper:Dec>, <df:Dec>
Shadex? <lower:Dec>, <upper:Dec>, <df:Dec>, <Color:Dec>

Shadey? draws the density function for the ¥* (chi-square) distribution specified by <df> (degrees of
freedom) and shades the area between <lower> and <upper> . The defaultis <df> =1.
NORMAL FLOAT AUTO REAL DEGREE NAT NORMAL FLOAT AUTO REAL DEGREE NAT

) Use left/right/up/down/quit
ShadeX“(0@,4,10,CYAN) I

{Xmin, Xmax,Ymin, Ymax}
{-0.1,35,-0.025,0.1}

ERRORS:

* DOMAIN if the value <df> is less or equal 0.

ShadeF
(Shade\xD8\xBD) ShadeF <lower:Dec>, <upper:Dec>
ShadeF <lower:Dec>, <upper:Dec>, <Numerator df:Dec>
ShadeF <lower:Dec>, <upper:Dec>, <Numerator df:Dec>, <Denominator df:Dec>

ShadeF <lower:Dec>, <upper:Dec>, <Numerator df:Dec>, <Denominator df:Dec>,

<Color:Dec>

ShadeF draws the density function for the F distribution specified by <Numerator df> (degrees of

freedom) and <Denominator df> and shades the area between <lower> and <upper> . The defaults

are <Numerator df> =1, <Denominator df> =1.
NORMAL FLOAT AUTO REAL DEGREE NAT

ShadeF(1,2,10,15,NAVY

NORMAL FLOAT AUTO REAL DEGREE NAT
Use leftArightsup/down/quit

{Xmin, Xmax,Ymin, Ymax}
{-0.1,4,-0.1,1}

ERRORS:

* DOMAIN

o if the value <Numerator df> is less or equal 0.

o if the value <Denominator df> is less or equal 0.

3.6.7. Draw commands

These commands may include the argument <Color:Dec> , which defines the color of graph. Default color is

BLUE (10). If the value of <Color> is not an integer or does not match a valid color, a DOMAIN error will be

generated.

These commands may also include the argument <Style:Dec>, which defines the line style. Defualt line
style is Thin Line (0). <Style> can take the following values (unless otherwise specified). Using an invalid

value will result in a DOMAIN error.

Name Value Icon Example

Thin Line 0 NORMAL FLOAT AUTO REAL DEGREE NAT
left/right/up/down/quit

Bold Line 1 NORMAL FLOAT AUTO REAL DEGREE NAT
Use leftAright up/downs/quit

Thin Dots 2 NORMAL FLOAT AUTO REAL DEGREE NAT
Use left/right/up/down/quit

Name Value Icon Example

Bold Dots 3 NORMAL FLOAT AUTO REAL DEGREE NAT
left/right/up/down/quit

Draw Point 4

Draw Point Line 5

Fill Below 6 NORMAL FLOAT AUTO REAL DEGREE NAT
Use leftAright/up/downs/quit

—

Fill Above 7 NORMAL FLOAT AUTO REAL DEGREE NAT
Use left/right/up/d mn/qu1f

=

Name Value Icon Example

Uneqal Below 8 “ NORMAL FLOAT AUTO REAL DEGREE NAT

left/right/up/down/quit

NORMAL FLOAT AUTO REAL DEGREE NAT
UneqaLAbove ? left/right/up/down/quit

ClrDraw

ClrDraw

Clears the graph window of elements drawn by commands (does not affect the rendering of active Y-
functions). If the command is called from a script file, the graph window will not be updated. To update the
graph window, you need to call the command DispGraph .

Line
Line <X1l:Dec>, <Yl:Dec>, <X2:Dec>, <Y2:Dec>
Line <Xl:Dec>, <Yl:Dec>, <X2:Dec>, <Y2:Dec>, <Color:Dec>
Line <X1l:Dec>, <Yl:Dec>, <X2:Dec>, <Y2:Dec>, <Color:Dec>, <Style:Dec>

Adds a line segment drawing to the graph window. Opens the graph window if the command is called
outside of a script file. If the command is called from a script file, the graph window will not be updated.
To update the graph window, you need to call the command DispGraph . The values <x1> and <y1>
correspond to the coordinates of the first end. The values <x2> and <Y2> correspond to the coordinates

of the second end.

Usable styles: Thin Line, Bold Line, Fill Below, Fill Above.

Horizontal
Horizontal <Y:Dec>
Horizontal <Y:Dec>, <Color:Dec>
Horizontal <Y:Dec>, <Color:Dec>, <Style:Dec>

Adds a horizontal straight line drawing to the graph window. Opens the graph window if the command is
called outside of a script file. If the command is called from a script file, the graph window will not be
updated. To update the graph window, you need to call the command DispGraph . The value <y>
corresponds to the coordinate through which the horizontal line passes.

Usable styles: Thin Line, Bold Line, Fill Below, Fill Above.

Vertical
Vertical <X:Dec>
Vertical <X:Dec>, <Color:Dec>
Vertical <X:Dec>, <Color:Dec>, <Style:Dec>

Adds a vertical straight line drawing to the graph window. Opens the graph window if the command is
called outside of a script file. If the command is called from a script file, the graph window will not be
updated. To update the graph window, you need to call the command DispGraph . The value <x>
corresponds to the coordinate through which the vertical line passes.

Usable styles: Thin Line, Bold Line.

Tangent
Tangent <Func>, <X/8/T:Dec>
Tangent <Func>, <X/6/T:Dec>, <Color:Dec>
Tangent <Func>, <X/0/T:Dec>, <Color:Dec>, <Style:Dec>

Adds the drawing of the function <Func> and the tangent line to the graph of the function at the point
<X/8/T> on the graph window. Opens the graph window if the command is called outside of a script file.
If the command is called from a script file, the graph window will not be updated. To update the graph
window, you need to call the command DispGraph . The command works only in Func and Pol modes.

<Func> can be an expression (1+X*2), a string ("sin (6) "), a Y-function variable (Y1), or a variable
containing a string with an expression (Str2).

ERRORS:

* Various calculation errors related to the computation of values.
* NOT IMPLEMENT if the current mode is Seq.

* DOMAIN

o if the value <x/6/T> isless than 6min (\x99min) or greater than &max (\x99max) (screen
Window) in Pol mode.

o if the value <x/6/T> isless than Xmin or greater than Xmax (screen Window) in Funec
mode.

o if the value <x/6/T> islessthan Tmin or greater than Tmax (screen Window) in Par
mode.

* NONREAL ANS if it is impossible to calculate the function or derivative value at the point
<X/8/T> or the calculated value is complex.

* FUNC MODE MISMATCH if the current display mode differs from the display mode in which the

command was originally invoked.

DrawF
DrawF <Func>
DrawF <Func>, <Color:Dec>

Adds the drawing of the function <Func> on the graph window. Opens the graph window if the
command is called outside of a script file. If the command is called from a script file, the graph window
will not be updated. To update the graph window, you need to call the command DispGraph . <Func>
can be an expression (1+x~2), a string ("sin (8) "), a Y-function variable (Y1), or a variable containing

a string with an expression (Str2).
ERRORS:

* Various calculation errors related to the computation of values.

Shade
Shade <Lower Func>, <Upper Func>
Shade <Lower Func>, <Upper Func>, <X Left:Dec>
Shade <Lower Func>, <Upper Func>, <X Left:Dec>, <X Right:Dec>
Shade <Lower Func>, <Upper Func>, <X Left:Dec>, <X Right:Dec>, <Color:Dec>

Shade <Lower Func>, <Upper Func>, <X Left:Dec>, <X Right:Dec>, <Color:Dec>,

<Opacity:Dec>

Adds the drawing of two functions <Lower Func> and <Upper Func>, as well as the shaded area with
the geometric locus of points with coordinates <Lower Func> <Y < <Upper Func>, <X Left> <X
< <X Right>, on the graph window. Opens the graph window if the command is called outside of a
script file. If the command is called from a script file, the graph window will not be updated. To update the
graph window, you need to call the command DispGraph . <Lower Func> and <Upper Func> can
be an expression (1+x72), a string ("sin (6) "), a Y-function variable (Y1), or a variable containing a
string with an expression (Str2). If <x Right> is less than <x Left>, the area will not be shaded.

<Opacity> is the transparency value of the shaded area and ranges from 0 to 1.

The defaults are <X Left> = Xmin (window Window), <X Right> = Xmax (window Window),

<Opacity> =1.
NORMAL FLOAT AUTO REAL DEGREE NAT

NORMAL FLOAT AUTO REAL DEGREE MNAT

Shade X -8X,X-2,2,2

ERRORS:

* Various calculation errors related to the computation of values.
* DOMAIN if the value <Opacity> exceeds the specified limits.

Drawlnv
DrawInv <Func>
DrawInv <Func>, <Color:Dec>

Adds the drawing of the function, the mirror function <Func> with respect to vY=x (X values are
projected onto the Y-axis, Y values are projected onto the X-axis), on the graph window. Opens the graph
window if the command is called outside of a script file. If the command is called from a script file, the
graph window will not be updated. To update the graph window, you need to call the command
DispGraph . <Func> can be an expression (1+x72), a string ("sin(8)"), a Y-function variable

(Y1), or a variable containing a string with an expression (Str2).
NORMAL FLOAT AUTO REAL DEGREE NAT NORMAL FLOAT AUTO REAL DEGREE NAT

"X _8X"=>Y,

ERRORS:

* Various calculation errors related to the computation of values.

Circle
Circle <X:Dec>, <Y:Dec>, <Radius:Dec>
Circle <X:Dec>, <Y:Dec>, <Radius:Dec>, <Color:Dec>
Circle <X:Dec>, <Y:Dec>, <Radius:Dec>, <Color:Dec>, <Style:Dec>

Adds the drawing of a circle to the graph window. Opens the graph window if the command is called
outside of a script file. The values <x> and <y> correspond to the center of the circle. The value

<Radius> corresponds to the radius of the circle and must not be less than 0.
Usable styles: Thin Line .
ERRORS:

e DOMAIN if the value <Radius> is less than 0.

Text
Text <Y:Dec>, <X:Dec>, <Valuen:Any>,..

Adds the drawing of text to the graph window. Opens the graph window if the command is called outside
of a script file. The size of each character is 18 pixels in height and 10 pixels in width. If the command is
called from a script file, the graph window will not be updated. To update the graph window, you need to
call the command DispGraph . The values <x> and <Y> correspond to the coordinates of the upper-left
pixel of the first character. The drawing area is 195 pixels in height and 320 pixels in width (it is possible
to place part of the first character under the left and top border of the frame). The origin is located in the
upper-left corner (0, 0), Y values increase from top to bottom, and X values increase from left to right. The
values <vValuen> are converted to a string representation and displayed sequentially. The text color is set

by the command TextColor .

NORMAL FLOAT AUTO REAL DEGREE NAT
HISTORY

Text 0,0,"A"

ERRORS:

* DOMAIN

o if the value of <X> or <Y> is not an integer.
o if the value of <x> is less than -9 or greater than 319.

o if the value of <y> is less than -17 or greater than 194.

TextColor

Pt_

TextColor

Returns the name of the current text color (Text).

TextColor <Color:Dec>

Sets the current text color (Text). This value persists even after the calculator is rebooted.

TextColor <Color:Dec>, <Y:Dec>, <X:Dec>, <Valuen:Any>, ...

Similar to the Text command, but also allows specifying the text color. Does not set the current color.

On

Pt On <X:Dec>, <Y:Dec>

Pt On <X:Dec>, <Y:Dec>, <Point style:Dec>

Pt On <X:Dec>, <Y:Dec>, <Point style:Dec>, <Color:Dec>

Adds the drawing of a point on the graph window. Opens the graph window if the command is called not
from a script file. If the command is called from a script file, the graph window will not be updated. To
update the graph window, you need to call the command DispGraph . The value <Point style>
determines the style of the displayed point:

Name Value Icon
Thin Point 0 -
Bold Point 1 s
Plus 2 +
Box 3 m]

NORMAL FLOAT AUTO REAL DEGREE MNAT
HISTORY

Pt_On

ERRORS:

* DOMAIN if the value <Point style> is less than O or greater than 3.

Pt_Off
Pt Off <X:Dec>, <Y:Dec>
Pt Off <X:Dec>, <Y:Dec>, <Point style:Dec>

Adds the drawing of a point with the background color on the graph window. Opens the graph window if
the command is called not from a script file. If the command is called from a script file, the graph window
will not be updated. To update the graph window, you need to call the command DispGraph . The value
<Point Style> determines the style of the displayed point, which is described in detail in the command
Pt On .

ERRORS:

* DOMAIN if the value <Point style> is less than O or greater than 3.

Pt Change
Pt Change <X:Dec>, <Y:Dec>
Pt Change <X:Dec>, <Y:Dec>, <Point style:Dec>
Pt Change <X:Dec>, <Y:Dec>, <Point style:Dec>, <Color:Dec>

Adds the drawing of an inverse point to the graph window. Opens the graph window if the command is not
called from a script file. If the command is called from a script file, the graph window will not be updated.
To update the graph window, you need to call the command DispGraph . Inversion means that if the color
of the pixel under the point matches the point's color, the pixel color will be replaced with the background
color. Otherwise, it will be set to the point's color. The value <Point style> determines the style of the

displayed point, which is described in detail in the command Pt On .
ERRORS:

* DOMAIN if the value of <Point style> is less than 0 or greater than 3.

Pxl_On
Pxl On <X:Dec>, <Y:Dec>
Pxl On <X:Dec>, <Y:Dec>, <Color:Dec>

Adds the drawing of a pixel to the graph window. Opens the graph window if the command is not called
from a script file. If the command is called from a script file, the graph window will not be updated. To
update the graph window, you need to call the command DispGraph . The values of <x> and <v>
correspond to the pixel coordinates. The rendering area size is 195 pixels in height and 320 pixels in
width. The origin is located in the top-left corner (0, 0); Y-axis values increase from top to bottom, and X-
axis values increase from left to right.

ERRORS:

* DOMAIN

o if the value of <x> or <y> is not an integer.
o if the value of <x> is less than O or greater than 319.

o if the value of <v> is less than 0 or greater than 194.

PxI_Off
Pxl Off <X:Dec>, <Y:Dec>

Adds the drawing of a pixel with background color to the graph window. Opens the graph window if the
command is not called from a script file. If the command is called from a script file, the graph window will
not be updated. To update the graph window, you need to call the command DispGraph . The values of
<x> and <y> correspond to the pixel coordinates. The rendering area size is 195 pixels in height and
320 pixels in width. The origin is located in the top-left corner (0, 0); Y-axis values increase from top to
bottom, and X-axis values increase from left to right.

ERRORS:
* DOMAIN
o if the value of <x> or <y> is not an integer.
o if the value of <x> is less than O or greater than 319.
o if the value of <y> is less than 0 or greater than 194.
Pxl_Change

Pxl Change <X:Dec>, <Y:Dec>
Pxl Change <X:Dec>, <Y:Dec>, <Color:Dec>

Adds the drawing of an inverse pixel to the graph window. Opens the graph window if the command is not
called from a script file. If the command is called from a script file, the graph window will not be updated.
To update the graph window, you need to call the command DispGraph . Inversion means that if the color
of the pixel under the point matches the point's color, the pixel's color will be replaced with the background
color. Otherwise, the point's color will be set. The values of <x> and <Y> correspond to the pixel
coordinates. The drawing area size is 195 pixels in height and 320 pixels in width. The origin is located in
the top-left corner (0, 0); Y-axis values increase from top to bottom, and X-axis values increase from left to
right.

ERRORS:

* DOMAIN
o if the value of <x> or <Y> is not an integer.
o if the value of <x> is less than 0 or greater than 319.

o if the value of <v> is less than 0 or greater than 194.

StorePic
StorePic <Index:Dec>

Saves all displayed function graphs and graphic elements added using commands to the variable Pic0 to
Pic9 . Opens the graph window if the command is not called from a script file. The value of <Index>

specifies the number of the Pic variable and must be in the range from 0 to 9.

The command will not be executed if an error is generated while rendering other commands or functions.

ERRORS:
* DOMAIN
o if the value of <Index> is not an integer.
o if the value of <Index> is less than 0 or greater than 9.
RecallPic

RecallPic <Index:Dec>

Restores all saved function graphs and graphic elements added using commands from the variable Pic0 to
Pic9 . Clears current list of commands. Opens the graph window if the command is not called from a

script file. The value of <Index> specifies the number of the Pic variable and must be in the range from

0to9.
ERRORS:

« UNDEFINED if the saved data could not be retrieved.
* FUNC MODE MISMATCH if the data was saved in another function mode.

* DOMAIN

o if the value of <Index> is not an integer.

o if the value of <Index> is less than 0 or greater than 9.

StoreGDB
StoreGDB <Index:Dec>

Saves the parameters of the graph window (WINDOW window), including zoom settings, format settings
(FORMAT window), function graph style mode (Thin, Thick, D-Thin, D-Thick), function mode (Func,
Par, Pol, Seq), and all functions into a variable GDBO to GDB9 . The value of <Index> specifies the

number of the GDB variable and must be in the range from 0 to 9.

ERRORS:

* DOMAIN
o if the value of <Index> is not an integer.

o if the value of <Index> is less than 0 or greater than 9.

RecallGDB

RecallGDB <Index:Dec>

Restores the parameters of the graph window (WINDOW window), including zoom settings, format
settings (FORMAT window), function graph style mode (Thin, Thick, D-Thin, D-Thick), function mode
(Func, Par, Pol, Seq), and all functions from the variable GDBO to GDB9 . The value of <Index>
specifies the number of the GDB variable and must be in the range from 0 to 9.

ERRORS:

 UNDEFINED if the saved data could not be retrieved.
* DOMAIN

o if the value of <Index> is not an integer.

o if the value of <Index> is less than 0 or greater than 9.

3.6.8. Various commands

Equp-String

<Var>.

ClearEntries
ClearEntries

Clears the contents of the main screen history.

clrHome

clrHome

Clears the main screen from the content. Fills the screen with the default color (depends on the mode
Dark mode).

delPrgm

delPrgm <Programn:Str>, ...

Deletes ZeroBasic programs from the file system. Since the data type of the argument <Programn> is Str,
it is not possible to work with programs whose names contain double quotes ("). <Programn>
corresponds to a file named .zcb . The search for programs is performed in the /exchange/ path,

excluding subdirectories, within the calculator's file system.
ERRORS:

* no such program if one of the files is not found (previous files will be deleted, subsequent ones will
not).
delVar

delVar <Identn>,

Deletes and clears the value of the passed variables from the calculator's memory. More details in the
section Variables. The TblInput list will be cleared, not removed.

ERRORS:

* READ ONLY VAR if one of the parameters constant, or a readonly variable (previous parameters will

be processed, subsequent ones will not).

Fill

Fill <Value:Dec|Imag>, <Ident:List|Matr>

ERRORS:

* UNDEFINED if the matrix or list with the name <Ident> is not found.

3.7. Functions

Corresponds to the FnCallsStmt node. Functions are case-sensitive. The result of a function execution can
have a different type and can be used within expressions.

Functions generate the following errors (unless stated otherwise):

* DATA TYPE

o if the type of one of the parameters is incorrect.
o if the variable name does not match the variable type. More details about variable types and
naming conventions can be found in the Variables section.

* ARGUMENT if the number of arguments is less than or greater than the expected number.

* NAME LENGTH if the length of the used variables exceeds the specified range. More details about the
ranges can be found in the Variables section.

* INVALID DIMENSION

o if the list argument contains no elements.

o if the matrix argument has a zero size.
* eval break if the button is pressed.
* UNDEFINED

o if the list argument does not exist.
o if the matrix argument does not exist.

3.7.1. List indexing

Indexing a list refers to retrieving the value of a specified element from the list. The syntax of this operation is
similar to a function call, provided that the identifier (IdentStmt) matches the lexical structure of

StandardListldentifier or CustomListldentifier. The exception is the TblInput variable.

List (<Index:Dec>) =-> Dec|Imag
ERRORS:

* UNDEFINED if the list does not exist.
* DATA TYPE if the value of <Index> is not an integer.
o INVALID DIMENSION if the value of <Index> is less than 1 or greater than the list length.

3.7.2. Matrix indexing

Matrix indexing refers to retrieving the value of a specified element from a matrix. The syntax of this operation
is similar to a function call, provided that the identifier (IdentStmt) matches the lexical structure of

MatrixIdentifier.
[M] (<Row:Dec> <Column:Dec>) -> Dec|Imag
ERRORS:

* UNDEFINED if the matrix does not exist.
* DATA TYPE if the value of <Row> or <Column> is not an integer.

* INVALID DIMENSION

o if the value of <Row> is less than 1 or greater than the height of the matrix.

o if the value of <Column> is less than 1 or greater than the width of the matrix.

3.7.3. Ans indexing

The Ans variable is characterized by the absence of strict typing. Therefore, indexing Ans depends on the
type of its content. The syntax of this operation is similar to a function call. If Ans does not exist in the current
context, an UNDEFINED error will be generated. Indexing Ans when it contains a string will result in a
DATA TYPE error.

Dec, Imag types

Ans (<Value:Dec|Imag|List|Matr>) =-> Dec|Imag|List|Matr

Similar to the multiplication operation between a number and the <value> variable.

List type
The operation is similar to list indexing.
Ans (<Index:Dec>) =-> Dec|Imag

ERRORS:

* DATA TYPE if the value of <Index> is not an integer.
* INVALID DIMENSION if the value of <Index> is less than 1 or greater than the list length.

Matr Type

The operation is similar to matrix indexing.

Ans (<Index Row:Dec> <Index Column:Dec>) -> Decl|Imag

ERRORS:
* DATA TYPE if the value of <Index Row> or <Index Column> is not an integer.

* INVALID DIMENSION
o if the value of <Index Row> is less than 1 or greater than the height of the matrix.

o if the value of <Index Column> is less than 1 or greater than the width of the matrix.

3.7.4. Y-functions
Yo (<X:Dec|Imag>) -> Dec|Imag
Xot (<T:Dec|Imag>) -> Dec|Imag
re(<B6:Dec|Imag>) -> Dec|Imag
u(<n:Dec|Imag>) =-> Dec|Imag

This type of functions evaluates the expression of the corresponding Y-function. A list of Y-functions and their
arguments is provided in the table in the section Y-function variables. Before evaluation, the value of the
argument <X>, <T>, <0>, <n> replaces the value of the variable corresponding to the argument of the Y-

function. If the Y-function expression (except for sequences, Seq) contains a direct (Yo=Yeo+1) or indirect
(Ye=Y1; Yi=Yo) reference to its own value, an error Yn RECURSION will be generated. If the expression of

the used function is not defined, an error /INVALID will be generated.

3.7.5. Math Functions

sqrt, V
Synonym: (\x7F) v (...
sgrt (<Value:Dec>) =-> Dec|Imag
Returns the result of extracting the square root of the number <value>

ERRORS:

* NONREAL ANS if the current mode is Real and the result is a complex number.

sgrt (<Value:Imag>) -> Imag

Returns the result of extracting the square root of the complex number <value>

sgrt (<Value:List>) =-> List

Returns a list composed of elements to which the specified operation was applied.

sqrt (<Value:Matr>) -> Matr

Returns a matrix composed of elements to which the specified operation was applied.

3 (cube root)

(\xDI1\x7F) 3V (<vValue:Dec>) =-> Dec

(\xDI\x7F) 3V (<vValue:Imag>) -> Imag
(\XD1\x7F) 3V (<vValue:List>) =-> List
(\xD1\x7F) 3V (<vValue:Matr>) -> Matr

Returns the result of extracting the cube root from the number(s) <value> . The function is analogous to

the expression root (<vValue>, 3) .

root,”V
Synonym: (\xA1l) »V(...
root (<Value:Dec>, <Index:Dec>) -> Dec|Imag

Returns the result of extracting the root of degree <Index> from the number <value> . This is analogous

to the expression <value> * (1/ <Index>) .

ERRORS:

* DOMAIN if the value of <Index> isO.
* NONREAL ANS if the current mode is Real, and the result is a complex number.

root (<Value:Imag>, <Index:Dec|Imag>) -> Imag
ERRORS:

e DOMAIN if the value of <Index> isO.

root (<Value:List>, <Index:Dec|Imag>) -> List
Returns a list formed from the elements over which the specified operation is performed.
ERRORS:

e DOMAIN if the value of <Index> isO.

root (<Value:Matr>, <Index:Dec|Imag>) -> Matr
Returns a matrix formed from the elements over which the specified operation is performed.
ERRORS:

* DOMAIN if the value of <Index> isO.

fMin

fMin (<Func:Func>, <Ident Var:Dec>, <Lower:Dec>, <Upper:Dec>) -> Dec

<Func> can be an expression (1+X~2) or a variable of a Y-function (Y1).
ERRORS:

* Various calculation errors related to computing values.
* bound if the value of <Lower> is greater than the value of <Upper>

fMax

fMax (<Func:Func>, <Ident Var:Dec>, <Lower:Dec>, <Upper:Dec>) -> Dec

<Func> can be an expression (1+X~2) or a variable of a Y-function (Y1).
ERRORS:

* Various calculation errors related to computing values.
* bound if the value of <Lower> is greater than the value of <Upper>

nDeriv

nDeriv (<Func:Func>, <Ident Var:Dec>, <Value:Dec>) -> Dec

nDeriv (<Func:Func>, <Ident Var:Dec>, <Value:Dec>, <Tolerance:Dec>) -> Dec

<Value> at which to calculate the derivative and <Tolerance>. By default, the value of
<Tolerance> is le-3. nDeriv(uses the symmetric difference quotient method, which approximates

the numerical derivative value as the slope of the secant line through these points.

f(x + ¢g) - £(x - ¢)

2¢

As <Tolerance> becomes smaller, the approximation usually becomes more accurate. <Func> can be

an expression (1+X~2) or a variable of a Y-function (Y1).
ERRORS:

* Various calculation errors related to computing values.

fnlnt

fnInt (<Func:Func>, <Ident Var:Dec>, <Lower:Dec>, <Upper:Dec>) -> Dec

<Lower>) *5 partitions, but no more than 500. <Func> can be an expression (1+X~2) or a variable of a
Y-function (Y1).

ERRORS:

* Various calculation errors related to computing values.

summ, X
Synonym: (\xA2) s (...

summ (<Func:Func>, <Ident Var:Dec>, <Lower:Dec>, <Upper:Dec>) -> Dec

values from <Lower> to <Upper> with a step of 1. <Func> can be an expression (1+X"2) or a
variable of a Y-function (Y1).

ERRORS:

* Various calculation errors related to the computation of values.
* INCREMENT if the value of <Lower> is greater than the value of <Upper> .

exp
exp (<Value:Dec|Imag>) -> Dec|Imag

Returns the result of raising the number e to the power of <value>. Equivalent to the expression

e” <vValue> .

exp(<Value:List>) -> List

Returns a list formed from elements to which the specified operation was applied.

In
In(<Value:Dec|Imag>) -> Dec|Imag
Returns the result of calculating the natural logarithm of the number <value> .
ERRORS:

* DOMAIN if the value of <value> is equal to 0.

In(<Value:List>) =-> List

Returns a list formed from elements to which the specified operation was applied.

log
log(<Value:Dec|Imag>) -> Decl|Imag
Returns the result of calculating the common (base-10) logarithm of the number <value> .
ERRORS:

* DOMAIN if the value of <value> is equal to 0.

log(<Value:List>) =-> List

Returns a list formed from elements to which the specified operation was applied.

logBASE, log
Synonym: log(...
1logBASE (<Value:Dec|Imag>, <Index:Dec|Imag>) -> Dec|Imag

Returns the result of calculating the logarithm of the number <value> with base <Index> . Equivalent to

the expression logie (<Value>) / logie (<Index>) .
ERRORS:

* DOMAIN

o if the value of <value> isequal to 0.

o if the value of <Index> is equal to 0.

* DIVIDE BY () if the value of <Index> is equal to 1

1logBASE (<Value:List>, <Index:Dec|Imag>) -> List

Returns a list formed from elements to which the specified operation was applied.

3.7.6. Numeric functions

abs
abs (<Value:Dec|Imag>) -> Dec

Returns the absolute value of the number <value> .

abs (<Value:List>) -> List

Returns a list formed from elements to which the specified operation was applied.

sign
sign(<Value:Dec>) =-> Dec
Returns:

e -1 if <value> is less than 0.
* 0if <value> isequalto 0.

* 1if <value> is greater than 0.

sign(<Value:List>) =-> List

Returns a list formed from elements to which the specified operation was applied.

round
round(<Value:Dec|Imag>) -> Dec|Imag
round (<Value:Dec|Imag>, <Digits:Dec>) -> Decl|Imag

Rounds the value <value> (both imaginary and real parts separately) to <Digits> digits after the
decimal point. If <Digits> is 0, the value <value> is rounded to the nearest integer. If <Digits> is
less than 0, the value <value> is rounded to the corresponding decimal digit (including it). By default,

<Digits> isO.
ERRORS:

* DATA TYPE if the value of <Digits> is not an integer.

round(<Value:List>) =-> List
round (<Value:List>, <Digits:Dec>) -> List

Returns a list formed from elements to which the specified operation was applied.

round(<Value:Matr>) -> Matr
round (<Value:Matr>, <Digits:Dec>) -> Matr

Returns a matrix formed from elements to which the specified operation was applied.

ceil
ceil (<Value:Dec|Imag>) -> Decl|Imag

Rounds the value (both imaginary and real parts separately) <value> up to the smallest integer such that

ceil (x) 2 x

ceil (<Value:List>) -> List

Returns a list formed from elements to which the specified operation was applied.

floor, int
Synonym: int (...

floor (<Value:Dec|Imag>) -> Dec|Imag

Rounds the value (both imaginary and real parts separately) <value> down to the largest integer such that
floor(x) < x
The synonym int (may be misleading, as it suggests that this function returns the integer part of a

number. This is not the case. The function that returns the integer part is iPart (.

floor (<Value:List>) -> List

Returns a list formed from elements to which the specified operation was applied.

iPart
iPart (<Value:Dec|Imag>) -> Dec|Imag

Returns the integer part of the value <value> (real and imaginary parts separately).

iPart (<Value:List>) -=> List

Returns a list formed from elements to which the specified operation was applied.

iPart (<Value:Matr>) -> Matr

Returns a matrix formed from elements to which the specified operation was applied.

fPart
fPart (<Value:Dec|Imag>) -> Dec|Imag

Returns the fractional part of the value <value> (both imaginary and real parts separately).

fPart (<Value:List>) =-> List

Returns a list composed of elements to which the specified operation was applied.

fPart (<Value:Matr>) -> Matr
Returns a matrix composed of elements to which the specified operation was applied.
min
min(<A:Dec>, <B:Dec>) -> Dec

Returns the smaller number between the values <aA> and .

min (<Numbers:List>) -> Dec

Returns the smaller number from the values in the list <Numbers> .

min(<Value:Dec>, <Numbers:List>) -> List
min(<Numbers:List>, <Value:Dec>) -> List

Returns a list formed from the results of applying the specified operation between the number <value>

and the corresponding element in the list <Numbers> .
ERRORS:

* DATA TYPE if the list <Numbers> contains a complex number.

min(<A:List>, <B:List>) -> List

Returns a list formed from the results of applying the specified operation between the corresponding
elements of the lists <A> and .

ERRORS:

* DATA TYPE

o if the list <A> contains a complex number.

o if the list contains a complex number.

* DIM MISMATCH if the lengths of lists <aA> and are different.

max
max (<A:Dec>, <B:Dec>) -> Dec

Returns the largest number between the values <aA> and .

max (<Numbers:List>) -> Dec

Returns the largest number from the values in the list <Numbers> .

max (<Value:Dec>, <Numbers:List>) -> List
max (<Numbers:List>, <Value:Dec>) -> List

Returns a list formed from the results of applying the specified operation between the number <value>

and the corresponding element in the list <Numbers> .

ERRORS:

* DATA TYPE if the list <Numbers> contains a complex number.

max (<A:List>, <B:List>) =-> List

Returns a list formed from the results of applying the specified operation between the corresponding
elements of the lists <A> and .

ERRORS:

* DATA TYPE

o if the list <A> contains a complex number.

o if the list contains a complex number.

* DIM MISMATCH if the lengths of lists <aA> and are different.

Icm
lem(<A:Dec>, <B:Dec>) -> Dec
lcm (returns the least common multiple of <A> and . <A> and must be nonnegative integers.
ERRORS:

* DOMAIN

°if <A> or isnot an integer.

oif <A> or is less than 0.

lem(<Value:Dec>, <Numbers:List>) -> List
lem(<Numbers:List>, <Value:Dec>) -> List

Returns a list formed from the results of applying the specified operation between the number <value>

and the corresponding element in the list <Numbers> .
ERRORS:

* DATA TYPE if the list <Numbers> contains a complex number.

lem(<A:List>, <B:List>) -> List

Returns a list formed from the results of applying the specified operation between the corresponding
elements of the lists <A> and .

ERRORS:

* DATA TYPE

o if the list <A> contains a complex number.

o if the list contains a complex number.

* DIM MISMATCH if the lengths of lists <A> and are different.

ged
gcd(<A:Dec>, <B:Dec>) -> Dec

gcd (returns the greatest common divisor of <A> and . <A> and <A> must be nonnegative

integers.
ERRORS:
* DOMAIN
°if <A> or isnot an integer.
oif <A> or is less than 0.
gcd (<Value:Dec>, <Numbers:List>) -> List
gcd(<Numbers:List>, <Value:Dec>) -> List

Returns a list formed from the results of applying the specified operation between the number <value>

and the corresponding element in the list <Numbers> .
ERRORS:

* DATA TYPE if the list <Numbers> contains a complex number.

gcd(<A:List>, <B:List>) -> List

Returns a list formed from the results of applying the specified operation between the corresponding
elements of the lists <A> and .

ERRORS:

* DATA TYPE

o if the list <A> contains a complex number.

o if the list contains a complex number.

* DIM MISMATCH if the lengths of lists <a> and are different.

remainder, rem

Synonym: rem(...

remainder (<Dividend:Dec>, <Divisor:Dec>) -> Dec
Returns the remainder of dividing <Dividend> by <Divisor>.
ERRORS:

e DIVIDE BY 0 if the value of <Divisor> is 0.

3.7.7. Trigonometric and hyperbolic functions

sin

sin(<Value:Dec>) -> Dec

Returns the sinus of <value> . The result depends on the current Radian or Degree mode.

sin(<Value:Imag>) -> Imag

Returns the sinus of <value> .

sin(<Value:List>) -> List

Returns a list formed from the elements after applying the specified operation.

asin, sin~!
Synonym: (sin\xD4) sin=* (...
asin(<Value:Dec>) -> Dec

Returns the inverse sinus of <vValue> . The value of <value> must be located in the range from -1 to 1.

The result depends on the current Radian or Degree mode.
ERRORS:

* DOMAIN if the value of <value> is less than -1 or greater than 1.

asin(<Value:Imag>) -> Imag

Returns the inverse sinus of <value> .

asin(<Value:List>) => List

Returns a list formed from the elements after applying the specified operation.

sinh
sinh (<Value:Dec|Imag>) -> Dec|Imag

Returns the hyperbolic sinus of <vValue> .

sinh(<Value:List>) -> List

Returns a list formed from the elements after applying the specified operation.

arsinh, sinh™!
Synonym: (sinh\xD4) sinh~* (...
arsinh (<Value:Dec|Imag>) -> Dec|Imag

Returns the inverse hyperbolic sinus of <value> .

arsinh(<Value:List>) =-> List

Returns a list formed from the elements after applying the specified operation.

cos
cos (<Value:Dec>) -> Dec

Returns the cosinus of <value> . The result depends on the current Radian or Degree mode.

cos (<Value:Imag>) -> Imag

Returns the cosinus of <value> .

cos(<Value:List>) =-> List

Returns a list formed from the elements after applying the specified operation.

acos, cos™’!

Synonym: (cos\xD4) cos~! (...
acos (<Value:Dec>) -> Dec

Returns the inverse cosinus of <value> . The value of <value> must be located in the range from -1 to

1. The result depends on the current Radian or Degree mode.

ERRORS:

* DOMAIN if the value of <value> is less than -1 or greater than 1.

acos(<Value:Imag>) -> Imag

Returns the inverse cosinus of <value> .

acos(<Value:List>) -> List

Returns a list formed from the elements after applying the specified operation.

cosh
cosh(<Value:Dec|Imag>) -> Dec|Imag

Returns the hyperbolic cosinus of <value> .

cosh(<Value:List>) =-> List

Returns a list formed from the elements after applying the specified operation.

arcosh, cosh™!
Synonym: (cosh\xD4) cosh~* (...
arcosh (<Value:Dec>) =-> Dec

Returns the inverse hyperbolic cosinus of <value> . The value of <value> must be greater than or equal
to 1.

ERRORS:

* DOMAIN if the value of <value> is less than 1.

arcosh (<Value:Imag>) -> Imag

Returns the inverse hyperbolic cosinus of <value> .

arcos (<Value:List>) =-> List

Returns a list formed from the elements after applying the specified operation.

tan
tan(<Value:Dec>) -> Dec

Returns the tangent of <value> . The result depends on the current Radian or Degree mode.

tan(<Value:Imag>) -> Imag

Returns the tangent of <value> .

tan(<Value:List>) -> List

Returns a list formed from the elements after applying the specified operation.

atan, tan!
Synonym: (tan\xD4) tan~! (...
atan(<Value:Dec>) -> Dec

Returns the inverse tangent of <value> . The result depends on the current Radian or Degree mode.

atan(<Value:Imag>) -> Imag

Returns the inverse tangent of <value> .

atan(<Value:List>) => List

Returns a list formed from the elements after applying the specified operation.

tanh
tanh (<Value:Dec|Imag>) -> Dec|Imag

Returns the hyperbolic tangent of <vValue> .

tanh(<Value:List>) -> List

Returns a list formed from the elements after applying the specified operation.

artanh, tanh!

Synonym: (tanh\xD4) tanh~* (...

artanh (<Value:Dec>) -> Dec

Returns the inverse hyperbolic tangent of <value> . The value of <value> must be greater than -1 and

less than 1.
ERRORS:

* DOMAIN

o if the value of <value> less than or equal to -1.

o if the value of <value> greater than or equal to -1.

artanh (<Value:Imag>) -> Imag

Returns the inverse hyperbolic tangent of <value> .

artan(<Value:List>) =-> List

Returns a list formed from the elements after applying the specified operation.

3.7.8. Complex numbers related functions

conj
conj (<Value:Dec>) =-> Dec

Returns the number <value> .

conj (<Value:Imag>) -> Imag

Returns the complex conjugate of <value> . Equivalent to the expression real (<value>) -

imag (<value>) .

conj (<Value:List>) -> List

Returns a list formed from the elements after applying the specified operation.

conj (<Value:Matr>) -> Matr

Returns a matrix formed from the elements after applying the specified operation.

real, Re
Synonym: Re (...
real (<Value:Dec>) =-> Dec

Returns the number <value> .

real (<Value:Imag>) -> Dec

Returns the real part of the complex number <value> .

real (<Value:List>) =-> List

Returns a list composed of elements to which the specified operation was applied.

real (<Value:Matr>) -> Matr

Returns a matrix composed of elements to which the specified operation was applied.

imag, Im

Synonym: Im(...

imag(<Value:Dec>) =-> Dec
Returns 0.
imag(<Value:Imag>) =-> Dec

Returns the imaginary part of the complex number <vValue> .

imag(<Value:List>) =-> List

Returns a list composed of elements to which the specified operation was applied.

imag(<Value:Matr>) -> Matr

Returns a matrix composed of elements to which the specified operation was applied.

angle, Arg
Synonym: Arg(...
angle (<Value:Imag>) -> Imag

Returns the angle (also known as the polar angle) between the radius vector of the corresponding point and
the positive real axis. If <value> is 0, it returns 0 (TI-84 compatibility). The result depends on the
current mode. In Radian mode, the function will return the angle in radians. In Degree mode, the function

will return the angle in degrees.

angle(<Value:List>) -> List

Returns a list composed of elements to which the specified operation was applied.

cmplx_polar
cmplx polar(<Value:Imag>) -> Imag

Converts the algebraic representation of the complex number <Value> to the exponential form
z=re” (ip) , where the value of ¢ depends on the current angle mode (Radian or Degree). Equivalent to

conversion.

cmplx polar(<Value:List>) -> List

Returns a list composed of elements to which the specified operation was applied.

cmplx polar(<Value:Matr>) -> Matr

Returns a matrix composed of elements to which the specified operation was applied.

3.7.9. Probability functions

rand
rand() -> Dec

Returns a pseudo-random decimal number in the range from 0 (inclusive) to 1 (exclusive), generated using
the Mersenne Twister (MT19937). Calling the function initializes the PRNG (sets the seed) based on the
number of milliseconds elapsed since the calculator was powered on.

rand(<Count:Dec>) =-> List

Returns a list composed of values generated by the rand(function. Unlike multiple invocations of

rand (, the PRNG is initialized only once. The length of the resulting list is equal to <Count> .
ERRORS:
* DATA TYPE if <Count> is not an integer.
* DOMAIN if <Count> is less than 1.
randlnt
randInt (<Lower:Dec>, <Upper:Dec>) -> Dec

Returns a pseudo-random integer in the range from <Lower> (inclusive) to <Upper> (inclusive),
generated using the Mersenne Twister (MT19937). The function automatically swaps <Upper> and
<Lower> if <Upper> is less than <Lower> . Calling the function initializes the PRNG (sets the seed)

based on the number of milliseconds elapsed since the calculator was powered on.
ERRORS:

* DOMAIN if <Lower> or <Upper> is not an integer.

randInt (<Lower:Dec>, <Upper:Dec>, <Count:Dec>) -> List

Returns a list composed of values generated by the function randInt(<Lower> , <Upper> . Unlike
multiple invocations of randInt (, the PRNG is initialized only once. The length of the resulting list is

equal to <Count> .
ERRORS:

* DOMAIN

°if <Count> is not an integer.
oif <Count> is lessthan 1.
randIntNoRep
randIntNoRep (<Lower:Dec>, <Upper:Dec>) -> Dec

The function is equivalent to randInt (<Lower> , <Upper> .

randIntNoRep (<Lower:Dec>, <Upper:Dec>, <Count:Dec>) -> List

Returns a list of non-repeating values generated by the randInt(<Lower>, <Upper> . Unlike multiple
calls to the randInt (function, in this case the PRNG is initialized only once. The resulting list length is
equal to <Count>. The function only works if the difference between <Upper> and <Lower> (the
function automatically swaps <Upper> and <Lower> if <Upper> is less than <Lower>) is greater

than or equal to <count> - 1.

ERRORS:

* DOMAIN

°ifthe <Count> value is not an integer.
o ifthe <Count> value is less than 1.

o if the difference between <Upper> and <Lower> islessthan <Count> - 1

randBin
randBin(<Trials count:Dec>, <Probability:Dec>) -> Dec

Function returns a random integer from a specified Binomial distribution. The value of <Trials count>
must be an integer greater than or equal to one. The value of <Probability> (probability of success)

must be in the range from 0 (inclusive) to 1 (inclusive).

randBin(<Trials count:Dec>, <Probability:Dec>, <Count:Dec>) -> List

Returns a list of elements generated by the function randBin(<Trials count> , <Probability> .
Unlike multiple calls to the randBin(function, the PRNG is initialized only once. The resulting list

length is equal to <Count> .

ERRORS:
* DOMAIN
cifthe <Trials count> value is not an integer.
oifthe <Trials count> value is less than 1.
°ifthe <Probability> value is less than O or greater than 1.
°ifthe <Count> value is not an integer.
°if the <Count> value is less than 1.
randNorm
randNorm (<Mu:Dec>, <Sigma:Dec>) =-> Dec

Function random real number from a specified Normal distribution. Each generated value could be any real
number, but most will be within the interval [<Mu> - 3 (<Sigma>) , <Mu> + 3(<Sigma>) |.

randNorm(<Mu:Dec>, <Sigma:Dec>, <Count:Dec>) -> List

Returns a list formed from the elements generated by the function randNorm(<Mu>, <Sigma> . Unlike
calling the function randNorm (multiple times, in this case the RNG is initialized once. The length of the

resulting list is equal to <Count> .

ERRORS:

* DOMAIN

o if the value of <Count> is not an integer.
o if the value of <Count> is less than 1.
nCr
nCr(<N:Dec>, <R:Dec>) -> Dec

nCr (returns the number of combinations of <N> taken <R> at a time. <N> and <R> must be

nonnegative integers.
ERRORS:

* DOMAIN

o if the value of <N> or <R> is not an integer.
o if the value of <N> or <R> is less than 0.

o if the value of <N> is less than <R> .

nCr(<N:Dec>, <Rs:List>) =-> List

Returns a list formed from the results of sequentially performing the specified operation between the
number <N> and the corresponding element of the list <Rs> .

ERRORS:

* DATA TYPE if the list <Rs> contains a complex number.

nCr(<Ns:List>, <R:Dec>) -> List

Returns a list formed from the results of sequentially performing the specified operation between the
corresponding element of the list <Ns> and the number <R> .

ERRORS:

* DATA TYPE if the list <Ns> contains a complex number.

nCr(<Ns:List>, <Rs:List>) -> List

Returns a list formed from the results of sequentially performing the specified operation between the

corresponding elements of the lists <Ns> and <Rs> .

ERRORS:

* DATA TYPE

o if the list <Ns> contains a complex number.

o if the list <Rs> contains a complex number.

* DIM MISMATCH if the lengths of the lists <Ns> and <Rs> are different.

nPr
nPr(<N:Dec>, <R:Dec>) -> Dec

nPr (returns the number of permutations of <N> taken <R> at a time. <N> and <R> must be

nonnegative integers.
ERRORS:

* DOMAIN

o if the value of <N> or <R> is not an integer.
o if the value of <N> or <R> is less than 0.

o if the value of <N> is less than <R> .

nPr(<N:Dec>, <Rs:List>) =-> List

Returns a list formed from the results of sequentially performing the specified operation between the
number <N> and the corresponding element of the list <Rs> .

ERRORS:

* DATA TYPE if the list <Rs> contains a complex number.

nPr(<Ns:List>, <R:Dec>) -> List

Returns a list formed from the results of sequentially performing the specified operation between the
corresponding element of the list <Ns> and the number <Rr> .

ERRORS:

* DATA TYPE if the list <Ns> contains a complex number.

nPr(<Ns:List>, <Rs:List>) -> List

Returns a list formed from the results of sequentially performing the specified operation between the

corresponding elements of the lists <Ns> and <Rs> .

ERRORS:

* DATA TYPE

o if the list <Ns> contains a complex number.

o if the list <Rs> contains a complex number.

* DIM MISMATCH if the lengths of the lists <Ns> and <Rs> are different.

3.7.10. Coordinate conversion functions

These functions take two arguments. If the function has the following syntax: func(<A:Dec>,
<B:List>) =-> List,then the function returns a list composed of the results of sequentially applying the

specified operation between the number <a> and the corresponding element of the list .

If the function has the following syntax: func(<A:List>, <B:Dec>) -> List, then the function
returns a list composed of the results of sequentially applying the specified operation between each element of
the list <A> and the number .

If the function has the following syntax: func(<A:List>, <B:List>) -> List,then the function

returns a list composed of the results of sequentially applying the specified operation between corresponding
elements of the lists <A> and .

The result of these functions depends on the current angle unit mode, as the calculations use trigonometric
functions.

ERRORS:

* DATA TYPE if the list <A> or contains a complex number.
* DIM MISMATCH if the lengths of the lists <a> and differ.

Py Rx
(P\X9ERX) P»Rx(<r:Dec|List>, <6:Dec|List>) =-> Dec|List

Converts polar coordinates to rectangular coordinates and returns the X coordinate. Equivalent to the

expression <r> * cos(<6>) .

Py Ry
(P\x9ERy) P»Ry(<r:Dec|List>, <8:Dec|List>) =-> Dec|List

Converts polar coordinates to rectangular coordinates and returns the Y coordinate. Equivalent to the

expression <r> * sin(<6>) .

Rp-Pr

(R\Xx9EPr) R»Pr(<X:Dec|List>, <Y:Dec|List>) =-> Decl|List

Converts rectangular coordinates to polar coordinates and returns the vector magnitude r . Equivalent to

the expression sgrt(<X> "2 + <Y> "2) .

Ry-PO
(R\X9EP\X99) rRBP6(<X:Dec|List>, <Y:Dec|List>) =-> Decl|List

Converts rectangular coordinates to polar coordinates and returns the angular component 6 of the vector.

Equivalent to the expression atan(<v> / <x>) . For the point with coordinates (0, 0), the angular

component 6 is 0.

3.7.11. Lists (and matrices) related functions

dim
dim(<Value:List>) -> Dec

Returns the length of the passed list <value> .

dim(<Value:Matr>) -> List

Returns a list of two elements. The first element is the height of the matrix <value> . The second element

is the width of the matrix <value> .

seq

seq(<Func:Func>, <Ident Var:Dec>, <From:Dec>, <To:Dec>) =-> List

seq(<Func:Func>, <Ident Var:Dec>, <From:Dec>, <To:Dec>, <Step:Dec>) -> List

values ranging from <From> to <To> with a step of <Step> . By default, <Step> is 1. <Step> can
be a negative number, in which case <From> must be greater than <To>. <Func> can be an expression

(1+x~2) or a Y-function variable (Y1).
ERRORS:

* Various calculation errors related to value evaluation.
« INCREMENT

o if the value of <Step> is 0.

o if the value of <Step> is greater than 0 and the value of <From> is greater than the value
of <To>.

o if the value of <Step> is less than 0 and the value of <From> is less than the value of

<To>.

cumSum
cumSum (<Value:List>) -> List

Returns a list composed of elements that are the sum of all previous elements and the current element of the

list <value> .

cumSum (<Value:Matr>) -> Matr

Returns a new matrix with the same dimensions as the matrix <value> . The function transforms each
column from top to bottom separately. Each column is sequentially composed of elements that are the sum

of all previous elements and the current element of the corresponding column in the matrix <value> .

AList
(\x9AList) AList(<Value:List>) -> List

Returns a list containing the differences between consecutive elements in <value>. AList (subtracts
the first element in <value> from the second element, subtracts the second element from the third, and so

on. The result list of differences is always one element shorter than the original list <value> .
ERRORS:

o INVALID DIMENSION if the list <value> contains fewer than two elements.

(\x9AList) AList (<Value:Matr>) -> Matr

Returns a new matrix with the same height as the matrix <value> . The width of the new matrix is one
element less. The rows of the new matrix are the result of transforming the corresponding rows of the
matrix <Value> usingthe AList (function.

ERRORS:

e INVALID DIMENSION if the width of the matrix <value> is less than two.

augment
augment (<A:List>, <B:List>) -> List

Returns a list formed by the sequence of elements of list <a>, followed by the sequence of elements of list

 . (concatenates lists <A> and).

augment (<A:Matr>, <B:Matr>) -> Matr

Returns a matrix whose rows are formed by the sequence of elements of the corresponding rows of matrix
<a>, followed by the sequence of elements of the corresponding rows of matrix . (concatenates

matrices <A> and horizontally).

ERRORS:

* DIM MISMATCH if the heights of matrices <a> and are not equal.

mean
mean (<Value:List>) -> Dec
Returns the arithmetic mean of the elements in the <value> list. The elements must be of type Dec.

ERRORS:

* DATA TYPE if the <value> list contains a complex number.

mean (<Value:List>, <Freq:List>) =-> Dec

Returns the arithmetic mean of the elements in the <value> list, weighted by the frequencies specified in
the <Freg> list. Each element in the <value> list corresponds to a number in the <Freg> list
indicating the number of occurrences of the corresponding element. Equivalent to the sum of the products of
the corresponding elements of the <value> and <Freg> lists, divided by the sum of elements in the

<Fregqg> list.

ERRORS:

* DATA TYPE if the <value> or <Freg> list contains a complex number.
* DIM MISMATCH if the lengths of the <value> and <Freg> lists are not equal.
* STATISTICAL if the <Freg> list contains a negative number.

median
median(<Value:List>) -> Dec
Returns the median value of the elements in the <value> list. The elements must be of type Dec.

ERRORS:

* DATA TYPE if the <value> list contains a complex number.

median(<Value:List>, <Freq:List>) -> Dec

Returns the median value of the elements in the <value> list, weighted by the frequencies specified in the
<Freqg> list. Each element in the <value> list corresponds to a number in the <Freq> list indicating

the number of occurrences of the corresponding element.

ERRORS:

* DATA TYPE if the <value> or <Freg> list contains a complex number.
* DIM MISMATCH if the lengths of the <value> and <Freg> lists are not equal.

* DOMAIN

°ifthe <Freg> list contains a non-integer element.

oifthe <Freg> list contains a negative number.

variance
variance (<Value:List>) -> Dec
Returns the variance of the elements in <vValue> .
ERRORS:

* DATA TYPE if the list <value> contains a complex number.

stdDev
stdDev (<Value:List>) =-> Dec
Returns standard deviation of the elements in <value> .
ERRORS:

* DATA TYPE if the list <value> contains a complex number.

sum
sum(<Value:List>) => Dec|Imag
sum(<Value:List>, <From:Dec>) =-> Dec|Imag
sum(<Value:List>, <From:Dec>, <To:Dec>) =-> Dec|Imag

Returns the sum of the elements of the list <value>, starting from the element number <From> and
ending with the element number <To> . Element numbering starts at 1. By default, <From> is 1, and

<To> is the length of the list <value> .
ERRORS:

* INVALID DIMENSION if the list <value> has zero length.
* DOMAIN

o if the value of <From> or <To> is not an integer.

o if the value of <From> or <To> is less than 1.

prod

prod(<Value:List>) =-> Dec|Imag

prod(<Value:List>, <From:Dec>) -> Dec|Imag
prod(<Value:List>, <From:Dec>, <To:Dec>) =-> Dec|Imag

Returns the product of the elements of the list <value>, starting from the element number <From> and
ending with the element number <To>. Element numbering starts at 1. By default, <From> is 1, and

<To> is the length of the list <vValue> .
ERRORS:

o INVALID DIMENSION if the list <value> has zero length.
* DOMAIN

o if the value of <From> or <To> is not an integer.

o if the value of <From> or <To> is less than 1.

3.7.12. Matrices related functions

det
det (<Value:Matr>) -> Dec
Returns the determinant of a square matrix <value> .
ERRORS:

* INVALID DIMENSION if the matrix <value> is not square.

transpose
transpose(<Value:Matr>) -> Matr

Returns a matrix in which each element (row, column) is swapped with the corresponding element (column,
row) of <value> .

identity
identity(<Dimension:Dec>) -> Matr

Returns the identity matrix of <Dimension> rows X <Dimension> columns.

ERRORS:
* INVALID DIMENSION
o if the value <Dimension> is not an integer.
o if the value <Dimension> is less than 1.
inverse

inverse (<Value:Matr>) -> Matr

Returns the inverse matrix for the matrix <value> . Equivalent to the expression <value> ~1' .

ERRORS:

* SINGULAR MATR if the matrix <value> is singular.

randM
randM(<Rows:Dec>, <Columns:Dec>) -> Matr

Returns a matrix with <Rows> rows and <Columns> columns, filled with random integers from -9

(inclusive) to 9 (inclusive).
ERRORS:

* INVALID DIMENSION

o if the value <Rows> or if the value <Columns> is not an integer.
o if the value <Rows> is less than 1.
o if the value <Columns> 1is less than 1.
ref
ref (<Value:Matr>) -> Matr
Returns the row-echelon form of a real matrix <value> .

ERRORS:

* DATA TYPE if the matrix <vValue> contains a complex number.
o INVALID DIMENSION if the height of the matrix <value> is greater than its width.

rref

rref (<Value:Matr>) -> Matr
Returns the reduced row-echelon form of a real matrix <value> .
ERRORS:

* DATA TYPE if the matrix <Value> contains a complex number.
* INVALID DIMENSION if the height of the matrix <value> is greater than its width.

rowSwap
rowSwap (<Value:Matr>, <Row l:Dec>, <Row 2:Dec>) -> Matr
Returns a matrix <value> , where rows numbered <Row 1> and <Row 2> are swapped.
ERRORS:

* DATA TYPE if the value of <Row 1> or <Row 2> is not an integer.

* INVALID DIMENSION

o if the value of <Row 1> or <Row 2> is less than 1.
o if the value of <Row 1> or <Row 2> exceeds the height of the matrix <value> .
row+
(row\xCE) row+(<Value:Matr>, <Additional row:Dec>, <Row:Dec>) =-> Matr

Returns a matrix <value>, where the clements of the row numbered <Row> are added to the

corresponding elements of the row numbered <Additional row> .

ERRORS:

* DATA TYPE if the value of <Additional row> or <Row> isnot an integer.

* INVALID DIMENSION

o if the value of <Additional row> or <Row> is less than 1.
o if the value of <Additional row> or <Row> exceeds the height of the matrix <value> .
*row
(\xCDrow) *row(<Coefficient:Dec|Imag>, <Value:Matr>, <Row:Dec>) =-> Matr

Returns a matrix <value> , where the elements of the row numbered <Row> are multiplied by the value

<Coefficient>.
ERRORS:

* DATA TYPE if the value of <Row> is not an integer.
o INVALID DIMENSION

o if the value of <Row> is less than 1.

o if the value of <Row> exceeds the height of the matrix <value> .

*row+
(\xCDrow\xCE) *row+ (<Coefficient:Dec|Imag>, <Value:Matr>, <Row 1:Dec>,
<Row 2:Dec>) =-> Matr

Returns a matrix <value>, where the elements of the row numbered <Row 2> are added to the

corresponding elements of the row numbered <Row 1>, multiplied by the value <Coefficient> .

ERRORS:

* DATA TYPE if the value of <Row 1> or <Row 2> is not an integer.

* INVALID DIMENSION

o if the value of <Row 1> or <Row 2> is less than 1.

o if the value of <Row 1> or <Row 2> exceeds the height of the matrix <value> .

3.7.13. Distribution functions

normalpdf
normalpdf (<X:Dec>) -> Dec
normalpdf (<X:Dec>, <Mu:Dec>) -> Dec
normalpdf (<X:Dec>, <Mu:Dec>, <Sigma:Dec>) -> Dec

normalpdf (computes the probability density function (pdf) for the normal distribution by mean <Mu>
and standard deviation <Sigma> ata specified <x> value. The defaults are <Mu> =0, <Sigma> =1.

The probability density function (pdf) is:

(x—n) ?

1 202

ERRORS:

* DOMAIN if the value of <Sigma> is less than or equal to 0.

normalcdf
normalcdf (<Lower:Dec>, <Upper:Dec>) -> Dec
normalcdf (<Lower:Dec>, <Upper:Dec>, <Mu:Dec>) -> Dec
normalcdf (<Lower:Dec>, <Upper:Dec>, <Mu:Dec>, <Sigma:Dec>) =-> Dec

normalcdf (computes the normal distribution probability between <Lower> and <Upper> for the

specified mean <Mu> and standard deviation <Sigma> . The defaults are <Mu> =0, <Sigma> =1.
ERRORS:

* DOMAIN if the value of <Sigma> is less than or equal to 0.

invNorm
invNorm(<Area:Dec>) -> Dec
invNorm(<Area:Dec>, <Tail:Dec>) -> Dec|List
invNorm(<Area:Dec>, <Mu:Dec>, <Sigma:Dec>) -> Dec

invNorm(<Area:Dec>, <Mu:Dec>, <Sigma:Dec>, <Tail:Dec>) -> Dec|List

invNorm (computes the inverse cumulative normal distribution function for a given <Area> under the

normal distribution curve specified by mean <Mu> and standard deviation <Sigma>. The value of
<Tail> determines the region used for the calculation: 1 (LEFT) - the left area 2 (CENTER) - the central
area 3 (RIGHT) - the right area. If <Tail> is 2, the function will return a list consisting of two numbers.
The first number is the left boundary of the area, and the second is the right boundary of the area. The
defaults are <Mu> =0, <Sigma> =1, <Tail> =1 (LEFT).

NORMAL FLOAT AUTO REAL DEGREE NAT i L FLOAT AUTO REAL DEGREE NAT
F x:Use 1ft/raht/up/dun/quit

invNorm(©.2,1500,300,LEFT)
1247 .513357

invNorm(@.2,1500,300,CENTER)
{1423.995844,1576.004156}

invNorm(@.2,1500,300,RIGHT)
1752 .486643

AL FLOAT AUTO REAL DEGREE NAT L FLOAT AUTO REAL DEGREE NAT
dx:Use 1ftArghtAup/duwn/quit ¢ ®:Use 1ft/raht /up/duns/quit

ERRORS:
* DOMAIN
o if the value of <Sigma> is less than or equal to 0.
o if the value of <Area> is less than O or greater than 1.
invT

invT(<Area:Dec>, <df:Dec>) -> Dec

invT (computes the inverse cumulative Student-t probability function specified by Degree of Freedom,
<df> foragiven <Area> under the curve. WRONG WORKING.

ERRORS:

* DOMAIN

o if the value of <df> is less than or equal to 0.

o if the value of <Area> is less than 0 or greater than 1.

tpdf
tpdf (<X:Dec>, <df:Dec>) -> Dec

tpdf (computes the probability density function (pdf) for the Student-t distribution at a specified <x>

value. <df> is degrees of freedom.

ERRORS:

* DOMAIN if the value of <df> is less than or equal to 0.

tedf
tcdf (<Lower:Dec>, <Upper:Dec>, <df:Dec>) -> Dec

tcdf (computes the Student-t distribution probability between <Lower> and <Upper> for the

specified <df> (degrees of freedom).

ERRORS:

* DOMAIN if the value of <df> is less than or equal to 0.

x’pdf, pdftw
Synonym: pdftw(...
(\xD8\xBDpdf) x2pdf(<X:Dec>, <df:Dec>) =-> Dec

x*pdf (computes the probability density function (pdf) for the ¥ (chi-square) distribution at a specified

<x> value. <df> (degrees of freedom) must be an integer > 0.

ERRORS:
* DOMAIN
o if the value of <df> is less than or equal to 0.
o if the value of <df> is not an integer.
(\xD8\xBDpdf) x2pdf(<X:Dec>, <df:List>) -> List

Returns a list formed from the results of sequential operations between the number <X> and the

corresponding element of the list <df> .

ERRORS:

* DATA TYPE if the list <df> contains a complex number.

(\xD8\xBDpdf) x2pdf(<X:List>, <df:Dec>) -> List

Returns a list formed from the results of sequential operations between the number <df> and the

corresponding element of the list <x> .
ERRORS:

* DATA TYPE if the list <X> contains a complex number.

(\xD8\xBDpdf) x2pdf(<X:List>, <df:List>) => List

Returns a list formed from the results of sequential operations between the corresponding elements of the
lists <x> and <df>.

ERRORS:

* DATA TYPE

o if the list <x> contains a complex number.

o if the list <df> contains a complex number.

* DIM MISMATCH if the lengths of the lists <x> and <df> are different.

xicdf, cdftw
Synonym: cdftw(...
(\xD8\xBDcdf) x2cdf(<Lower:Dec>, <Upper:Dec>, <df:Dec>) =-> Dec

x?cdf (computes the ¥ (chi-square) distribution probability between <Lower> and <Upper> for the

specified <df> (degrees of freedom).

ERRORS:
* DOMAIN
o if the value of <df> is less than or equal to 0.
o if the value of <df> is not an integer.
Fpdf
(\xD9pdf) Fpdf(<X:Dec>, <Numerator df:Dec>, <Denominator df:Dec>) -> Dec

Fpdf (computes the probability density function (pdf) for the F distribution at a specified <x> value.

<Numerator df> (degrees of freedom) and <Denominator df> must be integers > 0.
ERRORS:

* DOMAIN

o if the value of <Numerator df> or <Denominator df> is less than or equal to 0.

o if the value of <df> or <Denominator df> isnotan integer.

Fcdf

(\xD9cdf) Fcdf (<Lower:Dec> , <Upper:Dec> , <Numerator df:Dec> ,

<Denominator df:Dec>) =-> Dec

Fcdf (computes the F distribution probability between <Lower> and <Upper> for the specified
<Numerator df> (degrees of freedom) and <Denominator df>. <Numerator df> and

<Denominator df> must be integers > 0.
ERRORS:

* DOMAIN

o if the value of <Numerator df> or <Denominator df> is less than or equal to 0.

o if the value of <df> or <Denominator df> isnotan integer.

binompdf
binompdf (<Trials count:Dec>, <Probability:Dec>) -> List

binompdf (computes a probability at X (list of probabilities from 0 to <Trials count>) for the
discrete binomial distribution with the specified <Trials count> and <Probability> of success (p)

on each trial. The probability density function (pdf) is:

ERRORS:

* DOMAIN
o if the value of <Trials count> is not an integer.
o if the value of <Trials count> is less than 1.

o if the value of <Probability> is less than 0 or greater than 1.

binompdf (<Trials count:Dec>, <Probability:Dec>, <X:Dec>) -> Dec

binompdf (computes a probability at <x> for the discrete binomial distribution with the specified
<Trials count> and <Probability> of success (p) on each trial. If value of <x> is less than 0 or

more than <Trials count>, the function returns 0.
ERRORS:

* DOMAIN
o if the value of <Trials count> is not an integer.
o if the value of <Trials count> is less than 1.
o if the value of <Probability> is less than O or greater than 1.

o if the value of <x> is not an integer.

binompdf (<Trials count:Dec>, <Probability:Dec>, <X:List>) -> List

binompdf (computes a probability at each element from <x> list for the discrete binomial distribution
with the specified <Trials count> and <Probability> of success (p) on each trial. If the value of an

element from the <x> list is less than 0 or more than <Trials count> , the function returns 0.

ERRORS:

* DATA TYPE if the list <x> contains a complex number.
* DOMAIN

o if the value of <Trials count> is not an integer.
o if the value of <Trials count> is less than 1.
o if the value of <Probability> is less than 0 or greater than 1.

o if the list <x> contains a non-integer element.

binomcdf
binomcdf (<Trials count:Dec>, <Probability:Dec>) -> List

binomcdf (computes a cumulative probability at x (list of probabilities from 0 to <Trials count>)
for the discrete binomial distribution with the specified <Trials count> and <Probability> of

success (p) on each trial.
ERRORS:

* DOMAIN
o if the value of <Trials count> isnot an integer.
o if the value of <Trials count> is less than 1.

o if the value of <Probability> is less than 0 or greater than 1.

binomcdf (<Trials count:Dec>, <Probability:Dec>, <X:Dec>) -> Dec

binomcdf (computes a cumulative probability at <x> for the discrete binomial distribution with the
specified <Trials count> and <Probability> of success (p) on each trial. If the value of <x> is
less than 0, the function returns 0. If the value of <x> is greater than <Trials count>, the function

returns 1.
ERRORS:

* DOMAIN
o if the value of <Trials count> is not an integer.
o if the value of <Trials count> is less than 1.
o if the value of <Probability> is less than O or greater than 1.

o if the value of <x> is not an integer.

binomcdf (<Trials count:Dec>, <Probability:Dec>, <X:List>) -> List

binomcdf (computes a cumulative probability at each element from the <x> list for the discrete
binomial distribution with the specified <Trials count> and <Probability> of success (p) on each
trial. If the value of <x> is less than 0, the function returns 0. If the value of <x> 1is greater than

<Trials count> , the function returns 1.
ERRORS:

* DATA TYPE if the list <X> contains a complex number.
* DOMAIN

o if the value of <Trials count> isnot an integer.
o if the value of <Trials count> is less than 1.
o if the value of <Probability> is less than 0 or greater than 1.

o if the list <x> contains a non-integer element.

invBinom
invBinom(<Area:Dec>, <Trials count:Dec>, <Probability:Dec>) -> Dec

invBinom(is the inverse binomial distribution function with the specified <Trials count> and
<Probability> of success (p) on each trial. It returns the smallest number of successful trials for which

the given probability <Area> in the binomial distribution is reached or exceeded.

ERRORS:
* DOMAIN
o if the value of <Trials count> isnot an integer.
o if the value of <Trials count> is less than 1.
o if the value of <Probability> is less than 0 or greater than 1.
o if the value of <Area> is less than O or greater than 1.
poissonpdf
poissonpdf (<Mu:Dec>, <X:Dec|List>) -> Dec|List

poissonpdf (computes a probability at <x> for the discrete Poisson distribution with the specified
mean <Mu> . If <x> is list, function return list of results. Value of <x> (or elements) should be integer. If

value of <x> (or elements) less than 0, function return 0. The probability density function (pdf) is:

ERRORS:

* DATA TYPE if the list <x> contains a complex number.

* DOMAIN
o if the value or element of the list <x> is not an integer.

o if the value of <Mu> is less than or equal to 0.

poissoncdf
poissoncdf (<Mu:Dec>, <X:Dec|List>) -> Dec|List

poissoncdf (computes a cumulative probability at <x> for the discrete Poisson distribution with the
specified mean <Mu> . If <x> is list, function return list of results. If value of <x> (or elements) less than
0, function return 0. Note: this function can take the fractional value of the argument <x> (or elements),

but calculation is performed only for integer part of value (TI-84 compatibility).
ERRORS:

* DATA TYPE if the list <X> contains a complex number.
* DOMAIN if the value of <Mu> is less than or equal to 0.

geometpdf
geometpdf (<Probability:Dec>, <X:Dec|List>) =-> Dec|List

geometpdf (computes a probability at <x> , the number of the trial on which the first success occurs, for
the discrete geometric distribution with the specified <Probability> of success. If <x> is list, function
return list of results. Value of <x> (or elements) should be integer. If value of <x> (or elements) less than

1, function return 0. The probability density function (pdf) is:

ERRORS:

* DATA TYPE if the list <x> contains a complex number.
* DOMAIN

o if the value or an element of the list <x> is not an integer.

o if the value of <Probability> is less than 0 or greater than 1.

geometcdf
geometcdf (<Probability:Dec>, <X:Dec|List>) -> Dec|List

geometcdf (computes a cumulative probability at <x>, the number of the trial on which the first
success occurs, for the discrete geometric distribution with the specified <Probability> of success. If
<x> is list, function return list of results. Value of <x> (or elements) should be integer. If value of <x>

(or elements) less than 1, function return 0.

ERRORS:

* DATA TYPE if the list <x> contains a complex number.
* DOMAIN

o if the value or an element of the list <x> 1is not an integer.

o if the value of <Probability> is less than O or greater than 1.

3.7.14. Time functions

startTmr
startTmr () -> Dec

Returns the number of seconds elapsed since the device was powered on. This function is intended to be

used together with the checkTmr (function.

checkTmr
checkTmr (<Seconds:Dec>) -> Dec

Returns the difference between the number of seconds elapsed since the device was powered on and the
number <Seconds> . Used in combination with the startTmr (function to measure elapsed time.

ERRORS:

e DOMAIN if the value of <Seconds> is less than 0.

getTime
getTime() -> List

Returns the current time in 24-hour format as a list, where the first number is the number of hours, the
second is the number of minutes, and the third is the number of seconds. The current time can be set via the
MODE screen in the Set clock menu or using the setTime (function.

setTime

setTime (<Hours:Dec>, <Minutes:Dec>, <Seconds:Dec>) =-> List

Sets the current platform time in 24-hour format. On success, returns the current time as a list (same format
as the getTime (function). (Some platforms may not allow changing the current time.)

ERRORS:

* DOMAIN

o if the value of <Hours>, <Minutes>, or <Seconds> is notan integer.
o if the value of <Hours> is less than 0 or greater than 23.
o if the value of <Minutes> is less than O or greater than 59.

o if the value of <Seconds> is less than 0 or greater than 59.

getTmFmt
getTmFmt () -> Dec

Returns a number representing the current time format (12 or 24). The time format can be set in the MODE
screen under the Set clock menu or via the setTmFmt (command.

getTmStr
getTmStr() -> Str
getTmStr (<Format:Dec>) -> Str

Returns a string containing the current time. If <Format> is 12, the resulting time format will be 09:00
PM . If <Format> is 24, the resulting time format will be 21:00 . By default, the value of <Format> is

the result of the getTmFmt (function.
ERRORS:

* DOMAIN if the value of <Format> isnot 12 or 24.

getDate
getDate() -> List

Returns the current date as a list, where the first number is the year, the second is the month, and the third is
the day. The current date can be set via the MODE screen in the Set clock menu or using the setbDate (

function.

setDate
setDate (<Year:Dec>, <Month:Dec>, <Day:Dec>) -> List

Sets the current platform date. On success, returns the current date as a list (same format as the getDate (

function) (some platforms may not allow changing the current date).

ERRORS:
* DOMAIN
o if the value of <Year>, <Month>,or <Day> isnot an integer.
o if the value of <Year> is less than 2000 or greater than 2150.
o if the value of <Month> is less than 1 or greater than 12.
o if the value of <Day> is less than 1 or greater than 31.
getDtFmt

getDtFmt () =-> Dec

Returns a number representing the current date format:

* <Format> =1-M/D/Y
e <Format> =2-D/M/Y
* <Format> =3-Y/M/D

The current date format can be set in the MODE screen under the Set clock menu or via the setDtFmt (

command.
getDtStr
getDhtStr() -> Str
getDtStr (<Format:Dec>) -> Str

Returns a string containing the current date, formatted according to the specified format (all numbers in the
string will be two digits).

e <Format> =1-M/D/Y
* <Format> =2 -D/M/Y
e <Format> =3-Y/M/D

By default, the value of <Format> is the result of the getDtFmt (function.
ERRORS:

* DOMAIN if the value of <Format> isnot 1, 2, or 3.

timeCny
timeCnv (<Seconds:Dec>) -> List

Converts the number of seconds <Seconds> into a list, where the first number is the number of days, the
second is the number of remaining hours, the third is the number of remaining minutes, and the fourth is the

number of remaining seconds.
ERRORS:

* DOMAIN if the value of <Seconds> is not an integer.

dayOfWk
dayOfWk (<Year:Dec>, <Month:Dec>, <Day:Dec>) -> Dec
Returns the weekday of the specified date. Sunday is the first day of the week, Monday is the second.
ERRORS:

* DOMAIN
o if the value of <Year>, <Month>, or <Day> is not an integer.

o if the value of <Year> is less than 1900.

o if the value of <Month> is less than 1 or greater than 12.
o if the value of <Day> is less than 1 or greater than 31.

o if the specified date does not exist (e.g., February 30).

dbd
dbd (<Date 1l:Dec>, <Date 2:Dec>) -> Dec

Returns the difference in days between the dates <Date 2> and <Date 1> . Date formats are as follows:
MM.DDYY or DDMM.YY . This format imposes restrictions on the years used (from 1901 to 2000). For
example, 2.2889 represents February 28, 1989, and 3112 represents December 31, 2000.

ERRORS:

* DOMAIN

o if the value of <bate 1> or <Date 2> is less than 0.
o if the value of <Date 1> or <Date 2> cannot be converted into an existing date (between
1901 and 2000).

dbd (<Date 1l:Dec>, <Date 2:List>) -> List

Returns a list formed from the results of sequentially performing the specified operation between the
number <Date 1> and the corresponding element of the list <Date 2> .

ERRORS:

* DATA TYPE if the list <Date 2> contains a complex number.

dbd (<Date 1:List>, <Date 2:Dec>) -> List

Returns a list formed from the results of sequentially performing the specified operation between the
corresponding element of the list <Date 1> and the number <Date 2> .

ERRORS:

* DATA TYPE if the list <Date 1> contains a complex number.

dbd(<Date 1l:List>, <Date 2:List>) -> List

Returns a list formed from the results of sequentially performing the specified operation between the
corresponding elements of the lists <Date 1> and <Date 2>.

ERRORS:

* DATA TYPE

o if the list <Date 1> contains a complex number.

o if the list <Date 2> contains a complex number.

* DIM MISMATCH if the lengths of the lists <Date 1> and <Date 2> are different.

3.7.15. Various functions

existPrgm
existPrgm(<Program:Str>) =-> Dec

Returns 1 if a ZeroBasic program named .zcb exists in the file system; otherwise, returns 0. Since the
data type of the argument <Program> is Str, it is not possible to work with programs whose names
contain double quotes ("). <Program> corresponds to a file named .zcb . The search for programs is

performed in the /exchange/ path, excluding subdirectories, within the calculator's file system.

Pxl_Test
Pxl Test(<X:Dec>, <Y:Dec>) -> Dec

Returns 0 if the pixel color in the graph window matches the background color. Otherwise, the function
returns 1. The values <x> and <Y> correspond to the pixel coordinates. The drawing area size is 195
pixels in height and 320 pixels in width. The origin is at the top-left corner (0, 0), the Y-axis values
increase from top to bottom, and the X-axis values increase from left to right.

ERRORS:
* DOMAIN
o if the value of <x> or <y> is not an integer.
o if the value of <x> is less than 0 or greater than 319.
o if the value of <v> is less than 0 or greater than 194.
getKey
getKey() -> Dec

Returns the number of the pressed key. If no key was pressed, the function returns 0. The function waits for
a key press for about 50 ms, so it is preferred to use this function within a loop that waits for a key press.

angle draw

Abps dlgr Uals

sin

ERRORS:

* INVALID if the command is not called inside a script file.

getKey (<Delay:Dec>) =-> Dec

Returns the number of the pressed key. If no key was pressed, the function returns 0. The function waits for
a button press for seconds. The value of <Delay> must be greater than 0.001. The value <Delay> is
rounded down to the thousandth place (0.00298 -> 0.002). The maximum delay time is 100 seconds and
does not depend on the value <Delay> .

ERRORS:

* INVALID if the command is not called inside a script file.
* DOMAIN if the value of <Delay> is out of the specified range.

Input

Input() -> Done

Opens a modal window of the graph and activates the pointer for point selection. Pointer control is done
using the buttons n, u, a, u After selecting a point using the button, the function places the
pointer coordinates into the X and Y variables.

ERRORS:

* INVALID if the command is not called inside a script file.

Input (<Ident Var:Any>) -> Any

Input (<Prompt:Str>, <Ident Var:Any>) -> Any

via user input. Unlike assignment, this function does not attempt to convert the variable name to valid
syntax. If executed successfully, it returns the value assigned to the variable. The <Prompt> variable
contains a string that is displayed before the user input. By default, <Prompt> is "?". It is similar to the

Prompt command.
ERRORS:

* INVALID

° if nothing was entered (empty input).
o if entered call of script file
o if entered call of some command

o if the command is not called inside a script file.
* DATA TYPE if the result of the user input expression has a type different from the variable

* Various errors related to assignment.

expr
expr (<Expression:Str>) -> Any
Executes the expression <Expression> in the current context, and returns the result of the expression.
Parsing is performed in the expression mode.

inString
inString(<Value:Str>, <Substr:Str>) -> Dec
inString(<Value:Str>, <Substr:Str>, <Start:Dec>) -> Dec

This function searches for the substring <Substr> within the string <value>, starting from position
<Start> . By default, <start> is 1 (the search starts from the first character, left to right). The search is
case-sensitive. The function returns the position of the first character of the found substring. If no match is

found, the function returns 0.

ERRORS:

* DOMAIN

o if the value of <Start> is not an integer.
o if the value of <Start> is less than 1.
length
length (<Value:Str>) -> Dec

Returns the length of the string <value> .

sub
sub (<Value:Str>, <Start:Dec>) -> Str
sub (<Value:Str>, <Start:Dec>, <Length:Dec>) -> Str

This function returns a substring of <vValue> starting from the character at position <Start>, with a
length of <Length> . By default, <Length> is the number of characters from <Start> to the end of
the string (it cuts the string to the end).

ERRORS:

* DOMAIN

o if the value of <Start> or <Length> is not an integer.
o if the value of <Start> is less than 1.

o if the value of <Length> is less than 0.

o INVALID DIMENSION if the sum of the values of <Start> and <Length> minus 1 is greater
than the length of the string <value> .

toString, eval
Synonym: eval (...
toString(<Value:Any>) =-> Str

Returns the value of <value> as a formatted string.

3.8. Conditional statement

Corresponds to the IfStmt node. The conditional statement allows implementing branching of expressions or

scripts.

if <Condition:Dec|Imag> then <True Expressions> [else <False Expressions>]

end

If <Condition> is not equal to 0 (including the imaginary part), the <True Expressions> are
executed sequentially; otherwise, <False Expressions> are executed (if this block is provided).

<True Expressions> and <False Expressions> are multiple Stmt nodes, so they can also

contain conditional and other structures. The lexical and syntactical structure of the node implies its use in
script files (using spaces as separators, inputting multiline expressions). The node can also be used in
expressions with some limitations (it is necessary to separate control structures from other expressions).
Using the : separator on the main screen will also not yield a result, as expressions separated by it are
executed independently of each other (but within the same variable context). The result of executing the
construction is the result of the last executed expression.

3.9. Conditional loop

Corresponds to the Whilestmt node. A conditional loop allows repeating the execution of child expressions.
while <Condition:Dec|Imag> do <Expressions> end

If <Condition> is not equal to 0 (including the imaginary part), the <Expressions> are executed
sequentially, then the value of <Condition> is recalculated and the loop repeats. If <Condition> is
equal to 0 (including the imaginary part), the loop is terminated. <Expressions> is composed of several
Stmt nodes, so they can also contain nested loops and other structures. The lexical and syntactical
structure of the node implies its use in script files (using spaces as separators, inputting multiline
expressions). The node can also be used in expressions with some limitations (it is necessary to separate
control structures from other expressions). Using the : separator on the main screen will also not yield a
result, as expressions separated by it are executed independently of each other (but within the same variable
context). The result of executing the construction is 0. Interrupt the loop is possible by pressing the
button.

3.10. Iterative loop

Corresponds to the Forstmt node. The iterative loop allows repeating the execution of child expressions.

for <Ident Var:Dec> 1in <Start:Dec> , <Finish:Dec> [, <Step:Dec>] do

<Expressions> end

Calculates the values of <Start>, <Finish>,and <Step> . By default, the value of <Step> is 1.

<Expressions> consists of several Stmt nodes, so they can also contain nested loops and other

structures. The lexical and syntactical structure of the node implies its use in script files (using spaces as
separators, inputting multiline expressions). The node can also be used in expressions with some limitations
(it is necessary to separate control structures from other expressions). Using the : separator on the main

screen will also not yield a result, as expressions separated by it are executed independently of each other

(but within the same variable context). The result of executing the construction is the value of the variable

3.11. Calling a script file

Corresponds to the CallsStmt node. This construct is intended for executing script files in the global context
(ZeroBasic has only a global execution context). Using script files is similar to using subprograms or functions
(with some exceptions) in other programming languages. Interrupt the execution of the program or the
calculation of expressions are possible by pressing the [uill button.

call <Program:Str>

Since the data type of the argument <Program> is Str, it is not possible to work with programs whose
names contain double quotes ("). <Program> corresponds to a file named .zcb . The search for
programs is performed in the /exchange/ path, excluding subdirectories, within the calculator's file
system. The ZeroBasic application allows managing script files. Lexical analysis of a script file differs from
lexical analysis of expressions, for more details see the sections Lexical structure of expressions and Lexical

structure of a script file (zcb). The syntactical structure of a script file corresponds to the Program node,

which can contain several Stmt nodes, so they can also contain calls to script files and other constructs.
Expressions (nodes stmt) are executed sequentially. The result of executing the construction is the result

of the last executed expression. Some functions take into account that they are called from a script file.
ERRORS:

* No such program if the file is not found.

* eval break if the button is pressed.

* SYNTAX if the file contains syntax errors.

* Various errors related to program execution.

3.12. Operations
Below is a list of mathematical operations in the order of their execution priority. Equivalent operations are
grouped together. Expressions enclosed in parentheses (parentheses groups) have priority in the execution

order. All operations have left associativity (evaluated left to right), unless stated otherwise. Using incorrect
data types will result in a DATA TYPE error.

3.12.1. Postfix operations

Corresponds to the PostfixOp node. These constructions are operations, so they can be combined and

executed sequentially, which may not be immediately obvious. Expression 10! °"'r is a valid expression.

Factorial

Corresponds to the | Factorial | token.

<Base:Dec> ! -> Dec
Factorial of 0 is 1. The result is limited to the value 7.257415615e+306 (<Base> < 170).
ERRORS:

* DOMAIN

o if the value of <Base> is not an integer.

o if the value of <Base> is negative.

e QVERFLOW if the result overflows.

Conversion to radians
Corresponds to the | Radian | token.

<Value:Dec> (\XxCA) r -> Dec

The expression is equivalent to <value> / <Angle Measurement> . The value of <Angle

Measurement> iSs m/180 (~0.0175) in Degree mode, and 1 in Radian mode.

Conversion to seconds

Corresponds to the SecondPostfixOp node.

<Seconds:Dec> (\xD3) " -> Dec

The expression is equivalent to <Seconds> / 3600 .

Conversion to minutes

Corresponds to the MinutePostfixOp node. This node will be connected to the following second node if a

second node exists.
<Minutes:Dec> (\x27) ' [<Seconds:Dec> (\xD3) "] -> Dec

The expression is equivalent to <Minutes> / 60 + <Seconds> / 3600 . By default, the value of

<Seconds> is 0.

ooy

The expression 30'25"" is equivalent to 30'(25")" . The expression 30'25
30" ((25°)°)"

is equivalent to

Conversion to degrees

Corresponds to the DegreePostfixOp node. This node will be connected to the following minute or second

node if they exist.

<Degrees:Dec> (\xBF) ° [<Minutes:Dec> (\x27) '][<Seconds:Dec> (\xD3) "] -> Dec

The expression is equivalent to (<Degrees> <Minutes> / 60 + <Seconds> / 3600) * <Angle
Measurement> . By default, the value of <Minutes> is 0, the value of <Seconds> is 0. The value of

<Angle Measurement> is 1 in Degree mode, and n/180 (= 0.0175) in Radian mode.

The expression 30°°30''30"" isequivalentto (30°)°(30") ' (30")" .

3.12.2. Exponentiation

Corresponds to the ExponentStmt node. Raising 0 to the power of 0 will cause an error.

A

<Base:Dec> <Exponent:Dec> -> Dec

The expression corresponds to the equivalent mathematical operation. Raising 0 to the power of 0 will cause
an error.

ERRORS:

* DIVIDE BY () if the value of <Base> is negative and the value of <Exponent> is fractional.
* DOMAIN if both <Base> and <Exponent> are 0.

A

<Base:Imag> <Exponent:Imag> -> Imag
ERRORS:

* DOMAIN if the Degree mode is active.

<Base:List> * <Exponent:Dec|Imag> -> List

The resulting list will be formed from the elements on which the specified operation is performed.

<Base:Matr> ~ <Exponent:Dec> -> Matr
Returns a matrix of the same dimension.

* If the value of <Exponent> is 0, the operation returns the identity matrix.

* If the value of <Exponent> is -1, the operation returns the matrix inverse of the matrix <Base> .
Generates the error SINGULAR MATR if the original matrix is singular.

* [f the value of <Exponent> is greater than 0, the operation performs matrix multiplication of the

matrix <Base> by itself <Exponent> times.
ERRORS:

o INVALID DIMENSION if the matrix <Base> is not square or has zero size.
* DOMAIN

o if the value of <Exponent> is not an integer.

o if the value of <Exponent> is less than 0.

3.12.3. Unary operations
Corresponds to the UnaryStmt node.

Unary minus
- <Operand:Dec> -> Dec

Returns the opposite number.

- <Operand:Imag> -> Imag

Returns the opposite complex number.

- <Operand:List> -> List

The resulting list will be formed from the elements on which the specified operation is performed.

- <Operand:Matr> -> Matr

The resulting matrix will be formed from the elements on which the specified operation is performed.

Logical negation

The use of a space in this construction is only allowed in script file mode. To use the operator in expressions,
<Operand> should be separated by parentheses or special space (\XAC) (see more in the section Lexical

structure common for file and expression). The operator not is case-insensitive (not and NOT are
equivalent).

not <Operand:Dec|Imag> -> Dec

If the value of <Operand> is 0, it returns 1, otherwise it returns 0.

not <Operand:List> =-> List

The resulting list will be formed from the elements on which the specified operation is performed.
3.12.4. Multiplication and division

Corresponds to the MultiplicationStmt node.

Multiplication
<Multiplicand:Dec> * <Multiplier:Dec> -> Dec

The expression corresponds to the equivalent mathematical operation.

<Multiplicand:Imag> * <Multiplier:Imag> -> Dec|Imag

The expression corresponds to the equivalent mathematical operation for complex numbers.

<Multiplicand:List> * <Multiplier:Dec|Imag> -> List
<Multiplicand:Dec| Imag> * <Multiplier:List> -> List

The resulting list will be formed from the products of the elements with the number.

<Multiplicand:List> * <Multiplier:List> -> List

The resulting list will be formed from the products of corresponding list elements. The sizes of the lists
must match, otherwise the error DIM MISMATCH will be generated.

<Multiplicand:Matr> * <Multiplier:Dec|Imag> -> Matr
<Multiplicand:Dec| Imag> * <Multiplier:Matr> -> Matr

The resulting matrix will be formed from the products of elements with the number.

<Multiplicand:Matr> * <Multiplier:Matr> -> Matr

The operation performs matrix multiplication of matrix <Multiplicand> by <Multiplier>. The
width of <Multiplicand> must equal the height of <Multiplier>, otherwise the error
DIM MISMATCH will be generated. The height of the resulting matrix will be equal to the height of
<Multiplicand>, and the width will be equal to the width of <Multiplier> .

Division

The natural fraction symbol (~ \x9D) in this case is interpreted as the division operator with subsequent

conversion of the result to a natural fraction. If <Divisor> is 0, this will result in an error D/VIDE BY 0.
<Dividend:Dec> / <Divisor:Dec> -> Dec

The expression corresponds to the equivalent mathematical operation.

<Dividend:Imag> / <Divisor:Imag> -> Dec|Imag

The expression corresponds to the equivalent mathematical operation for complex numbers.

<Dividend:List> / <Divisor:Dec|Imag> -> List

The resulting list will be formed from the elements of the list <Dividend> divided by <Divisor> .

<Dividend:Dec| Imag> / <Divisor:List> -> List

The resulting list will be formed from the elements of <Dividend>, divided by the elements of the list

<Divisor>.

<Dividend:List> / <Divisor:List> -> List

The resulting list will be formed from the ratios of the elements of the list <Dividend> to the
corresponding elements of the list <Divisor>. The sizes of the lists must match, otherwise an error
DIM MISMATCH will be generated.

3.12.5. Addition and subtraction

Corresponds to the AdditionStmt node.

Addition

<Addend 1l:Dec> + <Addend 2:Dec> -> Dec

The expression corresponds to the same mathematical operation.

<Addend 1:Imag> + <Addend 2:Imag> -> Dec|Imag

The expression corresponds to the same mathematical operation for complex numbers.

<Addend 1l:List> + <Addend 2:Dec|Imag> -> List
<Addend 1l:Dec|Imag> + <Addend 2:List> =-> List

The resulting list will be formed from the sums of elements with the number.

<Addend 1:List> + <Addend 2:List> -> List

The resulting list will be formed from the sums of corresponding elements of the lists. The list sizes must
match, otherwise an error DIM MISMATCH will be generated.

<Addend 1l:Matr> + <Addend 2:Matr> -> Matr

The resulting matrix will be formed from the sums of corresponding elements of the matrices. The matrix
sizes must match, otherwise an error DIM MISMATCH will be generated.

<Addend 1:Str> + <Addend 2:Str> -> Str

Concatenates two strings.

Subtraction
<Minuend:Dec> - <Subtrahend:Dec> -> Dec

The expression corresponds to the same mathematical operation.

<Minuend:Imag> - <Subtrahend:Imag> -> Dec|Imag

The expression corresponds to the same mathematical operation for complex numbers.

<Minuend:List> - <Subtrahend:Dec|Imag> -> List

The resulting list will be formed from the elements of the list <Minuend> , from which <Subtrahend>

is subtracted.

<Minuend:Dec| Imag> - <Subtrahend:List> -> List

The resulting list will be formed from the set of differences <Minuend> and the elements

<Subtrahend> .

<Minuend:List> - <Subtrahend:List> -> List

The resulting list will be formed from the differences of corresponding elements of the lists. The list sizes
must match, otherwise an error DIM MISMATCH will be generated.

<Minuend:Matr> - <Subtrahend:Matr> -> Matr

The resulting matrix will be formed from the differences of corresponding elements of the matrices. The
matrix sizes must match, otherwise an error DIM MISMATCH will be generated.

3.12.6. Comparison operations

Corresponds to the CompareStmt node.

Equality
The Equality operation is represented by =, but it can also appear as == in expressions.
<Value l:Dec|Imag> = <Value 2:Dec|Imag> -> Dec

Returns 1 if the difference between <value 1> and <vValue 2> is less than or equal to 0, otherwise

returns 0.
<Value 1l:List> = <Value 2:Dec|Imag> -> List
<Value 1l:Dec|Imag> = <Value 2:List> -> List

The resulting list will be formed from elements that have undergone the Equality operation with the
specified number.

<Value 1l:List> = <Value 2:List> =-> List

The resulting list will be formed from the results of the specified operation between corresponding elements
of the lists. The list sizes must match; otherwise, a DIM MISMATCH error will be generated.

<Value 1l:Matr> = <Value 2:Matr> -> Dec

Performs the Equality operation on corresponding elements of the matrices. If all corresponding elements
are equal, it returns 1; otherwise, it returns 0. The matrix sizes must match; otherwise, a DIM MISMATCH

error will be generated.

<Value 1:Str> = <Value 2:Str> -> Dec

Returns 1 if the strings are equal character by character, otherwise returns 0.

Inequality

The Inequality operation is represented by != or # (\xB1). This operation is similar to the Equality operation,

except that the result is additionally subject to a Logical Negation. The expression

<Value 1> # <Value 2> isequivalent to the expression not (<value 1> = <Value 2>) .

Greater
<Value l:Dec> > <Value 2:Dec> -> Dec

Returns 1 if the difference between <value 1> and <Value 2> is greater than 0, otherwise returns 0.

<Value 1l:List> > <Value 2:Dec> -> List

The resulting list will be formed from the elements of the list <value 1>, where the Greater operation

was applied with <value 2> .

<Value 1l:Dec> > <Value 2:List> -> List

The resulting list will be formed from the set of results of Greater operations between <value 1> and the

elements of the list <value 2> .

<Value 1l:List> > <Value 2:List> -> List

The resulting list will be formed from the results of Greater operations between corresponding elements of
the list <value 1> and <vValue 2> . The list sizes must match, otherwise a DIM MISMATCH error will

be generated.
ERRORS:

* DATA TYPE if the list <value 1> or <Value 2> contains a complex number.

Greater or equal
The Greater or equal operation is represented by >= or > (\x96).
<Value 1l:Dec> 2 <Value 2:Dec> -> Dec

Returns 1 if the difference between <value 1> and <value 2> is greater than or equal to 0, otherwise

returns 0.

<Value 1l:List> 2 <Value 2:Dec> -> List

The resulting list will be formed from the elements of the list <value 1>, where the Greater or equal

operation was applied with <value 2> .

<Value l:Dec> 2 <Value 2:List> -> List

The resulting list will be formed from the set of results of Greater or equal operations between
<Value 1> and the elements of the list <value 2> .

<Value 1l:List> 2 <Value 2:List> -> List

The resulting list will be formed from the results of Greater or equal operations between corresponding
elements of the list <value 1> and <Value 2>. The list sizes must match, otherwise a
DIM MISMATCH error will be generated.

ERRORS:

* DATA TYPE if the list <Vvalue 1> or <Value 2> contains a complex number.

Less
<Value 1l:Dec> < <Value 2:Dec> -> Dec

Returns 1 if the difference between <value 1> and <value 2> is less than 0, otherwise returns 0.

<Value 1l:List> < <Value 2:Dec> -> List

The resulting list will be formed from the elements of the list <value 1>, where the Less operation was

applied with <value 2> .

<Value 1l:Dec> < <Value 2:List> -> List

The resulting list will be formed from the set of results of Less operations between <value 1> and the

elements of the list <value 2> .

<Value 1l:List> < <Value 2:List> -> List

The resulting list will be formed from the results of Less Than operations between corresponding elements
of the list <value 1> and <vValue 2> . The list sizes must match, otherwise a DIM MISMATCH error

will be generated.
ERRORS:

* DATA TYPE if the list <value 1> or <Value 2> contains a complex number.

Less or equal
The Less or equal operation is represented by <= or < (\x95).

<Value l:Dec> < <Value 2:Dec> -> Dec

Returns 1 if the difference between <value 1> and <value 2> is less than or equal to 0, otherwise

returns 0.

<Value 1l:List> £ <Value 2:Dec> -> List

The resulting list will be formed from the elements of the list <value 1>, where the Less or equal

operation was applied with <value 2>.

<Value l:Dec> < <Value 2:List> -> List

The resulting list will be formed from the set of results of Less or equal operations between <value 1>

and the elements of the list <value 2> .

<Value 1l:List> < <Value 2:List> -> List

The resulting list will be formed from the results of Less or equal operations between corresponding
elements of the list <value 1> and <Value 2>. The list sizes must match, otherwise a
DIM MISMATCH error will be generated.

ERRORS:

* DATA TYPE if the list <value 1> or <Value 2> contains a complex number.

3.12.7. Logical operations

Corresponds to the LogicOrStmt and LogicAndStmt nodes. The Logical AND operation executed earlier

than the Logical OR and Exclusive OR operations.

Logical AND

The use of space in this construction is allowed only in script file mode. To use the operation in expressions

<value 1> and <vValue 2>, separate them with parentheses or special space (\xAC) (more details in the

section The structure of lexemes common to a file and an expression). The operator and is case-insensitive

(and and AND are equivalent).

<Value 1l:Dec> and <Value 2:Dec> -> Dec

Returns 1 if <value 1> and <value 2> are not equal to 0, otherwise 0.

<Value 1l:List> and <Value 2:Dec> -> List

<Value 1l:Dec> and <Value 2:List> -> List

The resulting list will be formed from the results of the specified operation between the list elements and the
number.

<Value 1:List> and <Value 2:List> =-> List

The resulting list will be formed from the results of the specified operation between corresponding elements
of list <value 1> and <value 2>. The lists must have the same size, otherwise an error
DIM MISMATCH will be generated.

ERRORS:

* DATA TYPE if the list <value 1> or <Value 2> contains a complex number.

Logical OR

The use of space in this construction is allowed only in script file mode. To use the operation in expressions
<Value 1> and <Value 2>, separate them with parentheses or special space (\xAC) (more details in the

section The structure of lexemes common to a file and an expression). The operator or is case-insensitive

(or and OR are equivalent).
<Value 1l:Dec> or <Value 2:Dec> -> Dec

Returns 0 if <value 1> and <value 2> are both equal to 0, otherwise 1.

<Value 1l:List> or <Value 2:Dec> -> List
<Value 1l:Dec> or <Value 2:List> -> List

The resulting list will be formed from the results of the specified operation between the list elements and the
number.

<Value 1l:List> or <Value 2:List> -> List

The resulting list will be formed from the results of the specified operation between corresponding elements
of list <value 1> and <value 2>. The lists must have the same size, otherwise an error
DIM MISMATCH will be generated.

ERRORS:

* DATA TYPE if the list <value 1> or <Value 2> contains a complex number.

Exclusive OR

The use of space in this construction is allowed only in script file mode. To use the operation in expressions
<vValue 1> and <Value 2>, separate them with parentheses or special space (\xAC) (more details in the

section The structure of lexemes common to a file and an expression). The operator xor is case-insensitive

(xor and XOR are equivalent).
<Value 1l:Dec> xor <Value 2:Dec> -> Dec

Returns 0 if <value 1> and <vValue 2> are both 0 or <value 1> and <value 2> are both non-

zero, otherwise 1.

<Value 1l:List> xor <Value 2:Dec> -> List
<Value 1l:Dec> xor <Value 2:List> -> List

The resulting list will be formed from the results of the specified operation between the list elements and the
number.

<Value 1l:List> xor <Value 2:List> -> List

The resulting list will be formed from the results of the specified operation between corresponding elements
of list <value 1> and <value 2>. The lists must have the same size, otherwise an error
DIM MISMATCH will be generated.

ERRORS:

* DATA TYPE if the list <value 1> or <value 2> contains a complex number.

IV. Text description of lexical structure of Main screen expressions

@startebnf

program = empty prgm | (stmt (* [1] *), {":", stmt});
empty prgm = ? end of input ?;

(* [1]: TI-84 is capable of processing empty stmt,

Zero Calculator interrupts program execution

upon encountering an empty stmt. *)
@endebnf

V. Text description of lexical structure of an expression

@startebnf
page 1x1
stmt = (
Command, [
(2 space 2 | "("),
[exprList]
11
[exprList]

)I

2)3 2 (x [11 *),

? end of input ?;
@endebnf

@startebnf
page 1x5
exprList = expr, { 2 * 2?2 (* [2] *), expr };

(* [1]: After lexical analysis, the list of lexemes is divided into blocks.
The block boundaries defined by [-]. At the end of each block, tokens

for any missing closing brackets ([)1, []11, [}]) are added.

The insertion order is the reverse of the opening brackets.

*)

(* [2]: An insertion of the [*] token between two [expr] occurs in

the following cases:

previous [expr] next [expr] example
- [Number], [Identifier] "3x"
- [Number], [(] "3 (n
- [Number], ({1 n3n
- [Number], [[] "3
- [Imag], [Identifier] mix"
- [Imag], [(] i
- [Imag], [{] i
- [Imag], ([l i
- [Imag], [Imag] "iim
- [Identifier], [Number] "X5"
- [Identifier], [Imag] "Xin
- [Identifier], [Identifier] "Xo"
- [Identifier], ({1 "X{"
- [Identifier], [[] "X["
- D1y [(] ") ("
- D1y [{] ") "
- D1y [[] ")
=)1, [Number] ")y3"
- D1y [Imag] "yi
=)1, [Identifier] "y x"
- D1, [UnaryMinus] "=

[}] [Number] "}3"
[}] [Imag] "L
= [§1; [Identifier] "rx"
[}] [(] "E(
[}] [{] "

- [Identifier], [(]

*)
@endebnf

@startebnf
page 1x1

expr = "\n" | Lexeme;
equals =
@endebnf

n_mn
4

[P=T1 o

provided that [Identifier] is

a

a

a

a

'Ans’',

FunctionIdentifier,
CustomListIdentifier,
StandardListIdentifier,
MatrixIdentifier,
'TblInput’

not

VI. Text description of lexical structure of a script file

@startebnf

page 1x1

program = stmt, { "\n", stmt }, ? end of input ?;
@endebnf

@startebnf
page 1x2
stmt = Command, [
(2 space 2 | "("),
[exprList]
11
[exprList];

exprList = expr, { expr };

@endebnf

@startebnf

page 1x1

expr = { ? space ? }, ("\n" | Lexeme);
equals — ||=||, ||=||;

@endebnf

VII. Text description of the structure of lexemes common to a file and an
expression

@startebnf

page 1x3

Command = MatrixIdentifier |
PicturelIdentifier |
GDBIdentifier |
OneSymbolIdentifier |
StandardListIdentifier |
CustomListIdentifier |
Identifier;

(* The command lexeme is formed only when

the textual content of the identifier

matches the command name (a complete list

is available in the Commands section)

or the [Call] token. *)

@endebnf

@startebnf

page 1x5

Lexeme = Comment |
MatrixIdentifier |
Pictureldentifier |
GDBIdentifier |
ConvertingOperator |
SymbolToken |
OneSymbolIdentifier |
DegreePostfixOperator |
UpperPower |
StoreOrMinus |
GreaterOrGreaterEquals |
LessOrLessEquals |
equals |
NotEqualsOrFactorial |
Imag |
StandardListIdentifier |
CustomListIdentifier |
Number |
Identifier |
String;

@endebnf

@startebnf

page 1x1

Comment = ? // 2 (* [2] *), [? any character ?];
(* [2]: A comment is treated as

"\n" character or end of input *)

@endebnf

@startebnf

page 1x1

MatrixIdentifier = "[", {Alpha}-, "1";
PicturelIdentifier = "Pic", Digit;
GDBIdentifier = "GDB", Digit;

@endebnf

@startebnf

page 1x1

ConvertingOperator = "»" (* [3] *), { Alpha | "»" (* [4] *) | "<«" | "/" };
(* [3]: "»' Conversion symbol (\xDA) *)
(* [4]: "»' Right triangle arrow symbol (\x9E) *)
@endebnf
@startebnf
page 1x1
Imag = "i" (* Imaginary unit symbol (\xA5) *);
@endebnf
@startebnf
page 1x4
SymbolToken = "+" | "x" | "/mw | onan |
B G R A S G N b B B S|
B I ol SN o B B) IR
oo (x [e] *) | "L (x [7] *) | =" (¢ [8] *);
(* [5]: The next character must not be

a closing bracket *)

(* [6]: '~' Common fraction symbol (\x9D) *)
(* [7]: '",' Mixed number fraction symbol (\xA0) *)
@endebnf
@startebnf
page 1x5
OneSymbolIdentifier = "ny" (* Root with degree symbol (\xAl) *) |
"\" (* Square root symbol (\x7F) *) |
"o" (* Pi symbol (\xD2) *) |
e (* Euler's number symbol (\xD0) *) |
"10" (* Small number 10 symbol (\xD5) *) |
"y (* Mean y symbol (\xAA) *) |
Wi (* n in statistics symbol (\xD7) *) |
"n" (* n in SEQUENCE graphs symbol (\xDB) *);
@endebnf
@startebnf
page 1x1
DegreePostfixOperator = "°" (* Degree symbol (\xBF) *) |
"'" (¥ Minute symbol (\x27) *) |
"mno (% Second symbol (\xD3) *) |
"r" (* Radian symbol (\xCA) *);
@endebnf
@startebnf
page 1x1
UpperPower = "~'" (* Negative one power symbol (\x8A) *) |
nrer — r9rn (x (\x80 - \x89) *);
@endebnf
@startebnf
page 1x1
StoreOrMinus = "-" (* Assignment symbol (\xA8) *) |
="y """
@endebnf
@startebnf
page 1x1
GreaterOrGreaterEquals = "2" (* (\x96) *) |

(">", ["="J);
@endebnf

@startebnf

page 1x1
LessOrLessEquals = "<" (* (\x95) *) |
<y, "="1
@endebnf
@startebnf
page 1x1
equals = "=", ["="] (* In expressions mode *);
equals = "=", "=" (* In a script file mode *);
@endebnf
@startebnf
page 1x1
FactorialOrNotEquals = "#" (* (\xBl) *) |
¢, ="
@endebnf
@startebnf
page 1x1
StandardListIdentifier = "L" (* [9] *), "'e' - 'e'" (* [10] *);
CustomListIdentifier = "." (* [11] *), { Alpha }-;
@endebnf
@startebnf
page 1x3
Number = (
{Digit, {"Digit separator" (* (\xDD) *)}}-,
[NumberFraction],
[NumberExponent]
) |
(
NumberFraction,
[NumberExponent]
) |
(
"E" O (* [12] *),
(
("=" (* [8] *) | "+"), {Digit} |
{Digit (* [13] *)}-
)
) i
NumberFraction = ".", {Digit}-;
NumberExponent = "E" (* [12] *), ["=" (* [8] *) | "+" 1, {Digit};
@endebnf
@startebnf
page 1x5
Identifier = [? special space ? (* \xAC *) 1, (
ThirdRoot |
IdentifierSymb, { IdentifierSymb | " " } |
Not | And | Or | Xor | If | Then | Else | While | Do | For | In | Call | End
), [? special space 2 (* \xAC *)];
ThirdRoot = "3" (* \xDl *), "V" (* \x7F *);
@endebnf
@startebnf
page 1x11

IdentifierSymb = Alpha |
"A" (* Delta symbol (\x9A) *) |

(

"»" (* Right triangle arrow symbol (\x9E)
"4q" (* Left triangle arrow symbol (\x9F)
"+" (* Plus symbol (custom) (\xCE) *) |
"-" (* Dash symbol (custom) (\xDE) *) |
"l" (* Cursive one symbol (\xDF) *) |
"2" (* Cursive two symbol (\xEQ) *) |
"[" (* Cursive left bracket symbol (\xE1l)
"]" (* Cursive right bracket symbol (\xE2)
"2" (¥ Superscript 2 symbol (\xBD) *) |
"t" (* Subscript tau symbol (\xBC) *) |
"~1" (* Inverse trig function symbol (\xD4)
"O" (* Theta symbol (\x99) *) |
"3" (¥ Cube root index symbol (\xDl) *) |
"o" (* Sigma symbol (\xAB) *) |
"S" (* Summation symbol (\xA2) *) |
"x" (* Chi symbol (\xD8) *) |
"R" (* R in statistics (\xBE) *) |
"X" (* Mean x symbol (\xA9) *) |
"p~" (* Rho in statistics symbol (\xB2) *)
"F" (* F in statistics symbol (\xD9) *) |
"Digit separator" (* (\xDD) *) |
"'e' — '9'" (* Subscript digits (\xCO - \xC9)

@endebnf

@startebnf

page 1x1

Not = ("N" | "n"), ("O" | "o"), ("T" | "t");

@endebnf

@startebnf

page 1x1

And = ("A" ["a"), ("N" | "n"), ("D" | "d");

@endebnf

@startebnf

page 1x1

Or = ("O" | "o"), ("R" | "x");

@endebnf

@startebnf

page 1x1

Xor = ("X" | "x"), ("O" | "o"), ("R" | "r");

@endebnf

@startebnf

page 1x1

If = ("1I" | "i"), ("E" | "f");

@endebnf

@startebnf

page 1x1

Then = ("T" | "t"), ("H" | "h"), ("E" | "e"), ("N" | "n");

@endebnf

@startebnf

page 1x1

Else = ("E" | "e"), ("L" | "1"), ("S" ["s"), ("E" | "e");

@endebnf

@startebnf

* Asterisk symbol (custom) (\xCD) *)

*);

page 1x1

While = (uwu ‘ "W") , (qul | vvhvv) , ("IH | vvivv) , ("LH | vvlvv) ,

@endebnf

@startebnf

page 1x1

Do = ("D" | "d"), ("O" | "o");
@endebnf

@startebnf

page 1x1

For = ("F" | "£f"), ("O" | "o"), ("R" | "r");
@endebnf

@startebnf

page 1x1

In = ("I" ["i"), ("N" | "n");
@endebnf

@startebnf

page 1x1

Call = ("C" | "c"), ("a" | "a"), ("L" | "1"), ("L" | "1");
@endebnf

@startebnf

page 1x1

End = ("E" | "e"), ("N" | "n"), ("D" | "d");
@endebnf

@startebnf
page 1x1
String = """ (* \x22 *),

("EH |

{ "any character except '"' (\x22), '\n', '-' (\xA8), '->'"

[wirn (* \X22 *) J;
@endebnf

@startebnf

page 1x1

Alpha = UpperAlpha | LowerAlpha;
UpperAlpha = "'A' - 'Z2'";
LowerAlpha = "'a' - 'z'";

Digit = "'0' - '9'";

@endebnf

@startebnf

page 1x4

(* [7]: '-' Unary minus symbol (\x98) *)
[8]: 'L' List symbol (\xA6) *)

[9]: "e' — '6' (\xCO - \xCo6) *)

[10]: 'L' List symbol (\xA7) *)

*

*

(
(
(*
(* [11]: 'E' Decimal exponent symbol (\xD6) *)

(* [12]: The third branch of a number also constitutes
the exponent part (NumberExponent), but in the first
two cases the order may be omitted due to mantissa
presence ('5E'). The third branch requires either

a sign of exponent or explicit exponent value

("E=", "BGE", "EM) =)

@endebnf

vvevv) ;

}I

VIII. Text description of syntactic structure of the ZeroBasic language

@startebnf

page 1x1

Program = { "Newline" }, { Stmt }, "EndOfInput";

(* Entry point for syntax parsing of a script file *)
@endebnf

@startebnf
page 1x1
Stmt = (CommandStmt | IfStmt | WhileStmt | ForStmt | CallStmt | StoreStmt),
{ "Newline" },
(
? EndOfInput ? | ? Newline ? | 2 End ? | ? Else ?
(* Token after Stmt token must be one of these tokens. *)
) i
(* Entry point for syntax parsing of an expression
(The main screen independently splits the entered
command into expressions) *)
@endebnf

@startebnf
page 1x1
CommandStmt = "Command",
(
"(", [ExprStmt, { ",", ExprStmt } 1, ")" |
[ExprStmt, { ",", ExprStmt }]
) i
(* The marker for analyzing CommandStmt is the [Command]
token. Mismatch in the following syntax will lead to
an error. *)
@endebnf

@startebnf

page 1x1

IfStmt = "If", ExprStmt, { "Newline" }, "Then", { "Newline" }, { Stmt },
["Else", { "Newline" }, { Stmt }], "End";

(* The marker for analyzing IfStmt is the [If] token.

Mismatch in the following syntax will lead to an error. *)

@endebnf

@startebnf

page 1x1

WhileStmt = "While", ExprStmt, { "Newline" }, "Do", { "Newline" }, { Stmt }, "End";
(* The marker for analyzing WhileStmt is the [While] token.

Mismatch in the following syntax will lead to an error. *)

@endebnf

@startebnf

page 1x1

ForStmt = "For", IdentStmt, "In", ExprStmt, ",", ExprStmt, [",", ExprStmt],
{ "Newline" }, "Do", { "Newline" }, { Stmt }, "End";

(* The marker for analyzing ForStmt is the [For] token.

Mismatch in the following syntax will lead to an error. *)

@endebnf

@startebnf
page 1x1
CallStmt = "Call",

"(", ExprStmt, ")" |
ExprStmt
)i
(* The marker for analyzing CallStmt is the [Call] token.
Mismatch in the following syntax will lead to an error. *)
@endebnf

@startebnf
page 1x1
StoreStmt = ExprStmt, [
"Store", IdentStmt, [" (", ExprStmt, [",", ExprStmt 1, ")" 1 |
"ConvertingOp"
17
@endebnf

@startebnf

page 1x1

IdentStmt = "Identifier";
@endebnf

@startebnf

page 1x1

ExprStmt = LogicOrStmt;
@endebnf

@startebnf

page 1x1

LogicOrStmt = LogicAndStmt, { ("Or" | "Xor"), LogicAndStmt };
(* Execution order of logical operations is not specified.
Operations are executed sequentially. *)

LogicAndStmt = CompareStmt, { "And", CompareStmt };

@endebnf
@startebnf
page 1x2
CompareStmt = AdditionStmt, {
("Equals" |
"NotEquals" |
"Greater" |
"GreaterEquals" |
"Less" |
"LessEquals"),
AdditionStmt

}i
(* Execution order of comparison operations is not specified.
Operations are executed sequentially. *)
@endebnf

@startebnf

page 1x1

AdditionStmt = MultiplicationStmt, { ("Plus" | "Minus"), MultiplicationStmt };
@endebnf

@startebnf

page 1x1

MultiplicationStmt = UnaryStmt, { ("Mult" | "Divide" | "ND"), UnaryStmt |
"Imag" };

@endebnf

@startebnf

page 1x1

UnaryStmt = [("Minus" | "UnaryMinus" | "Not"), UnaryStmt], ExponentStmt;
(* The [UnaryMinus] token is replaced by the [Minus] token *)

@endebnf

@startebnf

page 1x1

ExponentStmt = PostfixOpStmt, { "Power" , PostfixOpStmt | "UpperPower" };

(* The [UpperPower] token contains only a single
superscript digit *)

@endebnf

@startebnf

page 1x1

PostfixOpStmt = PrimaryStmt, { PostfixOp };

@endebnf

@startebnf

page 1x1

PostfixOp = DegreePostfixOp |
MinutePostfixOp |
SecondPostfixOp |
"Radian" |

"Factorial";

@endebnf
@startebnf
page 1x1
DegreePostfixOp = "Degree", [PrimaryStmt, ({MinutePostfixOp}- | {SecondPostfixOp}-)1;
@endebnf
@startebnf
page 1x1
MinutePostfixOp = "Minute", [PrimaryStmt, {SecondPostfixOp}- 1;
@endebnf
@startebnf
page 1x1
SecondPostfixOp = "Second";
@endebnf
@startebnf
page 1x3
PrimaryStmt = UNDStmt |
ImagStmt |
VarOrFnCallStmt |
GroupingStmt |
ListStmt |
MatrixStmt |
UnaryStmt (* Only for [UnaryMinus] token *) |
StringStmt;
@endebnf
@startebnf
page 1x1
UNDStmt = NumberStmt, ["UND", NumberStmt, "ND", NumberStmt];
@endebnf
@startebnf
page 1x1
NumberStmt = "Number";

ImagStmt = "Imag";

StringStmt = "String";
@endebnf

@startebnf

page 1x1

VarOrFnCallStmt = FnCallStmt | VarStmt;

FnCallStmt = IdentStmt, " (", [ExprStmt, { ",", ExprStmt }], ")";
VarStmt = IdentStmt;

@endebnf

@startebnf

page 1x1

GroupingStmt = " (", ExprStmt, ")";
@endebnf

@startebnf

page 1x1

ListStmt = "{", ExprStmt, { ("," | "Number"), ExprStmt }, "}";
(* The [Number] token is included in the subsequent

ExprStmt node. This analysis structure allows for

the following syntax in the script file:

{1,2,3}

{1 2 3} *)

@endebnf

@startebnf

page 1x2

MatrixStmt = MatrixVarStmt | "[", MatrixRow, { MatrixRow }, "1";
MatrixVarStmt = "[", "Identifiexr", "1";

(* The [Identifier] token must consist only of letters *)
MatrixRow = "[", ExprStmt, { ("," | "Number"), ExprStmt }, "1";
(* The [Number] token is included in the subsequent

ExprStmt node. This analysis structure allows for

the following syntax in the script file:

[([1,2,3]]

[([1 2 311 *)

@endebnf

IX. Documentation changelog

v2.27.1 (2025-12-29)

¢ Added information about errors in commands RecallPic and StorePic.

* Fixed Tangent command working in Par functions mode.

v2.27.0 (2025-12-15)

* Command delVar can remove variables Ans and TblInput.

* Added information about using construction ->dim(on variable Ans.

* Added information about modification list or matrix elements of Ans variable.

* Construction ->dim(modify elements of TblInput variable.

* Prohibited creation variables whose names match with commands and functions.
* Changed lexing special vars (Ans, Tbllnput) to same as another identifiers.

* Added information about returned errors for Input and Prompt commands.

v2.26.0 (2025-10-16)

* Increased the limitation of the result of performing the factorial operation.

* Added check of negative values for the factorial operation.

* Increased the limitation of the result of performing the nCr(function.

* Added interruption the execution of the program or the calculation of expressions by On button.

* Changed names of commands 1-VarStats, 2-VarStats, Med-Med, LinReg[ax+b], LinReg[a+bx], Manual-
Fit.

* Added several symbols to Identifier lexeme.

* Changed parsing Newline tokens in syntax processing of Stmt, [fStmt, WhileStmt and ForStmt.

* Changed lexical analysis for string lexeme (cancel of consuming newline character).

* Changed lexical analysis for stmt, Command and Call lexemes.

* Changed parsing Command and Call tokens.

* Changed data type for command delPrgm(.

* Added command existPrgm(.

* Changed data type of argument of 'Call' construction.

* Mixed fraction (UNDStmt) moved into PrimaryStmt.

* Changed syntax scheme - PrimaryStmt process UnaryStmt only for UnaryMinus token.

* Fixed order of execution of logical operators (and, or, xor).

v2.25.0 (2025-09-11)

* Change description of Disp command (now command Disp can't interrupt Zerobasic execution).

* Added changelog documentation generating.

* Changed style for time functions and commands.

* Changed description of command ClrDraw (not update graph window).

» Added note that draw commands (ClrDraw, Line, Horizontal, Vertical, Tangent, DrawF, Shade,
Drawlnv, Circle, Text, Pt_On, Pt_Off, Pt Change, Px]_On, Pxl_Off, Px] Change) not update graph
window if the command is called from a script file.

* The command Wait can now handle millisecond delays.

* The function getKey can now wait for a key press for the specified time.

* Added out-of-bounds errors for commands Text, TextColor, PxI_On, Pxl_Off, Pxl change.

* Fixed height of letters in Text command from 16 to 18.

* Added string token clipping by ->.

* Removed assignment "Done" to Ans after commands completion.

* Added inverse hyperbolic functions (arsinh, arcosh, artanh).

* Fix trigonometry functions description.

* Fixed broken links from statistical variables to Readonly variables section.

	Zero Calculator
	ZeroBasic User Manual (v2.27.1 dated 12.29.2025)
	Lexical structure of the ZeroBasic language
	Processing mathematically formatted expressions
	Lexical structure of Main screen expressions
	Lexical structure of an expression
	Lexical structure of a script file (zcb)
	The structure of lexemes common to a file and an expression

	Syntactic structure of the ZeroBasic language
	Interpretation of the ZeroBasic language
	Data types
	Fractions
	Variables
	Predefined constants
	Readonly variables
	Y-functions variables
	Strings
	Lists
	Matrices
	The Ans variable

	Assignment
	Conversion
	Commands
	Lists-related commands
	clrAllLists
	ClrList
	List▶matr
	Matr▶list
	resize
	setUpEditor
	SortA
	SortD

	Time-related Commands
	setTmFmt
	setDtFmt

	Input/Output-related commands
	Disp
	DispGraph
	DispTable
	Output
	Prompt
	Pause
	Wait
	Select

	Y-functions related commands
	FnOff
	FnOn
	PlotsOff
	PlotsOn

	Statistical Commands
	1-VarStats
	2-VarStats
	Med-Med
	LinReg[ax+b]
	LinReg[a+bx]
	QuadReg
	CubicReg
	QuartReg
	LnReg
	ExpReg
	PwrReg
	Logistic
	SinReg
	Manual-Fit
	ANOVA

	Distribution draw commands
	ShadeNorm
	Shade_t
	Shadeχ²
	ShadeF

	Draw commands
	ClrDraw
	Line
	Horizontal
	Vertical
	Tangent
	DrawF
	Shade
	DrawInv
	Circle
	Text
	TextColor
	Pt_On
	Pt_Off
	Pt_Change
	Pxl_On
	Pxl_Off
	Pxl_Change
	StorePic
	RecallPic
	StoreGDB
	RecallGDB

	Various commands
	Equ▶String
	String▶Equ
	ClearEntries
	clrHome
	delPrgm
	delVar
	Fill

	Functions
	List indexing
	Matrix indexing
	Ans indexing
	Dec, Imag types
	List type
	Matr Type

	Y-functions
	Math Functions
	sqrt, √
	³√ (cube root)
	root, ⁿ√
	fMin
	fMax
	nDeriv
	fnInt
	summ, Σ
	exp
	ln
	log
	logBASE, log

	Numeric functions
	abs
	sign
	round
	ceil
	floor, int
	iPart
	fPart
	min
	max
	lcm
	gcd
	remainder, rem

	Trigonometric and hyperbolic functions
	sin
	asin, sin⁻¹
	sinh
	arsinh, sinh⁻¹
	cos
	acos, cos⁻¹
	cosh
	arcosh, cosh⁻¹
	tan
	atan, tan⁻¹
	tanh
	artanh, tanh⁻¹

	Complex numbers related functions
	conj
	real, Re
	imag, Im
	angle, Arg
	cmplx_polar

	Probability functions
	rand
	randInt
	randIntNoRep
	randBin
	randNorm
	nCr
	nPr

	Coordinate conversion functions
	P▶Rx
	P▶Ry
	R▶Pr
	R▶Pθ

	Lists (and matrices) related functions
	dim
	seq
	cumSum
	ΔList
	augment
	mean
	median
	variance
	stdDev
	sum
	prod

	Matrices related functions
	det
	transpose
	identity
	inverse
	randM
	ref
	rref
	rowSwap
	row+
	*row
	*row+

	Distribution functions
	normalpdf
	normalcdf
	invNorm
	invT
	tpdf
	tcdf
	χ²pdf, pdftw
	χ²cdf, cdftw
	Fpdf
	Fcdf
	binompdf
	binomcdf
	invBinom
	poissonpdf
	poissoncdf
	geometpdf
	geometcdf

	Time functions
	startTmr
	checkTmr
	getTime
	setTime
	getTmFmt
	getTmStr
	getDate
	setDate
	getDtFmt
	getDtStr
	timeCnv
	dayOfWk
	dbd

	Various functions
	existPrgm
	Pxl_Test
	getKey
	Input
	expr
	inString
	length
	sub
	toString, eval

	Conditional statement
	Conditional loop
	Iterative loop
	Calling a script file
	Operations
	Postfix operations
	Factorial
	Conversion to radians
	Conversion to seconds
	Conversion to minutes
	Conversion to degrees

	Exponentiation
	Unary operations
	Unary minus
	Logical negation

	Multiplication and division
	Multiplication
	Division

	Addition and subtraction
	Addition
	Subtraction

	Comparison operations
	Equality
	Inequality
	Greater
	Greater or equal
	Less
	Less or equal

	Logical operations
	Logical AND
	Logical OR
	Exclusive OR

	Text description of lexical structure of Main screen expressions
	Text description of lexical structure of an expression
	Text description of lexical structure of a script file
	Text description of the structure of lexemes common to a file and an expression
	Text description of syntactic structure of the ZeroBasic language
	Documentation changelog
	v2.27.1 (2025-12-29)
	v2.27.0 (2025-12-15)
	v2.26.0 (2025-10-16)
	v2.25.0 (2025-09-11)

