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Preface
The present edition covers essentially the same topics as the second edition,
but with certain omissions, a few additions, and a considerable amount of
rearrangement. We hope that these changes will make the material more
accessible to students and more flexible for instructors' use.

For the first half of the book. we assume that students have learned to
use elementary calculus, but are not yet experienced in the techniques of
proof and rigorous reasoning. For the second 'half. we assume that they
may be taking concurrently (or have aheady completed) an elementary
computational course in matrices and systems of linear equations. (Appendix
3 contains an abbreviated summary of this material.)

The general objectives of the text are unchanged:

1. To introduce students to the language. fundamental concepts. and standard
theorems of analysis so that they may be prepared to read appropriate
mathematical literature on their own.
2. To develop analytical and numerical techniques for attacking problems
that arise in applications of mathematics.
3. To revisit certain portions of elementary calculus. this time with attention
to the underlying logical relationship of fundamental notions of analysis such
as continuity and convergence.
4. To give a systematic, modern approach to the differential and integral
calculus of functions and transformations in several variables. including an
introduction to the useful theory of differential forms.
5. To display the structure of analysis as a subject in its own right. and
not solely as a tool. for the benefit of those students whose interests lean

ix



X PREFACE

toward research in mathematics and its applications, without sacrificing
intelligibility to abstraction.

The earlier editions have been used very successfully with a wide spectrum
of students, most often at the junior or senior level with students majoring
in science, engineering, or mathematics, but also with graduate students in
mathematics or other fields whose undergraduate preparation was not adequate
for more advanced courses. We hope that the changes we have made in this
edition will serve the needs of these students even better.

In revising the book, we have changed the order of topics and subdivided
some of the chapters in order to make the first half of the book more
unified and complete in itself; in particular, Chapter 3 incorporates the
material on differentiation of functions of several variables, which formerly
appeared much later. We have also changed the emphasis in Chapter 1 so that
topological concepts and properties appear more as useful tools in the study
of analysis, than as topics for separate study in themselves. (In teaching
this material, we had found it all too easy to spend time in this direction!)

The long chapter on series, in the earlier edition, is now two chapters, and
a brief treatment of Fourier series has been added. Throughout the text we
have also added a good many problems, and dropped others, in order to
improve the mix of easy and challenging exercises.

Finally, we have added a short chapter on numerical methods (which can
be taken up any time after Chapter 3), and included additional illustrations
of numerical techniques in other chapters, to give students a chance to see
the connection between computational algorithms and theoretical analysis.

In addition, we have included a few new pictures which we hope will help
students acquire good geometric intuition. (We take this opportunity to thank
those artists at McGraw-Hill who have worked with us to achieve such
high-quality illustrations.)

Textbooks and research papers tend to be very different in style and structure.
Hans Freudenthal, a gifted teacher, researcher, and expositor, has described
the latter: "'This is the way we write our mathematical papers. We conceal
the train of thought which led us to the result." Instead, in this book, we
have tried to provide both motivation and insight, so that the reader will
emerge having acquired both skill and understanding.

We are very grateful to the large number of persons who have in the past
sent us comments and suggestions. A partial list is inadequate, but we would
like to mention particularly Professors H. F. Lowig, P. E. Miles, B. 1. Pettis,
and R. S. Spira.

R. Creighton Buck
Ellen F. Buck



To the
Student

We hope that you approach this book with some degree of curiosity and
commitment; the title" Advanced Calculus" might equally well have been
.. Basic Analysis" or even" Introduction to Mathematics for Applications."
Your background ought to include the following:

1. A knowledge of the usual elementary (nonhonors) calculus, including
some work with analytical geometry of space, double integrals, and partial
derivatives.
2. An interest in learning more about this, either because of its applications
or for its own sake.

In the second half of the book, we assume a slight familiarity with
matrices; for those for whom this topic is new, there is a condensed summary
in Appendix 3. It is not necessary for you to have had a course in differential
equations or vector analysis.

No text intended for a one-year course can cover all the useful topics in
analysis. Our selection criteria led us to concentrate on certain ideas and
techniques that seemed most needed for further work in mathematics and
its applications. Sketches of further developments and other digressions appear
in the appendixes, some of which may be helpful reading from time to time.
This applies in particular to Appendix 1, which explains some of the mysteries
involved in logic and theorem proving.

xi



xii TO THE STUDENT

All of Chapter 10 deals with numerical analysis; in addition, there are
many exercises scattered throughout the book which ask for numerical
answers or computational thinking. In some of these, you may find it
convenient to use a small pocket calculator to carry out the calculations.

The text is intended to be read and not used solely as a source for problem
assignments. We have provided answers for about half the exercises, and in
some cases, cryptic hints which may make sense only if you have already
tried the problem. The hardest exercises are so indicated by the usual*

AD ASTRA PER ASPERA!

R. Creighton Buck
Ellen F. Buck
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CHAPTER

ONE

SETS AND FUNCTIONS

1.1 INTRODUCTION

The most important difference between elementary calculus and advanced
calculus is that, in the latter, we begin to explore some of the more com
plicated types of problems and techniques that can arise when we deal with
functions of more than one variable. In particular, one has to become familiar
with certain elementary geometrical ideas, not only in the plane and in 3
space, but also in spaces of higher dimension.

We all possess rather clear intuitive ideas as to the meaning of certain
geometric terms such as line, plane, circle, angle, distance, and so on, acquired
from our earlier work in mathematics. To a less uniform degree, we have also
acquired the ability to visualize objects in space and to answetgeometric
questions about them without actually having to see or touch the objects
themselves.

In complicated cases, we have learned to work from inaccurate two
dimensional diagrams of the true situation; the perception of perspective in a
drawing is another illustration of the same adaptive mechanism. (Example:
Can the two curves in space which are shown in Fig. 1-1 be separated with
out cutting either?)

Almost from the start, in the study of functions of several variables, we
must deal with spaces of higher dimension than three; in such cases, it is a
great convenience to be able to use geometric terminology and ideas. In
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Figure I-I Linked or unlinked?

higher dimensions, where our intuition is less trustworthy, we must make more
use of analytical and algebraic tools than we do of pictures.

The basic tools of classical analysis-limits, integration, differentiation
ultimately depend on the special properties of the real field R, and these in
turn on the discoveries in logic and set theory made during the last century.
It is not our intention to give this sequential axiomatic development, but
instead to get on with the more concrete aspects of the calculus of functions
of several variables; reasoning and rigor are still important, for here one meets
new ideas and complications, and one needs to know more urgently than
before the limits of validity of definitions and techniques. Readers who are
interested in the axiomatic treatment of R and the various deductive chains
that tie the whole theory together will find this discussed in Appendix 2.

We assume that most of elementary calculus is familiar background; in
particular, unless indicated otherwise, you are free to use the customary tools
of elementary one-variable calculus, such as differentiation, curve tracing,
integration, and so on, in doing exercises.

1.2 RAND R"

We start by describing some of the notation and basic concepts which we will
use.

The set of all real numbers is denoted by R; geometrically we identify this
with an ordinary line and regard each real number x as specifying the point
on this line with coordinate x. We also refer to such an axis as I-space. The
ordinary cartesian plane is denoted by R2, and space by R3 ; R2 is the set of
all ordered pairs (a, b), and R3 the set of ordered triples (a, b, c), where the
coordinates may be any real numbers in R. We also call R2 and R3 2-space
and 3-space, respectively.

Points, whether they be in the plane or in space, will most often be
denoted by a single letter: the point p, the point Q, the point x. If we are



SETS AND FUNCTIONS 3

(x,Y,Z)

(x, 0, O)~ ~

(x,Y, O)

x

y

Figure 1-2

specifically dealing with a point in the plane, we might want to represent it in
coordinate form, although we do not have to; furthermore, we shall not be
bound to the use of any particular prescribed letters for the coordinates but
may choose them to suit our convenience,

p = (x, y) Q = (a, b) P=(t,x)

The same will be true in space; here, we might write p = (x, y, z), but we might
equally well write p = (u, v, w) or p = (t, x, y), depending upon our purpose.

For this reason, we shall not speak of the X or the Y coordinates of a point,
but rather speak of the "first coordinate" or the "second coordinate," and so
on. For example, the letter "a" denotes the second coordinate of the point
(b, a), and t is the first coordinate of the point (t, u, v).

When we wish to interpret R3 graphically, we use the familiar coordinate
axis diagram shown in Fig. 1-2.

The road to generalization is obvious: n space, which we denote by Rn
,

is the set of all n-tuples of real numbers. A typical point in Rn can be denoted
by

p = (ai' a2 , ••• , an)

although, again, other labels for the coordinates may often be used. Thus, 4
space is simply the set of all (x, y, z, w), where x, y, z, w can be any real numbers.
By analogy, the origin in Rn is the special point

0= (0,0,0, ... ,0)

We do not know any convenient way to picture Rn for n > 3 that gives the
same intuitive understanding of the geometry of n space as that conveyed by
Fig. 1-2 when n = 3.

The mathematical usefulness of spaces of dimension higher than 3 will
become much clearer later. For the present, we give several examples to show
how they arise in applications. (Additional discussion of the relationship be
tween mathematics and its applications may be found in Appendix 4.)
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Figure 1-3

Suppose that we have five oil tanks, with capacities CI' C2' C3' C4' CS •

Suppose that, at the present time, tank k contains x k gal of oil. Certain
inequalities must hold,

(1-1) O:O::;;Xk~Ck k=I,2,3,4,5

We can represent the complete state of the system by a single point in 5-space,

Po = (XI' x 2 ' x 3 ' x 4 ' x s )

The set of all possible states of the collection of tanks is the set of all such
points P, whose coordinates are limited only by the inequalities (I-I). (Can
you visualize this set as a box in R5?) If we begin to use oil from each tank,
not necessarily at the same rate, the point representing the current state will
move from Po along some curve toward the origin (0, 0, 0, 0, 0), which rep
resents the empty state. Various questions about the way the oil is being
used can be phrased as geometric questions about the shape of this curve.

Perhaps more familiar is the use of 4-space to image a physical point
moving in 3-space by plotting the points (x, y, z, t), where (x, y, z) is the
location of the moving point at time t. If we compress the three dimensions
of space into two, then we can picture the four-dimensional world of space
time in R3

. The "history," or world line, of the moving particle then becomes
a curve in 3-space. If the "time" axis is vertical, the space location of the
particle at a particular moment of time to is found by intersecting the world
line of the particle by the horizontal plane t = to (see Fig. 1-3). If we' accept the
view that a particle cannot be in two different locations at the same time, then
such a horizontal plane cannot cut a world line twice. In particular, the world
line of a single particle cannot have the shape of a circle.

Further geometric insight into the geometry of R" for n > 3 can be ob
tained from any of the following references in the Reading List at the end of
the book: [26, 49,50, 52]. (We especially recommend the two stories by Robert
Heinlein.)

If S is a set of points (or of other objects), the notation pES will mean
that p is a member of S. We use A c B to indicate that the set A is a subset
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of the set B, meaning that every member of A is also a member of B; note that
A c B does not mean that A and B must be different sets. If A c Band B c A,
then A = B, for they have exactly the same members. If A #- B, then A contains
a member that does not belong to B, or B contains a member not in A; both
may happen. The union of two sets A and B is A u B, and consists of all the
points that belong either to A or to B, including those that belong to both.
Note that A c A u Band B c A u B. The intersection of A and B is A n B
and consists of just the points that belong to both A and B. The set having
no members is denoted by 0 and is called the empty set, or null set. If A and
B have no members in common, then A n B = 0; in this case, we also say that
A and B are disjoint.

All the geometric properties of sets in R" depend on basic properties of the
set R of all real numbers. The algebraic properties of R can be summarized by
saying that R is a field. This means that the operations called addition and
multiplication are defined for any pair of real numbers, and that a familiar list
of algebraic rules applies, including the following:

(i) Addition and multiplication are commutative and associative:

a+b=b+a and ab = ba for all a, b E R

(a+b)+c=a+(b+c) and (ab)c=a(bc) foralla,b,cER

(ii) a(b + c) = ab + ac for all a, b, c E R
(iii) Additive and multiplicative inverses exist; in general, the equation

x+a=b

has a unique solution x for any a, b E R, and the equation

ax = b

has a unique solution x for any a, b E R, provided that a #- 0.

Since we are assuming familiarity with the ordinary rules of algebra, and
experience in calculating with numbers, we do not go into this aspect of R
further. The complete list of field axioms will be found in Appendix 2.

The real field also has an order relation, <, which obeys such laws as the
following:

(iv) For any x and yin R, exactly one of the following holds:

x = y, x < 1', Y < x.

(v) If x < y and y < Z, then x < z.
(vi) If x < y, then x + Z < y + Z for any Z E R.

(vii) If x < y and z > 0, then xz < yz.

This ordering of R is used in many ways. For example, a subset S c R
is said to be bounded if there are numbers band c such that b ~ x ~ c for all
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XES. Any suitable number c is called an upper bound for S, and any suitable
b is called a lower bound for S.

R has two special subsets, the integers

Z={O, ±1, ±2, ±3, ...}

and the rational numbers

Q = lall numbers ~ where n¥-O and m, n E Z~

As a subset of R, the set of integers is an infinite set that is unbounded
and uniformly dispersed. Any real number lies between two consecutive in
tegers; given x E R, there is a unique integer, usually denoted by [x] and called
the greatest integer in x, such that [x] = n where

n~x<n+1

The set Z also has the important property that any bounded set of integers
is finite, and thus has a smallest member and a biggest member.

The set Q of rational numbers behaves quite differently. As a subset of R,
Q is dense, meaning that given any two real numbers band c with b < c, there
are infinitely many rational numbers r with b < r < c. Moreover, a bounded
set of rational numbers need not have either a biggest or a smallest member.
If S is the set of all rational numbers r with °< r < 1, then for any rES there
is an integer n such that lin < r < (n - l}ln; since lin and (n - l}ln also belong
to S, no member of S can be either the largest member of S or the smallest.

In Sec. 1.7, we will discuss this again in connection with one further very
important property of R itself called the least-upper-bound property, which lies
at the heart of many of the basic theorems in analysis. For completeness, we
state the LUB property now, but defer further explanations until later. Put very
briefly, the real numbers have the property that while a bounded set S does not
itself have to have either a largest member or a smallest member, the set of
upper bounds for S must have a smallest member, and the set of lower bounds
for S must have a largest member. As we shall see, this fact provides a useful
replacement for the maximum or minimum member of a bounded set of
numbers when these do not exist.

We have used the words "finite" and "infinite" above without explanation.
The notion of cardinal number, applied to arbitrary sets, is an important part
of modern set theory which we do not choose to discuss here; some elementary
aspects are touched on in Appendix 1. For our purposes, an intuitive under
standing is sufficient. A set is either finite or infinite; if it is infinite, it is either
countable, meaning that its members can be paired one-to-one with the set of
positive integers and thus labeled as

S = {PI' P2' P3' ..}

or it is noncountable, in which case such a labeling is not possible. The set of
all real numbers is noncountable, but the set Q is still countable.
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Figure 1-4 Addition of points.

We return now to n space, Rn
• The algebraic operations available in R

immediately give a way to introduce certain algebraic operations for points.
We add points by adding corresponding coordinates. If p = (Xl' x 2 ' ••• , xn )

and q = (Yl' Y2' ... , yn ), then their sum is the point

(1-2)

We also define the product of a point and a real number. Given the point p
above, and any number {3 E R, we set

(1-3 )

To illustrate these definitions, let p = (2, 1, - 3) and q = (3, 0, 4). Then,
p+q=(5,1,1), 2p=(4,2,-6), -q=(-1)q=(-3,0,-4), and p-q=
p+ (-q)= (-1,1, -7).

These algebraic operations have simple geometric interpretations in the
plane and in space; here, we speak of addition of "vectors" and multiplication
of vectors by "scalars." The first step is to represent a point P in the plane by
the directed line segment (arrow) which starts at the origin and ends at P.
Then, the addition of points defined above corresponds exactly to the paral
lelogram rule for adding position vectors (see Fig. 1-4). Likewise, multiplica
tion of points by real numbers corresponds to expansion or contraction of the
associated vector by the appropriate factor, with negative numbers effecting
reversal (see Fig. 1-5). The picture in 3-space is similar.

It is now easily verified directly from the algebraic properties of R itself
that these algebraic operations on points on Rn satisfy a list of simple rules.

o
-p Figure 1-5
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(1-4)

(VI) Addition of points is commutative and associative.
(V2) If p and q are points and oc and fJ are real numbers, then

oc(p + q) = ocp + ocq

(oc + fJ)p = ocp + fJp

oc(fJp) = (ocfJ)p

(V3) The special point 0 has the property that

p+O=p

(V4) The real numbers °and 1 have the property that

(o)p = 0 and (I)p = p

While the statements in this list apply to R", they also describe a standard
mathematical structure called a vector space over R. A set V is called a vector
space with real scalars if there is an operation of addition defined for pairs of
elements of V, and a product defined for any p E V and any real number A. E R,
such that p + q and A.p belong to V for every choice of p, q in V and A. E R,
so that VI and V2 hold, and there is a special element 0 in V such that V3
and V4 also hold. In R" the role of 0 is filled by the origin, (0,0, ... ,0), so that,
by analogy, 0 is often called the origin of V.

The preceding discussion, starting with formulas (1-4), can now be sum
marized by saying that R", with the operations defined in (1-2) and (1-3), is a
vector space over R.

Please note that we do not choose to introduce an order relation among
points in R" for n z 2 comparable to that which holds among the real numbers
themselves. The reason is merely that there is no simple order relation that
turns out to be sufficiently useful. Furthermore, there is no general way to
define multiplication of two points in R" that will yield a point for the pro
duct, and that will obey the usual laws of algebra except when n = 2, and in
a partial way for n = 3, 4, and 8. The reasons behind this form an interesting
chapter in modern algebra, and are treated in detail in the article by Curtis in
reference [16] in the Reading List.

However, there is a different sort of multiplication operation for points in
R" that is extremely useful and that applies for any n. This is called the
scalar or inner product; the former name is used because the product of two
points in R" is a real number or scalar, not another point. Given two points
p = (Xl' x 2' ... , X") and q = (Yl' Y2' ... , y"), their scalar product (sometimes
also called their dot product) is the number

(1-5) p' q = X1Yl + X2Y2 + .,. + x"Y"

Thus, if p = (2, -1,4) and q = (- 3,5,4), p' q = 5.
Using the familiar algebraic laws for R, it is easy to verify the following

formulas:



(1-6)

(1-7)

(fJp)· q = fJ(p· q) = fJ(q . p)

p. (ql + q2) = p . ql + P • q2

SETS AND FUNCTIONS 9

where p, q, ql' and q2 are points in Rn and fJ is a real number. In the next
section, we will discuss the geometric meaning of the scalar product and obtain
further properties.

The vector space operations in Rn-and even in the plane or in space
make it possible to restate many familiar geometric ideas in algebraic terms.
Recall, for example, the midpoint formula from plane analytical geometry. If
p = (xl' Yl) and Q= (x 2' Y2)' then the midpoint of the line segment PQ is the
point

R = (~~~~ Yl + Y2)(1-8) 2 ' 2

In algebraic form, we can now write R = -tp + -tQ = -t(P + Q). If we make use
of a familiar result about parallelograms, we can find a very simple proof of the
following well-known property of quadrilaterals: Let A, B, C, and D be any
four points in the plane and form a quadrilateral by joining them in that order;
then, the midpoints of the four sides are the vertices of a parallelogram. (Two
cases are shown in Fig. 1-6.)

D

c

A Figure 1-6
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As above, the four midpoints are

A+B
P=--

2 ' Q =~±~2 '
C+DR =-_ ..

2 '
D+A

S =-
2

To show that PQRS is a parallelogram, we use the following: A quadrilateral
is a parallelogram if and only if its diagonals bisect each other. It is clear that
this is the same as asking that the midpoints of the diagonals coincide. But
the midpoint of the diagonal PR is

~1~ = ~ (A; B+ ~; 1?) = i~B_~C_-+:1?

and the midpoint of diagonal QS is

Q ; S = ~ (~ ; C + D i-i) = 1!. :t- .~ ~D_+_A

and since these are equal, we have proved the theorem.
Note that in Exercise 15 below, an algebraic proof is given for the

italicized statement about parallelograms that we used above, based on the
definition of a parallelogram as a four-sided polygon whose opposite sides are
parallel. (One person's definition is another person's theorem!) Does this mean
that the complete argument can be given algebraically without bringing in geo
metry? Does this mean that the theorem about the midpoints of the sides of a
quadrilateral holds for one sitting in 4-space or n-space?

EXERCISESt

I How would you describe the world lines of two particles that collide and destroy each other?

2 Construct a world-line diagram for the motion of two elastic balls of different mass that move
along a line toward each other, collide, and rebound.

*3 Draw a sketch to illustrate the following events: A photon vanishes, giving rise to two particles,
one an electron and one a positron. The electron moves off in one direction, the positron in another.
The positron strikes another electron, and the two annihilate each other, giving rise to a photon
which travels off. Could this be the history of only one particle?

4 If A and B are sets and A c B, what are A u B and A n B?

S For any sets A and B, let A - B be the set of those things which belong to A but do not belong
to B. What is A - (A - B)? Is it true that C n (A - B) = (C n A) - (C n B)?

6 (a) Which is larger, (j243/3] or [12/jS)?
(b) Find a rational number between jf? and fi.

7 Solve for P in each of the following equations:
(a) (2, I, -3) + P = (0,2,4)
(b) (I, - I. 4) + 2P = 3P + (2,0,5)

t A star * indicates an exercise which requires a certain amount of ingenuity.



SETS AND FUNCTIONS II

8 Solve for the points P and Q if

2P + 3Q = (0, 1,2)

P + 2Q = (I, -1,3)

9 Solve for P and Q if

3P + Q = (1,0, I, -4)

P - Q = (2, 1,2,3)

10 Let A = (I, 1,3) and B = (2, -I, I). Can you find a point p such that p • A = °and P' B = o?
II Draw a diagram to illustrate that the associative law of addition, p + (q + r) = (p + q) + r,
holds for the operation of addition of vectors.

12 The "center of gravity" of the triangle with vertices at A, B, and C is the point !(A + B + C).
Show that the center of gravity of a triangle is always the same as that of the triangle formed
by the midpoints of its sides.

13 What is the center of gravity of the triangle whose vertices are (1,2, -4, I), (2,0,5,2),
(0,4,2, - 3)?

14 Show that any three noncollinear points can be the midpoints of the sides of a unique triangle.

15. Using the definition given at the end of this section, give an algebraic proof that a four-sided
polygon is a parallelogram if and only if the diagonals bisect each other.

16. Show that the four points A, B, C. D are the vertices of a parallelogram if and only if
A+C=B+~mA+B=C+~mA+D=B+C.

17. In the rules (i), (ii), (iii) which were given for real numbers, there was no mention of
subtraction. Formulate a set of rules concerning subtraction, and then check these with the
development given in Appendix 2.

18. Show that the rules in (1-4) hold, by direct use of the definition of addition of points and the
previously given rules about real numbers.

19 Using the order properties (iv) to (vii) for the real field, derive the following additional
properties:

(a) For any a, bE R, if a < b, then -b < -a.
(b) For any x E R, x2 ~ 0, with equality only if x = 0.
(c) For any real x and .\" if x2 + .\'2 = 0, then x = .\' = 0. Does this extend to more terms'

20 (a) H 0< m < n, show that m2 < n2 and lin < 11m.
(b) H m < n < 0, show that m2 > n2 and 11m> lin.

21 Suppose that a, b. A, B are all >0. Is it always true that

a + b a b
- < - +

A+B-A B

22 Using the coordinate representation for points and the dot product, prove the identities (1.6)
and (1-7).

23 Show that the set Z of all integers is countable.

1.3 DISTANCE

In the plane, the distance from the point (x, .\') to the ongln is Jx 2 + .\'2.
In Rn we adopt the obvious analog. If p = (x l' X2' ... , X n), we define what we
shall call its norm to be the number

(1-9)
r::.- /-----2--------- ----

[pi = v p' p = v xi + X 2 + X~ + ... + x;
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and we interpret this as the distance in R" from p to the origin. If p and q are
two points in n space, we take Ip - qI to be the distance between them. This
agrees with the familiar distance formula both in the plane and in space. If
p = (x, y, z) and Po = (xo,Yo' zo)' then p - Po = (x - xo' y - Yo' z- zo) and

Ip - Po 1= J(x - XO)2 + (y=-YO)2 + (z --=ZJ2
When we specialize this general treatment to R1, it takes on a slightly

different appearance but is still familiar. If we write

p=(x)=x

then the formula for norm becomes

Ipl = Ixl = ';;;2
We recall that, when c is a positLve number, .jC is always the positive
number whose square is c; thus, JX2 is not always x. Indeed, if x is negative,
p = -x. Thus, the formula for norm reduces in I-space to the ordinary
absolute value

Ixl = J xI-x
if x 20
if x < 0

Again, Ix - yl is the absolute value of the difference of x and y, and this is in
fact the distance on the line between the points with coordinate x and with
coordinate y. We see that we can use the notation Ip I and Ip - qI in all the
spaces R", n = 1, 2, ....

We note that Ipl2 0 and that Ipl = 0 only if p= O. Furthermore, the
norm function obeys certain simple identitites.

(1-10)
For any point p,

For any real number A 2 0,
Ipl = I-pi

IAPI = Alpl
(1-11) More generally, for any real number A and any p,

IApl = IAllpl
From these others can be derived; for example, it is evident that
Ip - ql = Iq - pl·

Finally, the norm function obeys the following triangle inequality: For
any points p and q in R",

(1-12) Ip + ql ::; Ipl + Iql
In the plane and in space, this relation has a simple geometric interpretation
in terms of the sides of a triangle, as shown in Fig. 1-7. However, we can no
longer draw pictures in R" when n > 3, and it is necessary to have an analytical
proof of (1-12) that does not depend in any way upon geometric arguments.
If we restate (1-12) using (1-9), we must show that

~ + Yl)2 + (x 2 + Y2)2 + ... + (x" + y")2

.;---- .;yr--------< x2 + ... + x2 + y2 + y2 + ... + y2
- 1 " 1 2 "
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p+q
I
I
I
I
I
I
Ilql
I
I
I
I
I

Figure 1-7 The triangle law.

for any choice of the 2n real numbers Xl' x 2' ... , xn ' Yl' Y2' ... , Yn ' If we
square both sides of this conjectured inequality and do some cancelling, we are
led to conjecture another inequality, namely

X Y + X Y + ... + x Y < /Xl+ x 2 + ... + x 2 r::r-:--y2 + y2+ ... + y21 1 2 2 n n - v' Al 2 n v' Yl T 2 n

This new inequality is valid, as we will shortly prove, and it is both important
and useful in its own right; it is variously credited to Schwartz, Cauchy, and
Bunyakovski. We restate this result in terms of norms and scalar products.

Theorem 1 (The Schwarz Inequality) Let p and q be any points in n space,

(1-13) then

or

Take real numbers oc and f3, as yet unspecified, and form the point
Q = ocp - f3q. Clearly, a norm cannot be strictly negative, so IQ I ;:::: O.
Writing IQ 1

2 as Q . Q, we have

0.:::; Q • Q = Q • (ocp - f3q)

= ocQ • p - f3Q • q

= oc(ocp - f3q) • p - f3(ocp - f3q).

= oc2p • P - ocf3q • p - f30cp • q + f32q • q • q

which, by (1-6) and (1-9), we can rewrite as

Os oc21pl2 + f321q12 - 2ocf3p' q

2ocf3p' q .:::; oc21pl2 + f321q12

This must hold for any choices of the numbers oc and f3. Suppose that we
pick oc = Iq 1and f3 = 1p I, so that this becomes

2Ipllql(p' q).:::; Iql21pl2 + Ipl21ql2 = 21pl21ql2
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If neither p nor q is the origin 0, then Ipl #- 0 and Iql #- 0 and we can
divide by the positive number 2lpllql, obtaining

p' q $; Ipllql
and we have proved the inequality. The omitted cases, p = 0 or q = 0, are
trivial. It

In inequalities such as this, it is often important to know exactly under
what circumstances (if any) they can become equalities. In the present case, it is
easy to trace back the argument to see that we can have equality at the end
only if we had IQ I= 0 at the start. But this says that Q = 0, and thus that
IXp = f3q. The geometric interpretation of this is that the vectors p and q
differ only in length, and not in direction; the points p and q must lie on the
same line through the origin.

We also note that if we replace p by - p, (1-13) yields the inequality
- p • q $; Ip II q I, so that a more general statement of the Schwartz inequality is

(1-14)

We can now return to the triangle inequality, and show that distance in
n space satisfies this intuitive requirement.

Corollary For any points p and q in n space,

(1-15) Ip + ql $; Ipl + Iql
and equality holds only if p and q lie on the same half linefrom the origin. I

We have

Ip + ql2 = (p + q). (p + q)

=p'p+p'q+q'p+q'q

= Ipl2 + Iql2 + 2p' q

$; Ipl2 + Iql2 + 21pllql = {ipi + Iql}2

and the result follows.
The Schwarz inequality (1-14) is geometrically evident in the case of the

plane or 3-space because of a simple interpretation of the scalar product of
vectors. Suppose that p and q are points in space, and represent them by
position vectors as shown in Fig. 1-8. Let ebe the angle between them. Then,
the trigonometric law of cosines shows easily that

(1-16) p • q = Ip II q Icos e

t Following the lead of others. we use the sIgn I to signify the end of a proof.
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Figure 1-8

Thus, when n is 2 or 3, the Schwarz inequality merely asserts the obvious
fact that Icos eIcannot be larger than 1.

When n ?: 4, Fig. 1-8 is no longer convincing, and the notion of the angle
between two lines in n space may raise doubts; we therefore turn things around
and use (1-14), which we know to hold for any choice of n, to define the notion
of angle. Given two points p and q in n space, neither of which is the origin,
we define the angle between them subtended at the origin to be the unique e
between 0 and n such that

(1-17)
p'q

cos e=IPfTql

We need the Schwarz inequality to be sure that the number on the right side
remains between - 1 and 1, so that a value of ecan always be found.

When p • q = 0, then the angle emust be n/2. In this case we say that the
points p and q are orthogonal and write p .1 q. Geometrically, this means that
the position vectors from the origin to p and q form a right angle. For example,
(1, 2, - 3, 1) and (5, 1, 2, - 1) are orthogonal in 4-space.

In the plane, a line has the equation

Ax + By = C

and in space, the equation of a plane is

Ax + By + Cz = D

In n space, it is natural to introduce the term hyperplane for the set of all
poin ts p = (x l' X2' ... , xn) that satisfy an equation of the form

(1-18)

where the numbers bi and C are specified and at least one of the bi is different
from O. This equation can be written in a more condensed way as v' p = C,
setting v = (bl' b2 , ... , bn) #- O. Suppose that C is O. Then, the equation of the
hyperplane becomes v • p = 0, so that the hyperplane consists of all the points
p that are orthogonal to the given point v. In 3-space, the picture would be
that shown in Fig. 1-9, and v would be the vector normal to the plane. By
analogy, we use the same description in n space, and call v the normal vector
to the hyperplane whose equation is v' p = O.

Planes that do not pass through the origin can be treated in a similar way.
In 3-space, the general plane through Po = (xo, Yo' zo) has the equation
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Figure 1-9

which can be restated in the form v· (p - Po) = 0 with v = (A, B, C), and
pictured as in Fig. 1-10. We therefore adopt the same formalism, and say that
in n space the hyperplane through a point Po normal to the vector t' consists
of all points p such that v· (p - Po) = O. Note that this equation agrees with
(1-18) if C is chosen as the constant v· Po.

Just as a plane in 3-space is a two-dimensional space, a hyperplane in
nspace is an (n - I)-dimensional object, isomorphic to Rn

- 1 itself; "isomorphic,"
meaning "same form," is a technical mathematical term, used here informally.
As an illustration, in 4-space the hyperplanes are each isomorphic to ordinary
3-space; thus, in the conventional space-time picture of the universe, the time
axis is regarded as a line orthogonal to a hyperplane that represents ordinary
three-dimensional space.

At the other end of the dimensional scale, we can also discuss lines in
n-space, which will be one-dimensional geometric objects. In 3-space, we
describe a line by parametric equations such as

(1-19)

x = X o + at

.I' = Yo + bt

z = Zo + ct

-x<t<x

/ P
/ / /y_//_---

Figure 1-10
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Figure I-II

This is the line through Po = (xo' Yo' zo) in the direction of the vector
v = (a, b, c) "# O. Setting P = (x, y, z), we can condense these equations to the
single equation

(1-20) P = Po + vt - 00 < t < X

We adopt the same equation in n space with v = (b I , b2 , ••• , bJ
We can also approach the topic of lines in n space more geometrically,

avoiding coordinates entirely. A line L will be determined completely by any
distinct pair of points on it. If ql and q2 lie on L, they divide L into three
portions, the interval between them and the unbounded segments to either side.
We characterize each algebraically. As shown in Fig. 1-11, any point on L is
obtained by adding to ql a positive or negative scalar multiple of the vector
l' = q2 - qi' Thus, the general point on the line L will have the form

(1-21) p = qi + At'

= (l - A)qI + Aq2

for some choice of A E R. Note that if A=~, the point p is the midpoint of
the segment between qi and q2' More generally, if 0 < A < I, p is the unique
point on this segment whose distance from qi is exactly A times the distance
from qi to q2' We verify this, showing that the sum of the distances from p to
qi and q2 is Iql - q21. We have, using (1-21) and the fact that A> 0 and
1 - A > 0,

Ip - qI I = I (1 - A)q I + Aq 2 - qI 1

= IA(q2 - qI)1 = AlqI - q2!

Ip - q21 = I(1 - A)q I + Aq2- q21

= I(l - A)(q I - q2) I
= (1 - A)lqI - q21

and adding, we have
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"I
I

I
I

I
I C
q

Figure 1-12 Con,-nity_

In a similar manner. it is possible to show that if;' > I, the point plies
on the portion of the line L that is beyond qz. and if i, < 0, on the ponion
beyond ql. Finally. we nOle that formula (1-21) is in fact the same as the
parametric equation (1-20), substituting lJ 1 for po. lil - lJ , for r. and ). for I.

Another important geometric concept which is conveniently described in
terms of the ideas of the present section and which is suitable for" space is Ihal
of convexity. In the plane. a region C is said to be conn'x if it always contains
the line segment joining any two points in the region (see Fig. 1-12). This
definition is used in space as well and carries over at once to W.

Definition I A St'( C i/1 /I sPUCI' i.~ conl"I'X if il has Ihe propl'rlr (Illlt. 11'111'/1('1"('1"
/\1'0 poims p Will q are ill C /lie/! so art' all poims ~r Ihe form

(1-22) i.p + (I - j,)lJ

An important example of a convex set in II space is the solid spherical
ball. which we define as follows:

(1-13) B(po' r) = jail p with Ip - Pol < d
= the open ball. center ('o' radius I"

In 3-space. this is the interior of an ordinary sphere: in the plane. it is a round
disc without the edge: in I-space. B(xo. r) is the real interval consisting of the
numbers x that obey.\:o - r < x < Xo + r.

Let us show that the ball 8(0. r) is convex. Suppose that I' and lJ lie in B.
so that Ipl < rand Iql < r. Choose any i.. 0 < i. < I: we must show that the
point i.p + (I - i.)lJ lies in B. We calculate its distance from O. Using the
triangle inequalily. we have

I;-r + (I - ;.),,-01:> li·rl + 1(1 - ;·),,1

:s; i·lpl + (I - i·Jllll
<;.I"+(I-;.)r=r
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EXERCISES

I For n = 1,2, and 3 in turn, plot the set of points P in R· where
(a) Ipl < I (b) Ipl ~ I (c) Ipl = I.

2 Let A = (4, 2). Graph the set of points p in the plane for which
(a) Ipl<lp-AI (b) Ipl+lp-AI=6 (c) Ipl+lp-Als4.

3 Sketch the set of points (x, y) where
(a) Ix + 2yl s x - Y
(b) (x 2 - y)(x - ),2) < 0

4 Show that IpI + P2 + P3 + ... + p.1 s IpII + Ip21 + ... + Ip.l·

5 Prove thatlp - qI2Ipl-lqj·

6 If p = (u, v, w), show that

(a) Ipl ,.;; lui + It'l + IwI
(b) lui s Ipl,lvl s Ipl,lwl s Ipl

7 Use the law of cosines in the plane and the properties of the norm and scalar product to verify
that p' q = Ipllql cos 8.

S Show that the three points A = (2, -1,3, I), B = (4, 2, 1,4), and C = (I, 3,6, I) form a
triangle with two equal angles. Find its area.

9 Find the equation of the hyperplane in 4-space which goes through the point Po =
(0, I, -2,3) perpendicular to the vector a = (4, 3, I, -2).

10 If the angle between two hyperplanes is defined as the angle between their normals, are the
hyperplanes 3x + 2)' + 4z - 2w = 5 and 2x - 4)' + z + w = 6 orthogonal?

II Write the parametric equations of the line through (2, 3, - I, I) which is perpendicular to the
hyperplane 3x + 2y - 4z + w = O.

12 Where does the line through ql = (1,0, 1,0) and q2 = (0, 1,0, I) intersect the two hyperplanes
of Exercise 10?

13 Given a triangle with vertices at A, B, C, show that the point R = t(A + B + C) lies on
each of the medians (the line from a vertex to the midpoint of the opposite side).

14 Formulate and prove an analogous property for the tetrahedron with vertices at A, B, C, D.

'IS In the triangle ABC, join A to a point t of the way from B toward C, join B to a point t of
the way from C toward A, and join C to a point t of the way from A toward B. Express the
vertices of the smaller triangle thus formed in terms of A, B, and C.

16 Let I be the line determined by the two pomts p and q. Let P = i.p + (I - i.)q. Show that.
when A> I.IP - pi + Ip - ql = IP - ql. and interpret this geometrically.

17 Show that the intersection of two convex sets is convex but that the union of convex sets does
not have to be convex.

1.4 FUNCTIONS

The notion of function is essentially the same as that of mapping. A numerical
valued functionf assigns to each point p in its domain a single real number
f(p) called the value offat p. The rule of correspondence may be given by a
formula such as

f(p) = x 2
- 3xy for any p = (x, .1')
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or by several formulas, as in

f(x, y) = l:2 + y

or by a geometrical description,

f(p) is the distance from p to the point (4, 7)

or even by an assumed physical relationship,

f(p) is the temperature at the point p

In all these cases, it is important to bear in mind that the function f itself
is the rule or mapping, while f(p) is the value which f assigns to p. It is also
useful to think of functions in terms of an idealized computer; each function
is then described by a specific software program or algorithm, and f (p) is the
output corresponding to a data input p.

The domain of a functionfis the set of objects to which it may be applied
and for whichf(p) is defined. It is always possible to increase the domain of
a function by giving definitions forf (p) for points p that were not in the original
domain. This can be done quite arbitrarily in many ways; however, when the
extension of the function is required to retain some of the properties that the
function had on its original domain (e.g., smoothness, continuity, dif
ferentiability), then it becomes much more difficult and is indeed an interesting
mathematical problem.

Real-valued functions are often classified according to the nature of their
domains. Iff(p) is defined for points p in a region D in the plane, then we may
write p as (x, y) and f(p) as f(x, y) and may refer to f as a function of
two real variables. Similarly, when D is a set in 3-space, we may write f(x, y, z)
forf(p) and say thatfis a function of three real variables. In general,! is said
to be a function of n real variables if the domain of f is a set in R". In all
these cases, it is still very helpful at times to think off as a function of a single
point p and to writef(p) for its value. To see how this may happen, suppose
that f(p) is the temperature at the point p on a thin, curved wire S. The
functionfhas S for its domain and might thus be said to be a function of three
real variables. However, it is clearly much more convenient to think off as a
function of a variable point p which is confined to the wire. Again, if we are
interested in the distribution of electric charge on a curved metal shell, we
would be led to work with a numerical-valued function whose domain of
definition is the set of points on the shell.

It is a serious mistake to think that functions must always have numerical
values. Many of the most useful functions have values that are points or
vectors. The motion of a particle may be described by setting up a cor
respondence between moments of time and points in space, by means of a
functionf, with P = f(t). Here, the domain off will be an interval on the time
line, and the values off will be points in 3-space (see Fig. 1-13). If the moving
particle is subject to a magnetic field and we want to indicate the direction and
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Figure 1-13 f: R 1 -> R3

magnitude of the force field at each position of the particle, we may be led to
work with a function F which is defined for points on the track of the particle
and whose values are vectors (see Fig. 1-14).

More generally, whenever we are dealing with a mapping from objects in
one set A to objects in a second set B, we are dealing with a function. We
can represent this type of situation by a diagram, as in Fig. 1-15, and sometimes
indicate it as

(1-24) f: A --> B

The set A is still the domain of f, and the set B will contain the set of
values (or range) of f This concept of function is so broad that it permits
mathematicians to label things as functions, and to work with them, which do
not at all resemble the simple class of numerical-valued functions.

However, our interest in this book will be with less abstract functions.
Stated succinctly, the main theme of this book is the study of functions whose
domains are in Rn and whose values are in Rm

• To most of these functions, we
can attach geometric interpretations that help us to work with them better.

We have already illustrated this for functions from R into Rn, as in Fig.
1-13. Any such function is called a curve, since it corresponds to the familiar
concept of the parametric description of a curve in n space. For example, a
curve in the plane would be described by the equations

Jx = cfJ{t)
)Y=l/!{t)

a~t~b

Figure 1-14
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But these in turn define a function/from Ihe interval (I ~ t::;: h in R1 into R2
•

with

f(l) ~ (x, r) ~ (4)(1), 4>(1»

In a similar way, the set of equations

x = ¢(II, I')

Y = "'(II, 1')

Z= 0(11. l')

is a mapping from the domain D of the plane into 3-space. It therefore
represents what we call a surface in RJ and is in fact a single function F
from D into RJ, given by

F{II, I') = (x, ,1', z) = (¢(II.l'), t/J(II, d. 0(11. 1'))

For example, consider the set of equations

(1-25)

,

IX=II+t:

')'=11-1'+1

IZ=1I2

O~II~1

O~I'~I

x Figwt 1-16
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This describes a mapping F from a square in the UV plane into 3-space. As the
point p = (u, v) moves throughout the square, the image point F(p) = (x, Y, z)
moves in space, tracing out the shape shown in Fig. 1-16. Thus, F(I, 0) = (1,2, 1)
and F(O, 1) = (1,0,0). Other similar pictures will be found in Chap. 8, especially
Fig. 8-17, 8-18, and 8-20, which show more complicated examples. The study
of curves and surfaces is one of the more difficult areas of analysis, and some
aspects of this are treated there as an application of the tools to be developed.

We will also study functions that map a portion of Rn into Rn
• An illustra

tion is the function F from 3-space into 3-space described by the formula
F(x, y, z) = (u, v, w) where

\u=x- y

v = y2 + 2z

Iw = yz + 3x 2

For example, we have F(l, 2, 1) = (-1,6, 5) and F(l, -1, 3) = (2, 7,0).
All these cases can be subsumed under one general formula. A mapping F

from Rn into Rm has the form y = F(x), where we write x = (Xl' x2 ' ••• , xn) and
y = (YI' Y2' ... , Ym) and where

\YI =f(XI,X2,···,x)

(1-26) 'Y2=g(Xl'X2,···,xn)

l"'~""""""'"Ym - k(xl' x 2 ' ... , xn )

Here, f, g, h, ... , k are m specific real-valued functions of the n real variables X I'

x 2 ' ••• , xn ' Such functions as F are often called transformations to emphasize
their nature; the study of their properties is one of the central topics of later
chapters in this book.

Side by side with the view of a function as a mapping A --+ B, there is also
the equally important and useful idea of its graph. If f is a function of one
variable, with domain D c R I, then the graph off is the set of all points (x, y)
in the plane, with XED and y = f(x). The graph of a function of two variables
is the set of points (x, y, z), with (x, y) in the domain of the function f and
with z = f (x, y). Generalizing this, iff is a function on A into B,

f:A--+B

then the graph offis the set of all ordered pairs (a, b), with a E A and b = f(a).
It is customary to use the term cartesian product of A and B, written as A x B,
to denote the class of all possible ordered (a, b), with a E A and b E B. The
graph offis therefore a special subset of A x B. By analogy, (a, b) is often called
a point in A x B, and the graph offcan be visualized as something like a curve
in the space A x B (see Fig. 1-17).

Let us apply this to a numerical-valued function f of three real variables.
Suppose that the domain off is a set D c R3

. Since f is numerical-valued, its
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AXB

B

- ----f-------!

A Figure 1-17

range lies in R'. andfis a mapping from pari of RJ into R I. According to the
general discussion above. the graph of f consists of the ordered pairs (a, b).
with (j E D and h = f(a). Sctting a = (x. y. :). we have b = flu) = fIx. J. z). The
graph off is therefore if subset of RJ x R I

. BUI this is essentially 4-space. for
(a. b) = (x. r.:. b). The graph off is then the SCI in 4-space consisting of all
points (x. y. :. b) with b = f(x_ y. :) and (x. y. z) E D. More generally.
if F is a function on Rn to R"'. its graph will be a subset of R" x R"'.
which is essentially the same as Rn

""'. Thus. the graph ofa mapping of the plane
into the pl<we will be a SCI in 4-space.

As can be seen from these examples. the actual geometric construction of
the graph of a function becomes impossible as soon as the number of variables
involved. either in the domain or in the range. becomes large enough.
However, the corresponding mental picture is still a very useful intuitive guide
(Fig. 1-17).

A graph is nOl the only way 10 gel a useful global picture of the nature
of a funclion. For example, solely for illustration. we might think of a function
of Ihree variables as telling us the temperature at each point throughout a
region of space. We can then think of each point p in the domain offas having
a number attached to it and, in terms of this. get some feeling for the way the
values of the function change as we move p around in this region. For example.
let

Thinking of F(p) as the temperature al p. we observe that F(p) is the square
oflhe distance from p to (I. - I. O)and nOlice that Flp) is smallest at this point
and increases as we move away from it in any dircction. The equithermal
surfaces. where F is constant. are spheres. with (I. - 1. 0) as center. With this
as a guide. we can use geometric language to speak of Ihe graph of F in 4-space;
it is a bowl-shaped object. parabolic in cross section.



SETS AND FUNCTIONS 25

Figure 1-18

The study of the set of points where a given function takes on specific
values is often a very useful way to examine the function's behavior. For a
function of two variables f, the set of points where f(x, y) = C is called the
level line of value (or height) C. Thus, the level lines of the function
f(x, y) = x 2 + 9y 2 are the family of ellipses shown in Fig. 1-18. In Chap. 3,
we display the level lines of several more complicated functions in Figs. 3-13
and 3-14. The level lines of such functions are also a help in visualizing the
graphs of the functions. This, of course, is nothing more than the standard
process by which a topographic map is converted into a three-dimensional
scale model.

For a function of three variables F(x, y, z), the set of points where F(p) = C
will usually be a surface in 3-space. Thus, one speaks of the level surfaces of F.
These too help in understanding the behavior of F, but this time they are of no
assistance in constructing the graph of F.

Something similar can be done with functions of four variables, for one of
the variables can be regarded as time; if the value of the function is regarded
as specifying temperature, then we are dealing with a temperature distribution
throughout space which also varies with time, and the concept of "level sets"
is replaced by equithermal surfaces in space which change shape with time.

Many special properties of a function are reflected in simple geometrical
properties of its graph. A numerical functionf defined on the line is said to be
strictly increasing iff (Xl) <f(x2 ) whenever Xl < x 2 ; this means that the graph
offis a curve that rises as we move along it from left to right. Again, a function
of n variables is said to be midpoint convex if it obeys the special relation

(1-27) f(1P + 1q) s !f(p) + !f(q)

for all points p and q in its domain. This is easily seen to be satisfied if the
set of poin ts above the graph off is a convex set (see Exercise 10).

Elementary texts in calculus sometimes leave the impression that any
equation in X and y "defines y as a function of X." This must be both qualified
and explained. What is usually meant is that, given an equation

(1-28 ) E(x, y) = 0

one is often able to "solve for .1'," at least in theory. Without some restrictions,
this is certainly false; the equation

y2 + (x - y)(x + y) - 1 = 0

certainly cannot be "solved for y." Moreover, solution of an equation such as
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(1-28) does not usually yield a single unique solution for y, whereas when we
write y = f(x), we require that exactly one value of y correspond to a chosen
value of x.

The meaning of the original statement can be made a little clearer. If the
function E is suitably restricted, then Eq. (1-28) defines a collection (with
possibly just one member) of functions f such that, iff is one of them, then

E(x,f(x)) = 0

for all x in the domain off
The geometric point of view is very helpful here. Let S be the graph of

Eq. (1-28), that is, all points (x, y) for which E(x, y) = O. The set S may be
single-valued, meaning that it has the property that no two distinct points in
S have the same first coordinate. If so, then S itself is the graph of a function,
and we have "solved" (1-28). In general, S will not be single-valued; some
vertical lines will cut it twice. However, the set S will contain as subsets many
single-valued sets, and each of these will be the graph of a function which
"solves" Eq. (1-28). We return to this topic when we take up the implicit
function theorems and try to find the needed conditions for good solutions to
exist.

So far, the only numerical-valued functions were real-valued. However,
there is nothing to prevent one from dealing with functions whose values are
complex numbers, such as

f(t) = (2 + 3i)t 2
- 4i t + (1 - i)

All can be reduced to the study of real-valued functions, however, for we can
write any complex-valued function F in the form

F(p) = G(p) + i H(p)

where G and H are real-valued functiOils. In our example,

f(t) = (2t 2 + 1) + i(3t 2
- 4t - I)

Recalling that the complex number a + bi can be plotted as the point (a, b)
in the plane, we see that a complex-valued function F can also be regarded
as a function whose values lie in R2

•

It also turns out to be useful to consider functions whose values are more
abstract objects. For example, in the study of systems of differential equations,
many techniques are simplified if one works with functions whose values are
matrices. An example of such a function is

( )
= pt2 + 1

F t I2t + 1
5t - 2

t 2 + 1
t

3 + 7t j
t + 5

We will meet matrix-valued functions later on in this book, where they emerge
as the natural form for the derivative of a transformation from n space into
rn space.
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Finally, in Chap. 8 we will meet functions whose domain itself is a set of
functions. You have already met such functions, for differentiation itself is an
example; d/dx is a function that can be applied to functions such as x 3

- 3x2
,

giving for the value another function 3x 2
- 6x.

There is one special class of functions that is so important that it deserves
separate mention. In your earlier work with mathematics, you have already
met the term "infinite sequence" and the notation {aJ By this, one is to
understand that to each positive integer n has been assigned a specific number
an in some determinable manner. If we examine this critically, it is evident that
we are again dealing with a function whose domain is the set Z+ = {I, 2, 3, 4, ...}
of all positive integers and whose values are numbers. Explicitly, the sequence
symbolized by {an} is the function mapping n -+ an'

Taking the next step, a function on Z+ to the plane will be a sequence of
points in the plane, and a sequence in Rn is defined to be any function from
Z+ into n space. We can denote it either by {Pn} or by: n -+ Pn ' The values of
this function are the points Pn ' which it is usual to call the terms of the
sequence. They do not have to be all different. The sequence given by an = (- l)n
has only two distinct terms, 1 and - 1. We shall use the word "trace" to
describe the exact range of the function, the set of distinct points that appear
as terms in the sequence.

Other types of sequences will also be important in all the work to follow.
For example, we will often deal with sequences of sets, such as {Dn} where

Dn = {all points P with Ipi :os; n}

Each of the terms in this sequence is a ball, and as n increases they expand (see
Exercise 15).

Again, we will devote much space to the study of sequences of functions;
a sample of this is the sequence {In} where

While each of these examples could be formalized as a function on Z+
taking its values in either the class of all sets or the class of all functions, we
prefer to treat this more informally.

EXERCISES

I Give the domain of definition of each functionfdefined below. and describe or sketch its graph:
(a) f(x) = 1/(1 + x 2

)

(c) f(x) = xl(x - 1)
II for x < y

(e) f(x. y) = ,0 for x = y
11 for x> y

(b) f(x. y) = 4 - x 2 _ y2
(d) f(x. y) = I/(x 2 _ y2)
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(b) f(p) = Ipl- I
when Ipl < I

2 Letf(x) = x 2 + X, g(x, .1') = xy, and h(x) = x + I. What are:
(a) f(g(l, 2)) (b) h(f(3))
(e) g(f(1), h(2)) (d) g(f(x), h(y))
(e) g(h(x),j(x)) (f) j(g(x, h(y)))
(g) f(f(x))

3 (a) If F(x) = x 2 + x and G(s) = s + S2, are F and G different functions?
(b) If F(x, .1') = x 2 + .I' and G(x, .1') = x + .1'2, are F and G different functions?

4 (a) What is the natural domain of the function g(x) = j2-="~? _
(b) What is the natural domain of the functionf(x) = Jx - 3 + J2 - x?

*5 Sketch F for which F(I/(x - I)) = x/(x + I), x # 1.

6 Sketch the level curves of the function described by f(x, .1') = x 2 _ .1'2.

7 Sketch the level curves for f when
(a) f(x, .1') = .1'2 - x

1
1

(e) f(p) =
x - .I' when Ipl2 I

8 Sketch the level surfaces for the functionf(x, .1', z) = x 2 + .1'2 - Z2.

9 Let F(x, .1', z, I) = (x - 1)2 + .1'2 + Z2. By interpreting this as the temperature at the point
(x, .1', z) at time I, see if you can get a feeling for the behavior of the function.

10 Iff is a function of two variables, show that if the set of points above the graph of f is a
convex set, then f satisfies (1-27).

11 What can you say about the problem of solving for .I' in the equation x3
- .1'3 + X - .I' = o~

How many real functions on - x < x < x does this equation define?

*12 Given E(x, .1') = x 2 - .1'2, how many different functions f are there that are "defined by the
equation E(x, .1') = 0 so that .I' = f(x)"?

13. Find the first six terms of the sequence defined by a. = (- 2)"+ I + (- 3)·

14 Given x. = 3n + (-I)"(n - 5) + 7,
(a) Calculate XI' x 2 ' ••• , x iO '

(b) Find all the numbers that ever appear twice in the entire sequence.
*(e) Do any terms appear three times?

15 What is U~ D. where D. = {all points p with Ipl ~ n}?

*16 Show that the collection of all functions defined on a set D, with values in R3
, is a vector

space.

1.5 TOPOLOGICAL TERMINOLOGY

The role of elementary topology is to give precision and structure to a variety
of intuitive concepts such as "nearness" and "neighborhood," "limits" and
"continuity." When these concepts are used in the plane or in n space, they
rest ultimately upon certain basic properties of the real number system R, and
upon properties of the distance function IP - q I, which gives the distance
between two points P and q. We start with a sequence of definitions.

The word "near" in everyday use is ambiguous. The rational number
355/113 is very near to n, since they differ by less than 3 x 10- 7, and
Alpha Centauri is one of our nearest stellar neighbors, at a distance of more
than 3 x 1013 kilometers. We shall say that the set of all points P that are
near a point Po is those that obey Ip - Po I< 15, for some choice of 15 > O. This
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Fi~ur~ 1-19

set is just the open ball B(po' 0) of radius 0 centered at Po; usually. !> will be
thought of as a vcry small number.

Each point r in 11 space has one of three relationships to a given set s: It
is either interior 10 S. exterior to S, or on the boundary of S. We proceed to
make thesc words precise.

A point q is said to be interior to a set S if all the points sufficiently near
to q also belong to S. Thus, for some choice of!> the ball B(po' !» is a subset
of S. This is illustrated in Fig. 1-19.

The interior of a set S is the subset of S consisting of all points q that are
interior to S.

A set S is called opf:n if every point in S is intcrior: in Ihis case, S coincides
with its own inlerior.

We have already used the word .. open" as applied to the opcn ball. Let
us show that it was used correctly by proving that every point in the set
S = B(O, r) is interior. If Po E S. then Ipo - 01 < r. Choose b > O. so that
IPol +!> < r. We claim thaI thc ball B(po. b,'2) is a subset of S (see Fig. 1-20).
For. if p E B(po. (i 12), thcn Ip - Pol < bf2 and

Ip-Ol ~ IIp-po)+rol'' Ip-pol + Irol
< /),'2 + IpoI < !>j2 + r - b = r - bt2 < r

and peS.
A similar calculation can be used to show that the sel of points p such that

Ip - Pol> r is open. for any Po and any r 2::: 0. This is the region outside a
sphere of radius r.
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,
Figur(' 1-21 .t l - r' > I

Other examples of open sets are Ihe sel of points (x . .1") in the plane with
x 2 - .1"2 - I > 0 (see Fig. 1·21) and the half plane

{all (x. y) with x > OJ

In the next chapter. we discover why open sets arise as the sct of points P
where a conlinuous function is strictly positive.

On the line. which is R l. we see that according to the calculations above,
the interval of x such that b < x < c is an open sel.

A poinl P that is not in a set S is said to be exterior to S if all the points
sufficiently near to P arc also outside the set S. Thus. if r is eXlerior to S there
must be some open ball centered at I' that is disjoint from S. In Fig. 1-19 the
point P is exterior to S.

A set S is said to be closed in R" if the complement of S-that is. the set
ofpoints in 11 space that are not in S-is an open sel. Accordingly. S is a closed
set if every point oUlside S is in fact exterior to S. The - closed" ball with
center Po and radius r is the set of all P with If' - Pol ~ r. It is a closed set
because its complement. the set of P where Ip - pol> r. is an open set.

On Ihe line. an interval such as the x with h ~ x 5 C is a closed set (and
called a closed interval). In the plane. the set of points (x . .1') with .1' - x 2 = 0
is a closed sel. as is the set where xy ~ O.

Finally. a boundary point for a set S is a poinl that is neither interior to
S nor exterior to S. Accordingly. a point Po that is a boundary point for S must
be ncar to S and near to the complement of S at Ihe same lime. Every open
ball centered al Po must contain at least one poinl of Sand al least one point
nol in S. In Fig. 1-19. r is a boundary point for S.

The collection of all boundary points for a set S is called the boundary (or
frontier) of Ihe set. and will be denoted by bdy(S): in many simple cases. it
will agree with the intuitive nOlion of boundary as the edge that separates a
set from its complement. The boundary of the open ball B(O. r) in 3-space is
the sphere consisting of all points (x• .1". z) with
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Thc closurt' of a set S is formed by adjoining to S all its boundary poinls.
Thus

S = closure of S = S u bdy(S)

The closure of the open ball B(O. r) is the closed ball of the sa.me radius.
The rcader is warncd nol to confuse the terms" boundary" and •. bounded:'

A sci S in /I space is called bounded if there is a number M such that Ipi < M
for all pE S: any larger value of M will also serve. and the set S is thus a
subsel of the ball 8(0. M). An unbounded set is one that is too big to fit inside
any ball 8(0. r). no mailer how large r is. For example. the entire first quadrant
in the plane. consisting of the (x. .I") with x > 0 and J' > O. is unbounded. NOle
Ihal an unbounded set can have a boundary. as in Ihis example. where the
boundary of the quadrant consists of the positive X axis and the posilive Y
axis and O.

While this sequence of definitions has been based on the use of balls to
describe "nearness:' il is often convenient to use other sets as well. Any set
.Ar is called a Il('ighbor"hood of Po if Po is interior to .Ar , Any open ball about
Po is a neighborhood of Po' and any neighborhood of Po contains an open
ball about Po' However, neighborhoods do not have to have any particular
shape. and we can use squarc neighborhoods if this is morc convenient. In all
the definitions above. the word" ball" can be replaced by neighborhood: for
examplc. r is a boundary point for S if every neighborhood of p contains both
a point in S and a point not in S.

Another illustration may be helpful in underslanding the concepts of
boundary and boundary point. Lei us examine thc sel A, pictured in Fig. 1·22.
which is described formally by

A = {all points p E R2 with 0 < Ipl :=::;; I: u {the point (0. 2)}

If the definilions are applicd with care. we find that Ihe boundary of A IS III

three separated pieces and consists of Ihe circumference. where Ipl = I, and
Ihe twO points (0.0) and (0. 2). The interior of A is the set of points p with
0< If'l < I: the closure of A is Ihe set consisting of the point (0. 2). IOgcthcr
with the unit disk. Irl s I.

This last example also illustrates another simple topological idea. We say
that a point p is a cl~t('f point for a set S if every neighborhood about p
contains infinitely many points of the sel S. The terms "limil poinl" and
"accumulation poinl" are also used. In contrast, a point p in S is said to be

s
• •
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isolated if there is a neighborhood about P which contains no other point of
S. Note that any interior point of a set is also a cluster point, since a ball
always contains infinitely many points. Every point in the closure of a set is
either an isolated member of the set or a cluster point for the set. In the
example in Fig. 1-22, (0, 2) is an isolated point, but (0, 0) is a cluster point.

The subject of this book is analysis and not elementary topology; the
topological terminology and concepts appear in this chapter because they will
be useful tools in the study of functions on R" that will follow in subsequent
chapters. Our purpose is therefore not to study all the interconnections and
implications of the various definitions, but to explain them and state certain
useful relations. The following list summarizes a number of these basic
properties, to be used whenever they are found helpful.

(1-29)

(i) If A and B are open sets, so are A u B and An B.
(ii) The union of any collection of open sets is open, but the

intersection of an infinite number of open sets need not be
open.

(iii) If A and B are closed sets, so are A u B and A n B.
(iv) The intersection of any collection of closed sets is a closed set,

but the union of an infinite number of closed sets need not be
closed.

(v) A set is open if and only if its complement is closed.
(vi) The interior of a set S is the largest open set that is contained

in S.
(vii) The closure ofa set S is the smallest closed set that contains S.

(viii) The boundary of a set S is always a closed set and is the
intersection of the closure of S and the closure of the com
plement of S.

(ix) A set S is closed if and only if every cluster point for S belongs
to S.

(x) The interior of a set S is obtained by deleting every point in
S that is on the boundary of S.

Each of these can be verified by a proof based on the definitions given
above. We present this only for the first two assertions in the list, to show the
nature of the proofs.

PROOF OF (i) Suppose that A and B are open sets. To show that A u B
is open, suppose that Po belongs to A u B. Then Po is in A or it is in B.
In either case, Po is the center of an open ball that is a subset of A or a
subset of B, since A and B are themselves open and Po must be interior
to one of them. This open ball is then a subset of A u B, and Po is there
fore interior to A u B. Every point of A u B is therefore interior to A u B,
and A u B is open. The proof that A n B is open is slightly different. Let
Po be any point in An B; we must show that Po is interior to An B.
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Figurt' 1-23

Since Po E A and A is open, Po is inlerior 10 A. There is then a III such
that the open ball B("o' 15 1 ) is a subset of A. In the same way. we COn
clude that there must be a 15 2 such Ihat the open ball B(po. 15 2 ) c B. Let
Ii be the smaller of Ihe two numbers 15 1 , il 2 . Then, the ball B(po, b) is a
subset of both A and B, and thus a subset of An B. Accordingly, Po is
interior to A n B, and since Po was an arbitrarily selected point of A n B.
An B is open.

Such detailed verbal arguments are tedious when carried to an extreme,
The cssence of the second can be conveyed by the diagram given in Fig, 1-23,
showing the step involving the two open balls. Note, for example, that Ihis
same diagram supplies the argument supporling tbe following stalement: Jf
. t I ami. I l are neiyhhorhOOlls of p, .m is . I .1 n . I .2' Rather Ihan construct
detailed verbal arguments for the remainder of the assertions in Ihe list above,
we suggcst Ihat Ihe reader construct examples and diagrams which will
illuminate and support their truth.

We choose 10 discuss (ii) further, however, because it brings in something
new. the behavior of an infinile colleclion of sets, First observe that assertion
(i) call be extended easily 10 any finile collection of open sets; if A I' A 2' ... , An
are open sets, so are the selS

U A~ = Al U A 2 U AJ u·" U An,
•nA~ = A I n A 2 n AJ n'" n An,

Suppose now that we have an infinile (countable) collection of open sets,
AI, A2. AJ ..... We wish to prove that their union. A = U; A~. i:. an open
set. The argument differs lillie from Ihal used for a finile collection. If pEA,
then Ihere is at least one of Ihe sets. sayA~, 10 which p belongs. Since that set
is open, p is surrounded by a ball which lies entirely inside A l ; however, this
ball will also be a subset of A, since Al c A, and p is therefore interior to A,
which IllUSt then be open. (Note thaI this argument does not really depend on
having a cOllnlahtt' collection of open sets; thus, we are juslified in saying that
the union of any collection of open sets is open.)

The second half of assertion (ii) states that we cannot prove the corrcs
ponding assertion for the intersection of open sets. To show this. all Ihal is
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nceded is a counterexample. Let A k be the open disc in the plane, centered
at the origin and of radius 1+ I/k. We have Al ~ A2 ~ A.1 ~ ...• and a
moment's thought will show that the intersection

,
B = nA~ = Al n A2 n A3 n',

is the closed disc of radius I, definitcly nOI an open SCI. (It is instructive to
sec where the proof for a finite collection of open sets breaks down.)

The purpose of such a list of topological facts and definitions is to give a
language in which to describe new aspects of sets and functions with
mathematical precision. As an illustration of this. considcr the intuitivc notion
of a sel that is "connected:' Asked to explain the meaning of this word. one
might point to the set H shown in Fig. 1-21 as one that is certainly not
connected. and then to the set B in Fig. 1-23 as a sample of one that is con·
nected. With enough samples. perhaps the precise meaning of Ihe term will be
clear. but a careful mathematical definition would be better.

In fact. there arc two slightly differenl aspects of the intuitive idea. The sel
H in Fig. 1-21 would certainly be said 10 be disconnected. since it consists of
two separated pieces, This aspect is captured very adequately in Ihe following.

Definition 2 Two (tisjoillt set.' A alld B, "eit/WI" ('lI1pn', an' sailJ 10 he
mutually separated if neither cOn/ains a howl/lar,r {)(Jim t.!{ I he 011/{,I". A s('1 is
disconnecfed if if is Ille union oIwparalel1 .~llh,,·(',s. (111I1 i" calfed connl'Cfl'd {{ it
is not IJisconnected.

The scope of this definition can be realized hy conlrasting the sel S
consisting of all (x, .r) with Xl - .r l < O. and Ihe sct T thai is obtained from ."j

by adjoining allihe points (x. y) wilh .1' = Ix I. The fanner is an open sel. shown
in Fig. 1-24. and it is made up of IWO separated pieces. the top half where.r > 0
and Ihe botlom half where y < O. We would certainly conclude that S is dis-

s

Figure f-24
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connected. However, we would not wish to call the set T disconnected. T is
the union of two disjoint subsets, the top half A consisting of all (x, y) with
y ~ Ix I, and the bottom half B comprising those (x, y) with y < Ix I. However,
these subsets are not mutually separated, since the origin (0,0) belongs to A
but is a boundary point of B. Note how slight is the difference in appearance
of the set S and the set T, which differs only in containing the boundary of A.

The second aspect of the intuitive meaning of connected is brought out by
saying that the set B in Fig. 1-23 is connected" because it is possible to travel
between any two points of the set without ever leaving the set," a statement
that is clearly false for the set H in Fig. 1-21. It is technically more difficult
to make this concept precise, since we must explain "travel between." We
choose to interpret this to mean that there is a path or curve which lies in the
given set and joins the two chosen points. However, the notion of "curve"
itself has pitfalls, to be resolved in later chapters, and so we adopt for the
present a temporary version that has no ambiguity.

Definition 3 A set S is said to be polygon connected if, giren any two
points p and q in S, there exists a chain of line segments in S which abut and
form a path starting at p and ending at q.

This definition has the virtue that is relatively easy to check, given a set S
and a specific pair of points p and q. On the other hand, Definition 2 is easy to
use in confirming that a specific set is disconnected, but very difficult to use
to check that a set is connected, since one must prove that no decomposition
ofthe set into mutually separated pieces is possible. Indeed, it is not until Sec. 1.7
that we will be able to prove that the line itself is connected, while it is obvious
that the line is polygon connected. In Appendix 2, we will give an example to
show that the difficulty is real and not artificial by exhibiting a set that can be
shown to be connected, but which is not path connected.

For the present, we show that such difficulties do not arise if we work with
open sets, as in fact we shall for much of the work to follow.

Theorem 2 Any open connected set is polygon connected.

Let 0 be an open connected set, and take any two points ql and q2 in (7;.

We will show that there is a polygon path in 0 that joins ql to q2' Let A
be the set of all points p E 0 that can be joined to ql by a finite polygon
path lying entirely in f!/. Clearly, ql E A; indeed, since 0 is open and all
points p in a small ball centered at ql are in (7; and can be joined to ql along
a radius, this ball is a subset of A. We prove that A is open. Let Po be any
point in A. Since f! is open, there is an open ball.Ai about Po that lies entirely
in 0 (see Fig. 1-25). Clearly, any point in A/' can be reached from Po by a
segment in ,/V. Since Po is in A, there is a polygon path in 0 from ql to Po.
Putting these together, we are able to connect ql in 0 to any point in Ar.
Hence, all points in .t' lie in A, proving that Po is interior to A and A is



(b) x 2 + .I' 2 0
(d) x> I
(f) .I' = Ix - II + 2 - x

36 ADVANCED CALCULUS

Figure 1-25

open. Now, consider instead the set B consisting of all points P E (! - A, that
is, the points of (! that cannot be reached from q! by a polygon path in (! .

Suppose now that Po E B. As before, (! being open, there is an open ball. t .
about Po lying in (!. If there were a point q in . t· that could be reached from
qI, then q could then be joined to Po in . t . along the radius of the ball,
producing a polygon path from q! to Po. Since this is impossible, no point
q in . I' lies in A, and. I' must be a subset of B. Thus, Po is interior to B,
and B too is open. We thus have (! = A u B where A and B are disjoint
and both open. This contradicts the hypothesis that (! is connected, unless
one of the sets A or B is empty. Since A contains q!, as well as other points
near ql> B is empty. Thus, there is no point in (! that cannot be reached
from q! by a polygon path in (!, and (! is polygon connected. I

In Chap. 2, we will prove the converse of this, showing that every path
connected set is also connected. This will depend on the fact that the line and
any closed interval [b, c] are each connected.

EXERCISES

1 By quoting appropriate definitions and statements. verify the following assertions. Sketches
may be helpful.

(i) The set W = (all p = (x. .r) with I s Ipl s 2: is closed. bounded. connected. and bdy(W)
IS the disconnected set. consisting of two circles of radius I and 2.

(ii) The set R = {all (x. .1') with x ~ 0: is closed. unbounded. connected. and Its boundary IS

the vertical axis.
(iii) The set T = {all (x. .r) with Ixl = 1.1'1: is closed. connected. unbounded. has empty

interior. and bdy(T) = T.
(iv) The set Q= (all (x. .r) with x 'lnd .I' mtegers: is closed. unbounded. infinite. countable.

disconnected. and its boundary is itself.

2 Tell which of the properties descnbed in this section apply to the set of points (x. 1') such
that:

(a) x 2 + 1'2 = I
(c) x = .I'

(e) Xl' > 0
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3 The same as Exercise 2 for the set of points (x, .1', z) such that:
(a) x 2 + .1'2 + Z2 > 4 (b) x 2 + y2 S 4
(c) xy > z (d) (x - .IV = Z2

4 The same as Exercise 2 for the set of points x on the line such that:
(a) x(x - 1)2> 0 (b) x(x - I)(x + 1)2 sO

5 Let 5 = {all (x, .1') with x andy rational numbers:.
(a) What is the interior of 5?
(b) What is the boundary of 5?

6 What are the cluster poin ts for the set

5 = lall C'~) with 11 = 1,2, ... , m = I. 2, ... :

7 Produce an unbounded infinite set with no cluster points.

8 By constructing an example, show that the union of an infinite collection of closed sets
does not have to be closed.

9 Let C be a closed set and V an open set. Then C - V is closed and V - C IS open.
Verify this statement, using statements in (1-29).

10 Construct pictures to show that each of the following is false.
(i) If A c B. then bdy(A) c bdy(B).
(ii) bdy(5) is the same as the boundary of the closure of 5.

(iii) bdy(5) is the same as the boundary of the interior of 5.
(iv) The interior of 5 is the same as the interior of the closure of S.

II Let 5 be any bounded set in 11 space. Is the closure of S a bounded set?

12 What is the relationship of bdy(A n B) to bdy(A) and bdy(B)?

13 (a) Why should the empty set 0 be called both open and closed?
(b) Why, in the plane, is the set {all (x, .1'), x 2 + .1'2:2: 0) both open and closed?

14 Let Un = {all p = (x, r) with Ip - (0,11)1 < 11). Show that the union of all the open sets Un' for
11 = I, 2, 3, ... , is the open upper half plane.

15 Let A and B be connected sets In the plane which are not disjoint. Is A n B necessarily con
nected? Is A u B necessarily connected?

16 Show that the complement of the set in Exercise 5 is a polygon connected set. Is it an open set?

17 (a) Is the interior of a connected set necessarily connected'.'
*(b) Is the closure of a connected set necessarily connected?

18 (a) Show that any two disjoint nonempty open sets are mutually separated.
(b) Show that any two disjoint nonempty closed sets are mutually separated.

*19 When a set is not connected, the separate pieces that it comprises are called components.
How many components are there to the set 5 = {all (x, .1') with x 2

- 3xy + .1'3 < O:?

1.6 SEQUENCES

Before introducing additional terms that are descriptive of the properties of
certain types of sets of points, we show that those properties already stated are
useful in discussing some standard parts of analysis. We take up the topic of
sequences and convergence. Recall that a sequence {Pn} of points in any space
is a special type of function! defined on the set Z+ = {l, 2, 3, ...} whose value
at n is! (n) = Pn' The trace of a sequence {Pn} in a space is the set A of all
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Figure 1-26 P. = (( - 1)". ~)

the points that appear as terms in the sequence;

Thus A = {all p. for n = 1,2,3, ...}

For example, the sequence in the plane given by P. = (( -I)', lin) has for its
trace the infinite set shown in Fig. 1-26, while the trace of the sequence on
the line, q. = 3 + (- 1)'2 is the set {l, 5}. A sequence is said to be
bounded if its trace is a bounded set. Thus, for {P.} to be bounded, there
must exist a number M such that !p.1 < M for all n = 1, 2, 3, .... The
sequence whose terms are displayed in Fig. 1-26 is a bounded sequence.

The concept of a convergent sequence is basic to analysis.

Definition 4 A sequence {P.} converges to the point p if and only if every
neighborhood about p contains all the terms P. for sufficiently large indices n;
to any neighborhood U about p, there corresponds an index N such that
P. E U whenever n z N.

Under these circumstances, it is customary to call p the limit of {P.}, and
to write lim... ", p. = p or p. --+ p, which is often read: "P. approaches p as n
increases." If the terms of the sequence were displayed as lights which flashed
in succession, convergence would be observed by noticing that the points p.
tend to concentrate more and more closely around the point p, for later values
of n, and that if we construct a spherical neighborhood U of radius p > 0
about p, then eventually (when n > N) all flashes appear inside U and none
appear outside. Note that the approach to p does not have to be from any
particular direction, nor does the distance from P. to p have to decrease
uniformly at each change in n. For example, the sequence in R1 described by

2+(-I)k
Pk=-'--

k

has as its terms in order the numbers 1, ~, t, ;i, !, ~, ~, i, ... and converges to
O. (Given p> 0, choose N so that N> 31p; then, IPk - 01 < P whenever
n> N.)

A word of caution about notation: The symbol" 00" used in connection
with limits is neither a number nor a point on the line, but merely part of the
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expression" n --+ x." It need not have any meaning out of context. A test of
this is the fact that "'X " does not appear in the statement of Definition 2
above. (Another aspect of the use of the symbol 00 will be found at the end of
Appendix 2.)

A sequence is said to be convergent if there is a point to which it converges.
(As will be seen later, there are many times when it is possible to be sure that a
sequence is convergent even if one does not know the point to which it
converges.) A convergent sequence cannot converge to two distinct limits. For
if {Pn] were to converge to both P and q with p ¥ q, then we could choose
spherical neighborhoods about p and q that are disjoint; but, all but a finite
number of the Pn would have to be inside each of these neighborhoods, which
is impossible.

A sequence that is not convergent is called divergent. This can happen in
a number of different ways. The sequences given by

bn=(-I)nn

en = 1 + (-1)"

are each divergent, as is the sequence pictured in Fig. 1-26.
It is evident from the definitions that the convergence or divergence of a

sequence is not affected if one changes any finite number of its terms. In this
sense, we are dealing with something that is a property of the "tails" of a
sequence, the images of the sets

In={n,n+ l,n+2, ... ]

In order to show that a specific sequence is convergent, the only method
we have available to us (at this stage) is to guess the limit and then check
this by a certain amount of calculation. As an illustration, consider the
sequence

n--+p =(I,_n)
n n n + 1

By one method or another (for example, by plotting some points of its trace),
we are led to guess that this sequence converges to the point p = (0, 1). We
want to show that lim Pn = (0, 1). Taking for U a neighborhood about p of
radius £ > 0, we want to have IPn - pi < £ for all sufficiently large n. Sub
stituting the coordinates of Pn and P, we wish to have

I (~, n : 1) - (0, 1) I < £

1 + ( n _ 1) 2 = 1 + _1 < £2
n2 n + 1 n2 (n + 1)2

for all n larger than some number N. This probably seems self-evident;
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however, to give a formal argument (and to get some idea of how large N
must be), we proceed thus: Since 1/n2 + l/(n + 1)2 < 2/n 2

, we can obtain our
goal by choosing N so that 2/N 2 < 1:: 2. Hence, we can choose N to be
(J"2)/1::. Any larger value of N, such as 2/1:: or 20/[;2, would do as well. I

We now turn to the proof of several theorems about limits.

Theorem 3 Any conrergent sequence is bounded.

Let limn_x Pn = p. If we take V to be a neighborhood of radius 1,
centered on P, then there will be only a finite number of terms of the
sequence outside U. V is bounded, and any finite set is bounded; so the
trace of the sequence is bounded. I

Theorem 4 If limn_, Pn = P and limn_., qn = q, then

lim (Pn + qn) = P + q

Given I:: > 0, we may assume that there are numbers N' and N" such
that IPn - pi < I:: whenever n > N' and Iqn - qI< I:: whenever n > N". Take
N to beany number largerthan both N' and N". If we have n > N, then both
the above inequalities hold, so that (by using the triangle inequality)

Ipn + qn - (p + q)1 = Ipn - P + qn - ql

s Ipn - pi + Iqn - ql

< I:: + I:: = 21::

This says that, except for a finite number of terms at the start, all terms of
the sequence {Pn + qn] lie in a neighborhood of radius 21::, centered at the
point P + q. Since I:: can be any positive number, we have shown that this is
true of every neighborhood of P + q, and thus limn_ x (Pn + qn) = P + q. I

The topological properties of a set in n space can often be explored most
easily by means of sequences. For example, the following result affords an
alternative way to define closure.

Theorem 5 The closure ofa set S in Rn is the set of all limits of cOnl'erging
sequences of points from s.

Let {Pn] be a sequence of points in S, with lim Pn = p. We shall first show
that P belongs to the closure of S. This is certainly true if P is either in S or
in the boundary of S. Could P be exterior to S? If so, then there would
be a small neighborhood V about P such that V contains no points of S. In
particular, V contains none of the points Pn' contradicting the fact that {Pnl
converges to p. Hence, P lies in the closure of S.

To complete the proof, we must show that every point in the closure of S
can be the limit of a converging sequence from S. Let q be such a point.
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If q E S, then, clearly, we can take P. = q for all n and the sequence {P.}
converges to q. Suppose therefore that q is in the closure of S, and not in S.
The point q must then be a cluster point for S; every neighborhood of q
contains points of S. Take any convenient decreasing sequence of neigh
borhoods of q, such as the sets

U. = {all p with Ip - ql < lin}

and choose any point P. in U.I\ S. Then, it is evident that {P.} is a sequence
in S which converges to q. I

Corollary 1 Every point in the boundary of a set S is simultaneously the
limit of a converging sequence of points in S and a converging sequence of
points in the complement of S.

For, by item (viii) in the list of basic topological facts (1-29), bdy(S) is
the intersection of the closure of S and the closure of the complement of S.

Corollary 2 A set S is closed if and only if it contains the limit of erery
converging sequence {P.} whose terms lie in S.

For sequences, the analog of the term" cluster poin t" is limit point. A point
p is a limit point for the sequence {p.] if every neighborhood of p contains
infinitely many of the terms p.; since many of the terms could be identical, we
give a formal definition.

Definition 5 p is a limit point for {P.} if given any neighborhood . ~ . about p,
there is an infinite set of integers A such that p. E • ~ . for all n E A.

Note that the set A depends on . ~ " and may change if . ~ . is decreased in size.
The difference between "limit of a sequence" and "limit point of a

sequence" is subtle; for the former to hold, all the terms p. must lie in. V for
n beyond some index no' while for the second to hold, p. must lie in . ~ . only
for some infinite sequence of values of n, which may in fact be widely separated
with none consecutive. As a result, a sequence can be divergent and still have
limit points. The sequence p. = (( -I)·, lin) has (1,0) and (-1,0) as limit
points, as seen from Fig. 1-26. Again, the sequence defined by

a. = n + 1 + (-1)"( n + ~)

has exactly one limit point, and yet is divergent. For, we see that

12n + 1 + 1
; n

when n is odd
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It is evident that 1 is a limit point for {an}' and since the sequence is unbounded,
it is divergent. Moreover, there are no other limit points, for there is no
number other than 1 about which terms of the sequence cluster.

This concept, limit point, becomes easier to work with if we also introduce
the related idea subsequence. Given a sequence {PnL and any increasing
sequence of integers

nl < n2 < n3 < ...

we can define a new sequence {qk) by

qk = Pnk
This is called a subsequence of {Pn}; its terms are terms of Pn and are Pnl '
Pn2 ' Pn3 ' •••• For example, the (divergent) sequence I, 1, I, t, 1, t, ... has,
among its subsequences, the sequence 1, 1, t, t, ... , as well as the sequence
1 1 1 1 1 1 1 t Th '" "1 h', 4' 9' '16' 25' ,.... en, It IS easy to gIve an argument SimI ar to t at In

the proof of Theorem 5 to show the following.

Theorem 6 The limit points of a sequence {Pn} are exactly the limits of the
converging subsequences of {Pn].

While we have discussed convergence for sequences of points in n space, it
is clear that the problem of checking the statement limn _ ~ Pn = P can always
be reduced to a problem dealing only with real sequences. One way to do this
is to observe that {Pn} converges to P if and only if

lim IPn - pi = 0

A better method is based on the following simplifying observation.

Theorem 7 A sequence in n space is convergent if and only if each of the
real sequences obtained from its coordinates is convergent. Thus, in 3-space,
Pn= (an' bn, cn) defines a convergent sequence if and only if {an}' {bn}, and
{cn} are each convergent real sequences.

PROOF IN R3 Let P = (a, b, c). Then, using Exercise 6 in Sec. 1.3,

Ipn - pi ~ Ian - al + Ibn - bl + ICn - cl
Ian - a I~ IPn - pi

Ibn - bl ~ Ipn - pi
and ICn-cl~IPn-pl

t Strictly speaking, a description of a sequence is not complete until a formula can be given
for the general term or until a recursive rule is given which specifies the terms in some unique way.
In practice, however, it may be sufficient for communicalions purposes to list enough of the terms
to make the law of formation evident. This brings in matters of experience and judgment which
could lead 10 conflicting choices; the terms 2. 3, 5, 8 might with equal justice be followed by
12, 17, 23, 30 or by 13, 21, 34, 55.
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Hence, limn_ '1 Pn= P if and only if limn_, an = a, limn_, bn= b, and
limn_, cn = c. I (The proof in n space follows the same pattern.)

The advantage of thus being able to reduce questions about the convergence
of a sequence of points to questions dealing only with sequences of real
numbers is that one is back on more familiar ground. For example, one may
use the following standard facts, whose proofs we include only for com
pleteness.

Theorem 8 If limn_ '1 an = A and limn_, bn= B, then limn_ '1 (an + bn)
exists and is A + B.

PROOF This is merely Theorem 4 for R 1.

Theorem 9 If limn_, an = 0 and {bnJ is bounded, then

lim anbn = 0
n- ,

PROOF Suppose that Ibn I< M for all n. Given any neighborhood . 1 '
about 0, choose G small enough so that if Ic I< M G, then c lies in . 1 . Since
limn_, an = 0, there is an no such that Ian I< G for all n > no' Then, for
these values of n, Ian bnI< Ian IM < MG, and an bn lies in . 1'. (Note that it is
only necessary to know that Ibn I< M holds for sufficiently large n.) I

Corollary Iflimn_ '1 an = A, then for any real number c,

lim can = cA
n- ,

PROOF Take bn= c for all n, and observe that limn_x (an - A) = O. I

Theorem 10 If lim an = A and lim bn = B, then

lim anbn = AB
n- ,

PROOF Observe that

anbn = (an - A)bn+ Abn

and use the fact that limn_, (an - A) = 0, {bn} is bounded, and
limn_, Ahn = AB. I

Theorem 11 Let limn_, an = A #- O. Then, there is an no such that
II Ian I< 21 IA Ifor all n > no; thus, the sequence {l/anl is defined and bounded

for all sufficiently large n.
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PROOF Using 6 = IA 1/2, choose no so that IA - an I< IA 1/2 for all n > no·
Then, for n > no we have

IA I= IA - an + an I~ IA - an I+ Ian I< I; I+ Ian I

which implies that lanl > IAI-IAI/2 and I/lanl < 2/1AI· I

Corollary Iflimn_7: an = A #- 0, then limn_7: l/an= I/A.

PROOF I/an- II A = (A - an)( IIAan)and limn _ 1 (A - an) = 0 and 1/(Aan)
is bounded by 2/1AI2 for large n, so that limn_:<. (i/an- I/A) = O. I

Theorem 12 If limn _ 1 an = A and limn _ 1 bn = B, and B #- 0, then

lim anlbn = AlB

As will be shown in the next section, every bounded sequence of real
numbers has at least one limit point, using the term as it was given in Definition
5 above. If such a sequence is not convergent, it will have at least two limit
points. The largest limit point of {an: is called the limit superior or upper limit
of the sequence, and is denoted by lim SUPn_ 7 an. Similarly, the smallest limit
point of {an] is called the limit inferior or lower limit, and is denoted by
lim infn_ oc an. Of course, if the sequence {an: is convergent, then the upper and
lower limits coincide with limn _ 7: an; otherwise, we always have lim inf an <
lim sup an' We can use these at times to work with a bounded sequence that is
not known to be convergent; however, lim sup and lim infdo not obey the same
rules as the ordinary limit operation, and are thus somewhat harder to work
with (see Exercises 27 and 28).

These results, many of which may have been familiar, enable us to discuss
the convergence of more complicated sequences in terms of the behavior of
known simpler sequences. For example, a starting point is the fact that
limn _ y lin = 0. (We remark that the truth of this goes back to the basic fact
that the rational numbers are dense in the real numbers; given any 6> 0, there
is an integer N such that 0< liN < 6, so that 11//1 - 01 < 6 for all /I> N.)
We can use this to show that

lim 5n
2

-:-_3n + 7 5
n-:<. 6n2 + 11 + 2 6

by writing

5n 2
- 3/1 + 7 5 - 3in + 7//1 2 5 - °+ 0 5-- - ----_. = -- -+ =

6n 2 + /I + 2 6 + l/n + 2//1 2 6 +°+ 0 6
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Again, given an = Jn + 1 - Jn, we write

r. _ J _(In_±- 1 -jn)(~n±-1 + jn)
vi n + 1 n - ~n-+T + ~n

1 1= ·.·.,--------c <- ·C

~n--+-1 + ~n ~n

and since limn _ ao l/jn = 0 (see Exercise 11), we conclude (see Exercise 9) that

limn_ ao ~n+l - jn = O.
These examples illustrate the general approach to be used. One uses

algebraic manipulation, inequalities, the standard theorems on limits
(Theorems 8, 9, 10, and 12), and other simple relations such as those in the
exercises to convert the original limit problem into another one that has been
already understood and solved. The stage at which a mathematical problem is
considered to have an obvious solution depends on the experience and insight
of the solver. The test is always how easy it is to supply a formal proof.

For example, it is undoubtedly seems obvious that limn _
et

2- n = o. A
formal argument can be given by observing that the inequality 2- n :s: l/n
holds for all n 2 1.

However, is it equally obvious that

n3

lim . = 0 ?
n-et 2

n

If it is claimed that n3/2n :s: l/n, which is equivalent to the assertion that
n4 :s: 2n, then a little testing shows this is not immediately clear; thus, for n = 10
we have 104 = 10,000, which is larger than 210 = 1024. However, the following
is indeed true; the proof is a standard use of mathematical induction. (A fuller
discussion of this technique of proof is found in Appendix 1.)

Lemma 1 n4 :s: 2n for all n 2 16.

We observe first that 164 = (2 4
)4 = 216

, so the stated inequality holds
when n = 16. We show that if it holds for n = N, then it must hold for
11 = N + I. We then conclude that the inequality must hold for n = 17, 18,
19, etc.

Suppose N 4 :s: 2 IV and N 2 16. By the binomial theorem

(N + 1)4 = N 4 + 4N3 + 6N 2 + 4N + 1

< N 4 + 4N3 + 6N 3 + 4N3 + N 3 = N 4 + 15N 3

But, N 2 16 and the original inequality has been assumed for n = N, so that

(N + 1)4 < N 4 + N(N 3
) = 2N4

:s: 2(21\') = 21\'+ 1
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But, this is exactly the form the stated inequality takes when n = N + 1.
Hence, n4 S 2" for all n 2 16. I

We can now use this to dispose of the previous limit problem. Since

n3
= (n4

) 1 < 1
2" 2" n - n

we may conclude that n3/2" --+ O.
Is it now evident that n lO/2" --+ 0 as n increases? To give a similar proof of

this would require that we first show that nil S 2" for all sufficiently large n. To
prove this by induction, we need a starting point, and it happens that the first
n for which this holds is n = 67. Even less" obvious" is the statement

For anI' choice of the number r, lim n' = 0
~ n- 1: 2"

since there does not seem to be a way to start an inductive argument if you do
not have a specific value for r.

There is a way to avoid all these difficulties. If we want to prove that
nil S 2" for large n, then it is equivalent to prove that 11 log n s n log 2, or
that (log n)/n S (log 2)/11. [As we have stated earlier, we feel free to use all the
standard computational techniques from one-variable calculus.] This leads us
to the following result.

Lemma 2 lim"_, (log n/n) = o.

Given 11, choose k so that (k - 1)2 S 11 < k2
. It is easily checked that

the inequality k 2 < 2k
-

1 holds for all k 2 7. Thus, for any n 2 (6)2 = 36, we
have

log n S log(k 2 ) < log (21.-1) = (k - 1) log 2

S ~n log 2

and we have shown that

log n < ~n log 2 = log 2 --+ 0 I
n - n ~n .

Theorem 13 For an.\' b > 1 and an.\' number r.

I· n' 01m - =
n- f b"

Since (log n)m --+ O. choose N so that

O
log n log b

< <
n r + 1
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Then, (1 + r) log n < n log b, or n'+ 1 < bn, and n'lbn < lin -+ 0, which
proves the assertion. I

All these illustrations have dealt with positive sequences that approach O.
The next illustration shows a different technique.

Set an = nl/n and note that an ~ 1. If we set an = 1 + c, so that
c ~O, then

(1 + c)n = (n 1/n )n = n

By the bmomIaI theorem,

n(n - 1)
(I + c)n = 1 + nc + - c2 + ...

2

and in particular, since c ~ 0, throwing away all but two terms gives

or

n(n - 1)
(1 + c)n ~ 1 + 2 - c2

n(n - 1) 2
n>l+ c- 2

and this yields c2 :5: 21n, and 0 :5: c :5: fi/~. But, an = 1 + c, so that

0:5: an - 1 :5: fi/~, and we have proved Iimn_ oo an = 1. I

Another very important method for proving that a sequence of real
numbers converges is based on the order properties of R. A sequence {an} is
said to be increasing if

and decreasing if

It is said to be monotonic if it is one or the other, and strictly monotonic
if consecutive terms are never equal. The following statement describes a
fundamental property of the real number system:

Erer.l' bounded monotonic sequence is conrergent

Because this is so basic to the rest of this chapter and to later chapters, and
because its nature is ambivalent, regarded both as an axiom and a theorem,
we postpone a discussion of it until the next section. However, we give three
applications of it here to show its usefulness.
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Consider a sequence {x n} defined by the following:

XI = 1

(1-30)
for n ~ 1

Note first that this differs from previous examples of sequences in that no
explicit formula is given for the nth term of the sequence. Of course, it is
easy to use this to calculate the terms of the sequence: XI = 1, x 2 = 2,
x3 = 2 + t = 2.5, x4 = 2.9, X s = 3.24482 "', x 6 = 3.55301 "', x 7 = 3.83446
"', and so on. Does this sequence converge?

Often, it is possible to guess the limit of a converging sequence from the
numerical values. This is the case, for example, with the sequence nl/n we
discussed in Theorem 14, where the first seven terms were

1, 1.41, 1.44, 1.41, 1.38, 1.35, 1.32

By the time we reach large values of n, we obtain numbers strongly suggesting
that the limit is 1. Thus, when n = 100 we have 1.047 and when n = 200 we have
1.027. This process is not very helpful with the sequence {x n}. Calculation
yields x so = 10.0839 and x lOO = 14.143, which suggests that the sequence is
divergent, but the data are not conclusive since we do not know how the
sequence will behave for much larger values of n.

The monotone sequence property settles this at once. By an easy
induction argument, x n ~ 1 for all n, and hence {xn} is monotonic increasing.
Suppose it were a bounded sequence. It would then have to be convergent,
having a limit, limx_'X x n = L, for some real number L> 1. It would then
necessarily be true that limx_ex, (xn + l/xn) = L + I/L, which, by (1-30) is the
same as the assertion

r 1
1m Xn + 1 = L + L

x-x

But, the sequence with terms X 2 ' X 3 ' ... must have the same limit as the
sequence {x n}, namely L. Thus, the number L must satisfy the equation

1
L=L+

L

which is impossible. Thus, we can conclude that the sequence {x n} is
unbounded. This means that for sufficiently large indices n, X n becomes as
large as you like. (In Exercise 15, a method is suggested for determining
more precisely how fast this sequence grows.)

Our second example is the sequence an = (1 + l/n)n. We have a 1 = 2,
a2 = 2.25, a3 = 2.37037 "', a4 = 2.44140 "', so that the sequence appears to
be increasing. This can be verified by a tedious algebraic computation, and it
can also be shown that {an} is bounded, so that it would then follow that
limn_x an exists. The limit is the important number e = 2.718281 "', which is
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the base of the natural logarithm. However, we win use a different method
to show that {an} converges.

Consider instead the sequence bn= (1 + l/n)n+l. Computation suggests
that {bn} is a decreasing sequence. If this is true, then, since bn > 0 for an n,
{bn} must converge. To show that bn> bn+l, we examine the quotient bjbn+l ,
which is

(1 + ~)n+1 = (n + l)n+l(n + l)n+2

(
1+ 1 )n+2 n n+2

11 + 1

= (n
2

+ 2n + l)n+l(n + 1)
n2 + 2n n + 2

( 1 )n+l(n + 1)
= 1 + n2 +2n ,;+ 2

We need a simple but useful inequality in order to simplify this.

Lemma 3 For any integer m > 0 and an)' x > 0,

(1 + x)'" > 1 + mx

This comes at once from the observation that

m(m - 1)
(1 + x)'" = 1 + mx + . -- X 2 + ... > 1 + mx

2

Using this, we can continue the estimate of the size of bn/bn+ b

obtaining first

(
1 + 1 )n+l> I +(11+ 1)( __ 1 ) =n_2_+3~+ 1

n2 + 2n n2 + 2n n2 + 2n

and then

bn > (n
2

+ 3n + 1)(n + 1) = n
3

+ 4n
2

+ ~n±_1
bn+1 n2 + 2n n + 2 n3 + 4n2 + 4n

> 1

This shows that bn> bn+b and that {bn} is a decreasing bounded sequence,
and therefore a convergent sequence, by the monotonic sequence property.
Hence, limn~cx: bn = L exists; note that we know only that L 2 O. [The
monotonic sequence property guarantees that a bounded sequence con
verges, but teIls little about the limit.] This is enough to ten us that the
original sequence {an] converges, for an = (1 + I/nr 1bn, and that
limn~,,- (I + I/n) = 1. Hence, {an} converges to the same limit as does
[hnl· I
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As a final example, we shall investigate the convergence of a familiar
algorithm for computing square roots. Suppose that we want to find J A and
that we have already made an estimate x. Then, the algorithm supplies a new
and better estimate

x' = ~ (x + :)

As an illustration, let us find approximations for J2. Taking 1 as the first
estimate, we find for the second estimate

x' = 1( 1 + t) = 1.50

Using this as the old estimate, and applying the algorithm, we get a new
estimate,

, 1( 2) Ix = 2 1.50 + I.-SO = 2 (1.50 + 1.333)

= 1.416666

One more repetition of this loop gives

x' = ~ ( 1.416 666 + 1.41~ 666)

= 1(1.416666 + 1.411 765)

= 1.4142155

It is clear that this algorithm is actually a process for generating sequences.
If we label an initial estimate for JA as Xl' then the nex t term is

x 2 = ~ (Xl + .:J
and in general

(1-31) x n = 2
1 (xn - 1 + _A )

x n - 1

We would like to show that limn _ x xn = J A; we would also like to learn
something about the rate of convergence, so that we can estimate the accuracy
obtained in using xn as an approximation to J A.

Theorem 15 If A > 0 and Xl> 0, the sequence defined by (1-31) converges

rapidly to JA.

We shall prove that, after the first term, the sequence ~xn: is monotonic
decreasing. We have x 2 = ~(x 1 + A 1.\ 1)' Since A and x 1 are positive, so is
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X 2. Moreover,

(
2 1 ( 2 A 2)X) - A =.- x + 2A + - - A

2 4 1 xi

= 1 (X 2_ 2A + .4.
2

)
4 1 xi

= I (x _A_) 2 > °
4 1 Xl

It therefore follows that x 2 is larger than ~A, no matter how x 1 was chosen.
This is true for the remaining terms as well. By the same calculation,

and X n > J A.
To prove that the sequence is decreasing, we examine

xn - xn+ 1 = xn - ~ (Xn + :J
= I (x _A) = x~ _-.11 > °

2 n x
n

2xn

Hence, x 2 > X3 > X 4 > ... ?: fl. By the monotonic-sequence theorem,
{x n} converges. Let its limit be L ?: viA. Now, using Theorems 8 and 12,
we have

. I ( A) I ( A)hm 2 xn + ... = 2 L +
n-x xn L

Since this is the same as computing limn_x X n+ b the value of the limit must
again be L, and we have L = 1(L + AIL). From this, we have L 2 = A, and
since L ?: ~A > 0, L = ~Ii. I

The rate of convergence of the sequence {xn } to A is quite rapid. We can
see this by comparing IXn - J A Iand Ixn+ 1 - ::fA I· We have

xn + 1 - JIi = I (xn + A) - JA
2 X n

x~.~ A - ~J.4 xn

2xn

(x n - J.4)2 (xn - JA)2= -----_.- < -_ ..
2xn 2JA
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This shows that the error decreases at a rate much faster than geometric,
because of the squaring; ignoring the factor 2jA, one would expect to see the
error go down according to the pattern .1, .01, .0001, .000 000 01,
.000 000 000 000 000 1.

To illustrate this, we have computed the sequence of approximations for
j25, starting with XI = 6, and have obtained

1
X = 5 = 50833

2 12 .

1
x 3 = 5 L4K4 = 5.000 683 1

1
x4 = 521435888 = 5.000000047

The monotonic-sequence property is not the only method that can be used
to show that a sequence is convergent without having to guess its limit in
advance. We conclude this section by making a few remarks about what is
usually called the Cauchy convergence criterion-although, as will be explained
at the end of Sec. 1.7, this name is somewhat inappropriate. We first defin'e the
term "Cauchy sequence."

Definition 6 A sequence {PnJ of points is said to be a Cauchy sequence if,
corresponding to any 6> 0, a number N (depending upon 6) can be found such
that IPn - Pm I< 6 whenever both nand m are larger than N. This condition
is also written as

lim Jpn - Pml = 0

At first glance, the connection between this definition and convergence is
not clear. However, it is an easy exercise to show that any convergent sequence
is also a Cauchy sequence (Exercise 32). What is useful is the converse of this,
namely, the Cauchy convergence criterion: In n space, any Cauchy sequence
is convergent.

The proof that this holds requires more mathematical tools than we have
at present, and so it is postponed to Sec. 1.7. It will follow from the monotonic
sequence property, which will also be justified later. Instead, we now show
several simple applications of it.

Suppose that a sequence is defined by the formula

X = ,.n cost dt
n • I t 2

It is easy to see that {x n } is a bounded sequence, for

." Icos t I .nil /n
IXnl~IT--dt~1 2 dt =-

.It.Itt I

~ (-lin) - (-1) = I - lin ~ 1
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for all n = 1, 2, 3, .... From this fact alone we learn nothing, since the
sequence {xnJ does not happen to be monotonic. However, if we calculate the
difference of xn and xm ' with n > m,

.ncos t . m cos t
xn - xm= I 2 dt - I t dt

. 1 t . 1 t

= "n COS! dt
t 2

'm

.n Icos t I ,n
I
x - x 1 < I .----- dt < I t- 2 dtn m - 2 -

. m t . m

1 1

Hence,

<_lin
- t m m n

Since limm• n_" IXn - xml = 0, the sequence {xn} converges. (Note that these
calculations give us no information about the numerical value of limn_~ x n '

This example also illustrates some of the techniques we assume to be familiar
from elementary calculus, e.g., that 1cos t 1 ::; 1 for all t, and that the indefinite
integral of l/t 2 is - l/t.)

One of the most common mistakes made in the use of the Cauchy
criterion is to overlook the fact that the indices m and n in IPn - Pm 1-+ 0 must
be treated as unrelated and independent. For example, it is not sufficient to
have the consecutive terms of a sequence become closer and closer as you
move out. Thus, with xn = jn, limn_~ IXn+ 1 - xnl = 0, and yet {xn} is un
bounded and therefore it is divergent. Nor is it enough to have
limn_ oo IX</>(n) - xnl = 0, even if the values of cP(n) are considerably larger than n.
(In Exercise 22 you will meet an example where limn_" Ix n2 - xnI= 0, and yet
{x n } is a divergent sequence that is monotonic.) In understanding the definition
of "Cauchy sequence" (Definition 6), the key is that after N has been chosen,
the only restrictions on nand mare n> N, m> N; thus, each may be as
large as you like, independent of the choice of the other.

In the light of these remarks, the following result may seem contradictory!

Theorem 16 A sequence {Pn}is a Cauchy sequence, and therefore convergent,
if the sequence I Pn+ 1 - Pn1 of distances between consecutive terms ap
proaches 0 fast enough. Specifically, if I Pn+ 1 - Pn1 < Acn where 0 ::; c < 1,
for all n, then limn_" Pn exists.

We shall prove that {Pn} is a Cauchy sequence. For this, we need to
estimate I Pn - Pm 1 for large values of nand m; we may as well assume that
m is the larger and write m = n + k. In order to make the argument clearer,
we do the calculation first for the special case of k = 3, and then in general.
We have

Pn= Pn+3 = Pn - Pn+l + Pn+l - Pn+2 + Pn+ 2 - Pn+3
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so that

1<- en
-1-e

In general, we have

Ipn - Pn+kl::; /Pn - Pn+ll + + IPn+k- 1 - Pn+kl

::; en + en + 1 + + en +k- 1

::; en(l + e + e2 + ... + ek - 1 )

1 - ek I< en ------ < - en
- l-e 1-e

Hence, for any nand m, with m> n, we have

1
IP - P I< ---- en

n m 1 - e

Now, since e < 1, limn_ oo en = °(see Theorem 13). In particular, given any
e > 0, we can choose N large enough so that e l

'/( I - e) < e. Then, if n > N
and m > N, we have IPn - Pm I< e. In other words, limn. m-oo IPn - Pm I= 0,
and the sequence {Pn} converges. I

EXERCISES

I Show that the sequence defined by P. = (n. lin) does not converge.

2 Show that the sequence described by P. = (n :!.(-nl
).) converges.

3 Let Ip.+l - ql ~ elp. - ql for all n. where e < I. Show that lim._., P. = q.

4 Let {P.} and {q.l be sequences in 3-space with P. -+ P and q. -+ q. Prove that
lim._ x P.· q. = P' q.

*5 Starting at the origin in the plane. draw a polygonal line as follows: Go I unit east. 2 units
north. 3 units west. 4 units south. 5 units east. 6 units north. and so on. Find a formula for the
nth vertex of this polygon.

6 Among the following sequences. some are subsequences of others; determine all those which
are so related.

(a) I. -1.1. -I....

(e) l.!. U.!... ·
(e) 1, 0.1. o. 1. o. i. o....

7 Exhibit a sequence having exactly three limit points. Can a sequence have an mfintte number
of limit points? No limit points? Could a divergent sequence have exactly one limit pomt?
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8 Discuss the behavior of the sequence {an)' where

an = n + I + I/n + (-I)"n

9 If an S Xn S bnand limn~" an = limn~" bn = L, show that limn~" xn = L. (This is sometimes
called the "sandwich" property.)

10 Find a formula for the sequence that begins with 1/2, 1/5, 1/10, 1/17, 1/26, ... , and show that it
converges to O.

II Prove that limn~", I/Jn = O.

12 What are the correct hypotheses for the truth of the following assertion? If limn~", an = A,

then limn~" Jan = J A.

13 Prove that limn~x Cl/n = I for any c> I by setting an = c'ln - I, and then deriving the
estimate 0 S an S (c - I lin.

14. Investigate the convergence of the sequence

an = Jn 2 + n - II

15 Show that the sequence {x n } defined by the recursive formula:

x, = I, for n > I

obeys the inequality X n > In for all n2 2.

16 Define a sequence {xn } by

for n > I

(a) Prove that {xn } is unbounded.
(b) Prove that if, for some N, xN S N 2/4, then xN + I S (N + 1)2/4.
(c) Is there a value of n for which X n S n2/4?

(You will have to do some calculation. Use a pocket calculator; that's what they are for!)
(d) Show that xn 2 n2/9 for all n 2 I.

-(e) Show that limn~", xJn 2 = i.
I . 3 • 5 ... (2n - I)

17 Let an =
2·4·6· .. 2n

(a) Prove that {an} is convergent.
-(b) Can you determine limn~x an?

18 Let XI = I, x2 = 3, and define all later terms recursively by Xn = (xn_1 + xn_2)/2. Thus,
x 3 = 2. x4 = 5/2. Is the sequence {xn ) monotonic? Does it converge?

19 Let a, = I, a2 = 2, and an+2 = (4an+I - an)/3. Show that {an} converges.

20 Define the sequence {xn: by x, = a, x 2 = b, and xn+2 = (I + xn+,)/xn. Investigate the
convergence of {x n }. [Hint: It may help to try some numerical values.]

21 Let al = 0, a2 = I, and

(a) Calculate the value of a6 and a7.
(b) Prove that {an} converges.

-(c) Show that limn~x an = 1- e- I
.

22 Show that xn = Jlog log n, for n 2 3 defines a divergent increasing sequence such that

lim (xn' - x) = 0

23 Let {x n } be a bounded real sequence and set P= lim sUPn~x xn ' Show that for any £ > 0,
Xn S Ii + f: holds for all but a finite number of n, and X n 21i - i: holds for mfinitely many n. What
are the analogous statements about lim infn_, X n ry
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24 If b ~ x. ~ c for all but a finite number of n, show that b ~ lim inf._, x. and
lim sUP._x x. ~ c.

25 If {x.} is a bounded sequence with lim inf._ x x. = lim suP._, x.' show that {x.} converges.

26 Find lim suP._ x a. and lim inf._ x a. when:

(a)a.=(-I)"

n + (-I)"(2n + I)
(c) a =-- - ---- -

• n

(b) a. = ( - 1)"( 2 + ~)

(d) a. = sin ( n ;)

27 If lim sUP._x a. = A and lim sUP._x b. = B, must it be true that

lim sup (a. + b.) = A + B

*28 Show that, for any bounded sequences a. and b.,

lim inf a. + lim inf b. ~ lim inf (a. + b.)

and that

lim sup (a. + b.) ~ lim sup a. + lim sup b.

*29 Let {a.: be any seq.uence of numbers converging to 0, and let (J. be the sequence of
arithmetic means (averages),

a l + a2 + a3 + ... + a.

n

Prove that Iim._ x (J. = O.

30 If we start with x I = 2, how far must we go with the square root algorithm to get )2 accurate
to 1O- 50 ? IO- IOO ?

31 Define a sequence of points thus: Startmg at the origin. move I unit east. then! unit
north, then *unit east, then i unit north, then -h unit east, and so on. (a) Does the sequence of
vertices converge? (b) Can you find the "end" of this polygon?

32 Show that a convergent sequence {P.: must be a Cauchy sequence.

*33 Let A = (0, I) and B = (I. 0). Let PI be any point in the plane. and construct a sequence
{p.:, with PI as its first term, as follows: Let QI = midpoint of API and P2 = midpoint of BQI:

then. let Q2 = midpoint of AP2 and P 3 = midpoint of BQ2' and so on. Prove that {p.: converges.

34 Show that every Cauchy sequence {P.: is bounded.

35 Let P. = (x•. r., =.). Show that if {P.: is Cauchy. so are :x.:. :r.:. and :=.:.
. 3/1 + 511l

36 (a) Explam why hmm.• _ x, , = O.
4w + 7/w

(b) Is it true that
2n + III 2

Iim- -
m. • _ x 3n + 5m 2 3

37 Let ak > 0 for all k and suppose that

Prove that {ak : converges.

38 Show that Theorems 10 and 12 still hold if the sequences {a.: and {b.: are sequences of
complex numbers.
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1.7 CONSEQUENCES OF THE MONOTONIC-SEQUENCE
PROPERTY

Historically, plane geometry probably arose from the efforts of people engaged
in an empirical study of the properties of lines, circles, and triangles who
first observed certain repeated patterns and then used these to obtain others;
much later, someone (perhaps Euclid?) codified the material, decided which
should be axioms and which theorems, and presented it as an elegant deductive
structure, with no misleading instances of circular reasoning.

In this section, we discuss briefly one similar aspect of analysis, and
then proceed to a series of very important applications of it in mathe
matics.

In Sec. 1.2, we mentioned the algebraic axioms for the real numbers
(" R is a field") and the existence of the order relation < and some of its
properties. There are other aspects of R we did not discuss; for example, there
are properties that have the effect of asserting that certain equations have
solutions-for example, x 2 = 2. Our belief in this clearly has much to do with
our understanding of the nature of the real numbers themselves. If we think
of them as unending decimals, then one root of x 2

- 2 = 0 may be thought of
as 1.41421356 ... , which in turn may be regarded as the limit of a monotonic
sequence I, 1.4, 1.41, 1.414, 1.4142, .... Another approach is suggested by the
example at the end of the preceding section. There, an algorithm was obtained
for generating a monotonic decreasing sequence whose limit would have to be
J2.

In both of these approaches, the existence of the real number J2 depends
on our belief in the truth of the monotonic-sequence property; it is therefore
natural to list this as one of the basic axioms for the real numbers: Any
bounded monoTOnic sequence of real numbers is conrergent.

However, what is axiom and what is theorem is often an arbitrary choice,
since one is often able to derive each logically from the other. Sometimes one
can go a step further and make all the axioms of a mathematical system into
theorems by basing the system entirely upon some other system. Thus,
analytical geometry makes it possible to base all of plane geometry upon the
properties of the real numbers. This is also possible with R itself, throwing it
back onto modern set theory. With this, we end this digression; refer to
Appendix 2 for further details and references.

We adopt the position that the monotonic-sequence property stated above
is one of the basic axioms for R, and adjoin it to earlier lists. (In the last section,
we saw how useful it is in working with sequences of real numbers.)

Earlier, in Sec. 1.2, we mentioned another basic property of R, also
connected with the order relation <, there called the least-upper-bound
property. Recall that any bounded set of integers must have a largest and a
smallest member, but that this need not be true of a bounded set of real
numbers; thus, the set of all x with 2 < x < 3 has neither a largest member
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nor a smallest member, while the bounded set

1
n + 1 lA = all for n = 0, 1,2, ...
n+3

has t as its smallest member, but does not have a maximum member. The
least-upper-bound property (LUB property), applied to any bounded set S,
guarantees the existence of two real numbers which, for many purposes. serve
to replace the maximum or minimum of S, if either is missing. The formal
definition is as follows: Let S be a bounded subset of R, and let

(1-32 ) (j/1 = the set of upper bounds for S

= {all c such that x :::; c for every XES:

(1-33) !f' = the set of lower bounds for S

= {all b such that h :::; x for every XES:

Then, the LUB property asserts that the set O/f always has a minimum

(1-34) sup (S) = the smallest member of 1/1

and the set Y always has a maximum

(1-35) inf (S) = the largest member of Y

The notation "sup" is meant to suggest "supremum," and "inf," "infimum";
sup (S) is also called the least upper bound of S, written lub (S), and inf (S) is
called the greatest lower bound of S, written glb (S); sup (S) and inf (S) always
belong to the closure of S.

Since some sets of real numbers do not have maxima or minima. why do
the sets 0/1 and Y? This follows from the monotonic-sequence property; the
proof is not easy.

Theorem 17 If S is any bounded nonempty set of real numbers, sup (S) and
inf (S) exist.

To show how such a result is obtained, we assume that all the numbers
in S are positive, and prove only that inf (S) exists. We must therefore show
that the set Y defined in (1-33) has a maximum member, L; we obtain L as
the limit of a monotonic increasing sequence whose terms are chosen from
Y. We start by choosing any number s in the set S. Then, since if is the set of
lower bounds for the set S, u :::; s for every u E Y; since we have assumed
that S contains no negative numbers, °E Y. We construct our monotonic
sequence recursively, choosing the terms as positive rationals, each less
than s.

Choose ao as the largest integer in Y. Clearly, ao ;:::: 0. Then, choose at

as the largest integer n such that n/2 E Y. Noting that ao = (2ao)/2, we see
that 2ao is one of these possible values of n, so that 2ao :::; at. In general,
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we choose Uk as the largest integer n such that n/2k E Y. We therefore have
Uk/2k in !fJ, for k = 0, 1, 2, .... We move on to ak+ 1> which is to be the
largest integer n such that n/2k+ 1 is in Y, and note that (2ak)/2k+ I = ak/2k;
thus we see that 2ak is a possible value of nand 2ak S ak+ I' Accordingly,
we have constructed a sequence {an/2 n

} whose terms are rational numbers
and are all in the set Y, and such that

a a a a
a < I < 2 < 3 < ... <n < ... < 5

o - 2 - 4 - 8 - - 2n - -

As a bounded monotonic sequence, this converges, and we set L =
limn _ oo an/2 n

. If x is any member of S, then since an/2 n belongs to 2,
an/2 n s x for every nand L S x; but since this holds for every XES, L is a
lower bound for Sand LEY. The only remaining task is to show that L is
the largest member of Y. Suppose that there were a number b E 2 with
L < b. Since, for any k, ak/2k S L < b, we have ak S 2kL < 2kb. If we take k
sufficiently large, there will be an integer N between 2k Land 2k b, with
ak < N. Accordingly, the integer ak could not have been the largest integer
n such that n/2k E Y, since N would have the same property. Thus, there
cannot exist a number bEY with b > L, and L is the largest member
of Y. I

The following result may give an easier and more plausible reason for
accepting the truth of the LUB property.

Theorem 18 If the line is connected, then the LUB property holds.

(Note that the word "connected" is used in the special technical sense
given in Definition 2 in Sec. 1.5.)

Suppose that S is a bounded nonempty set that does not have a greatest
lower bound. If Y is the set of all lower bounds for S, then this hypothesis
means that!fJ does not have a maximum member. Take any Xo E 2. Clearly,
all XI < Xo lie in Y. There must also exist X2 E 2 with Xo < X2, because Xo
is not the largest member of 2. Thus, the interval [x 1> x 2] is a neighborhood
of Xo lying inside Y. This proves 2 to be open. Let '1" be all the numbers
not in Y. If Yo E i , then Yo is not a lower bound for S, and there must
exist 5 E S with 5 < Yo. Then, 5 < Y for all y near Yo, and j , is open. Finally,
i is not empty, since S #- 0, and if 50 E S, any y > 50 belongs to "f '. Thus,
the whole real line is 2 u i' where these sets are disjoint and both open,
showing that R is not connected. I

One final remark about the axiomatics of the real numbers: Any of the
three properties--LUB, monotonic-sequence, or the connectedness of R-can
be derived from the others, so that each could equally well be taken as a
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basic axiom for R. There are also other alternative routes through the country
called Foundations, some of which are indicated in the roadmap in Appendix 2.

We now explore the usefulness of some of these various concepts, and
start with some geometric applications. Intuitively, the diameter of a set S
ought to be the maximum distance between any two points in S. Unfortunately,
in many cases such a maximum does not exist; consider, for example, an open
disc in the plane. The solution is to replace "maximum" by "supremum,"
using the LUB property.

Definition 7 If S is any bounded set in n space, its diameter is given by

diam (S) = sup {all numbers Ip - qlfor p, q E S}

Again, how should one define the distance between two sets, or the distance
from a point to a set? Intuitively, the distance from a point p to a set Sought
to be the distance from p to the nearest point of S, but if the set is open, no
nearest point will exist. The solution is to replace" minimum" by "inf."

Definition 8 If S is a nonempty set in n space, and p is any point in n space,
the distance from p to S is

dist (p, S) = inf {all Ip - q Ifor q E S}

Definition 9 If A and B are sets in n space, neither empty, then the distance
between them is

dist (A, B) = inf {alilp - qlfor pEA, q E B}

While dist (A, B) may not be achieved as the minimum Ip - ql for an
actual pair of points in the sets A and B, the fact that inf (S) is always a
number in the closure of S implies that there must exist two sequences of
points, Pn E A and qn E B, such that limn_", IPn - qnl = dist (A, B). However, as
seen in Exercise 6, neither {Pn} nor {qn} itself need be a convergent sequence.

To illustrate the way one works with inf and sup, we prove a form of the
triangle inequality for distances between sets.

Theorem 19 Given any three sets A, B, and C in n space, with B bounded,
the following relation holds:

(1-36) dist (A, C) s dist (A; B) + dist (B, C) + diam (B)

Before reading the proof, we suggest that you make your own picture to
illustrate the meaning of this relation.

Let rx = dist (A, B) and f3 = dist (B, C). Given any e > 0, we may choose
points pEA, qEC, and b1, blEB so that Ip-b11<rx+e, and



SETS AND FUNCTIONS 61

b3 b I = b2 Figure 1-27 Nested intervals.

Ib2 - q 1 < f3 + e. Using the ordinary triangle law for distance, we have

(1-37) Ip - ql ~ Ip - bll + Ib l - b2 1 + Ib2 - ql
~ !Y. + f3 + 2e + 1bI - b21

From the definition of dist (A, C) and diam (B), we have dist (A, C) ~
Ip - ql and Ib l - b2 1~ diam (B). Thus, (1-37) yields

dist (A, C) ~ !Y. + f3 + 2e + diam (B)

Since this now holds for arbitrarily small e, let e lO and have (1-36). I

We next turn to a very useful consequence of the monotonic-sequence
property.

Theorem 20 (nested intervals) Let {In} be a sequence of (nonempty) bounded
closed intervals on the line which are monotonic decreasing (" nested") in the
sense that I I => 12 => 13 => .... Then, ntIn -=f. 0, so that there must exist at
least one point p that lies in all the In' (If the length of In approaches 0 as n
increases, the intersection of the In is a set with exactly one point.)

Let In = [an' bn]. Then, the fact that these intervals are nested implies
that, as shown in Fig. 1-27,

for each k

Thus, {an} is an increasing sequence bounded above by bl, and {bn} is a
decreasing sequence bounded below by al' Accordingly, limn~>o an = a
exists and limn~ >0 bn = b exists, and

for all n

This means that the interval [a, b] is a subset of each of the intervals In' and
is exactly their intersection. Note that if a = b, this intersection is a single
point, and this occurs when limn~>o (bn - an) = O. I

As shown in Exercise 8, it is essential in this result that the intervals In be
both closed and bounded, for otherwise it is possible to have an infinite nested



62 ADVANCED CALCULUS

sequence of intervals whose intersection is empty. In Exercise 9, Theorem 20 is
extended to nested rectangles in the plane.

The following important result is often called the Bolzano-Weierstrass
theorem for the line.

Theorem 21 Every bounded infinite set of real numbers has a cluster point.

Let S be a given set, which we may assume to be a subset of a bounded
interval I = [a, b]. The midpoint of I, (a + b)/2, divides the interval I into
two equal pieces. Since S is an infinite subset of I, one of these two pieces
must contain infinitely many points of S. Choose one that does and label
this piece II' noting that it is a closed bounded interval half the length of
I, with II C I. Repeat this process with II to generate a subinterval 12 c II
such that 12 n S is infinite. Continue this process, and obtain a nested
sequence of closed bounded intervals {In} such that for each value of n,
Inn S is infinite. Applying Theorem 20, we see that nfIn contains a single
point p. We now prove that p is a cluster point for the original set S.
Recall that this means that every neighborhood of p contains infinitely
many points of S. Let. t' be any neighborhood about p. Since the intervals
In close down on p, so that their respective endpoints form sequences
converging to p, and since p is interior to . t " it follows that In C 3' for
all sufficiently large n. But, every interval In contains infinitely many
points of S, and so must the larger set. t '. I

A very similar argument also proves the following.

Theorem 22 Erery bounded sequence of real numbers has a limit point, and
therefore a conrerging subsequence.

(We will shortly generalize Theorems 20, 21, and 22 to n space.)
We are also able now to justify the Cauchy convergence criterion, discussed

at the end of Sec. 1.6.

Theorem 23 Any Cauchy sequence of real numbers is com·ergent.

Any Cauchy sequence is bounded (see Exer. 34, Sec. 1.6). If {xnl is a
Cauchy sequence, and is divergent, then :x = lim inf X n and {3 = lim sup X n

exist, and :x < {3. Choose 6 < {3 -:x, and then choose N so that
IXn - Xm 1< 6 for all 11, III> N. We can rewrite this inequality as

all n, III > N

and then rewrite the right half of this as

all 11, III > N
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Hold m fixed, and apply Exercise 24, Sec. 1.6 to obtain

lim sup xn = f3 ::; e + xm

Write this as f3 - e ::; X m ' holding for all m > N, and again apply the same
exercise to obtain

f3 - e ::; lim inf xn = rJ.

However, this implies f3 - rJ. < e, which is false. Thus, rJ. = f3 and {xn} IS

convergent. I

Corollary In n space, any Cauchy sequence is convergent.

In 3-space, suppose we have the sequence {Pn} with Pn = (xn, Yn' zn),
and suppose it is Cauchy. Then, one easily sees (Exercise 35, Sec. 1.6) that
{xn}, {Yn}, and {zn} are Cauchy, and therefore convergent. I

We remark that the property of being a Cauchy sequence is one that can
be described in any space in which there is a notion of distance. (Such a space
is usually called a metric space; we will encounter a metric space in Chap. 6
that is different from the spaces Rn

.) However, in such spaces it is not always
true that Cauchy sequences automatically converge, although they are always
bounded. A space in which all Cauchy sequences converge is called complete;
thus, this corollary is a proof that n space is complete.

EXERCISES

I Show that the LUB property implies the monotonic-sequence property by proving the following:
If al S a2 S is a bounded increasing real sequence, then lim._ x a. = L where L =

sup {al' a2 , a3 , :.

2 Fill in the missing details in the following proof that the LUB property implies that R is
connected.

(a) Let R = A u B where A and B are mutually separated. Then, A and B are both open.
(b) With ao E A and bo E B, assume ao < bo; let I be the interval ao s x s bo' and set

c = sup (A n I). Then, c belongs to neither A nor B.
(c) Hence, a contradiction has been found, and R is connected.
(d) Modify the above to prove that an interval [b, c] is connected.

3 If 5 is any bounded set of real numbers, show that the numbers inf (5') and sup (5)
belong to the closure of 5.

4 If A c Band B is a bounded set in n space, show that diam (A) s diam (B). Can eqm lit~

occur without having A = B?

S Suppose that A, B. and C are three sets and that A c B. Show that dist (B, C) s dist (A, C).

6 Let A and B be closed sets in the plane defined by:

A = {all (x, .1') with .I' 2: 2:
B = {all (x,.r) with x 2: 0 and.r s x/(x + I))
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(a) Find d = dist (A, B).
(b) Show there does not exist pEA, q E B with Ip - ql = d.
(c) Find sequences {p.l in A and {q.l in B with lim.~", Ip. - q.1 = d. Does either sequence

converge?

7 Can one have two closed sets A and B which are disjoint (and not empty) and such that
dist (A, B) = O?

8 Show that the intersection nr I. of the nested sequence of intervals {I.l is empty in the
following cases:

(a) I. is the open interval 0 < x < lin.
(b) I. is the (unbounded) closed interval n S x < oc.

9 Let {R.l be a sequence of closed bounded rectangles in the plane, with R 1 ::> R 2 ::> R) ::> ..• ;

describe R. by

R. = {all (x, y) with a. s x s b., c. s y s d.l

Prove that n~ R. # 0·
10 Prove that a bounded sequence of real numbers that has exactly one limit point must be

convergent. Is this still true if the sequence is unbounded?

*11 Show that every noncountable set of points in the plane must have a cluster point. Must it
have more than one?

1.8 COMPACT SETS

We next move to a different aspect of the behavior of sets on the line and in
space which unifies the treatment of many topics in analysis. In the proof of
the Bolzano-Weierstrass theorem for a bounded interval on the line (Theorem
21), we used a simple partitioning device which divided the interval up into
smaller intervals of arbitrarily short length. This technique, which allows one
to regard a set as contained in the union of a finite collection of simple sets
of arbitrarily small diameter, simplifies many arguments and suggests certain
useful definitions.

Definition 10 A collection 8 of open sets (9~ is said to be an open covering
of the set S if S c U (9~. The covering is said to be a definite covering if 8
consists of only a finite number of open sets.

Any set S in n space, for example, can be covered by an infinite collection
of open balls. For example, choose any <5 > 0 and use the collection

8 = {all B(p, (5) for pES}

Since each point p in S is covered by its own ball B(p, (5), S is a subset of the
union of all the balls B(p, (5). (Note that this will be a noncountable open
covering of S in general.) A covering is obviously easier to work with if it is a
finite covering, and it is therefore important to know if a given infinite open
covering can be reduced to a finite covering by discarding most of the open sets.
This property has turned out to be such an important one for analysis that it
has received a special name.
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Definition II A set S is called compact if every open covering of S can be
reduced to a finite covering. This means that there must exist a finite sub
collection So of the original open sets which is still a covering of S.

On the line, it is easily seen (as an application of the LUB property) that
any closed bounded interval [a, b] is compact. This statement is also called the
Heine-Borel theorem for the line.

Theorem 24 The interval [a, b] is compact.

Suppose that K is some given open covering of [a, b]. Since [a, x] is a
subset of [a, b], K is also an open covering of each of the intervals [a, x] for
any x, a ::s; x ::s; b. Let A be the set of all x such that the covering Kcan be
reduced to a finite covering of [a, x]. The theorem is proved if we can show
that b E A. Clearly, a E A, since the left end point of the interval [a, b] must
lie in some open set f!/1 E K, and this single open set would be a finite
reduction of K covering the degenerate interval [a, a]. Since the set A is
bounded, sup (A) = rx exists. Since rx is a point in the interval [a, b], rx lies
in some open set (!, in the covering K. Since rx is interior to f!;, all points
near rx (e.g., in an open interval about rx) lie in 0. Since rx is the smallest upper
bound for A, there is x E A such that x < rx, and such that all points t with
x ::s; t ::s; rx lie in fl. Since x E A, K has a finite reduction Ko that covers
[a, x]. The single open set f!; covers [x, rx]. Thus, adjoining (!! to the collection
Ko produces another finite subcollection of K that now covers [a, rx], and
rx E A. If rx < b, then there are points y to the right of rx that also lie in
(!/ and are such that the interval [rx, y] c &. By the same argument, Ko in
fact covers [a, y], so that YEA. However, this is impossible, since rx was
an upper bound for A, while rx < y. Hence, rx = band b E A. I

Having shown that there are some simple sets that are compact, we state
a number of theorems that show why the notion is important, and which
generalize many of the previous results from the line to the plane, space, and n
space. The first is the general Heine-Borel theorem.

Theorem 25 The compact sets in n space are exactly those that are closed
and bounded.

The next two together are often called the Bolzano-Weierstrass theorem.

Theorem 26 Any bounded irifinite set in n space has a cluster point.

Theorem 27 Any bounded sequence in n space has a limit point, and thus
a converging subsequence.

The next generalizes the nested interval theorem.
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Theorem 28 If e1::J e2::J e3::J •.• is a nested sequence of nonempty
compact sets, then their intersection (If en is nonempty.

Finally, the following result often makes it possible to work in n space
with a finite subset of any bounded set, instead of the whole set, in much the
same way as one does with a finite set of partition points on an interval.

Theorem 29 If S is any bounded set in n space, and b > 0 is given, then it is
possible to choose a finite set of points Pi in S such that every point pES is
within a distance b of at least one of the points Pi' P2' ... , Pm'

Of these theorems, only the first has a proof that is not immediate. For
this reason, we prove others first.

PROOF OF THEOREM 26 We prove that if S is an infinite subset of a
compact set e, then S has a cluster point. If this were not the case, then
every point pEe would have an open neighborhood .1I·p about p which
contained only a finite number of points of S. The collection of all these
sets % p is an open covering of e and must have a finite reduction Ko
which still covers C. Since SeC, So covers S. Since .AI p n S is always
finite, the set S itself is finite, contradicting the assumption that S was
infinite. I

To prove Theorem 27, repeat the same argument, choosing AI' p as a
neighborhood of p such that Pn E % p for at most a finite number of n.

PROOF OF THEOREM 28 By Theorem 25 (or by Exercise 2) each set ek is
closed. Choose an open set U containing el' and thus all the en; for
example, choose U as n space itself. Then, form the open sets ~ = U - en
by removing from U all the points of en' Since the en decrease, Vi c V2 C

V3 C .. '. If we suppose that (I fen is empty, then it follows that
U~ ~ = U, and since e 1 c U, the sets ~ form an open covering of e l'

This covering has a finite reduction that still covers e l' Hence, for some
index N we have

C1 C Vi U V2 U V3 U ... U VN = VN = U - eN

But, eN eel' so that eN = 0, contradicting the hypothesis that none of
the set Cn was empty. I

PROOF OF THEOREM 25 We have left the proofs that a compact set is
necessarily both closed and bounded as Exercises 1 and 2. To prove the
converse, we will also use Exercise 3, which asserts that a closed subset of a
compact set is compact. The proof of Theorem 25 for subsets of the plane
will then be completed if we prove that a closed square in the plane is
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compact. The proof for /I SlXice follows the same paltern. We again use
the device of partition used in the proof of Theorem 21 for the line.

let Co be a closed square in the plane, and suppose that ~ is any
open covering of Co. We are to show thaI K has a finite reduction that
still covers Co. Suppose that it does not. Subdivide Co into four closed
squares of half the side. as shown in Fig. 1-28. If K had a reduction for
each of these four smaller squares, we could have obtained a finite
reduction for Co by using those open sets to cover each of the smaller
squares. Hence, one of these smaller squares---call it CI-is such that ~

has no finite reduction covering it. Repeat this process with the square
C I' obtaining a still smaller square for which a finite reduction is
impossible, and so on. The result is a nested sequence of closed squares
Co ~ C 1 ~ C 2 ~ C)· such that none of them can be covered by any
finite subcollection of the gi~'en open sets in :oj. We now use the nested
rectangle theorem for the plane. stated as Exercise 9 ofScc. 1.7 and proved
in the same way as Theorem 20. We conclude that there is a point p
common to all the C~. and thai lhese close down on p so that nt C~

consists just of the point p. Bul. pE Co and must itself be covered by some
single open set (f' E So However, for sufficiently large fl, Cn c l!. as in

Fir.:wl' 1-29
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Fig. 1-29, and S has been finitely reduced to cover one of the squares Cn.
This contradiction shows that S must have had a finite reduction that
covered Co itself. I

We end this section with two useful applications of compactness.

Theorem 30 (a) If C is a compact set, then there must exist two points p,
q E C such that Ip - ql = diam (C).

(b) If A and B are closed sets, and A is compact, then there is a
point pEA and q E B such that

Ip - ql = dist (A, B)

PROOF OF (a) Choose Pn and qn in C with limn_~ IPn - qnl = diam (C).
Since S is compact, {Pn} has a subsequence {PnJ that converges to some
point p E C. Since

IPnk - qnkl:-s; IPnk - pi + Ip - qnkl

and since the left side of this converges to diam (C) while the right side is
less than the sum of IPnk - pi, which approaches 0, and diam (C), we have

lim Ip - qnkl = diam (C)
k-x

In a similar manner, the sec.uence {qnJ has a limit point q in S, and by an
analogous argument, Ip - ql = diam (C).

PROOF OF (b) Choose PnE A and qn E B such that

lim Ipn - qnl = dist (A, B)

Since A is compact, {Pn} has a limit point pEA, and as in the proof of part
(a), there is a sequence {nk } of indices such that {PnJ converges to P and

lim Ip - qnk I= dist (A, B)
k-oo

Since

Iqn.l = Iqnk - p + pi

:-s; Iqnk - pi + Ipl
the sequence {qnk} is bounded. It must then have a limit point q which lies
in B, since B is closed. Repeating the sort of argument used in part (a), we
conclude that Ip - q I= dist (A, B). I

Corollary 1 If A and B are disjoint closed sets, one of which at least is
bounded, then they are a positive distance apart .. there is a number b > 0
such that Ip - qI?: b for all pEA, q E B.
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Figurt' 1-30

Corollary 2 Ler A ami B be disjoint compact sets. Theil, !WO disjoint opell
.~et,~ Valid V can he chosen sildl rliar A c:: V and 8 c:: V, and silch tllat V
allli V llrl'i'ach rhl' IInion of a finite number of open balk

The result is illustrated in Fig. 1-30. The practical importance of this
result is that U and V arc so simple in construction that their boundaries arc
each made up of a finite number of arcs of circles or portions of spheres. To
prove Corollary 2, let {j = dist (A. B) > O. For eaeh pEA and each q E B,
consider the open balls with center p or q and radius b/3. Note that these will
be disjoint. since their centers are at least b apart. As p varies over A, we obtain
an open covering of A which can be reduced to a finite sulx:overing whose
union is an open set U. Similarly, as q ranges over B. we obtain a covering
of 8 which then yields a finite subcovering whose union is the sel V. Note
that dist (V, V) ~ ti/3.

EXERCISES

1 Show that allY compact SCi in " splice mUSI be bounded.

2 Show that any compact SCi in n space mUSI be closed.

) Show that every closed subsci of a compact sct is compact.

4 Fill in the dctails of the Pl'"oof of Corollary I of Theorem 30.

S Pro,'e Ihal a set S in n spal:c is Wn1p<lct if and only ir e"ery sequenl:e in S has a Iimil poinl
thai belongs 10 S.

6 ut A and B he compact sets on the line_ Use bercisc 5 to show Ihat their cartesian
produCI A " B is a compact SCi in the plane.

7 (a) Prove Theorem 29. assuming that the set S is both doscd and bounded,
(h) Prove Theorem 19. assuming only that S is bounded. [Thc difficulty li~ in showing

that the points 1', can be chosen in S itself.)

8 Must every bounded noncmpty SCi in "spa~ have a nonempty boundary?

9 For any sct S in the plane. k:t

XIS) '" lall.l for which (x. Y)E S ror some.r!
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This is called the projection of S into the X axis.
(u) If S is bounded, is X(S) necessarily bounded? ""' S

(b) If S is closed, is X(S) necessarily closed? 'L.u

(c) If S is compact, show that X(S) is necessarily compact.

10 (u) Show that the open unit disc in the plane can be expressed as the union of a collection of
closed squares.

*(b) Can this be done with a countable collection of closed squares?



CHAPTER

TWO

CONTINUITY

2.1 PREVIEW

The purpose of this chapter is to clarify the intuitive notion of continuity,
and to arrive at many of its most useful consequences. We start by discussing
and comparing continuity of a function and uniform continuity of a function.
The former is what is termed a local property, something that can be decided
by examining a function on a neighborhood of each point of a set; the latter
is a global property, and is a statement about the way a function behaves
on an entire set. We then take up many of the properties of continuous
functions which follow immediately from the definition of continuity,
particularly those that describe the behavior of a continuous function on a
set that is compact or connected. One familiar instance of the latter is the
intermediate-value theorem, which is used informally by people more than
any other theorem in analysis. (" If the temperature was 40° and now it's 100°,
it must have been 70° sometime!")

With the concept of continuity as a tool, the discussions of limits and
discontinuities in Sees. 2.5 and 2.6 become easier, especially when dealing with
functions of several variables, where the behavior of a function near a boundary
point of its domain can be so complicated. Section 2.7 is very short and
deals with inverses for functions of one variable. The continuity of such inverses
turns out to be an immediate consequence of the useful compact graph theorem
of Sec. 2.4.

71
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2.2 BASIC DEFINITIONS

Let f be a numerical-valued function, defined on a region D in the plane.
Suppose that we interpret f(p) to be the temperature at the point p. Then,
the intuitive notion ofcontinuity can be described by saying that the temperature
on a small neighborhood of any point Po in D will vary only slightly from that
at Po; moreover, we feel that these variations can be made as small as we like
by decreasing the size of the neighborhood. This behavior can be shown on
a graph off In Fig. 2-1, we have shown the range of variation in the values
of a function of one variable when x is confined to a neighborhood of a
point X o; note also that the size of neighborhood needed to attain the same
limitation of variation may be smaller at another point.

Formally, we are led to the following.

Definition 1 A numerical-valued function f, defined on a set D, is said to
be continuous at a point Po E D if, given any number £ > 0, there is a
neighborhood U about Po such that If(p) - f(Po)1 < £ for every point
p E U n D. The function f is said to be continuous on D if it is continuous
at each point of D.

The work of checking from this definition that a specific function is
continuous can be easy or difficult, depending upon how the function has
been described and how simple it is. As a start, let us show that the function
F given by F(x, y) = x 2 + 3y is continuous on the unit square S consisting

Figure 2-1



CONTINUITY 73

of those points (x, y) with 0 ~ x ~ 1, 0 ~ y ~ 1. Let Po = (xo' Yo) be any
point in S. Then

F(p) - F(po) = F(x, y) - F(xo' Yo)

= x2 + 3y - x6 - 3Vo

= x2
- x6 + 3y - 3yo

= (x - xo)(x + xo) + 3(y - Yo)

No matter where the points p and Po are located in S, it is always true that
o~ x ~ 1 and 0 ~ X o ~ 1, so that x + X o ~ 2. Consequently,

(2-1) IF(p) - F(Po)1 ~ 21 x- xol + 31y - Yol
We have here an estimate for the variation off near Po' If we confine p to
a small neighborhood of Po' then Ix - X oI and Iy - Yo I must both be small
and so will IF(p) - F(Po)l. We can make this argument more concrete.
Suppose that we wish to find a neighborhood U about Po in which the
variation of F is less than e = .03. Take U to be a square neighborhood
centered on Po' with sides .01. Then, if p E U and lies in D, we must have
Ix - X oI < .005 and Iy - Yo I < .005, so that (2-1) gives

IF(p) - F(Po)1 < 2(.005) + 3(.005) = .025 < .03

In general, if we take U to be a square of side (A)e, then Ix - XoI < (.2)e
and Iy - Yo I < (.2)e, so that

IF(p) - F(po) I < 2(.2)e + 3(.2)e = e

This example exhibits another fundamental property of continuous func
tions. Let {Pn} be a sequence of points in S, converging to a point Po E S.
Then, {F(Pn)} will converge to F(po)' For, writing Pn = (xn, yn), we have,
from (2-1),

and since lim xn = xo' lim Yn = Yo' we conclude that the right side approaches
oand lim F(Pn) = F(po)' Another way to describe this property is to say that a
continuous function preserves convergence.

Theorem 1 Let f be continuous at Po E D and let {Pn} be a sequence of
points in the domain D off, with limn_ ao Pn = Po' Then, limn_<Xc f(Pn) = f(po)'

Given any e > 0, choose a neighborhood U about Po such that
If(p) - f(po)! < e whenever p E Un D. Since Pn E D and {Pn} converges to
Po, we must have Pn E U for all sufficiently large n. Hence, there is an N
such that I!(Pn) - f(po) I< e for all n > N. But this is precisely what we
mean by saying that the sequence of numbers {.f(Pn)} converges to/(po)· I
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It is also easy to see that "convergence preserving" is a characteristic
property of continuous functions.

Theorem 2 If a function f defined on D has the property that, whenever
PnED and lim Pn = Po E D, then it follows that limn~'X f(Pn) = f(po), then
f is continuous at Po'

It is easiest to prove this by an indirect argument. Assume that f is
convergence preserving but thatfis not continuous at Po. If the definition
of continuity (Definition I) is read carefully, one sees that, in order forf not
to be continuous at Po, there must exist a particular value of E > Osuch
that no neighborhood U can be found to satisfy the required condition.
(There is a routine for carrying out the logical maneuver of constructing
the denial of a mathematical statement in a semimechanical fashion; those
who have difficulty reasoning verbally will find it explained in Appendix 1.)
Thus iff is not continuous at Po, and we think of trying a specific neigh
borhood U, then it must fail because there is a point P of D in U with
If(p) - f(Po)1 ~ G. If we try U in turn to be a spherical neighborhood of
radius 1,1, t, i, ... and let Un therefore be

Un = :all P with Ip - Po I< ~l

then there must be a point Pn E Un n D with If(Pn) - f(p)1 > G. Since
PnE Un' IPn - Po I < I/n and lim Pn = Po· We have therefore produced a
sequence {Pn] in D that converges to Po, but such thatf(Pn)does not converge
to f(po). This contradicts the assumed convergence-preserving nature off
and forces us to conclude that f was continuous at Po· I

Theorem 2 is more useful as a way to show that a specific function is not
continuous than it is as a way to show that a function is continuous. To use
it for the latter purpose, one would have to prove something about {f(Pn)] for
erery sequence {Pn} converging to PO' and there are infinitely many such
sequences. However, if there is one sequence {Pn] in D which converges to Po.
but for which {f (Pn )} is divergent, then we know at once that f is not continuous
at Po. For example, let f be defined on the plane by

(2-2)

, xy2

f(x, y) = . x 2-+ y4

10

(x, y) # (0,0)

x=y=o

We want to see if f is continuous at (0,0).. Among the sequences that
approach the origin, look at those of the form Pn = (l/n, c/n). As c takes on
different values. the sequence Pn will approach (0,0) along different lines, taking



on all possible directions of approach. Since

we find that lim
n

_
T

f(Pn ) = O. It might seem from this that f is continuous
at (0.0). However. if we try a new sequence. qn = (1/111

. I!/I). we find that

I II-l I
flq.)~ I I ~2

• + •
" "

so that while lim 'In = (0. o~ lim .f(qn) #- flO. 0). Thus. we have shown by the
single sequence :f/n : thatfis not continuous at the origin.

In later sections. we shall need to work wilh continuous functions whose
values are not numbers but points. Although any detailed sludy of Ihese will
be postponed until Chap. 7. il is convenient to give the corresponding
definition here.

Definition I' Lei f hI.' lI./ill1(·lioll ,h~/inell;n (I set D ilt II space. (llld IlIkilly
il.~ rllllle_~ ill 11/ sfl/lce. Thell . .1 i.~ said ta he calltillliall.~ at (I paim Po E D !r.
gin'" /llIr lleighharhoo(J V (lhall/ f(po) = qo' IllerI' is (I neiyhhorhood V
uholl/ "0 .~/({·llllwtf(p)E V If/lellaer lIE U n D. Tllt'fUllctiol1 (or mappillY)
fis .~(/id 10 he (,OII/iml(m,~ all D ifI i.~ cOlllil1uOIlJ (/{ eacll pO;1lI of D.

This can be visualized as in Fig. 2-2; il should be clear thai this again
coincides with our intuitive ideas of continuity. The images (values)f(p) can
be restricted toa small neighborhood off(po) by confining p to an appropriately
small neighborhood of Po' It is also easy to show that Ihe analogs of
Theorems I and ~ hold; f i.~ collliIlIlOU.~ if alld 0111.1' if f is COl1rt'l'~Jt-'lIc(,

{/re.,errilly.

D
f ---F:""-~~~""

~rl---I------ I ,
,";;- • l' \

\ Qo J
I p. ,I, ," \ /{ ...._---"

Range

"'igurI'2-2 COlllinuil~ ufa lJJappint!
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When we adopt the point of view that a function is a correspondence
or mapping, we think ofj(p) as the image of the point p. In a similar fashion,
we can speak of the image of a set under! If S is any set in the domain D
of f, then f(S) is the set of points f(p), for pES. Using this language, we
can describe the relationship shown in Fig. 2-2 and Definition l' more simply:
Given any neighborhood V, there is a neighborhood U such that f(U n D) c V.

We shall also speak of the inverse image or pre-image of a set Sunder
a mapping! Given any set S, its inverse image is the set

(2-3) f- 1(S) = {all p ED withf(p) E S}

It should be noted that the set S might be chosen in such a way that no
point p in D satisfies f(p) E S. In this case,f - 1(S) will still be defined, but the
result is 0, the empty set. Relation (2-3) merely requires that the points in
f - 1(S) consist of all those in the domain of f whose images are in S, and if
there are none,f - 1(S) is empty. Some mathematical problems lend themselves
to formulation in terms of these ideas. For example, instead of talking about
the set of solutions x for the equation f (x) = 0, we could equally well ask for
the inverse image of the set {O}. A striking example of this is the following
reformulation of the idea of continuity.

~\w' " 1Theorem 3 A function f is contmuous on an open set D if and only if the
inverse image of every open set, under f, is open.

Let S be any open set in the range space off, and let R be its inverse
image.r l(S). We must show that, iffis continuous, R is open. Take any
point Po E R; we wish to show that Po is interior to R. Since Po is in the
inverse image, under.f, of S, we know thatf(po) belongs to S. Also, since S
is open, there is a neighborhood V aboutf(po) which lies entirely inside S.
Now, since f is continuous at Po, we can find a neighborhood U about Po
so thatf(p) E V for every p E U n D (see Fig. 2-2). Since D itself is open,
the set U n D is a neighborhood of Po lying entirely in D. Moreover, the
fact that f (U n D) c V, together with V c S, shows that U n D c R.
Hence, we have found a neighborhood of Po composed only of points in R.
Po is therefore interior to R, and R is open.
~ Conversely, if we suppose that f - 1 has the property of carrying open
sets back into open sets, it follows that f is continuous. Given any Po ED

and any neighborhood V aboutf(po), we look at the inverse image W of V.
Since V is open, W is open. Sincef(po) E V,

Hence, Po is an interior point of W, and there must be a neighborhood U
about Po which lies in W. But, all points of Ware carried into points of V,
underf, so thatf(W) c V. Taking W for the required neighborhood U, we
have shown that f is continuous at Po· I
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In this theorem. the apparent restriction that the domain off be an open
set can be overcome in several ways. One method is to introduce the notion of
relative topology. If D is a set in n space, then one says that a subset A c D
is open, relative to D, when A is the result of intersecting D with an open set
in n space. In the same way, a set B is called closed, relative to D, if B = D n C,
where C is closed in n space. This is merely a device for restricting one's
attention precisely to the points in a specific set D, but still using all the
terminology and topology of n space. If we use this interpretation, then
Theorem 3 can be given a broader meaning as follows: A function f is
continuous on a set D if and only if the inverse image of every open set under f
is open relative to D.

There is also a second way to overcome the limitation in the stated form
of Theorem 3. We shall show later on that any continuous function f that is
defined on a closed set D and takes values in R, or indeed in Rm

, can be
assumed in fact to have been defined and continuous on any convenient
larger open set 0 ::) D. This important result, known as the Tietze extension
theorem, is proved in Chap. 6, and simplifies many arguments.

If we choose a set D, an arbitrary set in n space, then we can study the
collection of all real-valued functions that are continuous on D. This is a very
important mathematical object, the focus of much research work in the past
several decades. The first questions that one asks about it deal with the sort
of structure the whole collection possesses: what are the basic laws and
operations that allow you to combine continuous functions and get continuous
functions? The first result shows that this class of functions is a vector space,
and in fact something more. (See also Appendix 6.)

Theorem 4 The class of real-valued functions continuous on D forms an
algebra. Explicitly, iff and g are continuous on D, so are their sum f + g,
their product fg, and any scalar multiples rxf or rxf + {3g, where rx and {3 are
numbers. The quotient of two functions fig is continuous at all those points
p in D where g(p) -:f. O.

We can derive this from the corresponding facts about convergent
sequences that were proved in Sec. 1.6 if we also make use of Theorems 1
and 2 in the present section. Thus to prove that fg is continuous on D,
we need show only thatfg is convergence preserving. Given any Po E D and
any sequence {Pn} in D that converges to Po' we know from the assumed
continuity off and g that limn_ oc f(Pn) = f(po) and limn _ oc g(Pn) = g(po)·
By the standard result on real sequences, we conclude that {.f(Pn)g(Pn)}
must be a convergent sequence, and

=f(Po)g(po)

The product function fg is therefore convergence preserving. I
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The proof of all the remaining statements follows the same pattern.
Several consequences of this result are worth pointing out. First, we can

conclude that all polynomial functions are everywhere continuous. For
polynomials in one variable, this follows by noting that constant functions
[e.g., the function c with c(x) = 3 for all x] and the identity function J [J(x) = x
for all x] are clearly continuous. Then, by addition and multiplication and by
multiplication by scalars (i.e., coefficients), we construct the most general
polynomial function. For polynomials in two variables, we would start from
the basic functions I(x, y) = x and J(x, y) = y, prove that these are continuous,
and then build up the general polynomial from these. Second, we can conclude
that all rational functions, for example,

R(x y) = P(x, y)
, Q(x, y)

are continuous everywhere except at the points where the denominator is O.
(In Sec. 2.6, we shall discuss the behavior of such functions near points where
the denominator is 0; in some cases, we can restore continuity, and in others
we cannot.)

There is a further way to combine continuous functions to yield continuous
functions. It may be stated roughly as follows: Continuous functions of
continuous functions are continuous. With more attention to the fine points of
detail, we have the following:

Theorem 5 Let the function 9 be continuous on a set D and f continuous
on a set S. Suppose that Po E D and g(po) = qo E S. Then, the composite
function F, gil'en by

F(p) = f(g(p))

is continuous at Po'

This can be proved easily by the scheme of using sequences and the
sequence-preserving property. For variety, we choose to prove this by using
the neighborhood definition of continuity. The argument can be followed
in the diagram of Fig. 2-3. Letf(qo) = c = F(po)' Sincefis continuous at qo,
we know that, for any e > 0, there is a neighborhood V about qo such that
If(q) - f(qo)1 < e whenever q E V and q is in the domain S of f Since
g(po) = qo and 9 is continuous at Po, we also know that there is a neighbor
hood U about Po such that g(p) E V for all points p E U n D. Putting these
remarks together, we see that, if we set q = g(p), then

If (g(p)) - f (g(po)) I< e

whenever p E U n D. Since this can be rewritten as IF(p) - F(Po)1 < e, we
have shown that F is continuous at Po· I
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Figurt 2-3

and

The continuity of composite functions is used constantly. It can even be
used to derive Theorem 4 in a different way. Suppose that we were to verify
directly from the definition thai the functions A and M are continuous. where
A(x• .1') = x + .I" and M(x..r) = x.\". Then. the composite function theorem tells
us at once that f + 9 and .f.lJ are continuous on a set D if f and 9 are each
separately continuous on D: for

I(p) + g(p) ~ AU(p) g(p))

~ A(F(p))

f(p)9(p) ~ MU(p). g(p))

~ M(F(p))

where F is the function from D to Rl given by F(p) = (f(p). g(p)). In the
same fashion, the fact that Q(x,.\") = XIJ' is continuous on the set where Y:F 0
implies at once that fig is continuous where g(p) :F O.

As a more practical example, what can we say about the continuity of
a function such aSf(x, y) = X2.r csc (x + y)? If we assume that the sine function
is known to be continuous everywhere, then the composite function theorem
and Theorem 4 show that f is continuous at all points (x, .1') except for those
where sin (x + y) = O. namely. the points on the family of lines with equation

x+.r=/In 11 = o. ± I. ±2..

How do we know that a function such as the sine function is continuous?
The only honest answer is to say that it depends upon how this functioll was
defined. A traditional definition of the sine function is 10 say: For all.r x, sin (x)
is tile second coordil1afC' of Ihe poim P Oil rile II/Iit circle whose distance from
(1,0). m('aslired a/oily the ci,.cWI!(erelll'(' ill the positire di,.('ct;oll. is x (Fig, 2-4).
From the figure. it probably seems self-evident that sin Ix) is near sin (xo)
whenever x is sufficiently near xo ' It has even been traditional to bolster this
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geometric argument by calculations involving arc lengths or areas of sectors
to prove that lim sin (xn) = 0 when xn is a sequence approaching O. However,
this "proof by picture" needs much work before it is on a firm foundation.
In particular, this definition of the sine function itself is a little shaky, since it
rests upon an already assumed theory of arc length, particularly for the circle
whose equation is x = cos e, y = sin ()!

Such overt circularity of reasoning is clearly unsound. There are, of course,
ways to present a treatment that avoids these defects. The trigonometric
functions can be defined by means of infinite series, or by means of certain
indefinite integrals, or even as solutions of certain differential equations. Since
we are not attempting to construct a total connected logical development of all
analysis, we do not adopt one of these; a suggestion of the first two will be
found in several of the exercises in Secs. 5.4 and 6.5, and there is a complete
treatment in the article by Eberlein [7] mentioned in the Reading List at the
end of the book.

Henceforth, you may assume the continuity of any of the standard
elementary functions of one-variable calculus, on its natural domain.

EXERCISES

I Prove directly from Definition 1 that the function M(x, y) = xy is continuous on any disk:
I(x, y)1 sr.
2 Prove that Q(x, y) = xlY is continuous everywhere except on the line .I' = O.

3 Check that the function defined in (2-2) is such that it is convergence preserving for all
sequences of the form p. = (aln 2

, bln2
).

4 Letfbe defined by f(x, .1') = x 2y2t(X2 + .1'2), with flO, 0) = O. By checking various sequences,
test this for continuity at (0,0). Can you tell whether or not it is continuous there?
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5 Show that a real-valued functionfis continuous in D if the set S = {all p ED with b <f(p) < c}
is open, relative to D, for every choice of the numbers band c.

6 Using Theorem 4, where can you be sure that the function given by
F(x, y) = (x + y)/(x 2 - xy - 2y2) is continuous?

7 Use the example f(x, y) = x 2 to show that a continuous function does not have to map an
open set onto an open set.

*8 Use the examplef(x) = x 2/(1 + x 2 ) to show that a continuous function does not always have
to map a closed set onto a closed set.

9 Using the assumed continuity properties of the sine function, what can you say about the
set on which the function g(x) = csc (sin (I/x)) is continuous?

10 Show that f is continuous if and only if the inverse images of closed sets are closed sets
relative to D.

II Prove Theorem 5 using Theorems 1 and 2.
12 How arer l(A n B) andf-I(A u B) related tof-l(A) andr I(B)?

13 Let f: X -+ Y be a function, and Sand T arbitrary sets. Show that:
(u) frl(S) c S (b) T cr1f(T)

14 Let F(x, y) be continuous on the square Ixl ~ I, Iyl ~ 1. Where is the functionf(x) = F(x, c)
continuous?

15 Formulate the definition of continuity for a complex-valued function! Show thatfis continuous
if and only if its real and imaginary parts are continuous functions.

16 (u) Setting z = x + iy = (x, y), consider the function f defined from complex numbers to
complex numbers (R 2 to R2

) byf(z) = Z2 + (I - i)z + 2, and show that it is continuous everywhere.
(b) What can you say about the continuity of the functionfwhere:

(i) f(z) = ~ (ii) f(z) = _2_
Z

_
Z Z + 1

17 Show that a mapping y = F(x) on a set D in R" to Rm as given in (1-26) is continuous if
and only if the component functionsf, g, h, ... , k are continuous on D.

2.3 UNIFORM CONTINUITY

We now make a closer study of the concept of continuity of a real-valued
function, particularly with respect to the way the behavior of a function near
one point may differ from that near another. As we shall see, the contrast
here is between properties that are local and properties that are global.

Suppose we return to the special polynomial function

F(x, y) = x 2 + 3y

which we studied at the start of the preceding section. There, we showed that
F is continuous on the unit square with vertices at (0,0), (0, 1), (1,0), (1,1).
From the more general theorems we proved in the last section, we know in
fact that F is continuous in the whole plane. To obtain this directly, we would
again write

F(x, y) - F(xo' Yo) = (x - xo)(x + xo) + 3(y - Yo)

If we are given a positive number E, we must find a neighborhood U about
Po = (xo' Yo) so that IF(p) - F(po) 1< E for all points p E U. If we take U to be
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a square box of side 2<5, centered on Po' then we have 1x - X oI < <5 and
Iy - Yo I < <5 for any P E U. The number <5 is as yet undetermined, but we can
agree to take it smaller than 1. Then, when P E U, we have

Ix + X oI = Ix - X o + 2xo I ~ Ix - XoI + 21xo1

~1+2Ixol

Hence, for any point p E U, we have

IF(p) - F(Po)1 ~ Ix - xollx + xol + 31y - Yol

~ <5(1 + 2lxol) + 3<5

~(4+2Ixol)<5

In order to prove that F is continuous at Po' we wish to make the left side
less than E for every p E U. We can achieve this if we can choose <5 so that the
right side of this inequality is less than E. Thus, we are led to choose <5 as a
number obeying

(2-4)
E0< <5 < ..._--

4 + 21xol

With this selected, we can be sure that IF(p) - F(Po)1 < E for all p E U, and
F is continuous at each point Po'

Now, in examining what we have done, we notice that the size of the
neighborhood U that we selected depended not only upon E (as was to be
expected) but also upon xo' and thus upon the point Po' Indeed, as the point
Po is selected farther and farther to the right, Ix-ol will increase and the value
of <5 will decrease. If we were trying to show that F is continuous on a specific
bounded set D, then, since the point Po must lie in D, there would be an upper
bound on the values of IX o I. Accordingly, we would then be able to select a
value for <5 which is smaller than all the values given in formula (2-4), and
we would be able to choose a single-sized neighborhood that works for all
positions of Po in D at once. This in fact was the case when we first examined
this function in the previous section, for there we found that <5 = (.2)E worked
for all points Po in the square. This special phenomenon of being able to
pick <5 independent of Po is one to which a special name is given.

Definition 2 We say that a function f is uniformly continuous on a set E
if and only if, corresponding to each E > 0, a number J > °can be found
such that If(p) - f(q)1 < E whenel'er p and q are in E, and Ip - ql < 6.

There is a vivid way to describe this property of a function that may
help to emphasize its characteristic features. Suppose that we invent a measuring
device with two movable prongs and a meter which will indicate the temperature
difference of the prongs. Suppose that we have a sheet of metal whose tempera-
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ture varies from point to point, and that the temperature at p is given by f(p).
If we place one prong at a point p on the sheet and the other at q, the meter
will read the value 1f (p) - f(q) I· The meaning of the uniform continuity off
is simply that, given a value for E > 0, we can set the prongs at a fixed
separation of at most 15 and be sure that, wherever they are placed in the
region E, the meter will read no higher than E.

The term "uniformly continuous" is always used in conjunction with a
set, which must also be specified. In the example of the function F above, we
showed that it was uniformly continuous on the unit square S and indeed
that it was uniformly continuous on any bounded set. It can be shown that it
is not uniformly continuous on the whole plane.

For another example, let f(x) = l/x. We shall show that f is continuous
on the open interval °< x < 1 but is not uniformly continuous there. We
first write

I
I I I Ixo- xlIf(x) - f(xo)1 = - - - = -----
x X o xXo

To prove continuity at xo' which may be any point with 0< X o < 1, we wish
to make If (x) - f(xo)I small by controlling 1x - X o I. If we decide to consider
only numbers 15 obeying 15 < xo/2, then any point x such that Ix - Xo1< 15
must also satisfy x> xo/2, and xXo > x6/2. Thus, for such x, If(x) - f(xo)1 <
6/XXo < 2b/x6. Given E > 0, we can ensure that If(x) - f(xo)1 < E by taking
15 so that 15 S; (x6/2)E. Thus,f is continuous at each point X o with 0 < X o < 1.
Iffwere uniformly continuous there, then a number 6 > °could be so chosen
that If(x) - f(x') I < 1 for every pair of points x and x' between °and I
with Ix - x'i S; 6. To show that this is not the case, we consider the special
pairs, x= lin and x' = 15 + lin. For these, we have Ix - x'i = 6 and

I
1 I n6If(x)-f(x')I= n----- =- --

6 + lin 6 + lin

No matter how small 6 is, n can be chosen so that this difference is larger
than 1; for example, any n bigger than both 1/15 and 3 will suffice.

A plausible (but incorrect) graphical argument can also be given. Examina
tion of the graph of f shows that its slope becomes arbitrarily steep as we
move toward the vertical axis, and this would seem to imply that f cannot be
uniformly continuous. This reasoning has an analytical counterpart; the choice
6 = (x6/2)E which we have made above becomes arbitrarily small as X o moves
toward 0, so that "no positive number can be found which works for all
Xo > 0." To see the flaw in these arguments, consider F, where F(x) = ~x.

Since the graph of F also becomes arbitrarily steep as we move toward the
vertical axis, the first argument would seem to show that this function too is
not uniformly continuous on the interval°< x < 1. We seem to reach the same
conclusion if we repeat the second line of reasoning. To see this, we first prove
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continuity. Given points x and Xowith 0 < x < 1, 0 < Xo< 1, we have

r:. c I(ylx - ylx~)(~ + ylx~) I
IF(x)- F(xo)1 = Ivx-vxol = ._-~+-j~~----

Ix - XoI Ix - XoI----',,=--------'''=== < --._.
~+A- ylx~

Given £, we select 15 so that 15 :s; A £; then, if Ix - X o I < 15,

This shows that F is continuous on the interval 0 < x < 1. The choice of 15

as A £ suggests that F is not uniformly continuous there, since this number
becomes arbitrarily small as X o approaches O. However, F in fact is uniformly
continuous. To prove this, we must make a more careful choice of J. Assume
that we have chosen 15, and again estimate the difference IF(x) - F(xo)I.
Two cases arise, depending on the size of xo' If°< Xo < 15, and Ix - XoI < 15,
then 0 < x < 215 and we have

IF(x) - F(xo)1 = I~ - JX;I :s; ylx + JX;
:s; yI2b + 05 < 305

If X o ::2: 15, then, using the original estimate of the difference,

IF(x) - F(xo)1 :s; IxiX0 I < ~ = 05 < 305
X o v J

No matter how 15 is chosen, we have shown that, if Ix - XoI< 15, then

IF(x) - F(xo)1 < 305. This at once proves that F is uniformly continuous,
since given c; we may choose 15 = £2/9 and have IF(x) - F(xo)I < c; whenever
x and Xo obey x > 0, Xo > 0, and Ix - Xo 1< J. In fact, as is easily seen, these
calculations show that F(x) =~ is uniformly continuous on the unbounded
interval consisting of all x, x > 0.

When is a continuous function uniformly continuous? The following basic
theorem supplies a partial answer.

Theorem 6 ~f E is a compact set and f is continuous on E, then f is
necessarily uniformly continuous on E. In particular, any continuous function
defined on a closed and bounded set E in n space, and taking ralues in
m space, is uniformly continuous on E.

There are a number of proofs for this result. We give one here and
indicate another in the exercises. We shall again argue indirectly, proving
that, i(fwere not uniformly continuous on E, thenfcould not be continuous
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on E. Our first problem is to understand the meaning of"f is not uniformly
continuous on E." This may be clearer if we put the statements side by side.

f is uniformly continuous on E ==
For any e > 0, there is a 15 > 0 such that whenever P and q lie in E
and Ip - ql < 15, then If(p) - f(q)1 < e.

f is not uniformly continuous on E ==
There is some e > 0 such that, for any 15 > 0, there exist points P and
q in E with Ip - ql < 15 but such that If(p) - f(q)1 ~ e.

(Again, a brief explanation of the mechanical procedure for finding the
negative of complicated statements is given in Appendix 1.)

If, therefore, it were true thatfis not uniformly continuous on E, then
we could select the special value of e mentioned above, and then take 15 in
turn to have the values 1,1, j, !, ... ; for each choice of 15, we can produce
a pair of points in E, say, Pn and qn for the choice of 15 as lin, such that
IPn - qnl < 15 = lin, and with I/(Pn) - f(qn)1 ~ e. We next show that this
cannot be done if/is continuous on E. Because the set E is compact, we
apply the Bolzano-Weierstrass theorem (Theorem 26, Sec. 1.7) to conclude
that the sequence {Pn} must have a limit point Po E E and a subsequence
{Pn.} converging to Po. Since the terms of the sequence {qn} are progressively
closer and closer to the terms of the sequence {Pn}, we would expect {qnk}
also to converge to Po. Indeed, we have

Iqnk - Pol = Iqnk - Pnk + Pnk - Pol

< Iqnk - PnJ + Ipnk - Pol

1
< - + Ipn - Po I --+ 0n

k
k

But, iffis continuous on E, it is convergence preserving and we must have

lim (f(Pn) -f(qn)) =f(po) -f(po) = 0
k-cc

which contradicts the fact that If(Pn) - f(qn) I~ e > 0 for all n. I

This result also has a direct proof which uses the covering property of a
compact set to obtain a value of 15 that depends on e, but not upon the
location of the points P and q in E (see Exercises 11 and 12).

A standard method for presenting the numerical values of a function of
one variable is to tabulate them at a constant interval distance ~x. Thus, a
short table of the sine function might list the values of sin () for every choice of
() in degrees between () = 0° and () = 90°, and sin () would be estimated for
other choices of () between these extremes by linear interpolation. It is clear
that this process can be described by saying that one starts with a finite
number of points on the graph of a given function, and then approximates
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the function between these by line segmcnts. A practical problem ames
immediately: How close should the tabulated values of x be in order that the
interpolated values of function not have more than an assigned error?

In such a problem. we are dealing wilh two functions. one of which is
regarded as an approximation to the other: in the example quoted. a piecewise
linear function is used as an approximation to the sine function on the interval
[0 _90 ]. We need a precise notion of degree of approximation.

Definition 3 We say Ilrm (/ .{ill/clioll F i,\ II lilli/fir/II ':-flfJll'oximlllioll (0 1I

fill/ctio".r. Oil II set E. if
I((p)- F(r)1 ,;" "II rE f

Iffand F are functions of one variable and £ is an interval [a. hI. this has
a simple geometric interprelation. Let S be the band of venical widlh 21: which
is obtained by moving a vertical line segment of length 2,; along the graph
off. irs midpoint being kept on the curvc (Fig. 2-5). Thcn. F is an I:-approxima
tion 10.r if the graph of F lies completely in the sct S, By analogy with the
situation in euclidean spaces. one says that F lies ill an I: ll~ighhorhood of f.
and one writcs

III - f",l" ,;,

Here Ii I:,; is a special not arion which is explained hy

(2-5) !lgll,.. = sup ': Iy(pll wilh pEE:

the least upper bound (or maximum if attained) of thc values of I!/I on E.
Hence.IIF -fII,· is the maximum separation between the graphs of/and F.
over the sel E. t:gll is read "the norm of y."

One of the key results in this subject is the Wcierstrass approximation
theorem. which states that any continuom function of one \'ariable dcfined
on a closed bounded intcn'al [a. hl can be approximated uniformly rhcre.
within I:. by a polynomial. We shall not pro\'e this or its generaJiZ<lIiolls to
functions of several variables: instead we shall provc a simpler result dealing
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with approximation by piecewise linear functions. The graph of such a function
is a polygonal line, and the result we prove is directly connected with the
problem of construction of numerical tables.

Theorem 7 Iff is a continuous function on the closed and bounded interval
[a, b], then, for any I; > 0, there is a piecewise linear function F which
approximates / uniformly within I; on the interval.

As the name implies, a piecewise linear function is one whose graph is
a polygon, consisting of a finite number of straight-line segments. As I;

decreases, the number of segments we have to use to get the function F may
have to increase, in order to match the behavior off The method of proof
is extremely natural. We select points Po, PI, ... , PN on the graph of the
given function/and then construct F by joining these with line segments.
The only trick is to be sure that the points Pk are close enough.

We shall decide upon the size of the number N later. Divide the interval
[a, b] into N equal subintervals at points

a = Xo < Xl < x 2 < ... < x N = b

Let Pk be the point (Xk' yd, where Yk = f(xd. Notice that Pk is on the
graph off Now, define the function F on each of the subintervals in turn,

(2-6)

for all X with xk ~ x ~ X k + l' Notice that F(x) is of the form A + Bx on
this interval, so that its graph i~ a straight line. Also, putting x = x k in
(2-6) gives F(xk ) = J'k = f(x k ), while F(xk + 1) = J'k+ 1 = f(X k + 1)' Thus, this
portion of the graph of F goes from Pk to Pk+ l'

We now wish to estimate the difference between F(x) and/(x) at an
arbitrary point x between x k and x k + l' Clearly, F(x) lies somewhere between
hand J'k+ l' since its graph is a straight line. We do not know much
about the shape offbetween xk and xk+ l' but we know with certainty that
IF(x) - /(x)1 cannot be larger than the bigger of the numbers I/(x) - J'kl
and If (x) - J'k+ 1 I· Since J'k and J'k + 1 are the values of f at points in the
interval [xk ' X k + 1]' neither of these numbers in turn can be larger than the
biggest separation of values I/(x) -f(x')I, for arbitrary placement of x'
between x k and x k + l'

We are now ready to choose the integer N. Given 1;, we make use of the
uniform continuity ofjto choose b > °so that I/(x) - f(x') I < I; whenever
x and x' are two points anywhere on the interval [a, b] with Ix - x'i < b.
Choose N large enough so that (b - a)/N < <5. This has the effect of making
each of the subintervals shorter than <5. The last remark in the paragraph
just above now applies, since the points x and x' there must obey
Ix - x'i < <5. Hence, we conclude that IF(x) -/(x)1 < E. With this done in
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each subinterval [x k , X k + 1], it is clear that we have proved this uniformly
throughout the entire interval [a, b], and II F - f II < e. I

It is interesting to note that the process given in (2-6) for obtaining
the values of the approximating function F at points x intermediate between
x k and x k + 1 is nothing more nor less then ordinary linear interpolation, as it
is standardly done in mathematical tables.

For functions of two or more variables, a similar process can be used,
obtaining approximate values for a functionfby interpolating from the values
at a discrete set of points. In two variables, for example, one can use linear
interpolation in triangles to replace the formula given in (2-6) (see Exercise 10).

In order to apply these methods to construct uniform approximations to a
given function[, one must know a value of b that is appropriate for a given e.
There is one case in which this step is simple.

Definition 4 A function f is said to obey a Lipschitz condition on the set D if
there is a constant M such that

If (p) - f (q)I :s; M Ip - qI
for every choice of p and q in D.

When this happens, it is clear thatfis uniformly continuous on D and that
we may choose b = elM. For, if Ip - ql < b, then If(p) -f(q)1 :s; Mb :s; e. In
Sec. 3.2 we will see that any function of one variable that has a continuous
derivative on an interval [a, b] obeys a Lipschitz condition on that interval. An
analogous result will also be proved later for functions of several variables.

EXERCISES

I Show that F(x, y) = x 2 + 3y is not uniformly continuous on the whole plane.

2 Prove that the functionf(x) = 1/(1 + x 2
) is uniformly continuous on the whole line.

3 Letfand 9 each be uniformly continuous on a set E. Show thatf+ 9 is uniformly continuous
on E.

4 Let A and B be disjoint sets, and letfbe continuous on A and continuous on B. When is it
continuous on A u B?

5 Let A and B be disjoint closed sets and suppose that f is uniformly continuous on each.
(a) Show thatfis necessarily uniformly continuous on A u B if A is compact.
(b) Show thatfneed not be uniformly continuous on A u B if neither A nor B is compact.

6 If f is uniformly continuous on D, show that it has the property that if p.' q. E D and
Ip. - q.l- 0, then If(p.) - f(q.)I- O.
7 Let D be a bounded set and let l be uniformly continuous on D cR·. Prove that f is bounded

on D.

8 Let f be a function defined on a set E which is such that it can be uniformly approximated
within e on E by functions F that are uniformly continuous on E, for every e > O. Show thatfmust
itself be uniformly continuous on E.
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9 Using the special notation explained in (2-5), prove that, iff and 9 are defined on a set E, then

10 Let PI' P2' P3 be the vertices of a triangle D in the plane.
(a) Show that any point p in D can be expressed as

(b) Iffis a function defined on D with Lipschitz constant M, use part (a) to define a function
F on D by

F(p) = rtJ(PI) + rt 2 f(P2) + rt 3 f(P3)

and show that IIF - filD s M diam(D).

Exercises 11 and 12 constitute a different proof of Theorem 6.

II Letfbe continuous on the interval [a, b]. Given £ > 0 and a point t in the interval, choose
p = p(t) so that, if Ix - tl < p, then If(x) - f{t)1 < £. Let V t be the symmetric interval centered on
t of radius 1P(t). Show that there are points t l' t2' "', t.. such that the sets V

t
, together cover

the interval [a, b].
12 (Continuation of Exercise 11.) Let Po be the smallest of the numbers p(tj), and let x' and x" be
any two points of the interval [a, b] with lx' - x" 1< 1Po' Show that there must be one of the points
tj such that lx' - tjl < p(t j ) and Ix" - tjl < p(tJ

Conclude that If(x') - f(x")1 < 2£ and hence thatfis uniformly continuous on [a, b].

2.4 IMPLICATIONS OF CONTINUITY

Many properties of a continuous function-e.g., that it is bounded and attains
a maximum-seem intuitively obvious and to require no formal proof, if one
thinks only of those smooth functions whose graphs are easy to sketch with a
pencil. However, there are continuous functions whose graphs are so compli
cated that they have tangent lines nowhere; an example will be discussed in
Sec. 6.2. Moreover, if one considers any function of three variables, its graph
becomes a set in 4-space, and there intuitive arguments become much less
convincing. It is therefore important to see that these useful properties which
hold for every continuous function do in fact follow logically from the defini
tion of continuity and do not depend upon intuitive geometric reasoning.

It is helpful to introduce the words" local" and" global" to contrast two
types of situations that frequently arise. If we are considering a given set D,
then we say that any specific property holds locally at Po E D if it is true at Po
and at all points P sufficiently near Po; thus, there will be an open ball B about
Po and the property will hold for all p E B n D. On the other hand, a property
that holds at all points in D is said to hold globally in D.

Here is a useful example of this viewpoint.

Theorem 8 Let f be a real-valued function defined and continuous on a set D
in n space. If Po E D and f(po) > 0, then f is locally positive at Po' Indeed,
there must be a neighborhood U about Po and an E > °such that f(p) > E

for all p E U n D.
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Set E = H-)f(po)' Since f is continuous at Po, choose U so that
If(p) -f(Po)1 < E for all p E U (l D. Accordingly,f(p) - f(po) > -E, and
hence

f(p»f(Po)-E=2E-E=E I

This result is a special case of the following more general theorem; to
see the connection, take c = 0, and observe that Po will lie in an open set and
must be interior to it.

Theorem 9 Letfbe continuous on a set D, and let c be any number .. then, the
set R of points P ED for whichf(p) > c is an open set, relative to D, and the
set G of points p wheref(p) = c is a closed set, relative to D.

This is an immediate consequence of Theorem 3. Let V be the open
unbounded interval consisting of those numbers y with y > c. Since f is
continuous, the inverse image f -l( V) of V must be open, relative to D.
Clearly, R = f-l(V). The second part is treated in the same way by observ
ing that G is the inverse image of the closed set {c). I

This result also explains the fact, noted earlier, that formulas such as

S = {all (x, y) with x 2
- 3xl + y5 > I}

always describe open sets, and formulas such as

T = {all (x, y) with X
5y2 + 7X

2y4 = 7J

always describe closed sets. (See also Exercises I and 2.)
A functionfis said to be bounded on a set S if the imagef(S) is a bounded

set. There must then be a number M such that If(p)1 :s; M for all pES. A
function can be continuous on a set without being bounded there. Examples
are f(x) = l/x on the open interval °< x < I and g(x) = x 2 on the closed
interval °:s; x < x.

Theorem 10 Let f be a real-valued function defined and continuous on a
compact set D. Then,f is bounded on D.

Let us first prove that any continuous function is locally bounded on
its domain. Given Po E D, take E = 1and use the assumed continuity off to
choose a neighborhood U about Po so that If(p) - f(Po)1 < I for all
p E U (l D. Clearly, we then have If(p)1 < I + If(Po)1 for all such p, andf
is locally bounded at Po. We now use the compactness of D to obtain a
single bound for If(p)1 that works for all pin D. The fact thatfis locally
bounded everywhere in D shows that given any p E D, there is an open set
(!p abollt p and a number M p with If(q) I< M p for all points q E (! p' The
sets (! p form an open covering of D. Since D is compact, this covering
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can be reduced to a finite covering by sets (! Pk for k = 1, 2, ... , m. In each of
these sets,fis bounded, and every point q in D lies in one ofthese sets. Thus,
if M is the largest of the numbers M Pk' we have If(q)1 < M for all qED. I

The conclusion of this theorem can also be stated in the useful form: Iff
is continuous on the compact set D, thenf(D) is a bounded set. In this form, the
proof given above also holds iff is a function taking values in m space. (See
also the statement of Theorem 13 below.)

A real-valued function can be bounded and continuous on a set without
attaining a maximum value on the set. This is true, for example, of the func
tionf(x) = x2 on the open interval 0< x < 1 and on the unbounded closed
interval O:s: x < 00 for the functionf(x) = x/(1 + x). Again, the situation is
different for compact sets.

Theorem 11 If S is compact, and f is continuous on S, then f takes a
maximum and a minimum value somewhere on S.

By the previous theorem,fis bounded on S. There then exist numbers B
and b, with b :S:f(p) :S: B, for all pES. Let M be the smallest such upper
bound for the values offon Sand m the largest lower bound. We must have
m :S:f(p) :S: M for all pES as before, but now M cannot be decreased, nor
m increased. If there is a point Po in S withf(po) = M, then M is the maxi
mum value for f on S, and it is attained in S. If there is no point Po with
f(po) = M, thenf(p) < M for all pES. In this case, set g(p) = 1/(M - f(p)).
Since the denominator is never 0, g is continuous on S and must therefore
be bounded there. If we suppose that g(p) :S: A for all PES, then we would
have

and therefore

1
M _ 7(p) :S: A all pES

1
f(p) :S: M - It

This, however, contradicts the fact that M was the smallest upper bound
for the values offon S, and we conclude that this case does not occur and
there is a point Po E S withf(po) = M. In a similar fashion, one may show
that there is a point in S where f has the value m, and a minimum is
attained. I

There is an alternative approach to Theorems 10 and 11 which makes
their meaning a little clearer, and also permits us to generalize them im
mediately for vector-valued functions and transformations. While such func
tions will be studied more fully in later chapters, it seems appropriate to men
tion these generalizations here.
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The key idea is to look at functions from a more geometric viewpoint,
and first obtain the following useful result.

Theorem 12 Let f be a function defined on a compact set D in n space and
taking values in m space, and let G be its graph. Then,f is continuous on D
if and only if G is compact.

While the proof is valid for a functionffrom n space into m space, we
suggest that it is easier to follow in terms of the usual picture for a real-valued
function of one variable defined on an interval (see Fig. 2-6). In general,
the~ off is the set

G = {all P = (p, q) where q = f(p) and p ED}

First, suppose thatf is continuous and prove that G is compact. Since D is
compact, it is bounded, and there is a number B such that Ipi < B for all
p E D. Likewise, by Theorem lO,f(D) is bounded, and for some number M
we have If(p) I< M for all p E D. Accordingly, if P is any point in G.

IPI = I(p, q)1 = I(p, 0) + (0, q)l::; I(p, 0)1 + 1(0, q)1

::; Ipl + Iql = Ipl + If(p)1 ::; B + M

Thus, the graph G is a bounded set.
To show that G is also closed, let Pn = (Pn' qn) be any sequence of points

in G, and suppose that it converges to a point (p, q). It is then true that
limn_(X, Pn = P and limn_(X, qn = q. To prove G closed, we need only show
that the point (p, q) is in G. But, since {Pn} lies in D, p lies in the closure of
D; but D, being compact, is closed, so p E D. Since (Pn' qn) is in the graph of
f, qn = f(Pn)' and since f is continuous on D, limn_(X, f(Pn) = f(p), which
may be restated as limn_ oo qn = f(p). However, limn_(X, qn = q, so that
q = f(p), showing that (p, q) E G.

To prove the other half of Theorem 12, we assume that G is compact
and show thatf must be continuous. Suppose that this were false. Then,
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there would be some point Po in D, and a sequence {Pn} in D with Pn --+ Po,
and an E > 0 such that If(Pn) - .[(Po) I> E for all n. Put qn = f(Pn) and
consider the points Pn = (Pn, qn) in G, for n = 1,2, .... Note that Pn --+ Po E D,
but that Iqn - f(po) I> E. Because G is compact, the sequence {Pn}must have
a subsequence {Pn,} that converges to some point (p, q) in G. Accordingly,
Iimn_ oo Pn, = Pand limn _ oo qn, = q. However, since {Pn,} is a subsequence of
{Pn}, which itself converges to Po, we have P = Po. Because the point (p, q)
is in G, which is the graph off, q = f(p) = f(po)' However, limn _ oc qn, =
f(po) and Iqn - f(Po)1 > e are not both possible; we conclude thatfmust
have been continuous on D. I

In connection with this result, Exercise 4 shows that Theorem 12 does not
hold if" G is compact" is replaced by "G is closed."

As our first application of this theorem, we obtain the following.

Theorem 13 Iff is continuous on the compact set D, then f(D) is also a
compact set.

Becausefis continuous and D is compact, the graph offis a compact
set G. The set f(D) is the projection of the set G (see Fig. 2-6). By
Exercise 9, Sec. 1.8, the projection of a compact set is compact. Hencef(D)
is compact. I;:&c"

This result contains both Theorem 10 and Theorem 11. Since f (D) is
compact,f(D) is closed and bounded. The latter shows that there must exist a
number M with If(p)1 < M for all P ED. The latter, together with the fact that
the sup and inf of any set of real numbers belong to the closure of that set,
shows that f (p) must achieve the values

Maximum off(p) = sup (f(D))

Minimum of f(p) = inf (f(D))

Another application of the compact graph theorem will be given in Sec. 2.6, in
connection with the problem of extending the definition of a function defined
on an open set (! to the boundary of (!; in such a way that it remains
continuous there.

We now turn to what is usually called the intermediate value theorem. We
state this for real-valued functions.

Theorem 14 Let S be a connected set, and let f be continuous on S. Let the
numbers a and b be any two values off on S, and suppose that a < c < b.
Then, there is a point pES withf(p) = c.

The one-variable form of this, with S an interval, is especially plausible.
Here, it states that if the graph offlies below the line y = c at one point in
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the interval, and above the line at another, then it must intersect the line at
some intervening point. The proof of the general theorem is based upon
Theorem 9 and the definition of a connected set. Suppose that f (p) is never
c, for any point pES. Then, we always have either f(p) > cor f(p) < c. Let
U be the set of pES withf (p) > c, and V the set where f (p) < c. These sets
together must cover S. Sincefis continuous, both U and V are open, relative
to S. Moreover, since there is a point Pi E S withf(pl) = a, the set V contains
Pi and is therefore not empty; likewise, U is not empty. The existence of
two such sets contradicts the assumption that S was connected; so we know
that, somewhere in S,.f must take the value c. I

This proof was again indirect; the argument proves that there must be a
solution to the equation f(p) = c, but it gives no help in finding a solution.
One reason to study such proofs in detail is to see if ways can be found to
make them constructive, so that one has an algorithm for locating a point p
in S with f(p) = c. Another approach to this result is found in Exercise 15,
which will be recognized as a familiar process for locating the roots of an
polynomial equation.

This theorem too has a more general form which applies to continuous
functions on n space with values in m space.

Theorem 15 Let f be continuous on D, and let D be connected. Then, the
image set f(D) is also connected.

Suppose thatf(D) = A u B, where A and B are mutually separated.
Since no point of A is arbitrarily near a point of B, A is open relative to
f(D). So is B. Sincefis continuous,f- 1(A) andf-l(B) must be open,
relative to D. Hence, D =.r l(A) u f- l(B), where these sets are disjoint and
mutually separated. However, since D was assumed connected, one of these
sets must be empty. Iff-l(A) is empty, A is empty. A similar observa
tion applies to f-l(B), and it follows that f(D) is not disconnected, and
must be connected. I

This general result also contains the usual intermediate value theorem
(Theorem 14). We see this as follows. Suppose thatfis a real-valued function
defined on a set D in n space, and thatftakes the values a and b somewhere in
D. Let c be a number with a < c < b. If D is connected and f continuous,
f(D) is a connected subset of R, and must therefore be an interval; but since
f(D) contains the points a and b, it must also contain c. Thus, f takes the
value c somewhere in D.

We can also use Theorem 15 to clarify our understanding of connected
ness. In Sec. 1.5, we discussed two intuitive notions of this concept before
defining "connected." We can now make the notion of "pathwise connected"
precise, and also prove the converse of Theorem 2, Sec. 1.5.
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Definition 5 A set S is pathwise connected if every pair of points p, q in Scan
bejoined by a continuous path I' lying entirely in S. Specifically, this requires
that there be a continuous function y(t), defined for °~ t ~ 1 such that
1'(0) = P and 1'(1) = q and such that y(t) E S for all t.

We see that" polygon connected" is merely a special case of this, arising
when the function y(t) is especially simple.

Theorem 16 Any pathwise connected set S is connected.

Suppose that S = A u B, where A and B are mutually separated and
nonempty. Choose pEA and q E B, and then join p and q in S by a contin
uous path y. The trace of I' is the set 1'(1), where I is the interval [0,1]' Since
I is connected, so is 1'(1). Set Ao = A n 1'(1) and Bo = B n 1'(1). Since these
are subsets of A and B, respectively, Ao and Bo are also mutually
separated. Moreover, p and q lie in 1'(1), so that Ao contains p and Bo
contains q and neither set is empty. But 1'(1) = Ao u Bo , contradicting the
fact that 1'(1) is connected. I

The intermediate value theorem lies at the heart of many "intuitively
obvious" mathematical facts dealing with the behavior of quantities that
"change continuously." We have given a number of these as exercises; in
several which involve physical or geometrical quantities, you should assume
that the appropriate function is continuous.

We give two illustrations now that are less recreational. .

Theorem 17 No continuous function can map the open unit square S onto the
interval [0, 1] in a one-la-one fashion, although this is possible for dis
continuous functions.

Suppose that ¢ is a continuous real-valued function defined on S. We
show that there must be two points ql "# q2 in S with ¢(qd = ¢(q2)' We
may assume that we have PI and P2 in S with ¢(PI) < ¢(P2)' for otherwise
we are done. Choose c with ¢(pd < c < ¢(P2) and take two different paths
(J. and f3 in S which go from PI to P2' Then, on each there must be a point
q where ¢(q) = c. Calling these points ql and q2 we clearly have ql "# q2
and ¢(qd = ¢(q2)' I

There is a standard example ofa discontinuous function ¢ that is a 1-to-l
map of S into the unit interval. Given any point (x, y) E S, write each
coordinate in decimal form:

Y = ·YtY2)'3 ...
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and then define cP by

cP(x, y) = .Xd'IX2Y2 X3Y3 X4·"

If one is careful to avoid decimal representations that terminate in an endless
sequence of 9s, cP can be seen to be a real-valued function, defined for
o :os; x < 1, 0 :os; Y < 1, which takes distinct values at every distinct pair of
points (x, y). It is also easily seen to be discontinuous.

Our second illustration is a familiar observation from elementary calculus,
used there frequently but without proof.

Theorem 18 Letfbe a real-valued continuousfunction defined on the interval
I = [a, b], and suppose that f is l-to-l on I. Then, f is strictly monotonic
on I.

The hypothesis means that if x I and x2 are points in I with x I "# x2 '

then f(xI)"# f(X2)' Clearly, we have either f(xd <f(x2) or the reverse
inequality; we show that this inequality always holds in the same direction,
determined by the values off at the endpoints of[a, b]. We may suppose that
f(a) <f(b). Take any x with a < x < b. Hf(x) > f(b), there must be t with
a < t < x such that f(t) =f(b). If f(x) <f(a), there must be s with
x < s < b andf(s) = f(a). We conclude that f(a) <f(x) <f(b) for all x
between a and b. Now consider XI and X 2 with a < XI < X 2 < b, and
suppose thatf(xd > f(x 2). Then, there must exist s with x2 < s < band
f(s) = f(xI)' We conclude thatf(xd <f(x2) for every such pair of points,
andfis strictly increasing on I. (If we had started withf(a) >.f(b),fwould
have been strictly decreasing.) I

EXERCISES

I Show that if I is continuous on D, then the set of points p where I(p) :s C is closed relative
to D.

J . x v I2 Let S = jail (x, y) With 3 - Y- ~ :s 1 .

(a) Is S a closed set in the plane?
(b) Does this conflict with Exercise I?

3 Let F(x, y) be a polynomial in x and y, and let

A = {all (x, y), F(x, y) ~ O}

B = {all (x, y), F(x, y) = O}

(a) Show that bdy (A) c B.
(b) Is it always true that B is exactly the boundary of A?

*4 Show by an example that the graph of a function defined on the interval 0 :s x :s 1 can
be a closed set, without the function I being continuous.

5 Let I and 9 be continuous on the interval [0,1], and suppose that I(x) = g(x) for every
rational number x = alb in this interval. Prove that 1= g.
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6 Use the intermediate value theorem to prove that any polynomial of odd degree with real
coefficients has at least one real root.

7 Letfand 9 be continuous on [0, I] and suppose thatf(O) < g(O) andf(l) > g(I). Prove that
there is a point x, 0 < x < I, withf(x) = g(x). Can you illustrate this by a picture?

8 Show that any function that is locally constant on an open connected set D is in fact
constant on D.

9 Prove that a set S is disconnected if and only if there is a real-valued function f that is
continuous on S but takes only the values 2 and 3 on S.

10 Give a mathematical argument to show that a heated wire in the shape of a circle must
always have two diametrically opposite points with the same temperature.

II Give a mathematical argument to show that any compact convex set can be divided into
four subsets of the same area by two perpendicular cuts.

12 Show that any real-valued function defined on the set consisting of the nonnegative X, Y, and Z
axes must take the same value at least twice.

13 Five line segments meet at a point. Show that any continuous real-valued function defined
on this set must take the same value three times.

14 (a) Show that any heated tetrahedron must have three points located on its edges or vertices
that have the same temperature.

(b) Can you prove there must actually be four such points with the same temperature?

15 Suppose thatfis continuous on [a, b) and thatf(a)f(b) < O. Prove Theorem 14 by filling in
the details of the following argument.

(a) Apply the process of repeated bisection to construct two sequences {an} and Ibn} such
that a s an < bn s b, with bn - an ---> 0, andf(an)f(bn) s O.

(b) Show that limn~o< an = c where a < c < b andf(c) = O.

16 Let F(x, y) = (x - yf Then show that maxo~x~ 1 mino~y~ I F(x, y) = 0 and
mino~y~ 1 maxo~x~ 1 F(x, y) =!.
17 Let F(x, y) be continuous on the square

S = {all (x, y), Ixl s I, Iyl s I}

Let maxlxl~ 1 minlYI~ 1 F(x, y) = A and min 1ylS 1 max 1xls 1 F(x, y) = B. Prove that A s B is always
true.

18 Suppose that f is a complex-valued continuous function defined for 0 s t s 1. Suppose that
f(O) = -I andf(1) = 1. Does there have to be a value of t withf(t) = O? Explain.

2.5 LIMITS OF FUNCTIONS

The concept of continuity was introduced in this chapter by comparing the
value of a function f at a point X o with the values which f takes on a small
interval about xo' In this section, we examine the notion of convergence for
functions which is implicit in this and which is analogous to the notion of
convergence for sequences. The concept of the limiting value for a function at
a point X o is particularly important when X o is a point at whichfhas not been
defined, or where f is not continuous.

We shall discuss functions of one variable first and treat the general case
later. We assume for the present that functionsfare defined on some neighbor
hood of a point X o = b; whether or not f is defined at b itself turns out to
be irrelevant for the discussion of limits.
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Definition 6 We write limx _ b f(x) = L if, corresponding to any £ > 0, there
is a number 15 such that

(2-7) If(x) - LI < £ whenever 0 < Ix - bl < 15

x#-I

x = I

Note that the last inequality rules out the choice x = b. It is customary
to use the term "deleted neighborhood of p" to describe the set obtained by
taking a neighborhood of p and removing p from it. Using this terminology,
this definition could be rephrased as: limx _ b f(x) = L if, given any £ > 0, there
is a deleted neighborhood y of b such that (2-7) holds for all x in y.

It should also be pointed out that there is a strong analogy between
expressions involving the notation" x ---+ b" and the notation" n ---+ 00," visible
in both definitions and theorems; thus, compare "limn_ ac an" with
"limx-b f (x )," and refer back to the appropriate definitions, noting also that
just as we have x #- b, we have n #- 00. Further instances of this analogy
will appear later.

As an illustration of the calculation of a limit, let f be described by

l~~~__I
f(x)=< x- 1

12
and consider lim

X
_ 1 f(x). Computation gives

f(l.I) = 3.31 f(1.01) = 3.0301

and we are led to guess that lim
X

_ 1 f(x) = 3. We can check this by the
definition. We must estimate the difference If(x) - 31 for x near 1. When
x #- 1, we have

x3
- I x3

- 3x + 2
f(x) - 3 = x---=-f - 3 =~-=- (--

= x2 + X - 2 = (x - I)(x + 2)

When x = l,j(x) - 3 = f(l) - 3 = 2 - 3 = - 1. However, our aim is to make
f(x) - 3 small whenever 0 < Ix - II < 15, and this explicitly rules out x = 1;
on this deleted neighborhood of 1, we have

If(x)-31 = Ix- 11I x + 2 1

If we again agree to use numbers 15 smaller than 1, then the points x will be
confined to the interval [0,2]. For such x, Ix + 21 :s; 4, and we have

If(x) - 31 :s; Ix - 114 < 415

Given £ > 0, choose 15 as £/4; then, I f(x) - 31 < £ whenever 0 < Ix - II < 15,
and lim

X
_ 1 f(x) = 3.

Of course, if the function f is known to be continuous at b, no such
work is necessary, for it is evident from the definition of continuity that we
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then have limx _ b f(x) = f(b). Thus, for continuous functions, calculation of
limits is easy; one need merely substitute.

We could have used this fact to simplify the calculations above which
were used to find the limit of this specific function. We make the simple
observation that x 3 - 1 can be factored as (x - 1)(x 2 + X + 1), so that we can
write

f(x) = x 2 + X + 1 x # 1

In other words, there is a function P given by P(x) = x 2 + X + 1 (for all x)
such that f (x) = P(x) for all x # 1. Since f and P agree on a deleted neigh
borhood of x = I, and since these are the only values of f which are used
in evaluating limx _ 1 f(x), we must have limx _ 1 f(x) = limx _ 1 P(x). Clearly,
P is continuous everywhere, being a polynomial, so that limx _ 1 P(x) =
P( 1) = 3. This trick of replacing a function f by another function P which
agrees with it near a point b, but which is known to be continuous at b,
makes the calculation of certain limits easy.

The theorems which were obtained in Sec. 1.6 for convergence of sequences
(Theorems 8 to 12) each have their analog for limits of functions.

Theorem 19 Assuming that f and 9 are each defined on a deleted neigh
borhood of x = b, and that limx-'+b f(x) = A and limx_bg(x) = B, then it
is true that

lim (f(x) + g(x)) = A + B

lim f(x)g(x) = AB

and if B # 0 lim !(x) = ~.
x-b g(x) B

We postpone proofs of these until we take up the comparable results for
functions of several variables.

As an illustration, to find

I
. 2X3 + 5x 2 - 8x - 20
1m 3 8 = L

x-2 X -

we may write this function as

(x 2
- 4)(2x + 5) _ (x - 2)(x + 2)(2x + 5)

(x - 2)(x2 + 2x + 4) - (x - 2)(x 2 + 2x + 4) .

and note that if the factor (x - 2) is removed, the result is continuous at x = 2,
arriving at
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In Sec. 3.2, we discuss L'Hospital's rule, often used in evaluating such limits;
until then, we depend on other approaches.

The limit notation is used to describe certain types of behavior for
functions. Another possible behavior is indicated by the expression
limx~b f(x) = 00. A word of caution: the symbol" 00" as used here is neither
a number nor a point on the line. It is merely part of the expression and
has no meaning out of context. A test of this is the fact that" 00" does not
occur in the formal explanation of the whole expression which follows.

Definition 7 We write limx~bf(x) = 00 if and only ij; corresponding to
any positive number B, there is a number <5 > °such that f(x) > B whenever
x satisfies °< Ix - b I < <5.

As illustrations, we would write limx~ 1 (x - 1r 2 = 00 and

. 1
hm~--- = 00
x~o sin (x 2

)

We would not write limx~o l/x = 00, since the function involved behaves
differently when x is negative and near °from what it does when x is positive.
However, we could write limx~o 1/lxl = 00.

Another useful modification of the limit notation is the following, which
uses the symbol" 00" in a different way.

Definition 8 We write

lim f(x) = L
xloo

whenever f is defined on some unbounded interval such as °< x < 00 and,
corresponding to any e > 0, there is a number X o such that If(x) - LI < e
whenever x > X o .

For example, limx 1 00 1/x2 = 0, limx1 00 x/(x - 10) = 1, while limx100 sin x
and limx 1 00 l/(x sin x) do not exist.

These can be combined and modified in other useful ways. Without giving
formal definitions for them, we illustrate several possibilities. We would write

lim eX = 0

lim log Ixl = - 00
x~o

but would not write

lim eX = 00

xl 00

lim (x sin x + 2x) = 00
xloo

lim x sin x = 00
xloo

lim (x sin x + x) = 00
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1
Figure 2-7 f(x) = -- ...

1 + e llx

One additional refinement of considerable usefulness is the notion of a
one-sided limit.

Definition 9 We write

lim f(x) = L
xl b

if and only if, corresponding to a given 6 > 0, there is a number lJ > 0 such
that If(x) - L I < 6 whenever x < b and Ix - bI < lJ, that is, whenever
b - lJ < x < b.

This is often called the left-hand limit of f (x) at b, or the limit of f (x)
as x approaches b from below. A right-hand limit is defined in a similar fashion.
Both may exist when the usual two-sided limit does not, and the two-sided
limit exists when and only when both left- and right-hand limits exist and
are the same. The function described by

1
f(x) =1 + el/x

has left-hand limit 1 and right-hand limit 0 at the origin (see Fig. 2-7). Again,
the one-sided limit notation can be combined with the other conventions
already introduced. For example, the type of behavior exhibited by g(x) = l/x
at the origin can now be described by writing

lim g(x) = 00

x" 0

lim g(x) = - 00

xl0

There is also an analog for the theorem about the convergence of bounded
monotonic sequences. Recall that a function f is said to be bounded on a
set S if there is a number B with I.f(p) I < B for all pES. For functions of
one variable, we also speak of monotonic functions; f is increasing on a set
E if f(x l ) ~f(X2) whenever Xl and x 2 belong to E and Xl < x 2 and
decreasing if, under the same circumstances, we have f(x l ) ~f(X2)' We say
that f is monotonic on E iff is either increasing on E or decreasing on E.

Theorem 20 Iff is bounded and monotonic on the open interval a < x < b,
then limx 1 b f(x) and limX " a f(x) exist.
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We now turn to the study of limits for functions of several variables,
where much more diverse behavior is possible even with simple functions.
This is to be expected, since there are only two modes of approach to a point
b on the line but many approaches to a point in the plane or in space. The
general case is covered by the following: Let S be a set on which f is defined,
and let Po be a cluster point for S. For simplicity, we assume that Po is not
itself in S. Thus, Po is a boundary point ofS. If S contains a deleted neighborhood
of Po' the reference to S in the statement below is usually omitted.

Definition 10 We say that f(p) converges to L as p approaches Po in S,
written

lim f(p) = L [p E S]

if and only if, corresponding to any e > 0 a number () > 0 can be found
such that If(p) - LI < e whenever 0 < Ip - Po 1< () and pES.

An important special case of this arises when S is a line segment or an arc
(curve) having Po as an endpoint. In these cases, the limit of f(p) as p
approaches Po from S reduces essentially to the computation of the limit of a
function of one variable. For, let the arc be given by parametric equations:
x = <jJ(t), Y = t/J(t), with 0 S t S 1, and such that lim t I 0 <jJ(t) = xo,

limtjo t/J(t) = yo, the coordinates of Po· Then, setting g(t) = f(<jJ(t), t/J(t)), we
see that limp_ Po f (p), [p E S], is exactly lim, I 0 g( t). As an illustration, the
limit off(x, y) as (x, y) approaches the origin along the horizontal axis from
the right becomes limx I 0 f(x, 0), while the limit along the vertical axis from
below is limy 10 f(O, y) = limt I 0 f(O, - t).If(x, y) approaches the origin along
the ray of slope 1, we obtain lim t I 0 f(t, t).

The following simple result is often quite useful in discussing the existence
of limits. It can be considered as an extension of Theorem 1, which asserted
that continuous functions were convergence preserving.

Theorem 21 Iff is defined at all points of a neighborhood of PO' except
possibly at Po itself, and limp_po f(p) = L, then the limit of f(p) exists for
p approaching Po in any set S, and the limit is always L.

The usual algebraic theorems for limits hold, either for approach in a
deleted neighborhood of Po or in a general set S; for simplicity, we state
only the first.

Theorem 22 If limp_po f(p) = A and limp_po g(p) = B, then

lim (f(p) + g(p)) = A + B

lim f(p)g(p) = AB
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and, if B -=I 0,

The proofs of these can be patterned on those of the comparable
theorems for limits of sequences. Alternatively, for example, the second can
be obtained by observing that

f(p)g(p) - AB = (f(p) - A)(g(p) - B) + A(g(p) - B) + B(f(p) - A)

If 'f~ is a deleted neighborhood of Po on which If (p) - A I < e and
Ig(p) - BI < e, then on 'f~,

If(p)g(p) - ABj < e2 + IAle + IBle
Since A and B are constants, it is clear that the number [;2 + IAle + IBlf;
can be made arbitrarily small by choosing [; sufficiently small. Thus,f(p )g(p)
is seen to be arbitrarily near AB for p in 'r, if 'f~ is chosen small enough.

A similar approach can be used for the limit of a quotient, starting
from the identity

f(p) A
---
g(p) B

B(f(p) - A) - A(g(p) - B)
Bg(p)

and using the fact that the deleted neighborhood j/O about Po can be chosen
so that, in addition, Ig(p)1 > IBI/2 for p E j 0; accordingly, one has

It will be noticed that we do not state any result dealing with the limit
of the composition f(g(x)) of two functions, parallel to the theorem on the
continuity off(g(x)). The absence of this is explained by Exercise 1.

The Cauchy convergence criterion for sequences does have an analog for
functions.

Theorem 23 Suppose that for any e > 0, a deleted neighborhood j 0 about
Po can be chosen so that If(p) - f(q)1 < efor every choice Q[p and q in j~.

Then limp_po f(p) exists.

We give a proof of this which throws the argument back onto the
sequence case. Because of the hypothesis onf, we can choose a sequence bn ,

decreasing to 0, such that if p and q are any points with °< Ip - Po I< bn ,°< Iq - Pol < bn, then If(p) - f(q)1 < l/n. Take any sequence {Pn} such
that °< IPn - Po I< bn; clearly, {Pn} converges to Po· Set an = f(Pn)' Then,
with Pn and Pm playing the role of p and q, we see that If(Pn) - f(Pm) I<
I/N for alln, m > N, and {an} is a Cauchy sequence of real numbers. It
must converge; let L = limn_ ce an' We will show that limp_po f(p) = L.
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Given E> 0, choose a deleted neighborhood 'f~ of Po as in the statemen t
of the theorem. Choose k sufficiently large so that Pk E Yand Iak - L I < E.

Let P be any point in Y. Then, /f(Pk) -f(p)1 < E, and, since ak =f(Pk)'
we have

If(p) - LI = If(p) - f(Pk) + ak - LI

:-s; If(p) - f(Pk)1 + lak - LI

<E+E=2E

Thus,f(p) is near L for all P in Y, and limp_po f(p) = L. I

The additional complexity introduced in going from functions of one
variable to those of several variables can be seen from the following simple
examples.

Consider first the function f defined everywhere in the plane, except at

(0,0), by f(x, y) = xy/Jx 2 + y2, and let us study its behavior near the origin.
When p lies on either axis, then xy = °andf(p) = 0. Thus,f(p) approaches °
as p approaches the origin along the axes. On the 45° line, where y = x, we

havef(x, x) = X2/~ = Ixl/~i, so that againf(p) approaches 0. Is it true
thatlimp_of(p)=O?Asafirststep,weobservethat Ixl:-s; Ipi and Iyl:-s; !pl,
so that Ixyl :-s; Ipl2 and

Ixyl Ipl2
If(p)1 = Jx 2 + y2 :-s; lPT = Ipi

Thus, given any E > 0, we have If(p) - 01 < E for all points p with °<
Ip - 01 < b, for the choice b = E. We have thus shown that limp _ o f(p) = 0.

Consider next the function g defined by

xy
g(x, y) = x 2 + y2 (x, y) # (0,0)

Again, g(p) = °when P lies on either axis, so that g(p) converges to °as p
approaches the origin along either axis. This time, limp _ o g(p) fails to exist,
however, for the limit as p approaches 0 along the 45° line is not 0. To see
this, we set y = x, have g(p) = g(x, x) = x2/2x 2 = 1, and find that the limit of
g(p) on this line is 1-

The final illustration will show that the behavior of a function can be
considerably more complicated. Put

xy2
F(x,y)= 2 4 (x,y)#(O,O)

x + y

On the axes, F(p) = 0. On the line y = x, we have

x 3 x
F(p) = F(x, x) = x2 + x4 = 1+ x 2
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and limx _ o F(x, x) = O. In fact, we can show that F(p) converges to 0 as p
approaches the origin along every straight line. When y = mx,

m2x
F(p) = F(x, mx) = 1 4 2

+mx

lim (lim 2 X2~2) = 0
y-o x-o X + Y

and

and limx _ o F(x, mx) = O. In spite of this, it is not true that limp _ o F(p) = O.
To show this, we produce a curve terminating at the origin, along which F(p)
does not converge to 0; this curve is the parabola y2 = x, and F(p) =

F(l, y) = y4/2y4 = 1-
When f is a function of two real variables, the notation limx _ xo f(x, y)

Y-YO
is often used in place oflimp _

po
f(p). This should not be confused with notion

of an iterated limit, such as lim x _ xo limy_yO f(x, y), in which we treat f as a
function of x and y separately, rather than as a function of the point (x, y).
For example,

lim (lim 2

X22) = 1
x-o y-o x + y

while limx _ o X
2
/X 2 + y2 fails to exist.

y-o
We may also discuss the behavior of a function "at infinity," that is, when

Ip I is large.

Definition 11 We write
lim f(p) = L

Ipl-<L

if and only if, corresponding to each f. > 0, a number N can be found such
that lJ(p) - LI < f. whenever Ipl 2 N.

For example, iff (x, y) = 1/(x2 + y2 + 1), then we may write

lim f(p) = 0
Ipl-Ol.

Again, iff (x, y, z) = T + (x 2 + y2 + z2r 1/2 is the temperature at (x, y, z), we
would say that the temperature "at infinity" is T, meaning that

lim f(p) = T.
Ipl-<L

EXERCISES

if x is different from 1 or 2

if x = 1

if x = 2

j(x) = g
12

g(x) = ·3
j4

I Let

Note: Exercises are to be done without using L'Hospitafs rule.

if x # 0

if x = 0
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(a) Verify that limx _ o f(x) = 1,limx _ I g(x) = 2, limx _ o g(l(x)) = 3, and g(l(O)) = 4.
(b) Do the statements in (a) still hold if

Ix + 1 x # 0
f(x) = \2

I x=O

-1x --122 Find lim --- --.

x-2 Jx - J2
2

--+3
x-I

lim------
x-I 4+ __5__

2 3x - ---
x+2

x 3 + x 2
- 7x + 2

4 Find lim f(x) where f(x) = -3--2--- .
x- 2 2x - 5x + 6x - 8

x'"
5 Prove that for any constant m, lim x = O.

x r x e
6 Discuss the existence of:

x 5
- 1

(a) lim 4'--
x-I x-I

(e) lim (I - xl' 1/2

x 1 I

7 Formulate precise definitions for:
(a) lim f(x) = L

(e) lim f(x) = L
x j b

8 Discuss the existence of:

x
(b) lim -

x 1 x 1 + 3x

(b) lim f(x) = ex
x 1 x

. x + I'(b) hm ---'-
Ipl-x x

2 + .1'2

x-I x-I
(a) lim --=- (b) lim -- --

xl-xji+x 2 xlxJl+x2

9 What is the form that Theorem 23 should take if f is a function of one variable and Po IS

replaced by .. ex "?

10 If e # 0, show that limx _, f(1/x) = Iim'_I' f(t) if either exists.

II Is it always true that:

(a) lim f(x) = lim f(~) (b) lim f(x) = lim f(~)
x T :x: r lot x ! 0 n-+:x: n

12 Show that if r/J is defined on a neighborhood of to and continuous at to with r/J(to) = xo,
then limx_xo f(x) = lim,_,o f(r/J(t)).

13 Prove Theorem 20.

14 Let f be bounded on the interval e < x < ex, and let limx 1 x g(x) = O. Prove that
limxl x f(x)g(x) = O. Does this follow directly from Theorem 19?

*15 Can you formulate a definition for lim SUPx_b f(x)? What properties would you expect
this to have? For example, does Theorem 19 hold?

16 Discuss the existence of the following limits:

x + I'
(a)lim--'--

p-o x 2 + .1'2
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17 Following the pattern of Definition II, formulate a definition for "f(p) converges to L as p
becomes infinite in the set S." Using this, discuss the behavior of f(x, y) = exp (x - y) when
Iplls large. (You may assume knowledge of the exponential function and its properties.)

18 If f is uniformly continuous on a set D in R" and Po is a cluster point for D, show that
limp~po f(p) exists in D.

2.6 DISCONTINUITIES

A function that is not continuous at a point Po is said to be discontinuous
there. The term discontinuity is used in two ways. The first refers to a point at
which the function is defined but is not continuous. For example, consider the
function f described by

Jx
2 + i

f(p) = f(x, y) = 10 when Ipi::; 1

when Ipi > 1

This function is defined in the whole plane and is continuous there except
at the points p with IpI = 1; each point of this circle is thus a discontinuity
for f If we consider f only on the set E = {all p with Ipl::; l}, then f is
continuous on E; the points of the circumference would not be considered
discontinuities this time. On the other hand, if we were to restrict f to the
set consisting of points p with 1 ::; Ipi::; 2, it would not be continuous every
where in this ring, for the points p with Ipi = 1 would again be discontinuities
for f

In its second usage, the term discontinuity is also applied to points where
a function is not defined. For example, the function described by f(x) = l/x
might be said to be discontinuous (or to have a discontinuity) at x = O.

Discontinuities can be further classified as removable and essential. If
f(po) is defined, and L = limp_po f(p) exists but L # f(Po), then Po is a dis
continuity for f; however, it may be "removed" by altering the definition for
f at Po' If we construct a new function F by setting F(p) = f(p) for all p
in the domain off, except Po' and setting F(po) = L, then F is now continuous
at Po' Again, if a function f is not defined at Po' but L = limp_po f(p)
exists, then we may define f(po) to be L and thus extend the domain off to
include Po so that f is continuous at Po' In both these cases, we would say
that Po was a removable discontinuity forf When limp_po f(p) does not exist,
Po is said to be an essential discontinuity for f, since by no assignment of a
value forf(po) can we makefcontinuous there. For example, let

f(x) = XX

g(x) = :~

h(x) = sin e)

when x> 0

when x> 0

when x = 0

when x > 0
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g

Figure 2-8

All are continuous on the open interval 0 < x, and can be said to have dis
continuities at the origin. However, this is a removable discontinuity for f and
g, and an essential discontinuity for h (see Fig. 2-8). To explain this, we
observe that f is not defined for x = 0, but that it may be shown that
lim x I 0 f (x) = 1; if we set f (0) = 1, the extended function is now continuous
on the closed interval O:s; x. The function g is defined at the origin, but
g(O) = 2 -:I 0 = limx I 0 g(x). If we alter g there so that g(O) = 0, then g too is
continuous for 0 :s; x. (Since this redefinition of g has produced a new function,
a new letter such as "G" should be used to denote it; however, when the context
is sufficiently clear, such precision is not usual.) The third function, h, is not
defined at the origin, nor does limx I 0 h(x) exist, and no choice for h(O) will make
h continuous there.

The function f(x, y) = xy/(x 2 + i), which we have examined before, is
continuous at all points of the plane except the origin, where it is not defined.
Since limp _ o f(p) fails to exist, we would say that the origin is an essential
discontinuity for f In contrast, the function

X 2 \'2
g(x, .1') = 2 . 2

X + Y

also undefined at (0, 0), has this point as a removable discontinuity since
limp _ og(p) exists. To check this, observe that Ix2y21:s; Ipl21pl2 = Ipl4 and
x2+ y2 = Ipl2 so that Ig(p)1 :s; Ip14/lp12 = Ipl2 and lim p _ og(p) = O.
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It is not always easy to tell when a discontinuity is removable or essential.
It is an important research problem in mathematics to discover conditions under
which it is possible to extend the definition of a function from a set E to a
larger set so as to retain certain desirable properties such as continuity. For
example, one question that could be asked is: When can a function f, defined
and continuous on a set S, be extended to its closure as a continuous func
tion? The following result gives one answer to this question.

Theorem 24 Let S be a bounded set and E its closure. Then, a function f,
continuous on S, can be extended continuously to E if and only if f is
uniformly continuous on S.

The hypothesis that f is uniformly continuous on S is a necessary one,
for E, the closure of S, is itself bounded and thus compact, and iff can be
defined on the boundary of S in such a way that it becomes continuous on
all of E, then the resulting function must be uniformly continuous on E,
and must therefore have been uniformly continuous on the subset S.

What remains to be proved, then, is that iffis uniformly continuous on
S, such an extension offis possible. We give one proof which depends on
the compact graph theorem (Theorem 12 in Sec. 2.4), and indicate the
skeleton of another which uses the Cauchy convergence criterion. The first
has the advantage ofelegance, but should be read with pencil and paper and
suitable sketches. Let G be the graph of the given function f Because f is
uniformly continuous on S, which is bounded, f is bounded (Exercise 7,
Sec. 2.3). Combining this with the fact that S is bounded, we see that G is a
bounded set. The closure of G, G, will then be a closed bounded set in an
appropriately chosen euclidean space, and will therefore be compact. If we
know that G is the graph of a function F, then F will be an extension off
that is defined on the set E, and because of the compact graph theorem, F
is continuous on E.

The missing step is the proof that G is the graph of a function. Could
a vertical line cut G in two distinct points? The points of G have the form
(p,f(p}), for PES, and the points of G are limit points of these. The set G
will not be the graph of a function if we can find two points (q, b) and (q, c)
in G with b #- c. Choose two sequences (qn' un) and (Pn' un) in G, with the
first converging to (q, b) and the second to (q, c). From the fact that G is the
graph off, Un = f(qn} and Un = f(Pn)· In addition, {Pn} --+ q, {qn} --+ q, and
Un = f(qn) --+ b, Un = f(Pn) --+ c. However, IPn - qnl--+ Iq - ql = 0, so that (by
Exercise 6, Sec. 2.3), If(Pn} - f(qn} 1--+ 0, and we conclude that Ic - b I=°
and b = c, completing the proof of Theorem 24. I

A second proof, which may seem more direct, starts by asking what
value the continuous extension offought to have at any particular boundary
point q ofthe set S. To find out, take any sequence {Pn} in S which converges
to q, and examine the values Un = f(Pn)' Use the uniform continuity offin S
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to show that {un} is a Cauchy sequence. This must converge, so we are led to
the definition: f(q) = limn _ oo Un' Use Exercise 6 of Sec. 2.3 to show that
the value for f(g) so chosen doesn't depend on what sequence {Pn} was
originally chosen. In this fashion, the function f has been extended to the
closure of the original set S by defining it at every boundary point of S. All
that remains is to prove that the extended function is continuous on E, and
this can be done by invoking the compact graph theorem. I

A typical illustration of this theorem is the situation in which one has a
function F defined on a bounded open set D, and one would like to be able to
speak of the values of F on bdy(D); for example, F(p) might be the temperature
at the point P (see Exercise 7). Theorem 24 states that if F is uniformly
continuous on S, then there is one and only one way to do this to keep the
function F continuous. All points of the boundary of D are removable
discontinuities.

For a one-variable illustration, let D be the open interval 0 < x < 1.
Given a function f (x) defined on D, we want to determine the "correct"
values for f(O) and f( 1). In this case, they exist if and only iff is uniformly
continuousonD,and thenf(O) = limxlO f(x)andf(l) = limxp f(x), and these
limits will in fact exist.

It is natural to ask whether it is possible to extend functions still further,
beyond the closure of the original domain, and still keep the functions con
tinuous; we return to this in Sec. 6.2 where we sketch the proof of the Tietze
extension theorem, which gives an affirmative answer.

EXERCISES

Discuss the continuity of the function f described by:

(a) f(x) = jX sin (ljx)
10

xv
(b) f(x. y) = Ixl ~ Iyl

l:~_-:-1
(d) f(x. y) = 1x - y

x-y

x#o
x=o

for (x. y) # (0.0)

for (x. y) # (0.0)

for x # y

when x = y

()
1
1 if x is a rational number

2 Letf x = oif x is an irrational number.
Isfcontinuous anywhere?

f(
J0 if x is irrational

3 Let x) =
l1jq if x is the rational number pjq in lowest terms.

Is f continuous anywhere?
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4 For each of the following functions, find all the discontinuities and indicate any that are
removable.

x
(a) f(x) = ---

SIn (5 cos x)

sin x
(b) f(x) = x + 4

2x - ---
x-I

I
(e) f(x) = I + e"cx

5 For each of the following functions, find all the discontinuities and indicate any that are
removable.

x + 2y
(a) F(x, y) =-;-------------

SIn (x + y) - cos (x - y)

6 Investigate the behavior of F(x, y) at (0,0) if

(b) F(x, y) = x sin (~)

7 Suppose that there is a continuous distribution of temperature on the open square
Ixl < I, Iyl < I. Is it possible to extend the temperature continuously to the boundary so that
the temperature is 0 on the north edge and 100° on the other three edges?

8 The function

(

X
2 + y2 - X y )exp --- .._- = f(x, y)

x2 + y2

is continuous on the open first quadrant.
(a) Is it bounded there?
(b) Can f be extended continuously to the closed first quadrant?

*9 Letfbe an increasing function on the interval [0, I]. Show thatfcannot have more than a
countable number of discontinuities on this interval. (Hint: First look at the one-sided limits at
a point xQ .)

2.7 INVERSES FOR FUNCTIONS OF ONE VARIABLE

The topic of the inverse of a function is one for which the geometrical point of
view is particularly well suited. Let f be a function of one variable. Con
sidered as a transformation from R1 into R1,.f sends the point a Into the point
b = f(a). A function g is called an inverse for f if g reverses the effect of f,
sending b back into a, so that g(f(a)) = a. In most cases, it is not possible to
find such a function g which has this property for all points x in the domain of
.f As an illustration, letf(x) = x 2

, -00 < X < 00. Hfhad an inverse g such
that g(f(x)) = x for all real numbers x, then g(x2) = x and it would be
necessary to have both g(4) = g(22) = 2 and g(4) = g((_2)2) = -2. Such
ambiguity is impossible for a function, since the point 4 must have a unique
image. However, the functionfhas an inverse g on the interval 0 < x < 00 and
a second inverse h on the interval - 00 < x < 0, namely, the functions defined
on the interval 0 < x < 00 by g(x) = ~x and h(x) = -~x.

In order for f to have a partial inverse associated with a subset S of its
domain, all that is needed is to have f 1-to-1 on S. There then exists a function
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---

\,
\ ,

" h..... ...._---- Figure 2-9

g defined on f(S) such that g(f(x)) = x for all XES, and f(g(x)) = x for all
x Ef(S).

Let us examine the problem from the geometrical point of view. The graph
off is the set of points (x,f (x)), so that (a, b) is on the graph ofI if and only
if b = I(a). If g(b) = a, then the point (b, a) must be on the graph of g. Let
us introduce a special transformation R from R 2 into itself which sends (x, y)
into (y, x). It is easily seen that this can be regarded as a reflection of the
plane about the line y = x, in R 2

. Let C be the image under R of the graph of
f If (a, b) is on the graph off, (b, a) E C. Thus, the graph of any function g
which is an inverse for f must be part of the set C. Turning this around, any
subset of C which is the graph of a function (i.e., any subset which is met no
more than once by each vertical line) yields a particular inverse function for f

Applying this to the examplef(x) = x 2, we have given in Fig. 2-9 the graph
of f, and its image C under the reflection R. The set C falls into two con
nected pieces, each of which is the graph of a function; the upper half is the

function g, g(x) = JX, and the lower half the function h,

h(x) = -JX
Turning to a less trivial example, consider the function F given by

F(x) = 1x - ~X3. The graph of F and its reflection C are shown in Fig. 2-10.
As indicated there, C can be split into three connected pieces, each of which is
the graph of a function, and each of which therefore defines a function which
is an inverse for F. The function gl is defined on the interval - 00 < x < 1,
the function g2 on [ - 1, 1], and the function g3 on the interval - 1 < x < 00.

An accurate graph of F would enable us to read off the values of these
functions, and thus tabulate them. (In this example, it is also possible to give
analytical formulas for gl' g2' and g3; see Exercise 3.)

Again, if f(x) = sin x, then (see Fig. 2-11) the graph of the reflection C
falls into an infinite number of connected pieces, each of which provides an
inverse for f Among these, one is usually singled out as shown and is called
the principal inverse for the sine function, g(x) = arcsin(x).

This same geometric process can be used with any mappingffrom n space
into n space. If S c domain(f) is a set on which f is I-to-l, then the cor-



Graph of F

Figure 2-10
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Graph of C

responding portion of the graph off is a set of points (p, q), with PES, whose
reflection C is the collection of points (q, p) that forms the graph of a partial
inverse g for f Since the graph off is an n-dimensional set in 2n space, all this
may be difficult to visualize when n 2 2, but the process is still valid. What
makes it particularly useful is the fact that if it is applied to a function f that
is continuous, the process automatically yields partial inverses that are also
continuous. For n = 1, this is established as follows.

I
I

/
.;

......,
...

\

,
...
"",

Figure 2-11
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Theorem 25 Let f be continuous and 1-to-1 on an interval [a, b]. Then,f has
a unique inverse 9 defined on an interval [C(, {3] such that g(f(x)) = x for
all x E [a, b] andf(g(x)) = x for all x E [C(, {3], and 9 is continuous.

By Theorem 18,f must be strictly monotonic on [a, b]. Since [a, b] is
compact and connected, its image f([a, b]) is the same and must be a closed
interval, say [C(, {3]. By the geometrical process described above, there is a
unique function 9 which is inverse tof, and which maps [C(, {3] 1-to-1 onto
[a, b], reversing the mapping! Let the graph offbe G, and the graph of 9 be
C. Since f is continuous, G is compact. Since C is simply the reflection of
G, C is also compact. Hence, 9 is continuous. I

The same proof can be used to show that any 1-to-1 mapping from a com
pact set S in n space into n space also has a continuous inverse. We will see
later that this same geometric process can be used to discover other properties
of the inverses of a given mapping!

When n = 1, and we are studying a functionf defined on an interval, it can
be a simple matter to find subintervals on which f is 1-to-1, since f must be
strictly monotonic there. Indeed, iff is differentiable there, then it will be re
called from elementary calculus that f'(x) must be everywhere positive or
everywhere negative on such an interval. This elementary result is a conse
quence of the mean value theorem (and will in fact be an exercise in the next
chapter, Sec. 3.2); because this relationship between the monotonicity of f(x)
and the sign of f'(x) is both so familiar and so useful, we remind you of it in
connection with the exercises below.

EXERCISES

3x
I (a) Find an interval on whichf(x) = ... IS contmuous and l-to-1.

x+4
(b) Find a formula for the corresponding inverse.

2 (a) Find an interval on whichf(x) = x 3
- 3x 2 + 3x is continuous and l-to-1.

(b) Find a formula for the corresponding inverse.

3 Show that a formula for the function 9, of Fig. 2-10 is

j[jx2 - I - xl' 3 - [jx 2 -I + xl' 3. - X < X < -I
91(X) = I2 cos (jarccos(-x)). -1:s;x:s;1

4 Find inverses for the function f given by

f(x) = x 2
- 2x - 3

5 How many continuous inverses are there for the function described by

F(x) = x 3 + 3x
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6 Is there any interval on which the function f described by

f(x) = 2x + lxi-Ix + 11
fails to have an inverse?

*7 Show that a continuous functionfcannot map the interval [0, 1] onto itself exactly 2-to-1.

8 Investigate the existence of local and global inverses for the function f(x) = Ax - sin x, for
various values of A.

9 Letfbe a continuous function defined on the interval I = [a, b] which maps I onto I 1-to-1
and which is its own inverse.

(a) Show that, except for one possible function,f must be monotonic decreasing on I.
(b) What are the polynomial functions that are choices for f?



CHAPTER

THREE

DIFFERENTIATION

3.1 PREVIEW

In this chapter, we introduce and exploit the properties of the vector-valued
derivative Df of a function of several variables. This is also called the gradient
of f, and is related to the partial derivatives and directional derivatives of f
There is some review of the one-variable theory, including the mean value
theorem and L'Hospltars rule. We also discuss Taylor's theorem for one and
several variables, and several forms of the mean value theorem for functions of
several variables.

We discuss chain rules for differentiation, and illustrate them in cases of
complicated functional relationships and changes of variables; we think that
the use of diagrams such as Fig. 3-7 makes this easier to follow.

We also discuss the applications of differentiation, treating extremal prob
lems and the location and nature of critical points.

Any treatment of higher derivatives of functions of several variables is
postponed to Chap. 7, since this requires the differentiation of vector-valued
functions. However, note the brief remarks that follow the proof of Theorem 19.

3.2 MEAN VALUE THEOREMS AND L'HOSPITAL'S RULE

Certain simple properties of functions of one variable involve differentiation.
Recall from elementary calculus thatfis said to be differentiable (or to have a
derivative) at xo iff is defined on a neighborhood of xo and iff'(xo) exists.
defined by

(3-1)

116

1'(x
o

) = lim f(x1-/J:9) = lim lJxo + ~0 ~f(·,-o)
x-xc x - X o h-O h
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Another way to state this is to say that the function

g(x) = f(x) - f(x o)
x - X o

has X o as a removable discontinuity.
A frequent application of differential calculus is to so-called maximum

minimum problems. We say that f has a local maximum at X o if there is a
neighborhood U about X o such thatf(x) ~f(xo) for all x E U. The notion of a
local minimum is defined similarly, and the term extreme value may be used to
refer to either.

Theorem 1 Let f(x) be defined on a neighborhood of X o and have a local
extreme value at X O ' Iff is differentiable at xO ' then f'(xo) = o.

We may assume thatf(xo + h) ~ f(xo) for all h with Ihi < e5, and that
C = limh_ o (f(xo + h) - f(xo))/h = f'(xo) exists. This limit may also be
computed by letting h approach 0 first from above, and then from below.
Since the numerator of the fraction is never strictly positive, we find that C
obeys the conditions C ~ 0 and C ::::>: 0, so that necessarily C = o. I

It is important to keep in mind that f'(xo) need not be 0 if X o is an end
point, rather than an interior point. Thus in using this theorem in the solution
ofa maximum-minimum problem, separate consideration must be given to the
possibility of an endpoint extreme value.

One immediate consequence of Theorem 1 has acquired a special name.

Theorem 2 (Rolle's Theorem) Let f be continuous on the interval [a, b],
and letf'(x) existfor a < x < b. Iff(a) =f(b) then there is a point xo with
a < xo < b at whichf'{xo) = O.

Iff is a constant function, any choice of the point xo will do. Iff is not
constant, then it must have either an interior minimum or an interior
maximum at some point xo on the open interval a < x < b; and sincefis
differentiable there,f'(xo) = O. I

Corollary 1 Iff is differentiable on the interral a < x < b, then the zeros
off are separated by zeros off'.

Corollary 2 Let f and 9 be continuous on [a, b] and differentiable on
a < x < b. Suppose that f(a) = g(a) and f(b) = g(b). Then, there is at least
one point xo interior to [a, b] such that f'(xo) = g'(xo)'

The second of these, which follows from the theorem if we consider the
function f - g, has a simple geometric meaning, as shown in Fig. 3-1; some
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Figure 3-1

vertical line must cross the graphs of f and 9 at a point where their slopes
are the same, between two points where the curves meet.

If the function 9 is specialized to be a straight line, then its slope will
everywhere be

f(b) - f(a)
m = '----'--'------=---'---

b-a

This case then gives the first of the following two very useful consequences of
Rolle's theorem.

Theorem 3 (Mean Value Theorem) Let f be continuous on [a, b], and let
f'(x) existfor a < x < b. Then, at least one point X o exists interior to [a, b]
such that

(3-2) f(b) -f(a) = (b - a)f'(xo)

Theorem 4 (General Mean Value Theorem) Let f and 9 be continuous on
[a, b], and let f'(x) and g'(x) both exist for a < x < b. Then at least one
point X o exists interior to [a, b] such that

(3-3)
.

[.f(b) - f(a)]g'(xo) = [g(b) - g(a)]f'(xo)

The first of these has many familiar consequences. If f'(x) is 0 on an
interval,.fis constant there (Exercise 1). Iff'(x) never changes sign on an
in terval, thenf is monotonic there (Exercise 4).

If 9 is chosen to be the identity function, g(x) = x, then Theorem 4
becomes Theorem 3. To prove Theorem 4, we construct a special function F
to which we apply Rolle's theorem. Let

F(x) = f(x) - Kg(x)

where K is a constant to be selected later. The function F is continuous on
[a, b] and differentiable in the interior. To apply Rolle's theorem, we want to
have F(a) = F(b). Forcing this, we must have

f(a) - Kg(a) = f(b) - Kg(b)

orf(b) - f(a) = K(g(b) - g(a)). Put aside for the moment the considera
tion of what we should do if g(b) = g(a). Then, we can solve for K, and F
satisfies the hypothesis for Rolle's theorem. There is then a point Xo with
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F'(xo) = O. Since F'(x) = j'(x) - Kg'(x), this tells us thatf'(xo) = Kg'(xo),
and substituting the value we found for K, we obtain (3-3). Suppose now
that g(b) - g(a) = O. We cannot now solve for K. However, we do not need
to; for, examining (3-3), we see that it will hold if we can find an X o with
g'(xo) = 0, so that both sides of (3-3) will be O. This we can do by applying
Rolle's theorem to g. I

The geometric meaning of the general mean value theorem is very similar
to that of the ordinary mean value theorem. If we assume that g'(x) is never
oon [a, b], then from Rolle's theorem, we know that g(b) # g(a), and we can
rewrite (3-3) in the form

(3-4)
f(b) - f(a)
---- ._~-----

g(b) - g(a)

Let r be the curve in the plane whose parametric equation is x = g(t),
Y = f(t). As t moves along the interval [a, b], the point (x, y) moves along r
from the point P = (g(a),f(a)) to Q = (g(b),f(b)). The left side of (3-4) is the
slope of the line joining P and Q. The right side of (3-4), which can also be
written as (dyjdt)j(dxjdt), is the slope of the curve. Thus, one meaning of
Theorem 4 is that there must be a point on the curve r where its slope is the
same as that of the line PQ (see Fig. 3-2).

We remark that (3-3) is a more general form of this result than is (3-4),
since the latter requires the hypothesis that g' is never O. For example, let
f(x) = x 2 and g(x) = x 3

, on the interval [- 1, 1]. The left side of (3-4) is 0;
however, since j'(x)jg'(x) = (2x)j(3x 2

) = 2j(3x), there is no choice of
X o E [ - 1, 1] for which (3-4) holds. (This also provides a curve r for which the
geometric interpretation of Theorem 4 fails; see Exercise 17.)

The analytical forms of these theorems can be modified. Since the point
X o lies between a and b, we can write X o = a + (}h, where h = b - a and
o< () < 1. The conclusion of Theorem 3 would then read

f(a + h) = f(a) + hj'(a + (}h)

The uses of the mean value theorems are of two sorts, one "practical"
and the other" theoretical"; the distinctions here are quite subjective. As an

Figure 3-2 Mean value theorem.
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example of the former, we shall use the mean value theorem to obtain a simple
approximation to a special function.

Theorem 5 When u > 0 and v 2 O,Ju~v may be replaced by u + v/2u,
with an error of v2/4u 3 at most.

To illustrate this, -/87 = fiT+'-6 - 9 + -A = 9j, with an error of at

most 36/(4)(9)3 - .012. To prove this, putf(x) = Ju2 +x so thatf(O) = u,
whilef(v) is the value we wish to estimate. By the mean value theorem, there
is an xo, 0 < X o < v, with

f(v) = f(O) + (v - O)f'(xo)

v
= u+-7.==

2y u2 + X o

Since X o > 0, -/u-2 + X o > u, and we have shown that f(v) < u + v/(2u).
Thus, the approximation u + v/(2u) is always larger than the true value of
~2~•. To estimate the error in the approximation, we observe that

Xo < v so that -/uT+~~< -/u""""2+~ < u + v/(2u). Hence,

v
f(v) = u + ------,=

2JU2+xo

v uv

> u + l v j = U + 2u~ v
2 U + -

2u

and thus

uv r:-- v
U + ---- < Y u2 + V < U + _.

2u 2 + v 2u

The error made in using the right-hand term as the approximate value
is less than the difference

[The more exact methods made possible by Taylor's theorem, Sec. 3.5, show
that the approximation u + r/(2u) is accurate to within r 2/(8u 3

).]

An extremely useful result which arises from the general mean value
theorem (Theorem 4) is known as L'Hospital's rule. It provides a simple
procedure for the evaluation of limiting values of functions which are ex pressible
as quotients.
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Theorem 6 (L'Hospital's Rule) Let f and 9 be differentiable on the interval
a s x < b, with g'(x) #- 0 there. ~f

(i) lim f(x) = 0
x r b

or if
(ii) lim f(x) = 00

x r b

lim g(x) = 00

x r b

and if

then

lim j'(x) = L
xrbg'(x)

. f(x)
hm---- = L
xrbg(x)

The upper endpoint b may be finite or "00", and L may be finite or "00".

Before proving the theorem, we give several illustrations of its use, and possible
modifications.

To evaluate

. I - cos (Xl)hm ---- -----
xjO x 4

we consider instead

. 2x sin (Xl) . sin (Xl) 1
hm ---------- = hm~--2 - =
x j 0 4x 3

x j 0 2x 2

By the theorem, this is also the value of the original limit.
Again, consider limx 0 xx. Since log (XX) = X log x, we consider instead

limx j 0 X log x = limx j 0 (Jog x)/(l/x). We replace this by limx j 0 (l/x)/( - l/x l
)

= limx j 0 - x = O. Since the exponential function is continuous, we conclude
that

lim XX = lim exp (x log x) = exp (0) = 1
x j 0 x j 0

We call your attention to two of the exercises which point out ways in
which L'Hospital's rule can be misapplied. In Exercise 24, it is used to evaluate
a limit (known not to exist) and finds the answer 0; in this case, one of the
hypotheses of Theorem 6 has been overlooked. In Exercise 25 an incorrect
result is again obtained, but this time the error lies in assuming that a
converse of Theorem 6 is valid, namely, that if lim j'(x)/g'(x) does not exist,
neither does lim f(x)/g(x).

PROOF We first prove Theorem 6 under hypothesis (i), the case usually
described as "a fraction that is indeterminate of the form 0/0." We also
suppose b finite, and can therefore setf(b) = g(b) = 0 and thus assume that
f and 9 are each continuous on [a, b]. Using the form of the general
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mean value theorem given in (3-4), we take any x interior to [a, b], and
then can be sure that there is a point t with x < t < b such that

j(b) - j(x) f'(t)
~----

g(b) - g(x) g'(t)

Sincej(b) = g(b) = 0, this implies

£0=) _ L = L(t) - L
g(x) g'(t)

Since limr _ b f'(t)jg'(t) = L, the right side (and thus the left) will approach °
if we can force t toward b. Since t lies somewhere between x and b, we can
achieve this by controlling x. Accordingly, given e > °we can choose b so
thatifb - b < x < b,thenofnecessity Ib - tl < band Ij(x)jg(x) - LI < e,
proving that lim x _ b j(x)jg(x) = L.

We give a different type of proof for Theorem 6 under the second
hypothesis, (ii); here, one speaks of a "fraction that is indeterminate of
the form oojoo." (As suggested by Exercise 26, there are essential geometric
differences between the two cases.)

We start from the fact thatj(x)--+ 00, g(x)--+ 00, andf'(x)jg'(x)--+L
as x approaches b. Since g'(x) is never 0, we know that it must be
positive and thus that 9 is strictly increasing; we may therefore assume
g(x) > °for all x in [a, b]. Given e > 0, choose X o so that if X o < t < b,

-e < [JtJ - L < e
g'(t)

Since g'(t) > 0, we may rewrite this as

(3-5) (L - e)g'(t) <f'(t) < (L + e)g'(t)

The right half of this can be written

f'(t) - (L + e)g'(t) < °
which implies that the functionj(x) - (L + e)g(x) is decreasing, since its
derivative is negative on [xo, b]. A decreasing function is necessarily
bounded above, so that we have j(x) - (L - e)g(x) < B. Divide by g(x),
which is positive, and arrive at

j(x) B
---<L+e+---
g(x) g(x)

Since g(x) --+ 00 as x --+ b, we see that for some XI near b, j(x)jg(x) <
L + 2e for all x, x I < X < b.

If we return to (3-5) and carry out a similar calculation using the
left half of the inequality, we obtainj(x)jg(x) > L - 2e, and the combina
tion proves that lim x _ b j(x)jg(x) = L. I
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Monotonic functions are much easier to work with than other functions.
For example, as will be shown later, the graph of a continuous monotonic
function is always a curve of finite length, while this need not be true for a
function which is merely continuous. A function that is piecewise monotonic
is also well behaved; any polynomial function P(x) = amxm+ am_1xm- 1 +
... + ao is piecewise monotonic (Exercise 6). For differentiable functions, this
is easy to test, using the relationship between monotonicity and the sign of
f'(x). (However, in this connection, note Exercise 30.) A function f that is
piecewise monotonic will possess partial inverses associated with portions of
its domain on which it is I-to-1. Iff is also differentiable, and the derivative
doesn't vanish, the inverse is also differentiable.

Theorem 7 Let f be monotonic on [a, b], and differentiable with f'(x) #- 0
for a < x < b. Then g, the inverse off, is defined on an interval [a, P], and
g is differentiable in its interior, with g'(y) = 1/f'(g(y» for all y, a < y < p.

We must show that limx _ y (g(x) - g(y»/(x - y) exists. Set g(x) = y and
g(y) = c. Then, x = f(y), y = f(c), and sincefand g are both continuous,
the limit we must consider becomes

. y-c
hm---~-~

y-c f(y) -f(c)

which we see at once to exist and be 1/f'(c) = 1/f'(g(y». I

EXERCISES

I Iff'(x) = 0 for all x, a < x < b, show Ihatfis constant there.

2 Use Rolle's theorem to prove that if g(x) is a polynomial and if g(a) = g'(a) = g"(a) =

g(31(a) = 0 and g(b) = 0, then there is a number c, a < C< b, with gI4l(C) = o.
3 Iff(x) is defined andf'(x) exists for each x, a < x < b, prove thatfis continuous there.

4 Iff(x) is defined andf'(x) exists for x, a < x < b, show that
(a) Iff'(x) ~ 0 for a < x < b, thenfis monotonic there.
(b) If f'(x) > 0 for a < x < b, then f is strictly monotonic.

S Iff(x) and g(x) are functions both of which are differentiable at least three times, and each
has at least 4 zeros, what can you say about the number of zeros of F(2l where F(x) = f(x)g(x)?

6 Show that any polynomial function P(x) is piecewise monotonic.

7 Prove that iff'(x)-> 0 as x i oo,lim (f(x + 1) - f(x)) = O.

8 Suppose that f is such that If(a) - f(b)1 s Mia - bl 2 for all a, bE R. Prove that f is a
constant function.

9 Letf' exist and be bounded for - oc < x < oc. Prove that{is uniformly continuous on the line.

10 Let!" exist and be negative on the interval [0, 1]. Show that if P and Q lie on the graph of
f, then the line PQ is below the graph, between P and Q.

II Left- and right-hand derivatives at a point X o for a function f are defined as

. f(x) - f(x o)
hm - ~~ ----

x T %0 X - Xo
and

. f(x) - f(x o)
hm-----~

x! Xo X - X o
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respectively. Show by examples that these may exist where the usual two-sided derivative does
not. Can such a function be discontinuous at xo?

12 Given fIx) = 1/(1 - e l
/

X
), which is defined for all x # 0,

(a) Discuss the existence of f'(x) at x = 0 (see Fig. 2-7).
(b) Does this conflict with Exercise 3?

13 Let f'(x) exist and be continuous for all x. Prove that f obeys a Lipschitz condition on
every bounded interval.

14 Iff(x) > 0, andj"(x) sO for x> 0,
(a) Show thatf'(x) 20 for x> O.
(b) Does it follow thatf(x) --+ 00 as x r oo?

15 (a) Iff(x) --+ 00 as x --+ a < 00, canf' be bounded?
(b) Iff(x) roo as x roo, doesf'(x)--+ oo?
(e) Iff(x) --+ 00 as x --+ a < 00, doesf'(x) --+ oo?

16 If P(x) is a polynomial such that P(O) = 1, P(2) = 3, and IP'(x) lsi for 0 s x s 2, what can you
say about PIx)? (Prove it!)

17 Plot the curve given by y = f(t) = t 2, X = g(t) = t3, where t E [-1, 1]. Show that this curve
provides an example for which the geometric interpretation of Theorem 4 fails.

18 The general mean value theorem has a geometric formulation in terms of tangents to curves
being parallel to chords. Is the corresponding result true for curves in space (Fig. 3-2)?

19 Let the sides of a right triangle be longer leg = B, shorter leg = b, hypotenuse = H. Let the
smallest angle of the triangle be 8. Show that the old surveying estImate given by 8 = 3b/(2H + B),
is accurate to within .02 (radians). (Hint: Express band B in terms of 8, and then estimate
this expression.)

20 Show that for large x, arctan x :::: n/2 - 1/x and estimate the error.

21 Letf'(x) --+ A as x r 00. Prove fIx )/x --+ A.

22 (a) Use L'Hospital's rule for Exercises 2, 4, and 5 of Sec. 2.5.
(b) Should you use it for Exercise 3 of Sec. 2.5?

23 Evaluate

1 - cos (x 2
)

(a) lim "-3-;--
x-o X Sin X

(b) lim XX

x I 0

sin x + cos x - eX
(e) lim ---------

x-o log (1 + x 2
)

24 It is clear that lim x 1 or e-,in (xl does not exist. Wnte this as

2x + sin 2x
lim ------"'-

x 1 or (2x + sin 2x )e"n x

and apply L'Hospltal's rule, reducmg your result to

I
. 4 cos x
~ =0

x 1 or (2x + 4 cos x + sin 2x )e'in x

How do you explain this apparent contradiction?

25 Let fIx) = x 2 sin (I/x) and g(x) = sin x. Calculate Iimx _ o (f(x)/g(x)) by L'Hospital's rule.
Does your result show that this limit fails to exist? (Check this by evaluating the limit in another
way.)

26 Use x = g(t), Y = f(t) as parametric equations of a curve r. Construct pictures to illustrate
the geometric meaning of the two cases of L'Hospital's rule. (Hint: Recall that the slope of r at
t = to isf'(to)jg'(to)')

27 Letf(x) --+ ex and g(x) --+ ex as x --+ ex.
(a) Show that if f(x)/g(x) --+ L, then log f(x)J1og g(x) --+ 1 where 0 < L < x.
(b) Does the converse hold? (Hint: L'Hospital's rule may not be helpful.)
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28 Use the examplej(x) = x 2 sin (1/x), suitably defined for x = 0, to prove thatf'(x) can exist
everywhere but not be continuous.

29 Let f' exist for all x on [a, bj, and suppose that f'(a) = -I, f'(b) = 1. Prove that even if f'
is not continuous, there must exist a number c, a < C < b, withf'(c) = O.

30 It is plausible that if j is differentiable and f'(x o) # 0, then j is monotonic on a neighborhood
of xo ' Disprove this by a geometric analysis of the function j(x) = 2x + x 2 sin (1/x).

31 Iff, f', !" are continuous on 1 s x < 00./> 0, and!" < 0, show thatf' ~ O.

3.3 DERIVATIVES FOR FUNCTIONS ON Rn

In elementary calculus, partial derivatives of functions of several variables were
introduced merely as the ordinary derivative of the functions of one variable
obtained by treating all the remaining variables in turn as constants. Thus, if
w = f(x, y, z) = x3i + xz4

, one wrote ow/ox = 3X 2y2 + Z4, ow/oy = 2x3y,
ow/oz = 4xz3

• In this section, we will study the vector-valued derivative of a
function of several variables. This is also called the gradient off, the differential
of f, and sometimes merely the (total) derivative of f We will also obtain
several forms of the mean value theorem for functions of several variables,
and then explore some of the properties of the vector-valued derivative.

The process of differentiation is the means by which the intuitive notion of
"rate of change" is made precise. For a function of one variable, there are
only a limited variety of ways in which a change can be made: t may be
either to the left of to or to the right of to' Thus, we end up with only one
main concept, the derivative f'(t), and two minor variations, the left derivative
and the right derivative (Exercise 11, Sec. 3.2).

When we turn to a function ofseveral variables, the situation is considerably
more complicated. We can move from a point Po in many different directions
and, in each case, obtain a resultant change F(p) - F(po)' and it is intuitively
clear that this will depend upon the direction as well as the distance
IP - Po I· A convenient approach to the notion of the differential of a function
starts with that of a directional derivative.

In I-space, we have only two directions, left and right (or ahead and
behind). In 2-space, we are apt to think of angles as the standard way to
describe directions. In 3-space, and in n space for any n, it is easier to say
that a direction is merely any point 13, with 1131 = 1. Such a point lies on the
boundary of the unit sphere; intuitively, we think of it as the unit vector starting
at the origin and ending at the point p. For example, if we wish to move
away from the point Po "in the direction 13," we understand that we are to
proceed from Po on the line segment toward the point Po + p. In general, the
ray or half line starting at Po and pointing in the direction 13 consists of all the
points Po + tp, for 0 S t.

Suppose now that f is a real-valued function, defined and continuous on
a neighborhood of Po' Then, the rate of change of f at Po in the direction 13,
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or the directional derivative off at Po in the direction f3, is defined to be

(3-6)

As an illustration, letf(x, y) = x 2 + 3xy, Po = (2,0), and f3 = (1/;-2, -1/;-2).
(Note that this specifies the direction - 45°.)

Since Po + tf3 = (2 + t/~, - t/~), we have

f(po + tf3) = (2 + t/~)2 + 3(2 + t/;-2)(-t/;-2)

2 2=4--t-t
~

Accordingly,

( 4 - ~ t - t 2
) - 4

(Oflf)(po) = lim __~--,--2 _
1-0 t

2

-fi
If we hold Po the same and vary f3, the value of (Oil f)(po) neel' not

remain the same. Intuitively, it is clear that reversal of the direction f3 ought
to reverse the sign of the directional derivative. Indeed,

If we put ..l. = - t, we have

f(po- tf3) - f(po)

t

f(po + ..l.f3) - f(po)
..l.

so that (O-flf)(Po) = -(Oflf)(po)' as conjectured.
The partial derivatives of a function f of n variables are the directional

derivatives that are obtained by specializing f3 to be each of the basic unit
vectors (1,0,0, ... ,0), (0, 1,0, ... ,0), ... , (0,0, ... ,0, 1) in turn. There are a
variety of notations in use; depending upon the circumstances, one may be
more convenient than another, and the table below gives most of the more
common ones. Since the case of three variables is typical, we treat thIS alone;;.

A preliminary word of caution and explanation is needed. It is customary
to use certain notations in mathematics, even when this can lead to confusion
or misunderstandings. In particular, this is true of partial derivatives; the
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special usage of "variables" in the table (for example, W x and awjax) must be
imitated with care.

w =f(x, y, z)

p= (1,0,0) (0,1,0) (0,0,1)

Dpf = f, f2 f3

Dtf D2 f D3 f
of of of
ax oy oz
fx fy f.
ow ow ow
-- -

ax oy oz
Wx Wy w.

Of these, the alternatives in the first two rows are less likely to cause
confusion; the numerical subscripts refer to the coordinate variables in order
(e.g., the first coordinate) and can be used regardless of what letter is used
for the corresponding coordinate.

To obtain the formal definition offl = DJ, we need only take f3 = (1,0,0)
in the definition of Old Thus, we have

f ( ) -1' f(x + t, y, z) - f(x, y, z)
I X, y, Z - 1m -----~~'----'---

,-0 t

From this, we see thatfl may be obtained by treatingf(x, y, z) as a function
of x alone, with y and z held constant, and then differentiating the resulting
function of one real variable in the usual fashion. For this reason, we refer to
f l as the partial off with respect to the first variable.

To illustrate the use of these notations, take

f(x, y, z) = w = x 2y + y3 sin (Z2)

aw
fl(x, y, z) = ax = 2xy

f 2(x, y, z) = ~; = x 2 + 3y2 sin (Z2)

f 3(x, y, z) = ~: = 2iz cos (Z2)

Since a partial derivative of a function of several variables is again such a
function, the operation may be repeated, and if the appropriate limits exist,
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we obtain higher partial derivatives.

More generally, when p is fixed, D fJ f is again a function, and one can
consider its directional derivatives, such as Da DfJ I, where rx is again a direction,
possibly the same as p.

In order to implement the definition of D fJ I at a point Po' it is convenient
to haveIdefined on a neighborhood of Po' For this reason, we will differentiate
functions mostly on open sets, and leave the consideration of differentiation at
boundary points until later.

Definition 1 Let I be defined and continuous on an open set D c R". Then,
I is said to be oI class Ck in D if all the partial derivatives oII of order up
to and including k exist and are continuous everywhere in D. The symbols
C and C n are sometimes used instead of C l and C 2

•

,. . I ~ _ - ....) f \' ( .-' /;", "I':' ' (- ( ,)21)

J( (1/)_. -''''.,,, ,?' It. - ~(.- ~I"(J' . = •.> . 1/ > •

It is important in many situatioris~thiitthepartial de'ri~~tives invofved be:
continuous and not merely exist. In the next chapter, we show that iffE en
in the plane, the mixed derivatives II2 and f 21 must be the same. More
generally, iff E ck, then any two mixed kth-order partial derivatives involving
the same variables are equal; in C4

, I xyxx = I xxxy . However, Exercise 11 gives
an instance where I12 '# I2l' even though the first partial derivatives II and
I 2 are continuous and all the second-order derivatives exist. There are also
other differences between differentiation in one variable and in several variables.
In the former case, a function must be continuous to have a derivative; in
Exercise 4, an example is given of a discontinuous function for which f l

andI2 exist everywhere. However, if the partial derivatives are continuous, the
function is also continuous. This follows from our next result, which is the first
version of the mean value theorem for several variables.

Lemma 1 Let fEe in an open ball B(po' r) about the point Po in n space.
Let p E B, and set
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p"

p. p'

Then, there are points PI' P2' ... , Pn in B such that

In this version, each of the partial derivatives ,!; is computed at a
different point Pi; later, we shall improve this by showing that the points Pi
can all be replaced by a single properly chosen point P* that lies on the
line joining Po and p.

We prove the lemma only in the two-variable case, since this illustrates
the general method. It is also more convenient to change the notation,
putting,1.p = (,1.x, ,1.y). Let q be the point Po + (,1.x, 0) = (xo + ,1.x, Yo), and
write

f(p) - f(po) = [[(p) - f(q)J + [f(q) - f(po))

Noting that in each bracketed term, only one variable has been altered, we
apply the one-variable mean value theorem to each. Accordingly, there is an
x' between X o and X o + ,1.x, and a y' between Yo and Yo + ,1.y, yielding
points p' and p" as indicated in Fig. 3-3, such that

f(q) - f(po) = f(xo + ,1.x, Yo) - f(xo, Yo)

= ,1.x fl (x', Yo) = f l (p') ,1.x

and

f(p) - f(q) = f(xo + ,1.x, Yo + ,1.y) - f(xo + ,1.x, Yo)

= ,1.y f 2(xO + ,1.x, y') = f 2(p") ,1.y

Adding these, we have

f(p) - f(po) = fl (p'),1.x + f 2(p"),1.y

which is the two-variable form of (3-7). I

Corollary If all the first partial derivatives off exist and are continuous
in an open set D, then f itself is continuous in D.

The proof of the lemma did not use the continuity off, sLl!ce_ only the
existence ,of each,!; was needed for the appropriate one-variable mean value

. '{} r; c
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theorem. If the ball B(po, r) is chosen so that its closure lies in D, then
each of the functions 1;, being continuous in D, will be bounded on B, and
we will have II;(p;) I ::s; M for i = 1, 2, ... , n. Accordingly, from (3-7) we
will have

If(p) - f(Po)1 ::s; MIL\x11 + MIL\x2 1+ ... + MIL\xnl
::s; nMlp - Pol

and limp_po f(p) = f(po)· I

The role of a single comprehensive derivative of a function of several
variables is filled by the vector-valued derivative of f, which we write as Df
This is sometimes called the total derivative of f, to distinguish it from the
numerical-valued partial derivatives off (Some mathematicians are beginning
to write f' instead of Df, but we prefer the latter to avoid possible confusion
with the one-variable case.) When f is a function of three variables, Pf is the
same as the gradient off, usually written Vf

Definition 2 Let f E C' in an open set S in n space. Then, the derivative
off is the vector-valued function Df defined in S by

(3-8)

Note that Df is continuous in S, since each component function 1; IS

continuous in S. To illustrate the definition, iff(x, y, z) = x 2y - y3 z2, then

Df(x, y, z) = (2xy, x 2
- 3y2z2, -2lz)

For functions of one variable Df coincides with f'. Here, the derivative
has a geometric meaning, explained by the familiar diagram showing a tangent
to the graph offand the statement that this line provides a good approximation
to the function near the point of tangency. The corresponding analytic
statement is the following: Iff is differentiable at X o and L\x = x - xo ' then
the remainder function

(3-9)

approaches Ofaster than L\x, meaning explicitly that

lim R(L\x) = 0
X-Xo lL\xl

Equivalently, given 6 > 0 there is a neighborhood AI about Xo such that
IRI < lL\x l6for all x in AI.

Similar statements hold for functions of several variables, and the vector
valued derivative Df, but the geometry is harder to visualize except in the
special case of functions of two variables. In Fig. 3-4, we show the graph of
such a function, and the tangent plane at the point P = (0, 0,f(0, 0)). Among
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all the planes through P. the langent plane fits f best on a neighborhood of
Po = (0.0). The corresponding analytic statement for the general case is called
the locallipproximation theorem. and is basic to the rest of the chapter. Note
lhat as staled below. formula (3-1O) closely resembles (3-9). except that the
scalar product of the vectors Df(po) and lip replaces the ordinary product of
the numbers f'(xol and !lx.

Tllrorml 8 Lt" IE C' in WI opnr St'l S. For (//I)' po. p in S. ,kjine tire
rmw;lIIler function R = R(po_ p) hy

(3.10) R ~ [(pi - I(Po) - Df(po)' 6p

(3-11)

II'hl're lip = P - Po' Then, R approaches 0 Jasler Ilwtl IIp, nwalling thm

lim R =0
,_~ 16 pl

E(}I/ir'alt'/ltf.r.jor any I: > 0 there is a neighborhood. t' (/l,pt'lUling 011 both
Po amI /: such Ihat IRI < li1plr.for all pE .1·.

For a function ofthrcc variables. with p = (x. y. z) and Po = (.\:0 • .1'0' zoJ.
formula (3-10) giving R translates into

(3·12) R ~ I(pl - I(Pol - I, (Pol 6x - I,(po) 6)' - f,(po) 6,

We give the proof of Theorem 8 in this case: it is easily generalized to
n vari<lbles. We first use the mean value theorem given in the previous lemma
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to write

f(p) - f(po) = f l (p') dx + f 2(p") dy + f 3 (p"') dz

where p', p", p'" are selected points on each of the three segments forming
a polygonal path from Po to p. This path lies in S if p lies in a sufficiently
small neighborhood of Po. Returning to (3-12), this yields

(3-13 ) R = {II (p') - fl (Po)} dx + {I2(P") - f2(PO)} dy

+ {l,(p") - f 3 (po)} dz

Since the partial derivativesflJ2..[3 are continuous at Po, we can choose a
neighborhood. t' about Po so that each of the terms in (3-13) in brackets
has absolute value less than any preassigned e. This gives at once

IR I ~ eIdx I+ e Idy I+ eIdz I
~ (3e)ldpl

for any p E ,t',

Small changes in this proof yield a slightly better result. Suppose that
E is a compact subset of S, Since the distance from E to the boundary of S
is strictly positive, we can choose a larger compact set Eo, with E c Eo c S,
and 15 > 0, so that if Po E E and Ip - Po I < 15, then p E Eo. The partial
derivatives I; are continuous in Eo, and therefore uniformly continuous in
Eo. One is then able to show that given any e > 0, there is a radius p,
depending only on e,j, and the sets E and S, such that IR I < Idp Ie for any
choice ofPo in E, and any p with Ip - Po I < p. This fact can be described by
saying that the limit in (3-11) is "uniformly for all Po E E." I (The general
topic of uniform convergence will be taken up systematically in Chap. 6.)

There is also a converse to Theorem 8 which serves to characterize the
vector derivative Df

Theorem 9 Let f be continuous on a neighborhood of Po' and suppose that
there is a vector u such that

(3-14) lim f(po + dp) =[Jpo) - u odp = °
~p-o IdPI

Then, the partial derivatives off exist at Po and

u = Df(ro)

For, if u = (u l, u2' ... , un), then by specializing dp to approach 0
along each of the coordinate axes in turn, one finds that uj = I;(po)· I

Formula (3-14) can be taken as the basis for a general theory of differentia
tion. For example, f is said to be differentiable in an open set D if there is
such a vector u corresponding to each point Po E D, and u obeys (3-14). As
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Theorem 9 shows, this will lead us back to the vector derivative Dj. This
approach has advantages when we take up differentiation of general transforma
tions from n-space into m-space, and we will adopt it in Chap. 7.

The approximation theorem has several immediate consequences that are
very useful. The first relates the vector derivative Df to directional derivatives.

Theorem 10 Iff E C in an open set S, then all its directional derivatives
exist at any point PES, and Dpf(p) = f3' Df(p)·

Corollary The derivative ~f at a point p is a vector that points in the
direction of the maximum rate of change off at p, and whose length is the
derivative off in this direction.

Apply the approximation theorem with !'J.p = Af3. Then,

so that

f(p + Af3) - f(p) - Df(p) • Af3 = R
f(p + Af3) - f(p) R-. ----y- -~- = f3 • Df(p) + A

But, A = l!'J.p!, since f3 is a unit vector, and lim A_ o RIA = 0, which yields
Dpf(p) = (J • Df(p)· I

The corollary arises from the simple observation that as the vector f3 varies,
the maximum value of f3' Df(p) will occur when the angle between f3 and
Df(p) is 0, and this maximum value will then be IDf(p)l·

Many of the results in the preceding section have analogs for functions of
several variables.

Theorem 11 Let fE C in an open set S, and suppose that f has a local
maximum (minimum) at a point Po E S. Then, Df(po) = O. Thus, all the
partial derivatives off vanish at PO'

Suppose Po is a local maximum for f Thus, f(p) ~f(po) for all p
sufficiently near Po. Accordingly, Dp f(po) ~°for every choice of the direc
tion f3. Writing this as f3 • Df(po) ~ °and then replacing f3 by - f3, we have
(- f3) • Df(po) ~ 0, so that f3 • Df(po) = 0. This cannot hold for all direc
tions f3 unless Df(Po) = O. I

Any point where D f = °is said to be a critical point for f Every local
extremum of f occurs at a critical point; however, not every critical point
gives an extremum, since some yield saddle points, as will be seen in Sec. 3.6.

Theorem 12 Iff E C in an open set S which is also connected, and Df = 0
everywhere in S, then f is constant in S.
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Using the mean value lemma. formula (3-7). and the fact that the par
tial derivatives II' 12' .... J~ vanish everywhere in S. we must have
f{p) - I(po) = Ofor a II p suftkiently near Po. Thus•.fis locally constant in S,
Since S is connected, it follows thalf is globally constant in S (Exercise 8,
Sec. 2.4). I

It is nalUral to ask what happens if just one of the partial derivatives is
identically O. Such is the case. for example. in the function I

fIx . .1'. =) = x 2 + r 2

where z is missing, and ff /ez = 0 at all points.

Theorem 13 Let \1' = fix, r, z) 1I'11('reI is of c1as.~ C in u conl'ex open St" D.
und let 1'11'/('= == 0 tllrollgllOUf D. Tilell. :: is missing. ill Ihe sense firm

fix. j'. ,) ~ fix. y. 0")

II'llellelw (x. J. z·) and (x, r, z") are both in D.

The proof of this is again a simple consequence of the mean value lemma.
by usc of Ihe fact that the entire segment between (x. y, z') and (x. J', ::") lies in
D. The need for some restriction on D is seen by the two-variable example in
Fig. )-5. Here. D is nOI convex. and the graph is a function that is loea/I.r
independent of.r but not independent of.r in all D,

EXERCISES

Fil1d j I(.'1:....~f2(X, y~ ',,(x,.,-j If

((.II f(.'I:. r) "" Xl log (.'1: 1 + rll
(h) !(.'I:. r)" x'.

2 Wilh!(x. .I') '" A1rJ - 2r.lil1d!,(x.r).fl(x..l").!l(2. 31. al1d!,(.!". xl.
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3 Compute Df for each of the following functions at the given point:
(a) f(x, y) = 3x2y - xl + 2 at (1,2)
(h) f(u, v) = u sin (uv) at (n/4, 2)
(c) f(x, y, z) = x 2yz + 3xz2 at (1,2, -1).

4 (a) Letf(x, y) = xy/(x 2 + y2), withf(O, 0) = O. Show thatfl andf2 exist everywhere, but that
f is not of class C.

(h) Does fhave directional derivatives at the origin?
(c) Isfcontinuous at the origin?

5 Let a function f be defined in an open set D of the plane, and suppose that f l and f 2 are
defined and bounded everywhere in D. Show that f is continuous in D.

6 Can you formulate and prove an analog for Rolle's theorem, for functions of two real
variables?

7 Let f and 9 be of class C in a compact set S, and let f = 9 on bdy (S). Show that there must
exist a point Po E S where Df(po) = Dg(po)'

8 Find the derivative of f(x, y, z) = xy2 + yz at the point (1,1,2) in the direction
(2/3, - 1/3, 2/3).

9 Let f(x, y) = xy. Show that the direction of the gradient of f is always perpendicular to the
level lines off

10 Show that each of the following obeys iYu/iJx 2 + iJ2U/iJy2 = 0:
(a) u = eX cos y (h) u = exp (x 2 - y2) sin (2xy)

II Letf(x, v) = xy(x2 - y2)/(X 2 + y2)withf(0, 0) = O. Show thatfis continuous everywhere, that
f1'f2,f12' andf21 exist everywhere, butfI2(0, 0) # f 21 (0,0).

12 Find the directional derivative of F(x, y, z) = xyz at (1,2,3) in the direction from this point
toward the point (3, 1, 5).

13 If F(x, y, z, w) = x 2y + XZ - 2yw2, find the derivative of F at (1, 1, -1, 1) in the direction
{3 = (4/7, -4/7. 1/7. -4/7).
14 Some economics students have been quoted as saying the following: F(x l • x 2' ... , xn ) is
such that it does not change if you change only one variable, leaving the rest alone, but it does
change if you make changes in two of them. What reaction would you give to such a
statement?

3.4 DIFFERENTIATION OF COMPOSITE FUNCTIONS

A function may often be regarded as built up by composition from a number
of other functions. Hf(x, y) = xy2 + x 2, g(x, y) = y sin x, and h(x) = eX, then
a function F may be defined by

(3-15) F(x, y) = f(g(x, y), h(x))

= ye2x sin x + y2 sin2 (x)

The introduction of additional variable symbols sometimes helps to clarify
such relations. For example, an equivalent description of (3-15) is obtained by
setting w = F(x, y), and writing

w = f(u, v) = uv 2 + u2

(3-16) u = g(x, y) = y sin x

v = h(x) = eX
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Figure 3-6

These equations express w in terms of x and y indirectly through the inter
mediate variables u and v. The interdependence involved in this particular
example may also be indicated schematically, as in Fig. 3-6.

The main concern of this section is the theory and application of the rules
for obtaining derivatives of such composite functions. The general case is
postponed to Chap. 7. As an example of the so-called "chain rules of dif
ferentiation," we shall here prove a special case which illustrates the method
of proof.

Theorem 14 Let F(t) = f(x, y), where x = g(t) and y = h(t). Here, g and h
are assumed to be class C' on a neighborhood of to' and f of class C' on a
neighborhood of Po = (xo, Yo) where Xo = g(to)' Yo = h(to)' Then, F is of
class C' on a neighborhood of to ' and

(3-17) F'(t) = fl(p)g'(t) +f2 (p)h'(t)

where p = (g(t), h(t)).

The differentiation formula (3-17) is more lucid if we alter the notation
and write w = F(t), for (3-17) then becomes

dw ow dx ow dy
~=~--+-

dt ox dt oy dt

To prove this, we must calculate F(t + M) - F(t).
Set dx = g(t + M) - g(t), dy = h(t + M) - h(t). Then,

F(t + M) - F(t) = f(x + dX, y + dy) - f(x, y)

= f(p + dp) - f(p)

= Df(p) . dp + R

=f l (p) dX +f 2(p) d y + R

where lim~p_o IRI/ldPI = O. Dividing by M, we have

(3-18) F(t + dt) - F(t) =1 ( ) dx +1 ( ) ~1' + ~
M I P dt 2 P M dt

AsM-..O,dX/dt~g'(t)anddy/M-..h'(t).Also,sinceIdPI:-s; Idxl + Idyl,



DIFFERENTIATlON 137

I~p 1/ I~t I is bounded and

1 ~1-J!11~pl~0M -1~pl IMI
Thus, as ~t ~ 0, (3-18) becomes (3-17). I

Using this, one can easily obtain more elaborate chain rules for calculating
partial derivatives of composite functions. For example let w = f(u, v) with
u = 9(X, y), v = h(x, y). This defines a function F by w = F(x, y). To find the
partial derivative. F1 = ow/ax, we need the directional derivative of F along
the X axis. This amounts to holding y constant and finding the derivative of
the resulting function of x alone. Using the chain rule obtained in Theorem 14,
we arrive at

as expected; in a similar way, one finds

F (x y) = ow = ow au + ow ov
2' oy au oy ov oy

Note that these could also have been written

F1 =f191 +f2 h1

F 2 =f192 +f2 h2

To illustrate this, the example (3-16) yields

ow
- = (v 2 + 2u)(y cos x) + (2uv)(eX

)

ax

and ~~ = (v 2 + 2u)(sin x) + (2uv)(0)

The next illustration is somewhat more complicated; it also shows how the
quotient notation for partial derivatives is sometimes ambiguous. Let w be
related to x and y by the following equations:

(3-19) w =f(x, u, v) u = (x, v, y) v = h(x, y)

The corresponding diagram is shown in Fig. 3-7. We see that the dependence of
w upon x is complicated by the fact that x enters in directly, and also through
u and v. Each path in the diagram joining x to w corresponds to a term in the
formula for ow/ax, so that we obtain

(3-20)
ow ow ow au ow avow au ov
-=-+--+--+--
ax ax au ax ov ax au ov ax
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Figure 3-7

(3-21 )

Since y enters in through u and u,

aw aw au aw au aw au au
-=--+--+--
ay au ay au ay au au ay

In both of these formulas, the partial derivatives must be understood in the
correct context of Eqs. (3-19) above. In (3-20), for example, the first oc
currence of "awjax" refers to the partial derivative of w, regarding it as "a
function of the independent variables x and y." (This is often indicated by
writing awjax Iy to show that y is being held constant.) The second occurrence
of" awjax ", however, refers to the partial derivative of w regarded as a func
tion of the independent variables x, u, u. The use of numerical subscripts helps
to remove such ambiguity. We may write (3-20) and (3-21) in the alternative
forms

aw
a~ = II +12 91 +13 hI +12 92 hI

away =12 93 +13 h 2 +12 92 h2

As another illustration of the use of chain rules, consider the following
relationship:

w = F(x, y, t) x = ¢(t) y=t{I(t)

These express w in the form w = I(t), as shown by the diagram in Fig. 3-8
and

(3-22)
dw aw aw dx aw dy
-=-+---+-
dt at ax dt ay dt
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This procedure can also be used to compute higher derivatives too. For
example, to find d2w/dt2, we rewrite (3-22) in the form

dw dx dy
-- = F3(x, 1', t) + FI(x, 1', t) - + F2(x, 1', t)
dt dt dt

and then differentiate a second time, getting

d2w dx dy (dX)2 dx dy dx
dtT = F33 + F31 dt + F32 dt + F11 dt + F12 dt dt + F I3 dt

(
dY) 2 dx dy dy d2x d2l'

+ F22 dt + F21 dt dt + F23 dt + F I dtT + F2 d?

Assuming that F is of class C, this may also be expressed in the form

d
2
w a

2
w J a

2
w dx a

2
w dYI a

2
w (dX)2

dtT = at2- + 21ax at dt + 01' at dtl + 8x 2 dt

+ 2 a
2
w d:~dy + a2~ (dY) 2 + ow d

2
x + a_~ d

2
y

ax 01' dt dt 01'2 dt ax dt 2 dy dt 2

Another type of problem in which the chain rules prove useful is that of
finding formulas for the derivatives of functions which are defined" implicitly."
Consider the pair of equations

j x 2 + UX + 1'2 + V = 0

lx + yu + v2 + x 2 v = 0

If we give x and l' numerical values, we obtain a pair of algebraic equations
which have one or more solutions for u and v; for some choices of x and 1',
these solutions will be real, so that Eqs. (3-23) serve to define one or more
functions f and g such that

ju = f(x, 1')

lv = g(x, 1')

For example, if x = 1, l' = 1, then (3.23) becomes

ju+v+2 =0
1u + v2 + V + 1 = 0

which has the solutions (u,v)=(-I,-I) and (u,v)=(-3,1). General
theorems, which we shall discuss later in Sec. 7.6, show that there are functions

fand gdefined in a neighborhood . ~ , of( 1, 1) such thatf(l, 1) = - 3, g(l, 1) = 1,
and such that (3.23) holds with these substitutions for all (x, y) in •V. Knowing
the function f, it would then be possible to compute au/ax = f l and find
f l (1, 1) = au/ax 1(1. I)'

By the use of the chain rules, it is possible to compute such partial
derivatives without carrying out the often difficult task of solving explicitly for
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the functions I and g. To achieve this for the specific example above, dif
ferentiate each of the equations in (3-23) with respect to x while holding y
constant.

au av
2x + u + x ax + 0 + ax = 0

au av 2 av
I + y - + 2v - + 2xv + x - = 0

ax ax ax

Solving these for au/ax, we find

au 1 - 2xv - 2uv - 2x3 - ux 2

ax 2xv + x 3
- y

If we set x = 1, y = I, u = - 3, v = 1, we find the desired value

aa
u I = 11 (1, 1) = 3
X (I. I)

We can obtain a formula for the solution of a general class of such prob
lems. Suppose that one is given two equations

JF(x, y, u, v) = 0
\G(x, y, u, v) = 0

which we may regard as solvable for u and v in terms of x and y. We wish to
find au/ax and av/ax. Holding y constant, differentiate (3-24) with respect to x.

au av
FI+F3a~+F4ax=O

au av
G1 + G3 ax + G4 ax = 0

Solving these, we obtain the desired formulas

IF1 F4 /
au G1 G4 =F1G4 - F4 G1
- - -~--_.~.--

ax
IF3 F4 [

F3G4 - F4G3

G3 G4

IF3 F
1 I

av G3 G1 F3G1 - F1G3
-~- -F1=ax F3G4 -F4G3

G3 G4

Determinants. of this special form are common enough to have acquired a
special name and notation; they are called Jacobians, and the notation is
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illustrated by

(3-25)
o(A, B)
o(s, t)

oA oA
os ot
oB oB
os ot

Using this, we can write the formulas above in simpler form as

(3-26)

ou _ o(F, G)/O(F, G)
ox - - o(x, v) 0(u,0

ov _ o(F, G)/O(F, G)
a-~ - - o(u, x) o(u, v)

Then, of = 1
OV

and

To apply these to the pair of equations given in (3-23), we take

F(x, y, u, v) = x 2 + UX + y2 + v

G(x, y, u, v) = x + yu + v2 + x 2 v

of of
--- = 2x + u - = x
ox ou

oG
-- = 1 + 2xv
ox

oG
---- = y
ou

oG
-- = 2v + x 2

OV

and

so that OU 1
2X + u 1 I Ix 1 I

ox = - 1 + 2xv 2v + x 2 -=- y 2v + x 2

2xv + 2uv + 2x3 + ux2
- 1

2xv + x 3
- Y

OV Ix 2x + u I Ix 1 I
ox = - y 1 + 2xv -=- y 2v + x 2

X + 2x 2v - 2xy - uy
2xv + x 3

- y

Further formulas of this nature will be found in the exercises. It should be
pointed out that the Jacobian which occurs in the denominator of both frac
tions in (3-26) is one whose nonvanishing will be sufficient to ensure that Eqs.
(3-24) really do have a solution in the form

u = f(x, y), v = g(x, y)

(see Sec. 7.6).
A somewhat more difficult problem is the following, which is patterned

after a type of situation which occurs in physical applications. A physical law
or hypothesis is often formulated as a partial differential equation. If a change
of variables is made, what is the corresponding form for the differential
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equation? We first examine a simple case. Suppose the differential equation is
o2ujox2- o2ujoy2 = 0, and suppose we wish to make the substitution

(3-27) JX = s + t

\y = s - t

By the appropriate chain rule,

au au as au at
ax = as ax + at a-;
au au as au at
-- =-- + ----oy osoy otoy

Solving (3-27), we have s= (x + y)j2 and t = (x - y)j2, so that

au =au (!) + au (!) =! (_~ + ~)(u)ax as 2 at 2 2 as at

and au =au (!) + ~'! (_!) =! (~__ ~)(u)oy as 2 at 2 2 as at
Repeating this, and assuming that u = F(x, y) with F of class C,

02U a (au) 1(a O)(OU 1 au 1)
ox2= ax ax = 2 a.~ + at as 2 + at 2

1 (a2u a2u 02U)
= 4. as 2 + 2 as at + atl

and ::'~ = ~ (~- :t)(~; ~ -~~~)
1 (a2u a2u 02U)

= 4. as2- 2 as at +"0(2

Subtracting these, we find that

a2u a2u a2u
?Jx2- ay2 as at

so that the transformed differential equation is o2ujas at = 0.
A more complicated problem of the same type is that of transforming the

Laplace equation c2ujox2+ a2ujcy2= ° into polar coordinates by the
substitution

JX = r cos {}
ly = r sin {}

Differentiate the first of these with respect to y, and the second with respect to
x, regarding x and y as independent.
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ar ae.o=--- cos e- - r sm eay ay
ar. aeo= - sm e+ -- r cos eax ax
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Also, x2 + i = r2, so that 2r(ar/ax) = 2x and 2r(ar/ay) = 2y, and therefore

(3-29)
ar x
--- = - = cos eax r

ar =.}' = sin eay r

Putting these into (3-28), we obtain

(3-30)
ae
ax

sin e
r

ae cos e
ay r

Then

and

Iterating these,

au = au ar + au ae = cos eau _ sin eau
ax ar ax ae ax ar r ae

( a sin e a)
= cos ear - -r- ae u

au = au ar + au ~ = sin eau + cos eau
ay ar ay aeay ar r ae

( . a cos ea)
= sm ea~ + -r- ae u

a2u= (cos e~ _ sin ei) (cos eau _ sin eau)
ax2 ar r ae ar r ae

2 a2u sin2 ea2u 2 sin ecos e a2u
= cos ecr2 + ----;:z ae2 - r ar ae

2 sin ecos eau sin2 eau
+ r2 ae + -r- a~

a2u= (sin e~ + cos e~) (sin eau + cos e_~_~)
ai ar r ae ar r ae

_ . 2 ea2u cos 2 ea2u 2 sin ecos e a2u
- sm ar2 + r2 ae2 + r ar ae

2 sin ecos eau cos 2 eau
r2 ae + -r- ar
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and adding, we find that

a2u a2u a2u 1 a2u 1 au
-+-=-+--+-ax 2 ai ar2 r2 ae2 r ar

Thus, the equation a2ujax 2 + a2ujai = 0 which governs the distribution of
heat becomes

in polar coordinates.
Finally, let us consider a special type of change-of-variable problem.

Suppose that E, T, V, and p are four physical variables which are connected
by two relations, of the form

(3-31 )
)4>(E, T, v, p): 0
11/1(E, T, V, p) - 0

We suppose also that these may be solved for any pair of the variables in
terms of the remaining two, i.e., any pair may be selected as independent.
When V and T are independent, the physical theory supplies the following
differential relation between the variables

(3-32)
aE ap--T-+p=Oav aT

(3-33 )

Suppose that we wish to shift our point of view, and regard p and T as the
independent variables; what form does the physical relation (3-32) take now?
To answer this, two techniques can be used. One is to assume that equations
(3-31) have been solved for E and V in terms of the new independent
variables p and T in the form

E = I(p, T)

V = g(p, T)

Since the differential equation (3-32) involves aEjaV and apjaT, derivatives
in which V and T were the independent variables, we obtain these from
(3-33) by differentiating these two equations with respect to V and T.

aE ap
av =/1 av

ap
1 = gl av

aE ap
aT = II aT +12

ap
0= gl aT + g2

Solve these for the derivatives that appear in (3-32):
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(3-35)
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Substituting these into (3-32), we obtain

It + T g2 + pg t = 0

and then, using (3-33) to convert this into more familiar notation, we see
that the new form for the physical law (3-32) is

aE av av-+T-+p-=Oap aT ap
The second technique is a dual of this. In the context of (3-32), E and p

were expressible in terms of V and T.

E = F(V, T)

P = G(V, T)

Thus, the derivatives that appear in (3-32) were aE/aV = F 1 and ap/aT = G2 ,

and the relation (3-32) could have been written as F 1 - TG 2 + P = O. Now
treat p and T as independent, and differentiate (3-35) with respect to each,
obtaining

a~ = F av
ap 1 ap

av
1 = G

1 ap

aE av
aT=F1aT +F2

av
0= G t aT + G2

Solve these for F 1 and G2 and substitute the result into the relation
F 1 - TG 2 + P = 0, and one again arrives at (3-34).

EXERCISES

I Construct schematic diagrams to show the following functional relationships, and find the
indicated derivatives:

(a) w = f(x, y, z), x = 1/>(1), Y = "'(I), z = 0(1). Find dw/dl.
(b) w = F(x, u, I), u = f(x, I), x = 1/>(1). Find dw/dl.
(c) w = F(x, u, 1"), U = f(x, y), 1" = g(x, z). Find ('w/ax, ('w/i'y, and (1 W /i'Z.

2 If w = f(x, y) and y = F(x), find dw/dx and d2w/dx 2.

3 When x, y, and z are related by the equation x 2 + yz2 + y2 x + 1 = 0, find ay/ax and
ayjaz when x = -1 and z = I.

4 Let x, y, u, v be related by the equations xy + x 2u = vy2, 3x - 4uy = x 2v. Find au/ax,
au/ay, av/ax, av/ay first by implicit differentiation, and then by solving the equations explicitly
for u and v.

5 Let F(x, y, z) = O. Assuming that this can be solved for z in terms of (x, y), find az/ax and
az/ay.

6 Under the same assumptions as Exercise 5, find expressions for a2z/ax2 and a2z/ax ay in
terms of F and its derivatives.

7 Let F(x, y, z) = O. Prove that
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8 Let F(x, y, t) = 0 and G(x, y, t) = 0 be used to express x and y in terms of t. Find general
formulas for dx/dt and dy/dt.

9 Let z = f(xy). Show that this obeys the differential relation

10 Let w = F(xz, yz). Show that

aw aw aw
x-~+y--=z--

ax ay az

II A function f is said to be homogeneous of degree k in a neighborhood. t of the ongm if
f(tx, ty) = t'f(x, y) for all points (x, y) E .Ai and all t, 0 S t s I. Assuming appropnate continuity
conditions, prove that f satisfies in . i' the differential equation

Xfl(X, y) + Yf2(x, y) = kf(x, y)

12 Setting z = f(x, y), Exercise 11 shows that x(az/ax) + y(azlay) = 0 wheneverfis homogeneous
of degree k = O. Show that in polar coordinates this differential equation becomes simply
r(az/ar) = 0, and from this deduce that the general homogeneous function of degree 0 is of the
formf(x, y) = F(y/x).

13 If z = F(ax + by), then b(az/ax) - a(az/ay) = O.

14 If u = F(x - et) + G(x + et), then

2 a2 u e2 u
e ex2 et2

15 If z = r/>(x, y) is a solution of F(x + y + z, Ax + By) = 0, show that A(az/a.d - B(az/ex) is
constant.

16 Show that the substitution x = e', y = e' converts the equation

into the equation a2u/as2 + a2u/at2 = o.
17 Show that the substitution u = x 2 - y2, V = 2xy converts the equation a2w/ax2 +

a2w/ay2 = 0 into a2w/au2 + a2w/av2 = o.
18 Show that if p and E are regarded as independent, the differential equation (3-32) takes

the form

eT av a(v, T)
-T-· +p--=O

ap aE a(E, p)

19 Let f be of class C in the plane, and let S be a closed and bounded set such that
f1(p) = 0 andf2(p) = 0 for all pES. Show that there is a constant M such that If(p) - f(q)1 s
Mlp - ql2 for all points p and q lying in S.

*20 (Continuation of Exercise 19) Show that if S is the set of points on an arc given by the
equations x = r/>(t), y = ljJ(t), where r/> and ljJ are of class C', then the function f is constant·
valued on S.

21 Let f be a functlon of class C with fO, I) = I, flO, I) = a, and f 20, I) = b. Let r/>(x) =

f(x,f(x, x)). Find r/>O) and r/>'(I).
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3.5 TAYLOR'S THEOREM

This important and useful result can be regarded either as a statement about
the approximation of functions by polynomials, or as a generalization of the
mean value theorem.

Suppose that a functionJis given to us, and we wish to find a polynomial
P which approximates J in a specified sense, for example, uniformly on some
interval I. One familiar procedure is that of interpolation, or curve fitting.
We choose points x l' x 2 ' ••• , xn on I, and determine P so that P(xJ = J(xJ,
i = I, 2, ... , n. If P has degree m, then there will be m + 1 coefficients to be
determined, so that in general a polynomial of degree n - 1 must be used to
fit J at n points. Once P has been computed, it remains a separate problem
to study the accuracy of the approximation at points x of the interval I
other than the points Xi' Another method for choosing a suitable polynomial
P is to select one point X o in the interval (e.g., the midpoint) and then choose
P to match J very closely at the point xo' We first introduce a convenient
notation.

LetJE en on an interval I about xo' Among all the polynomials of degree
n, there is exactly one which matches J at X o up through the nth derivative,
so that

(3-36) p(k)(XO) = j<k)(XO) k = 0, 1, ... , n

We shall call this the Taylor polynomial of degree n at xO ' and denote it by
Pxo' When n = I, PXo is the first-degree polynomial which goes through
(xo,f(xo)) and has there the same slope as does J; it is therefore just the
line tangent to the graph of.{, and

P(x) = J(xo) + f'(xoHx - xo)

When n = 2, P is a parabola which is tangent to J at (xo,f(xo)) and there
has the same curvature as does f Writing

P(x) = A + B(x - xo) + C(x - X O)2

and imposing conditions (3-36), we see that

In general,

We are concerned with the accuracy with which this polynomial approximates
J at points of the interval I away from x o; therefore we study the remainder
Rn(x) =J(x) - Pxo(x). Taylor's theorem expresses this remainder in terms of
the function f
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Theorem 15 (Taylor Remainder) Let f E C" + 1 on an interval I about x = c,
and let Pc(x) be the Taylor polynomial of degree n at c. Then, f(x) =
Pc(x) + Rn(x),for any x E I, where the remainder Rn is given by

(3-37)
1 . x

R (x) = - I pn+ ll(t)(t - c)n dt
n n! . c

The key to the proof is to hold x fixed, and regard c as variable.
Thus, consider the function

g(t) = Pr(x) = f(t) + f'(t)(x - t) + j"(t)(x - t)2/2! + ... +pn)(t)(x - t)n/n!

Note that g(x) = f(x) and g(c) = Pc(x). Hence,

.x

Rn(x) = f(x) - PAx) = g(x) - g(c) = I g'(t) dt
. c

It is only necessary then to calculate g'; doing so, we find

g'(t) = f'(t) -+- {f"(t)(x - t) - f'(t)}

+ {f(3l(t)(x - t)2/2! - 2j"(t)(x - t)/2!}

+ {f(n +ll(t)(x - t)n/n! - pnl(t)(x - t)n- l/n!}

This sum "telescopes," resulting in the simple result

g'(t) =pn+ll(t)(x - t)"/n !,

which immediately yields (3-37). I

Corollary 1

(3-38)

If IPIl+ll(x)1 ~ Mfor all x E I, then on I

(x - c)n+lIR (x)1 < M -----"
n - (n + I)!

This useful estimate is obtained directly from (3-37), since

1 . x n 1 M(x - c)n+ 1IR (X)I ~--I M(t - c) dt = -- --'_..,
n n!.c n! n+l

There are other alternative forms for the remainder Rn(x). One of these,
which depends upon applying a different estimate to the integral in (3-37), leads
to the following statement of the relationship between f(x) and the Taylor
polynomials at x = c which is perhaps more familiar than (3-37).

Corollary 2 IffE C" + 1 in a neighborhood I of c, then for any x E I,

(3-39) f(x) = f(c) + f'(c)(x - c) + j"(c) ~~TY

(x c)n
+ ... +pn)(c) ---,-- + Rn(x)

n.
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where

( t+ 1
R (x) = pn+ 1)(r) x _-_C-'---c-_

n (n-t1)!

and r is an appropriately chosen point between x and c.

Note that if n = 0, this becomes the usual mean value theorem, discussed
in Sec. 3.2. Thus, Taylor's theorem is a generalization of this. The equivalence
of (3-37) and (3-40) follows from an exercise given in the next chapter
(Exercise 5, Sec. 4.2), as well as from the simple argument in Exercise 8 of
the present section.

For the Taylor polynomial to be a good approximation to f, uniformly
on an interval I, the remainder R n must be uniformly small there. The
importance of the theorem lies in the fact that by having a formula for R n ,

we are thereby able to estimate its size. For example, let us find a polynomial
which approximates eX on the interval [- 1, 1] accurately to within .005.
Using (3-36) with X o = 0, we have

2 n

P(x) = f(O) + f'(O)x +.f"(0)~! + ... +pnl(O) ~

which in our case is

x 2 x n

P(x) = '1 + x + -- + ... + -
2! n!

The remainder, using the formula of Corollary 1, is

xn+ 1

lex - P(X)I = IRn(X)1 ~ M (n + 1)!

where M is the maximum of eX on [- 1, 1]. Since x also lies in [- 1, 1], this
yields IR nI~ e/(n + I)!. In order to have accuracy to within .005, we choose
n = 5, and we have found a polynomial

x 2 x3 x4 x 5

I +x+- +--+-+-
2 6 24 120

with the desired property.
It is clear in this case that because of the rapid growth of the factorials n!,

increasing the degree n of the Taylor polynomial will continue to improve the
accuracy of the approximation on [-1, 1], or in fact, on any bounded
interval. This is a special property of the exponential function which is also
shared on their domains by an important class of functions.

Definition 3 Afunctionfis said to be analytic at a point X o if there is an open
interval I about X o on whichfis Qf class C''- and such that limn_x- Rn(x) = 0
for each x E I.
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The functions eX, sin x, and cos x are analytic everywhere; J-x is analytic
for each point X o > 0, and x/(x 2

- 1) is analytic at each point of the intervals
x < - 1, - 1 < x < 1, and 1 < x. Since

this property is equivalent to saying that the sequence of Taylor polynomials
for f at X o converges to f in a neighborhood of xo; as we shall see in Chap. 6,
this enables us to say that analytic functions are those that are sums of their
Taylor series. The theory of analytic functions is a separate and highly evolved
branch of analysis; a sketch of this subject is given in Appendix 5, and
references to fuller treatments will be found there.

There are functions of class C'" which are not analytic, and for which the
Taylor polynomials are very poor approximations. An often used example is
f(x) = exp (-I/x2). When x i' OJ is continuous and infinitely differentiable.
In fact, f'(x) = 2x- 3 exp (-I/x2), and induction shows that f(nl(x) has the
form x- 3nQ(x)exp(-I/x2), where Q is a polynomial of degree 2(n-I).
Since limx_of(x) = 0, the discontinuity at the origin may be removed by
setting f(O) = 0; the formula for fin) shows that it is also true that

limx _ o jln)(x) = 0 for n = 1,2, .... This allows us to show thatfis also infinitely
differentiable at x = 0, with jln)(o) = 0 for n = 1, 2, .... For n = 1,
1'(0) = limh_ o f(h)/h; applying L'Hospital's rule, we replace this by

limh_ o f'(h), which exists and has the value O. Induction establishes the
general result. The function f can be shown to be analytic for all x i' O. How
ever, it is not analytic at x = 0, even though it is infinitely differentiable
there. The Taylor polynomial of degree n at 0 is 0 + Ox + Ox2/2 + ... + Oxn/n!
so that Rn(x) = exp (-I/x 2

), which does not tend to 0 as n increases, on any
neighborhood ofO. For this function, then the Taylor polynomials at the origin
do not converge to the function.

This points up the fact that while the Taylor polynomials are easy to
define, they are not always the best polynomials to use for approximating a
given function. For example, on [-1, 1], the Taylor polynomial 1 + x + x 2/2
for eX approximates it with an error of .22, while the special polynomial
.99 + 1.175 x + .543 x 2 approximates eX on the same interval with maximum
error of only .04. The theory of approximation is currently a very active field
of research, stimulated in part by the development of high-speed computers,
and new methods for finding good polynomial and piecewise polynomial
approximations are being discovered.

Even with an apparently well-behaved function, it is not always true that
increasing the degree of the Taylor polynomial will extend the interval of
approximation. Letf(x) = 1/(1 + x 2

), and construct the Taylor polynomial for
fat X o = O. It is easy to see that it is exactly

P(x) = 1 - x 2 + x4 - x6 + ... + (_I)nx 2n

Moreover, by elementary algebra, we can compute the remainder exactly,
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obtaining

1 x 2n + 2

R 2n(x) = 1+-;2 - P(X) = (_1)n+ I 1. + x 2

We see at once that IR 2n(x)1 is very small on the open interval -1 < x < 1 if
n is sufficiently large. Thus, increasing the degree of P yields a much better
approximation to f on this interval. However, it is also evident that P(x) will
never be a good approximation to f outside this interval, no matter how large
n is chosen. Indeed, for a value such as x = 2, increasing n worsens the
approximation! The explanation for this fact lies in the behavior off(x) for
complex values of x, in particular the fact that it is not defined when

x = j ~I for this fact influences the degree of approximation that the
Taylor polynomial can achieve for real x. (This will be discussed in Chap. 6.)

We now turn to functions of several variables. The first objective is an
improved form of the mean value theorem, promised in the last section.

Theorem 16 Let fE C in an open convex set S in n space. Then, for any
points PI and P2 in S, there is a point p* lying on the segment joining them
such that

(3-41 )

The proof for a function of two variables exhibits the general method.
If we have PI = (x, y) and P2 = (x + L1x, y + L1y), then this theorem

asserts that there is a number Ie, 0 < Ie < 1, such that

where p* = (x + Ie L1x, y + Ie L1y). To prove this, we construct a special
function F of one variable

F(t) = f(PI + t(P2 - PI))

=f(x + t L1x, y + t L1y)

Applying the one-variable mean value theorem,

F(I) - F(O) = (1 - O)F'(Ie)

where Ie is some point between 0 and I. By the chain rules,

F'(t) =f l L1x + f 2 L1y

so that F'(Ie) = Df(p*)' (L1x, L1y), where p* is the point (x + Ie L1x, y + Ie L1y),
which lies on the line from PI to P2' Since F(I) - F(O) = f(P2) - f(pd,
we have established (3-41). [Note that the convexity of S was used only
to be sure that the point p* belongs to S; all that is required for (3-41)
is that the segment PIP2 lie in S.] I
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If we apply Taylor's theorem to F, instead of merely the mean value
theorem, we obtain the corresponding form of Taylor's theorem for functions
of two variables.

Theorem 17 Let f be of class C" + I in a neighborhood of Po = (xo' Yo)'
Then, with p = (x, y),

f(p) =f(p ) + (x_-=- ~<J 011 + (y -_Yo)~ I
o 1 ax play

o PO

+ (~- ~?y :~L+ (x~ t-oJ (L~ !YQ) a~2~yL+ (~_~{O)2 :~.L
... (x - X o)" a"f I (x - XO)"-I (y - xo) a"f I

+ + ---;;-,--- ax" + (-n ~-c),- -11- a~;'-I ay
• Po •• Po

+ ... + (JI_= yot a"f I + R (x, y)
n! ay" PO "

where

R (x y) = (x:.- xo)~ a:_~ If I + ... + (y =-l'Q)"+_1 ~"-+~ I
" ' (n + I)! ax"+I". (n + I)! ay"+1 p.

and p* is a point on the line segment joining Po and p.

By adopting a special notation, this can be thrown into a simpler ap
pearing form. Let ~x = x - X o and ~y = y - YO' so that

~p = (~x, ~y) = p - Po

Define a differential operator V by

a a
V =~x- +~y-

ax ay

so that, for instance, Vf = ~xfl + ~yf2' Then, the Taylor expansion formula
may be written as

(3-42) f(po + ~p) =f(po) + ;! Vf(po) + i\ V 2f(po)

1 1+ ... + - V"f(p ) + ------ V"+ If(p*)
n! 0 (n + I)!

For example,
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This device makes it possible to state the n-variable form of Taylor's
theorem without becoming overwhelmed with subscripts.
Set !1p = (!1x 10 !1x2' ... , !1xn) and define the operator U by

a a a
(3-43) U = !1x t ::l + !1x 2 ;- + '" + !1xn ::l

uX t uX 2 uXn

so that Uf(q) = !1p' Df(q)

Then, the statement of Taylor's theorem appears the same for n variables as it
does for two, namely (3-42). Of course, the powers of U will be considerably
more complicated when they are translated into formulas involving the higher
partial derivatives off (see Exercise 17).

EXERCISES

I Show that sin x can be approximated by x - x 3/6 within .01 on the interval [ - I, I]'

2 Determine the accuracy of the approximation

x2 x4

cosx-I- +
2 24

on the interval [ - I, 1].
3 Determine the accuracy of the approximation

x 2 x 3 x4

log (I + x) - x - +- -
2 3 4

on the interval [-1, n
4 Determine the accuracy of the approximation

- (x-I) (X_1)2Jx - 1+---- - --.. -
2 8

on the interval [1, n
5 How many terms of the Taylor expansion for sin x about a conveniently chosen point are

needed to obtain a polynomial approximation accurate to .01 on the interval [0, n]? On the
interval [0, 2n]?

6 Suppose thatf(O) =f(-I) = 0,f(1) = I, andf'(O) = O. Assuming thatfis of class C3
, show

that there is a point c in [ - I, I] where f'''(c) :2: 3.

7 Assume thatfE C, that 1f"(x)l:s M, and thatf(x)---> 0 as x roo. Prove thatf'(x)--->O as
x roo.

8 Let P(x) = f(c) + f'(c)(x _ c) + f"~C)(X=-.12 + j"'(c)(x - ce
2! 3!

be a Taylor polynomial at c of degree 3. Let g(x) = f(x) - P(x) - A(x - c)4/4! Suppose that A
is chosen so that g(x) = o. Prove that there is a point r between c and x with A = f (4)(r).
(Hint· Use Exercise 2, Sec. 3.2.)

9 Show that for all x :2: I, log x :s J; - I/Jx.
10 Show that for all x :2: 0, eX :2: 1x1. Can you replace 1by a larger number?

II Letfobey the condition If1n)(x)l:s Bn for all x in an open interval I, and all n. Show thatf
is analytic on I.
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*12 Letfbe of class C on [0, 1] withf(O)=f(I)=O, and suppose that 1f"(x)1 ~ A for all x,
0< x < 1. Show that 11'(1)1 ~ A/4 and that II'(x)1 ~ A/2 for 0 < x ~ l.

*t3 Iff(O) = 0 and If'(x)1 ~ Mlf(x)1 for 0 ~ x ~ L, show that on that intervalf(x) == O.

*t4 Say that f is locally a polynomial on - 00, ex if, given xo, there is a neighborhood. t '0 and
a polynomial P(x), and on JV.o,f(x) = P(x). Prove thatfis a polynomial.

t5 Sketch the graph of y = 1/(1 + x 2
) and then, for comparison, the graph of the polynomials

and

t6 Sketch the graph of the function f(x) = e", and then the graph of its Taylor polynomials

and

What is the contrast in behavior between this and the results in the preceding exercise?

17 Use (3-43) to obtain the coordinate form for Taylor's theorem in three variables, with a
remainder of total degree 3.

t8 Let fEe in an open convex set S in Rn. Show that f obeys a Lipschitz condition on any
compact subset E c S.

3.6 EXTREMAL PROBLEMS

Any continuous function f defined on a closed bounded set D attains a maxi
mum (and a minimum) value at some point of D Iff is of class C in D, and
Po is an interior point of D at which f attains such an extremal value, then
(Theorem 11, Sec. 3.3) all the first-order partial derivatives off are 0 at Po.
This suggests that we single out the points in the domain of a function which
have the last property.

Definition 4 A critical point for a function f is a point p where

The discussion in the first paragraph can be rephrased as asserting that
the extremal points for the function f, which lie in the set D but do not lie on
the boundary of D, are among the critical points forfin D. A critical point need
not yield a local maximum or minimum value off However, since such a point
is one where the directional derivative off is 0 in every direction, the point
is a stationary point for the function; this is reflected in the fact that the
tangent hyperplane to the graph of f will be horizontal there. Since such a
point can be one where the surface rises in one direction and falls in another,
as in Fig. 3-9, a critical point need not correspond to either a maximum or a
minimum. Such points are often called saddle points, or minimax points.

Before proceeding further, let us recall the facts about functions of one
variable. A critical point is a solution of the equation f'(x) = 0, and corre
sponds to a point on the curve with equation y = f(x) at which the tangent
line is horizontal. The critical point may be an extremal point forf or it may yield
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Fil:url" 3-9 Il"r;i;ont;ll langCnl pl,me ;It S<llldlc point.

a poinl of inlleclion on the curve. As an illustmlion, suppose we wish to find the
maximum value of

.f(xl=4x3 -15x 2 + IKx

for x in Ihe interval 1 = [0.2]. The critical poinls for f in 1 are found to be 1
and 1. The maximum value off on t must therefore be altained either alone
of lhese or on Ihe boundary of I. that is. at one of Ihe cndpoinls 0 and 2.
Computing Ihe value of f at e~lch. we find flO) = O. f(2) = 8. f( I) = 7.
fG) = ¥. Hencc. Ihe maximum value off on 1 is 8. and il is allained on [he
boundary. (However. f has a local maximum value of 7 at I, and a local
minimum value of ~7 ali.)

The same lechnique may be used for funclions of scveral variables. As ;:111

illUSlnllion. consider Ihe funclion f given by

f(x. y) = 4xy - 2x 2 - .\"4

in the square D = (all (x. .\") with 1.'171 :S 2.1.1'1 :s 21. The critical points for fare
the simull;:lneous solutions of the equations

0= II Ix..1') = 4y - 4x

o=f2(x . .r) = 4.'17 - 4.r3

and are (0.0). (I. I). and (-I, -I). The maximum value offin U musl be
allained at one of these or on the nOllndary of D. We do nOI have to compute
the values off on all the edges of this square; since we are looking for a
maximum value. we may discard the parts of cD lying in the second and
fourth quadmnts where the term xy which occurs in f(x . .1") is negative. More
overJ( - x. - y) = fix• .r). so that/lakes the S<lme values at symmetric points
in lhe first and lhird quadran IS. This reduces our work to an examination of
the values of}" on lhe line x = 2. 0 :s y :s 2. and the line .r = 2. 0 :S x :s ::!. On
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•

y

Figure J-W Grilph of z = 4x.r - 2~1 - .1''' for 0.$ .\' < 2. 0:;; ,r <; 1.

the former.

f(2. y) ~ 8,. - 8 - .I"

Proceeding as in the previous illustration. we find that the largest value of this
for.l" in [0.2] is 6(2r J - 8 .... -.44. attained when .I" = 21 J. On the second
part of cDJ(x, 2) = 8x - 2x 2 ~ 16. whose greatest value for x ill rOo 2J is - 8.
This shows that the maximum value of f on the boundary of D is approxi
mately -.44. Comparing this with the values whichfhas at the three critical
points.f(O,O) = 0./( 1.1) = f( - I. - 1) = I we sec thatlhe (absolute) maximum
value of fin D is I, attained at the two JX)ints (I, I) and (-1, -I).
(A graph offis given in Fig. 3-10.) In the same fashion, one may show thai
Ihe minimum value of f in D is -40. attained ill the IwO boundary
points (2. -2) and (-2,2).

In the more familiar case of a function of one variable, the second
derivalive may be used to test the nature of a crilical point.

Theorem 18 Let f he of da.~.') C" ill the in/ami [a, h] am/It'l c he (1II iltterior
poill/ q( lliis in/en'a/ willi rIc) = O. Theil. ill orller Ihm (. hl' /I fowl
maximum poillf for.f. it i.~ nt'cl'.\·.~ar.r rllm ["(c) :5 0, alld .m/fidl'lIt Ihm
IN(c) < 0: for c 10 bl' a millimum poi/ll, till' col1tUtiol1S (Ire Ihe slime witl1
,Ill' illequalil)" sigm rl'ver.~l'l/.

The proof is an immediate deduction from Taylor's theorem. Write

F(r)h 2

f(c + I,) ~ flcl +I'(C)" + 2

~ f(c) + FI,)'"
2
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where r is a point between c and c + h. Hf"(c) < 0, thenf"(r) < °when
ever Ihl is sufficiently small, so that f(c + h) < f(c) and f has a local
maximum value at c. Conversely, iffhas a local maximum value at c, then
f"(r)h 2 :s; °for all small h. Since h2 ~ 0, and r approaches c as h -+ 0, we
have f"(c) :s; 0. I

What is the corresponding statement for functions of two variables?
Clearly, if Po is a critical point for f lying interior to a set D, and iff has an
extremal value at Po' then this must also be extremal if we examine the values
offon any curve passing through po. In particular, approaching Po along the
vertical and the horizontal directions, a necessary condition that Po be a
maximum point for f is that f ll (Po) :s; °and f 22(Po) :s; 0. These conditions are
not sufficient, nor are the conditions obtained by removing the equal signs (see
Exercise 5). For example, the function given by f(x, y) = xy has (0,0) for a
critical point and

f ll (0,0) = f 22 (O, 0) = °
but (0,0) is neither a maximum point nor a minimum point. The shape of the
graph of f is again like the saddle shown in Fig. 3-9. The name "saddle
point" or "minimax" is given to a critical point for a function which does not
yield either a local maximum or a local minimum value for the function. A
simple condition which is sufficient to ensure that a critical point Po be a
saddle point is that f ll (Po)fdpo) be strictly negative, since this implies that f
has a local maximum at Po when Po is approached along one axis direction,
and a local minimum when Po is approached along the other. A more
general criterion can also be obtained.

Theorem 19 Let f be of class C" in a neighborhood of the critical point PO'
and let

Then,

(i) fr A > 0, Po is a saddle point for f
(ii) fr A < 0, Po is an extremal point for f, and is a maximum if

f ll (Po) < °and a minimum iff ll (Po) > 0.
(iii) If A = 0, the nature of Po is not determined by this test.

In condition (ii),f22(Po) may also be used to distinguish between maxima
and minima. Let us apply the test to the function given by f(x, y) =
4xy - 2x2

- j/ which was used as an illustration prior to Theorem 18 and
whose critical points are (0, 0), (1, 1), and ( - 1, - 1). We find that f ll (x, y) =
-4,f12(X, y) = 4,fdx, y) = -12/, so that

A = 16 - 48y 2

At (0,0), A = 16> 0, so that (0,0) is a saddle point. At (1. 1) and (-I, -I),
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~ = - 32 < 0, so that each is extremal. Since

f ll = -4 < °
both are local maxima.

The proof of the general test is based upon the following special case.

Lemma 2 Let P(x, y) = Ax2 + 2Bxy + Cy2, and set

~ = (P 12 )2 - P II P22 = B2 _ AC
4

Then,

(i) If ~ > 0, then there are two lines through the orlgzn such that
P(x, y) > °for all (x, y) on one, and P(x, y) < °for all (x, y) on the
other, with the point (0,0) omitted.

(ii) If ~ < 0, then P(x, y) never changes sign, and P(x, y) > °for all
points except (0,0) if A > 0, and P(x, y) < °for all points except (0,0)
if A < 0.

We prove (ii) first. If ~ < 0, then AC # °so that A # 0. Write

AP(x, y) = A2x 2 + 2ABxy + AC/

= (Ax + By)2 - ~/

Since ~ is negative, AP(x, y) 2 °for all (x, y), with equality only at (0,0).
Thus, P(x, y) always has the same sign as the number A.

To prove (i), we assume that ~ > °and compute

P(B, -A) = AB2 - 2B2A + CA 2 = -A~

P(C, -B) = AC2 - 2B2C + CB2 = -C~

Since P is homogeneous of degree 2, P(h, AY) = A2P(x, y), it will be
sufficient if we can find two points at which P has opposite signs, since the
same will then hold on the entire line joining these to the origin. Let us sup
pose first that A # 0. Then, recalling that ~ is positive, P( 1, 0) = A and
P(B, - A) = - A~ have opposite signs. Similarly, if C # 0, then P(O, I) and
P(C, - B) have opposite signs. Finally, if A = C = 0, then P(x, y) = 2Bxy
and P takes opposite signs at (1, 1) and (- 1, 1). I

To apply this lemma to the proof of Theorem 19, assume that Po is a
critical point for f, and write the Taylor expansion off near Po

(3-44) f(po + ~p) =f(po) + t{.fll(P*)(~X)2 + 2f12(p*)(~x)(~y)

+f22(p*)(~y)2}

where p* is a point lying on the line segment joining Po and Po + ~p. We
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shall again prove (ii) first. We note first that the expression in brackets in
(3-44) has the form P(Ax, Ay), where P is the quadratic polynomial with
coefficients A = fl1(P*), B = f12(P*), C = fdp*). If A < 0, then B2

_

AC < 0 whenever IApl is sufficiently small. Hence, P(Ax, Ay) has, by the
lemma, the same sign as A. Th us, if fll (Po) < 0, then P(Ax, Ay) < 0 for
0< IApl < 6, and

f(po + Ap) = f(p) :S-o!(po)

for all P in a neighborhood of Po, with equality holding only at Po. The
point Po is then an external point for f which yields a local maximum. If
fl1(PO) > 0, then P(Ax, Ay) > 0, andf(p) ;::: f(po) so that Po yields a local
minimum. To prove part (i), we must show that f takes values which are
bigger than{(po) and smaller thanf(po), in any neighborhood of Po. Write
Ap = (p cos e, p sin e). Since P is homogeneous,

P(Ax, Ay) = p2 p(cos e, sin e)
Since f is of class C', we have

(3-45) lim P(cos e, sin e) = fll(po)(cos e)2 + 2fI 2(PO)(cos e sin e)
~p-o

+ fdpo)(sin e)2

= Po(cos e, sin e)
Since A> 0, the lemma implies that Po (cos 0, sin 0) takes both positive and
negative values for 0 $; 0 $; 2n. In particular, we may choose e' and e" so that
Po (cos 0', sin 0') > Oand Po(cos 0", sin e") < O. By (3-45) these relations are
also true of P, when IAp I is sufficiently small. Thus P(Ax, Ay) > 0 when
Ap = (p cos e', p sin e') and 0 < p < 6, and P(Ax, Ay) < 0 when Ap =
(p cos e", p sin e") and 0 < p < 6. Since P takes values which are both
positive and negative in a neighborhood of the origin, f(p) is sometimes
larger than f(po) and sometimes smaller, and Po is indeed a saddle point
for f I

The reader may wonder about the source of the expression A that appears
in Theorem 19. There is a simple explanation which we must leave incomplete
for the present. In this chapter, we have introduced the first derivative of a
function f of n variables as a vector-valued function D f; however, although
we have used the higher partial derivatives off, we have not introduced the
second (total) derivative off, which would be the derivative of D f Derivatives
of vector-valued functions are discussed in Chap. 7, where they can be
regarded as matrix-valued functions. The number A in Theorem 19 is the
negative of the determinant of the second derivative off

In the vicinity of a critical point for a function of class C', the level
curves form characteristic patterns which can also be used to determine the
character of the critical point. For example, if Po is a simple maximum point
forfso thatf(p) <f(po) for all p i' Po near Po' then the level lines offhave
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an appearance similar to those shown in Fig. 3-1Ia, On the other hand. the
pattern in Fig. 3-llb is typical of a simple saddle point corresponding to the
pass between two peaks. A more complicated type of saddle point is illustrated
by the so-called "monkey saddle" or triple pcak pass (Fig. 3-12).

To give another simple illustration. let us study the function F given by
F(x. r) = x 2 + .r3

- 3xy. Differentiating. we find

F1(s. r) = 2x - 3.1' F2(X. y) = 3,1"2 - 3x

F II (x. .1') = 2 F 12(X, ,r) = - 3 F22(X, .1') = 6.1'

The critical points of F arc found to be (0.0) and (t i). Computing
.1 = 9 - 12} at each. the first gives .1 = 9 and the second. .1 = -9. Thus
(0.0) is a saddle point. and (1,1) is an extremal point; since Fll = 2. it is a
local minimum for F. (The level curves for F are sketched in Fig. 3-13.)

A more complicated example is the "Texas hat:' whose level lines are
shown in Fig. 3-14. From this diagram. it is evident that this surface has
seven critical points, indicated on the diagram; three are saddle points. and

t-igure 3-12 Monh)' saddk



the remainmg four are extremes. The contour chan docs not have the
numerical values of Ihe 1cvellines, so that it may not be evident that three are
maxima and one a minimum. (The portion that is shaded in Fig. 3-14 is below
level 0: the ullshadcd p'lrt is where the function is positive.) It is also instruc·
tive to attempt 10 visualize the graph of the function from this contour chan.

The technique can also be applied to the standard problem of obtaining
the linear function which best fits a set of data, in the sense of least squares.
Given II points (x I' .1"1)' ... , (xn , .I"n)' not all the same. we wish to find the func·
tion F of the form F(x) = ax + b for which

J(a, h) = 2: (FIX) - .rY = ).
, ,

(J-46)
" "

(w.:. + b - r·)', . ,

is a minimum. The function J is of class C in the whole (a, b) plane and
has a minimum value which is attained at some point. or points. (ao' ho) = po.

Fij(un' J..J4
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If we take the region D as a large disk, then we can rule out the boundary of
D, for f(a, b) becomes arbitrarily large as (a, b) recedes from the origin. We
compute the derivatives off

f 1(a, b) = L 2(ax j + b - })X j

1

n n

= 2aL (X)2 + 2bL X j - 2L XjYj
1 1 1

f 2(a, b) =L 2(ax j + b - Yj)
1

n n

= 2aL X j + 2nb - 2L Yj
1 1

f 11 (a, b) = 2.2 (xl
1

f 12(a, b) = 22: x j

1

/22(a, b) = 2n

The critical points for f are the solutions of the following equations for a
and b:

(3-47)

a.2 (X j )2 + bL x j =L XjYj
1 1 1

a '\ x. + nb = ')- Y'L... ) L... J
1 1

Introduce X = (i X j )/n and y = (~ J'j )/n so that (.x,.n is the center of
1 1

gravity of the points (x j ' Y). The second equation in (3-47) can now be
written aX + b = y, and asserts that a and b must be chosen so that F(X) = y,
that is, the graph of F is a line passing through (x, y). A solution of (3-47)
can be wri tten as

n1 ,~

- ) X'Y' - xy
11 L... J J

1a = ---'n0-- _

! ~' (xV - (x)2
n~ J

b=y-ax
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There is only one critical point. To check that it is a local minimum point
for f, we compute

n 2 n

~ = (f12)2 - f ll f 22 = (2L Xj ) - (2n)(2L (X)2)
1 1

By the Schwarz inequality (Sec. 1.3),
n

12L xJ = nL XJ
1 1

and equality holds only if all the x j are the same. Hence, ~ < °and our
critical point (a, b) is extremal. Since f ll = 2t.xJ > 0, it is indeed a local (and
hence global) minimum point for f (A different but related extremal problem
is given in Exercise 17.)

In a numerical problem, especially one with many variables, it may be
more efficient on a high-speed computer to use a simple search technique to
find the maximum (or minimum) of a function F than it is to look for critical
points and use Theorem 19. One such device is called the method of steepest
ascent. Suppose that we wish to maximize the function F in a region D. The
procedure is to select a starting point Po' and then generate from it a
sequence of points Pn which "go uphill" from Po and (hopefully) converge to
the desired maximum point p* for F in D. The algorithm for generating
Pn+ 1 from Pn is based on the fact that the gradient of F, OF(p), at a point P
points in the direction of greatest increase. Choose a small positive number
h, and define {Pn} by

Pn+ 1 = Pn+ hOF(Pn) n = 0, 1,2, ....

The distance between successive points, IPn + 1 - Pn I, is determined by the size
of h and also by the length of the vector OF. At a critical point, OF = 0,
so the size of the successive steps will decrease as Pn approaches a critical
point. The success of this ascent algorithm depends much upon the choice of
a good starting point Po' and upon the" landscape" of the function F. The
surface shown in Fig. 3-15 illustrates some of the difficulties that can be met;
this is the surface whose contour lines were shown in Fig. 3-14. A new branch
of applied analysis called optimization has grown out of the need to find better
ways for finding the extremal values of a function.

In searching for an extremal point for F on a set D, one must check both
the boundary and the interior of D. Some functions, however, can be shown
never to have interior extrema. For such a function F, it must then be the case
that if m :$ F(p) :$ M holds on the boundary of D, it holds inside D as well.
This is true for the harmonic functions; A function F of two variables is said
to be harmonic in an open set D if F E Cn and if Fxx + Fyy = °everywhere in D.
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Theorem 20 Let D he a howu/(>tl opt'll sel. ami F IwnlllJ/l;e i/1 D (//111 1'011
linl/OIlS 011 tIJe dosl"e ~r D. If F(p):s;; ",·tInr fI ill bdy (D), Ihl'll F(p):S;; M
for p in D.

Take any I: > 0 and sctf(:c .1') = F{x..r) + I:X
2

. The funclion.! is con
tinuous on 15. which is compact. so the maximum ofIon D is laken at some
point p* in D. If p* is interior to D. f",,(p*):::;; 0 and ''''J'(P*):::;; 0 and
fu + f"1:S;; O. Hence, Fu + F" + 21: :::;; O. which violates the assumption
that F is harmonic in D. Accordingly. f must take its maximum on the
boundary of D. Let A he the largest value of x for (x. .r) in D, Then. for
any point (x• .1') in bdy (D),

f(p) = F(p) + /:X2:s;; M + I:A 2

and therefore the same must hold for any point in D. This shows that if
Po E D. Po = (xo. )'0)'

F(po):::;; M + 1:(A 2 - xi)

This estimate for F(po) holds for any choice of I:. so let I: approach 0 and
arrive at F(po):::;; M. I

Many problems arisc in which it is known that the sought-for extremal
point is not an interior point of the set D. A familiar example of this is the
category of problems known as extremal problems with constraints or side
conditions. As an illustration, we may be interested in the poinl p = (x, y. z)
at whichf(p) has a maximum value. where p is restricted 10 lie on a portion S
of the surface described by y(p) = O. As a subset of 3-space. S is a closed set
which has no interior points; thus, the extremal point need not be among the
critical points for f The side condition g(p) = 0 which forces p to move on the
surface piece S has the effect of decreasing the number of free variables from
3 to 2. This can be done explicitly if we can solve y(x. y.:) = 0 for one of the
variables, in a neighborhood of the sought-for point. If: = ¢(x. )'). Ihen

f(x . .I'. ,j ~ f(x.)'. 4>(x. ,1')) ~ Fix. ,)

and we now look for the maximum value of F.



DIFFERENTIATION 165

For example, let us find the point (x, y, z) obeying

g(x, y, z) = 2x + 3y + z - 12 = 0

for whichf(x, y, z) = 4x2 + y2 + Z2 is minimum. We find that

z = 12 - 2x - 3y

so that

F(x, y) = 4x 2 + y2 + (12 - 2x - 3yV

The critical points of F are found from the equations

0= F1(x, y) = 8x + 2(12 - 2x - 3y)( -2)

0= F2(x, y) = 2y + 2(12 - 2x - 3y)(-3).

These have only one solution, (1
6
1' in Checking, we find that F 11 = 16,

F12 = 12, and F22 = 20, so that A = (12)2 - (16)(20) < 0 and this point yields
a local minimum for F. Using the side condition to find z, we find that the
solution to the original problem is the point (1

6
1' n If).

A general approach to the solution of extremal problems with constraints,
usually called the method of Lagrange multipliers, will be treated in Chap. 10.
While of some theoretical interest, it has many practical limitations and is not
often the most successful approach to a numerical solution.

EXERCISES

I What are the maxima and minima off(x) = (2x l + 6x + 21)j(x 2 + 4x + !O)?

2 (a) Does P(x) = I - x + x l j2 - x 3j3 + x4j4 have any real zeros?
(b) What about Q(x) = P(x) - x5 j5 + x6 j6?

3 Find the maximum and minimum value of 2x l
- 3/ - 2x for x 2 + / ~ I.

4 Find the maximum and minimum value of 2x l + yl + 2x for Xl + yl ~ I.

5 Discuss the nature of the critical points of each of the functions described by:
(a) f(x, y) = x 2 - yl (b) f(x, y) = 3xy _ Xl _ yl
(e) f(x, y) = 2x4 + y4 - x 2 - 2y2 (d) f(x, y) = 4x l - 12xy + 9/
(e) f(x, y) = x4 + y4 (I) f(x, y) = x4

_ y4

6 Sketch the level curves of f for the functions given in Exercise 5, parts (a), (b), (d), and (e).
7 Givenf(x, y) = Xl - 2xy + 3y 2 - X and the square D = {(x, y), 0 ~ x ~ I, 0 ~ Y ~ 1}. Find

all critical points and find the maximum and minimum on D.

8 Show that H(x, y) = Xly4 + X4yl - 3x l / + I :2: 0 for all (x, y).

9 Let f(x, y) = (y - xl)(y - 2x 2 ). Show that the origin is a critical point for f which is a
saddle point, although on any line through the origin,f has a local minimum at (0,0).

10 Given n points in space, PI' Pl ' ... , p., find the point P for which.
f(P) = L IP - Pjll

1

is a minimum.

II LetfE C' in the open set n and have no critical points there. Let E be the set wheref(p) = O.
Show that E has no interior points.
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12 Find the point on the line through (1,0,0) and (0, 1,0) which is closest to the line:
x = t, Y = t, Z = t.

13 Find the maximum value of x 2 + 12xy + 2y2, among the points (x, y) for which 4x2 + y2 = 25.

14 Give a complete discussion of the problem of finding the right circular cone of greatest
lateral area which may be inscribed upside down in the cone of radius I and altitude 3.

15 Given an equilateral triangular set, what location of P in the set will yield the maximum
value of the product of the distances from P to the vertices? (Hint: Use the symmetry of the
triangle.)

16 In the solution of the normalized two-person game whose payoff matrix is

[-~ -~ -1]
one is led to the problem of finding the saddle points of the function F described by

F(x l , x 2' x 3' Yl' Y2' Y3) = (XI - 2x2 + X3)YI + (2x l - 2x3)Y2 + (- Xl + X2)Y3

subject to the constraints Xl + x 2 + x3 = I, YI + Y2 + Y3 = 1. Show that the saddle point is
X = (!, 1, 1). Y = (~,~, ~).

*17 Let (Xl' Yl) = PI' (X 2' Y2) = P2' ... , Pn be a set of points, not all the same. Find the line L

which "fits" these points best in the sense that it minimizes 2: df, where dj is the distance from

Pj to 1. [Note that this is not the same as the function f given in (3-46).]

18 Using Theorem 20, prove the following: If D is a closed bounded set, and iff and g are both
harmonic in D, and if!(p) = g(p) for all p on the boundary of D, then f == g in D.

19 For a function F of one variable, show that the method of steepest ascent leads to the
algorithm

Xn + I = x n + hF'(xn )

If this is applied to find the maximum of F(x) = x4
- 6x 2 + 5 for x in the interval [-I, I], show

that the algorithm yields a convergent sequence {x n } if h is small, but that the method fails if h
is too large and the starting point Xo is unfortunately chosen.

20 Apply the method of steepest ascent to locate the maxima of the function F(x, y) = x 3
- 3xi

in the square

D = {all (x, y) with Ixl s 2, lyl s 2}

Examine the effect of the following three choices of initial point, Po = ( - I, 0), (1,0), (0, I), and
the effect of the step size h = .1 and h = .01.

*21 Let C I ~ C2 ~ ..• ~ C
n

be a fixed set of positive numbers. Maximize the linear function

L(x l' x 2' ... , xn ) = 2: Cj xj in the closed set described by the inequalities 0 S x j S I,2: X j S A.



CHAPTER

FOUR

INTEGRATION

4.1 PREVIEW

In this chapter we start by discussing If j, the double integral of a function
D "

of two variables over a well-behaved set in the plane. This keeps the notation
within reason, enables one to look at concrete cases easily, and can be
generalized to the n-variable case or contracted to the familiar one-variable
form. Too much experience with the latter in elementary calculus often leaves
one with misleading impressions of both the nature of integration and the
role of antidifferentiation in evaluating integrals, especially in connection with
multiple integrals.

It is important to understand the difference between a multiple integral
and an iterated integral, and how one moves from one to the other. Since not
every integral can be evaluated in this manner, we give a brief treatment of
certain numerical methods; more will be found in Chap. 10. Since high
dimensional integrals often seem artificial, we give several at the end of Sec. 4.3
that arise naturally in the study of urban transportation.

One topic that is usually slighted in elementary calculus is the treatment
of improper integrals, especially those involving several variables. We cover
this in Sec. 4.5.

Finally, we give a very brief discussion in Sec. 4.4 of the change-of-variables
formula for multiple integrals, stating the general procedures and illustrating
these with the familiar polar coordinate case. We have also chosen to present

167
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(as a piece of platform magic) the simple algorithm for carrying this out that
is based on the algebraic manipulation of differential forms: a morc complctc
cxplanation of this appears in Chap. 9.

4.2 THE DEFINITE INTEGRAL

In elementary calculus. integration is oftcn equatcd to the notion of"area under
a curve"; as a result, when the double intcgral is cncountcrcd. it is auto
matically viewed as the volume under a surface. However. this leaves one in
somc difficulty with triple integrals, and even more so with higher-order
integrals. One major objective of this section is to gain another viewpoint
that is cxtremely useful both in applications and in mathematical theory.
It is lhat thc definitc intcgral involvcs intcgrating a function lover a set D,
with the realization that the rcsulting numerical value depends both anI and
on D. We begin with a simple case, the definition of the Riemann integral of
a continuous function! ovcr a rectangle R. By starting here. rather than with
the one-variable case, we hope to overcomc the tendency 10 conncct integration
too strongly with antidifTerentiation.

By grid, we mean any finite set of horizontal and vertical lines which
divide the rectangle R into a set of smaller reclangles. mutually disjoin I

except for their edgcs. If a particular grid is denoted by N and divides R into
subrcctangles R,j' as shown in Fig. 4-1. the mesh size of the grid l/(N) is the
largest diamcter of the R1J . The sides of the R1j may be unequal. It is evident

Class (i) [:=J ClaSS(jj)~ FiJ:ure 4-1
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that if d(N) is very small, the total number of subrectangles will be large, and
each will have short sides. We take for granted the formula for the area
A(R

j
) of a rectangle. (However, see Exercise I, which asks you to justify

logically a simple property of this concept.)
In each R jj , choose a point Pij' and then form the associated Riemann

sum:

i. j

Since the sum on the right is finite, S is a number which depends on all the
listed variables. Intuitively, it might be interpreted in various ways; for example,
if the rectangle R were a metal plate of variable density, and f(p) the density
at the point P, then S would be a plausible estimate for the total mass of the
plate.

Definition 1 The double integral If f exists and has value v if and only
R

if for any e > 0 there is a b > 0 such that

IS(N, f, {Pij}) - vI< e

for any choice of {Pij} and any grid N with d(N) < b.

By analogy with preceding definitions, this is often written

lim S(N, f, {Pij}) = If f
d(N) .... O R

However, as a limit operation, it differs in many essentials from those that we
have discussed earlier. The system of grids is not a sequence tending toward
some limit, and the number d(N) does not serve to identify the grid N. (The
system of all grids is an example of what is called a "net" or "directed system"
in more advanced courses, and is a generalization of the notion of sequence;
we do not need the precise definition here, but refer to the article by
McShane in [4] for anyone interested.) Having defined the integral, we need
to know that it is valid for a wide class of functions f.

Theorem 1 If f is continuous on R, then ff f exists.
R

In the first stages of the proof, we assume only that f is bounded on R,
since this will make the proof of later theorems slightly easier. Associated
with each subrectangle R jj determined by the grid N are two numbers

M jj = sup f(p)
pERij

m jj = inf f(p)
peRij
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We set S(N) = LMijA(Rij) = upper Riemann sum

~(N) = LmijA(Ri) = lower Riemann sum

It is clear that §.(N) :-::; S(N, f, {Pij}) :-::; S(N) for any choice of the points Pij'
and if f is continuous, equality at either end can be obtained by proper
choices. We separate the proof into several simple steps. In order to be able to
compare two different grids and their upper and lower sums, we introduce
the notion of a refinement of a grid.

Definition 2 A grid N' is said to be a refinement of the grid N if N' is
obtained by adding one or more lines to those which form N.

We note that it is possible to have two grids, neither of which IS a
refinement of the other.

Lemma 1 If N' is a refinement of N, then

§.(N) :-::; §.(N') :-::; S(N') :-::; S(N)

Let us examine the effect of the refinement on a single term Mij A(Rij)
of the upper sum S(N). Under the new partition scheme, Rij will be broken
up into a collection of smaller rectangles r1, r2 , .•. , rm' Thus, corresponding
to this single term of S(N), there will be in S(N') a block of terms
M(l)A(rd + M(2)A(r2) + ... + M(m)A(rm), where M(k) is the least upper
bound offin rk. Since each rk lies in Rij' M(k):-::; M ij , and

m m

2: M(k)A(rk) :-::; Mij2: A(rk) = MijA(R i)

1 I

Repeating this argument for each term of S(N), we find that S(N') :-::; S(N).
An analogous argument shows that §.(N) :-::; §.(N'). I

Every grid is a refinement of the empty grid which does not partition R
at all, so that for any N,

mA(R) :-::; S(N) :-::; S(N) :-::; MA(R)

where m = infp E R f(p) and M = sUPp E R f(p), The set of lower sums §.(N)
forms a bounded set of numbers as N ranges over all possible grids N; let s
be its least upper bound. The set of all upper sums S(N) is also bounded;
let S be its greatest lower bound.

Lemma 2 s :-::; S and for any N, S - s :-::; S(N) - §.(N).
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This asserts that the four numbers mentioned have the relative position
shown below:

§IN) s s S(N)

Since ~(N) is always to the left of s, and S(N) to the right of S, it is
always true that S - s ~ S(N) - S.(N), regardless of the relative positions of
sand S. Let N I and N 2 be any two grids, and construct a third grid N
by forming the union of N 1 and N2' N will therefore have all the lines that
make up N I' and will be a refinement of N I' It will also be a refinement
of N 2' Applying Lemma 1,

~(NI) < S(N) < S(N) < ~(NI)
~(N2) - - - - S(N2)

In particular, ~(NI) ~ S(N2)' Since N1 and N2 were arbitrary grids, this
shows that every lower sum is smaller than each upper sum, S(N2)' Since
s is the least upper bound for the set of lower sums, s ~ S(N2)' This
holds for every N 2' so that s ~ S. I

Up to this point, we have not assumed that f was continuous. The
numbers sand S are therefore defined for any bounded function f; they are
called the lower and upper integrals off over R.

Lemma 3 Iff is continuous on R, then limd(Nl!O IS(N) - ~(N) I= O.

Since R is closed and bounded,! is uniformly continuous on R. Given
6, we may choose b > 0 so that If(p) -f(q)1 < 6 whenever p and q lie in
Rand Ip - ql < b. Let N be any grid which partitions R with mesh
diameter d(N) < b. Since Mij = f(p) and mij = f(q) for a particular choice
of p and q in Rij' and since Rij has diameter less than b, we have
Mij - mij < 6 for all i and j. This gives

o~ S(N) - ~(N) = .2 (Mij - mi)A(Ri)

~ 6.2 A(Rij) = 6A(R)

This shows that IS(N) - ~(N)I can be made arbitrarily small merely by
requiring that d(N) be small. I

We now complete the proof of the theorem. Lemma 2 and Lemma 3
combined show that s = S. Call the common value v. Given 6, choose b so
that S(N) - S(N) < 6 whenever N obeys d(N) < b. The closed interval
[~(N), S(N)] contains v and also the value of the general Riemann sums
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S(N, f, {Pij})' Thus IS(N, f, Pij) - vI < e whenever the grid N obeys

d(N) < 6, so that rr f exists. I
•• R

Two questions arise naturally: (i) What happens if f is not continuous
on R? (ii) How can we define the integral of a function f over a set D in the
plane that is not a rectangle? It turns out that the answer to the first provides
the answer to the second.

Theorem 2 Let R be a closed rectangle, and let f be bounded in Rand
continuous at all points of R except those in a set E of zero area. Then

rr f exists.
•• R

This introduces a new concept, "sets of zero area," so that we must
digress to discuss this before giving the proof of this theorem.

Historically, the concept of area preceded that of integral. Let D be any
bounded set in the plane, and choose some rectangle R containing D, with
its edges parallel to the coordinate axes. Any grid N on R will partition R
into closed subrectangles Rij which will together cover D.

We separate the rectangles Rij into three classes (see Fig. 4-1): Class (i),
all the Rjj which contain only interior points of D; class (ii), all the Rjj which
contain at least one boundary point of D; class (iii), all Rij which contain
only exterior points of D. The union of the rectangles of class (i) is called the
inner or inscribed set for D determined by the grid N, while the union of the
rectangles of class (i) and class (ii) is called the outer or circumscribing set.
Let S(N, D) be the total area of the outer set, and ~(N, D) the total area of
the inner set. Clearly, 0 :-s; ~(N, D) :-s; S(N, D):-S; area of R. As N ranges over
all possible grids, the values S(N, D) generate a bounded set which is determined
solely by the set D. Let A(D) be the greatest lower bound (infimum) of this
set. Similarly, the values ~(N, D) generate another bounded set, and we let
~(D) be its least upper bound (supremum). We call A(D) the outer area of D,
and ~(D) the inner area of D. If they have the same value, we denote it by
A(D) and call this area of D.

This process defines a notion of area for certain sets D. Not all sets have
an area. For example, let D be the set of points (x, y) with O:-s; x :-s; 1,
o :-s; j' :-s; 1, and both x and j' rational. Since D has no interior points, class (i)
is always empty, so that ~(D) = O. On the other hand, every point of the unit
square is a boundary point for D, so that every circumscribing set has area 1,
and A(D) = 1. Since these are not equal, the set D does not have an area.
(Note that this is distinctly different from saying that a set D has zero area,
for this would mean A(D) = A(D) = 0.)

According to our-definition, a set D will have zero area, A(D) = 0, if and
only if given I; > 0 we can cover D by a finite collection of rectangles Rk such
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that

Any finite set D has zero area, as does any simple polygon. It is also easy to
show (Exercise 14) that the graph of any continuous functionf(x) defined on
an interval [a, b] is a set of zero area; it can also be shown that the same is
true for any sufficiently smooth curve in the plane (Exercise 15).

This can also be used to settle whether certain sets D are nice enough
to have an area defined. (Return to Fig. 4-1.)

For any choice of N, the number S(N, D) - §.(N, D) is exactly the sum
of the areas of the rectangles R ij of the partition which are in class (ii).
These are just the ones which form the circumscribing set for the boundary
r of D. Thus, the number X(D) - ~(D) is exactly X(r), the outer area of the
boundary of D. We have therefore shown that a set D is well behaved enough
to have an area if and only if its boundary is a set with zero area. This can
therefore be the case when the boundary is composed of polygonal curves,
or more generally, piecewise smooth curves. However, an example has been
constructed of a region D, bounded by a simple closed curve, which does not
have an area.

PROOF We now return to the proof of Theorem 2. By assumption, the
set of discontinuities of f is a set E of zero area. It is therefore possible to
choose a grid on R such that those subrectangles that cover E have
arbitrarily small total area. Given any e > 0, we therefore assume that we
have a finite union of Roof these subrectangles with E c Ro and A(Ro) < e.
The union of the rectangles not needed to cover E forms a closed set R 1

containing no points of E, and in which f is continuous. Since f is
then uniformly continuous in R b we may choose 15 1 > 0, so that
If(p) - f(q)1 < e whenever p and q lie in R 1 and Ip - ql < 15 1, Take
any grid N, and form the difference

S(N) - §.(N) = 2: (Mij - mij)A(Rij)

Divide the collection of rectangles Rij into two classes. Into class C(; 1

we put all Rij which are subsets of R 1, and into the class C(;2 we put all
that remain (see Fig. 4-2). We split the expression for S(N) - S(N), in a
corresponding way:

If d(N) < 151' we have M ij - mij < e whenever Rij c RI' so that
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Fil:ur~ 4-2

By assumption,f is bounded in R. so that Iffp)1 < B for all/'ER. Let
R~ be the union of the rectangles in ~(, l' Then.

:2 (M ij - lIIiJ)A(R ij).:5 28 2 A(Rij) = 2BA(Ro)
R;J<illl H'J"~l

The set R~ is exactly the circumscribing sci for Ro in Ihe parlilion
determined by N. We can therefore choose ()2 so that A(R~I.:5

A(Ro) + I: < 21: whenever d(N) < °2, Letting I> be the smaller of iiI and
(j2' we have shown that whenever N is a grid which p<lrtitions R with
(J(N) < Ii, S(N) - S(N) < I;A(R) + 4Be = (48 + A(R))r.. This reestablishes
Lemma 3 with our weakened hypothesis, and the theorem follows as
before. I

With Theorem 2, we have obtained an answer to our first question.
We now use it to answer the second as well. We use a simple device to
define the integml of f over D when D is not a rectangle. -Suppose thai D
is any bounded set, and choose a rect<lngle R containing D. Define a new
funclion F on R by

(4-1)
forpeD

forpfD

Suppose that f is continuous on the interior of D. What can be said aOOm
the points at which F is continuous? F will cerl<linly be continuous at an}'
interior point of D: if Po is a point not in D. then F(po) = O. and if Po is
exterior to D. all the points near Po are also points where F vanishes. Thus.
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F is certainly continuous at every point p that is either interior to D or
exterior to D. Hence, F is continuous off the boundary of D. If the set D is
one that has an area (we shall call such sets Jordan measurable), then as

seen above, bdy(D) will have zero area. By Theorem 2, ff F exists, and we
" R

use this to define the integral off over D:

(4-2)
D R

All that remains is to show that the answer does not depend on the choice
of the containing rectangle R. Suppose R' is another closed rectangle containing
D and F' is the corresponding function. Form R" = R n R', which is also a
closed rectangle containing D. Then,

II F = II F = II F' = II F'
R ROO ROO R'

and we obtain the same value for If f from both Rand R'. This shows that
D

the definition for If f is unambiguous, and we have a satisfactory definition.
'D

Suppose now that f is not continuous on D. If its discontinuities form a set
E of zero area, then the function F will also be discontinuous on E, in
addition to its discontinuities on the boundary of D. However, the union of
two sets of zero area is again of zero area, and the preceding argument
still applies. We have thus proved the following basic existence theorem for
the definite integral.

Theorem 3 Let D be a bounded Jordan-measurable set, and letf be bounded

on D and continuous except for a set E of zero area. Then, II f
D

exists, as defined by (4-1) and (4-2).

What we have said about the double integral is also valid for the general
njold multiple integral. Because of the importance of the special case n = 1,
we restate some of the treatment. A grid is now just a finite set of division
points. If we impose a grid N on the closed interval I = [a, b], we obtain a
partition of I into closed intervals I k = [xk ' Xk+I]' where a = Xo < XI <
Xl < ... < x n = b. The general Riemann sum becomes

where PkE1k and dXk = Xk+1 - x k is the length of Ik • The number d(N) is now
the largest of the lengths dxk •
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Definition 3 The integral r f of f over the interval I exists and has the
• I

value v if and only if

lim S(N,f, {Pk}) = v
d(N)-O

b b

Instead of r f, it is customary to write r f or r f(x) dx. Corresponding
. I . a . a

to Theorem 3 we have Theorem 3':

Theorem 3' If f is bounded on [a, b] and iff is continuous on [a, b] except
b

on a set of zero length, then r f exists.
• a

A set on the line has zero length if it can be covered by a finite collection
of intervals of arbitrarily small total length. In particular, a finite set of points
has zero length. As an instance of the theorem,

f 1 sin 2 (~) dx
-I X

exists, since the integrand is bounded and continuous except at the single point
x = o.

Some of the familiar properties of the definite integral are set forth in the
next theorem as they would be stated for double integrals. The sets D, Dl'
and D 2 are assumed to have area.

Theorem 4 Let f and g be continuous and bounded on D. Then,

(ii) For any constant C, ff Cf = C ff f·
D D

(iii) If f(p) ~ 0 for all p E D, ff f ~ o.
D

(iv) If If Jexists and Iff f I~ If Ifl·
D D D

(V) If D = D 1 U D2 and D 1 and D2 intersect in a set with zero area, then

fff=fff+fff
D
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Most of these follow directly from corresponding properties of the
Riemann sums. Take a rectangle R containing D and define f and g to
vanish off D. Then, the relations

lead at once to (i) and (ii). For (iii), we observe that if f(p) ~ 0 for all
p E D, then S(N,f, {Pij}) ~ O. In turn, (iii) leads to (iv); since If I +f and

If I - f are nonnegative on D, and continuous, IID If I + II/ ~ 0 and

ItIf I - IIDf ~ O. To prove (v), we define a special function F by

F(p) = {~(p)

Then If f = If F + If (f - F) = If f + If (f - F)
D D D

=Iff+Iff I

With functions ofone variable, the last property is usually stated differently.
b

When a ::5: b, r f is an alternative notation for I f. When a> b, we define
• a la, bl

bI f to mean - r .f.
a • Ib, a)

Thus, for functions of one variable, if f is continuous on an interval I,
and a, b, c are any three points in I, then no matter how they are arranged
on the interval,

In this respect, the one-variable Riemann integral differs from the double or
triple integral as they are usually presented. The single integral is an "oriented"

.b

integral, and in I f one speaks of integrating" from a to b." In the definition
• a

of rr f, no notion of orientation of R occurred. We will need to add such
•• R

a notion later in dealing with multiple integrals and with transformations of
coordinates in n-space.
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EXERCISES

Where nothing is said, assume that the sets D mentioned below have positive area and are bounded.
I (a) Let R be a 3 x 5 rectangle divided as shown in Fig. 4-3, where the division points are

arbitrary. Show that the sum of the areas of the subrectangles is always 15.
*(b) How can you prove that this is similarly true for a general rectangle and an arbitrary

subdivision?

2 Show from Definition 1 that for any rectangle R,

(a) rr f = 0 iff == 0 on R.
•• R

(b) rr f = A(R) iff = 1 on R. (Hint: Use Exercise 1.)
.' R

3 Iff IS continuous on D and m 5,f(p) 5, M for all p ED, show that

mA(D) 5, JJ f 5, MA(D)
D

4 If f is defined on a rectangle Rand /. r f exists, as defined above, then f is necessarily
•• R

bounded on R.

5 (Mean Value Theorem) Let D be compact, connected. Let f and 9 be contmuous and
bounded on D, with g(p) 2: 0 for all p ED. Then, there IS a point p ED such that

rr fg = f(p) rr g.
"D "D

6 If D is open, and if f is continuous, bounded, and obeys f(p) 2: 0 for all p E D, then

U f = 0 implies f(p) = 0 for all p.
. , D

7 Formulate corresponding definitions br the triple integral I'rr f where D is a bounded set in
••• D

3-space.
b

8 Iff is bounded and monotonic on [a, bj, show that J f exists, even if l is not continuous.

9 If DI C D2 , then A(D I ) 5, A(D2 ),

10 Show that a finite set has zero area,

II Let D be the set of all points (lin, 11m) where nand m are posItive integers. Does D have
area?

12 Explain why the area of a Jordan-measurable region D IS given by A(D) = rr 1, using
Theorem 3. "D

Figure 4-3
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13 Letf E C2,f(x) ~ 0, andj"(x) s 0 for a s x S b. Prove that

1 .b (a + b)
2 (b - a)(f(a) + f(b)) s .1. f s (b - a)f --2-

14 Letf(x) be continuous for a s x S b. Show that the graph off has zero area.

'15 Let f(t) be continuous for 0 s t s 1. Let g(t) be continuous for 0 s t s 1 with Ig'(t)1 s B.
Show that the set of points (x, y) with x = f(t), y = g(t), 0 S t S I, has zero area.

16 Let f be continuous and positive on [a, bJ. Let D be the set of all points (x, y) with
• b

a S x S band 0 s y sf(x). Show that D has area A(D) = .1 f

'17 A general subdivision K of a closed rectangle R is a collection D\, D2 , ... , Dm of a finite
number of domains Dj , each having area, which together cover R, and such that no pair have
common interior points. The norm d(K) of such a subdivision is the largest of the diameters of
the set Dj . Let f be continuous on R. Show that for any e there is a 8 such that whenever K is a
general subdivision of R, and

where Pj E Dj , then

l.r.r f - 5(K, f, {Pj}) 1< e
R

whenever d(K) < 8.

4.3 EVALUATlON OF DEFINITE INTEGRALS

Several comments about notation are in order. It will be noticed that in most
,b" ,b "

instances, we use I f and II f rather than I f(x) dx and II f(x, y) dx dy,
'a"D 'a "D

When the second form is used, it must be recalled that the occurrence of " x"
• b ••

in I f(x) dx or of" x" and" y" in II J(x, y) dx dy is that of a dummy letter,
• a "D

.b ,b

and that one could equally well write J J(u) du or I J(t) dt, or
a 'a

ff f(u, v) du dv or ff J(s, t) ds dt. The same is true for the letter "j" in
"D "D

"'. ~ aj and both" i" and "j" in "'- ~. i 2l, While the notation (J is thus
LJ=I L'.J=I 'a

preferable from some points of view, it also has some disadvantages. Without
,I

introducing additional notations, it is difficult to indicate I (x 3
- 4x 2

- 1) dx
, 0

except in this way; again, when f is a function of several variables, and we
wish to indicate the result of integration with respect 10 only one, it is

h

convenient to write r J(x, y) dy. No simple and usable substitute which does



180 ADVANCED CALCULUS

not also have dummy letters suggests itself for these. It is also important to
realize that in all of these, the letter "d" is irrelevant and serves merely to
block off the letter which follows it from the function which is the integrand.

b • b • b

In place of I f(x, y) dy, we might write I f(x, y) 0 or even 0 I f(x, y)
a • a • a

where the presence of " y" in the square is to inform us that in carrying out
the integration, we must regard f(x, y) as a function of the second variable
alone. In the language of logic, "x" is free, while "y" is bound and "[lJ"
serves as a quantifier. There is a reason for the conventional choice of "dy"
in place of the suggested "[[]"; this will be indicated when we discuss the rule
for" change of variable" in integration.

If it is known that If f exists, then its value can often be obtained by
'D

the use of special subdivision schemes. If N l' N 2' .. , is a sequence of grids
such that limk _ oo d(Nk ) = 0, then the corresponding sequence of Riemann
sums will converge to the value of the integral. To illustrate this, we first

evaluate If xy2 dx dy, where R is the square: °:::; x :::; I, °:::; y :::; 1. Let N k be
R

the grid which partitions R into k2 equal squares, each of side 11k. Choosing
the point Pij in R ij to be (ilk j/k), we have

Since
k2: i = k(k; 1)
1

and

and

-( ) = ~ (k(k + 1)(k(k + 1)(2k + I))
S N k k5 2 6

If xy2 dx dy = lim S(Nk ) = i
k-oo

R

2

As another illustration, let us compute I' ~ dx from the definition.
• 1

If we again use equal subdivisions, we arrive at the Riemann sums
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However, it is not easy to compute limn _ ac S(NJ Instead, we use a different
type of subdivision with unequal intervals. Choose

r = 21/n > 1

and let N n be the grid with division points

1 = rO < r < r2 < '" < rn- 1 < rn= 2

The longest of the intervals determined by this grid is the last, so that
d(Nn) = 2 - rn- 1 = 2(1 - l/r). Since limn_ ac r = limn_ ac 21/n = I,
lim d(Nn ) = 0, and

S(Nn ) =.;;. (r - 1) + P (r2 - r) + ... + ft (rn- r"-I)

= .;;. (r - 1)(1 + r.,fi- + [r';;']2 + ... + [r .,fi-]n- 1)

r3n/2 - 1
= jr (r - 1) ---C3~/2~

r -I

M r:. r-l
= (2y 2 - l)y r ~r3=/2;-_-1

so that

.2 ;: _ M r.. r - 1 (4J2 - 2)I y x dx = lim S(Nn) = (2y 2 - 1) lim yr 3/2 _ = -'------'----'-
. 1 n _ ac r- 1 r 1 3

If this direct method were the only available procedure for computing
the value of an integral, only the simplest of integrands could be used. We
next prove the fundamental theorem of integral calculm, which justifies the
process of evaluating the integral of a function of one variable by means of
antidifferentiation.

Definition 4 A function F is an antiderivative (or primitive or indefinite
integral) off on an interval I if F'(x) = f(x)for all x E I.

Theorem 5 If f is continuous on the interval I = [a, b], then f has an
antiderivative on I.

Define a function F0 on I by

for a ::; x ::; b

If x and x + h both lie in I, then

x+h x

Fo(x+h)-Fo(x)=I f-I f
a a

= (+h f = f(x)h
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where we use the mean value theorem for integrals (Exercise 5, Sec. 4.2)
and x lies between x and x + h. Divide by h, and let h approach 0; since x
must then approach x, and sincefis continuous, we find Fo(x) = f(x),and
F° is an antiderivative off (When x is an endpoint of I, the argument
shows the appropriate one-sided derivative of F°has the correct value.) I

Some discontinuous functions have antiderivatives and some do not. When
a function, continuous or not, has one, it has an infinite number, all differing
by constants.

Theorem 6 If F I and F2 are both antiderivatives of the same function f on
an interval I, then F I - F2 is constant on I.

For, (FI - F2Y= F'I - F~ =f - f = 0 on I, and Exercise 1, Sec. 3.2,
applies. I

Theorem 7 Iff is continuous on [a, bland F is any antiderivative off, then

• b

I f = F(b) - F(a)
• Q

Let F° be the particular antiderivative off which was constructed in
Theorem 5. By Theorem 6, we may write F = Fo + C. Referring back to
the definition of Fo' we have Fo(a) = O. so that C = F(a). Then,

• b

J f = Fo(b) = F(b) - C = F(b) - F(a) I
Q

One consequence of this is the familiar procedure for" change of variable"
in integration.

Theorem 8 Let </J' exist and be continuous on the interml [a, fJl with
</J(a) = a and </J(fJ) = b. Letf be continuous at all points </J(u)for a ~ u ~ fJ.
Theil,

• b • P
I f(x) dx = I f(</J(u))</J'(u) du
• a . :.r:

The rule may also be stated: To make the substitution x = </J(u) in
.b

an integral I f(x) dx, replacef(x) byf(</J(u)). replace dx by </J'(u) duo and
'Q

replace the limits a and b by II values which correspond to them. It might
seem that this is obviously true, since if x = </J(u).

dx
dx = -~ du = </J'(u) du

du
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However, we are misled by a matter of notation. Using the alternative
square notation, the theorem asserts that

.b .PI j(x) 0 = I j(¢(u))¢'(u)@J
• a • :I

and the rule requires us to replace 0 by ¢'(u) ~; analogously, the
differentiation rule dyjdx = dyjds dsjdx is not proved by canceling the two
occurrences of .. ds". It is a virtue of the notation used in differentiation
and integration that such formalism is consistent with the truth, and serves
as a guide in the correct application of theorems.

To give a valid proof of the theorem, let F' = j and define G on
[(X, P] by G(u) = F(¢(u)). Then, G'(u) = F'(¢(u))¢'(u) = j(¢(u))¢'(u), so that

• P . P •PI j(¢(u))¢'(u) du = I G'(u) du = I G'
o l • :x • ::r:

= G(P) - G((X) = F(¢(P)) - F(¢((X))

.b

=F(b)-F(a)= I j I
• a

For fixed a and b, there may be a number of possible choices of (X and p;
any of these may be used if ¢ is continuous and differentiable on the entire
interval [(X, Pl For example, with x = u2 = ¢(u), we have

.4 .2 .2 -2
I j(x) dx = I j(u 2 )2u du = I j(u 2 )2u du = I I(u 2 )2u du
. 1 . 1 . - 1 . 1

This requires care in its use, as may be seen from the special choices
j(x) = x andj(x) = .j~.

The following examples should be studied carefully. The first contains an
incorrect application of Theorem 7, and the second an incorrect application
of Theorem 8.

.2
(i) To compute I x - 2 dx, we observe that an antiderivative is - X-I, so that

'-2

2 ;2

f x - 2 dx = - X-I I = - (-n = HJ = - 1
. - 2 - 2

.1

(ii) Let C = I [sin l/xV dx. Since the integrand is bounded and continuous
• -1

on [ - I, I] except at the point x = 0, the integral exists. Moreover, since
the integrand is never negative, C > O. Put u = I!x so that((x) becomes
(sinu)2 anddx= -u- 2 du.Whenx= I,u= l,andwhenx= -1,u=-1.
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I·1 .1 fSin uj2C = . (sin U)2( _u- 2) du = - .I -- du
-1 -1 u

The integrand in this integral is continuous on [- 1, 1] since the dis
continuity at u = 0 is removable; thus, the new integral exists, and is
negative!

[In each of these examples, you should make sure that you understand
the nature of the error involved, before reading further.]

We now take up the evaluation of multiple integrals. It is first important
to understand the distinction between a multiple integral and an iterated
integral. Here is an example of the latter.

3 x 2 3y

r dx r dy r (4x + yz) dz
• 0 • 1 • x- y

This can be calculated using only elementary calculus, by starting with the
inside integral and using antiderivatives and Theorem 7. Thus, the first step is
to write

3y 1 /3
Yf (4x + yz) dz = 4xz + - yz2

'x-y 2 X-y

9 I
= 12xy + - y3 - 4x(x - y) - - y(x - y)l

2 2

This is then the integrand for the next integration, which will be done "with
respect to y," and so on.

The standard evaluation process for multiple integrals replaces a multiple
integral by one of a number of different iterated integrals.

Theorem 9 Let R be the rectangle described by a :-:; x :-:; b, c :-:; y :-:; d, and
let f be continuous on R. Then

b dIf f = J dx J
c

f(x, y)dy
R a

For fixed x,f(x, y) is continuous in y, so that we may write

.d

F(x) = I f(x, y) dy
• c

b

The theorem asserts that JF exists and is If f We shall prove this by
a R

showing that anyone-dimensional Riemann sum computed for a partition
of the interval [a, b] and the function F, has the same value as a
special two-dimensional Riemann sum for Rand f.
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,
d ---- ,,,,

Y,+I
Y, ,

Po,,,,,,, ---. , ,, , ,, , ,
• " Pi .(.+1 b

Let N be any grid which partitions [II. "J with division points

1I = Xo < XI < ... < x" = b

and choose any point I'; in the interval [xi.x; •• ). The corresponding sum is

SIN.F, (p,D ~ '5 Flp') ~x,
;=0

Lct I/(N) = il and choose any division points for the interval [c. til. c =
.1'0 < Yl < ... .I'm = d so that .1.1) = Yj+ 1 - Yj S 1> for each j (see Fig. 4-4).
Then. for any x,

.~ ."..
F(x) ~ I flx,.r) dv ~ I flx,.rl dv

• < ' )'0

= r"'!(x,y),ly+ r
ll

!(x,r)dy+"'+ J"~ !(x.y)tI}'
'10 '" }'~_I

To each of these. we apply thc mean value theorem for illlegrais. A point
j'j can be chosen in the illlcrva[ trj' J'j+ I] so Ihat

.1"•• ,

.I fix, r) <lr ~ fix, ,)Lv, , , - J'j]

"
In general. the choice of Yj depends upon the value of x. so thai we should
write Yj = 1)(x). Summing for j = 0, I..... III - I, we have

When x is chosen as lhe particular point flj. (x. lj(x)) hccomes <l point

Pu ~ (p,. }i(p,))
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in R, and

m-I

F(p;) = L f(Pi) .1Yj
j=O

Returning to the original one-dimensional Riemann sum for F,
n-I m-I

S(N, F, {Pi}) = L lL f(Pij ) .1Yj} .1xi

i=O j=O
n-I m-I

= L L f(Pi) .1xi .1Yj
i=O j=O

The vertical lines x = Xi' i = 0, 1, ... , n, and the horizontal lines Y = Yj'
j = 0, 1, ... , m, define a grid N* which partitions R into rectangles Rij in
such a fashion that Pij E Rij and A(Rij) = .1xi .1Yj; moreover, since .1xi :::;: 15
and .1Yj :::;: 15, d(N*) < 215 = 2d(N). We have therefore shown that corre
sponding to any grid N which partitions [a, b] we can find a grid N* which
partitions R such that

S(N, F, {pJ) = S(N*, f, {Pij})

Since JfR f exists, the two-dimensional Riemann sums converge and (F
exists and is equal to rr f I

•• R

We remark that in this proof, we could have obtained the existence of
b

r F at the outset from the easily proven fact that F is continuous (see
• a

Exercise 18). However, if we extend the theorem to functions f which may
have discontinuities in R, then F may be discontinuous. In fact, iff is bounded
and continuous on R except at points of a set E of zero area, it may happen

.d

that for individual values of X, I f(x, y) dy does not exist, and the set of X
• c

for which this is true can fail to be a set of zero length.
One special case can be treated easily.

Theorem 10 Let f be bounded in a closed rectangle R and continuous there
except on a set E of zero area. Suppose there exists a k such that no
vertical line meets E in more than k points. Then,

b d

fJf= r dx r f(x,y)dy
• a • c

R

The proof of this requires only slight modifications from that for
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Theorem 9. As before, we consider F defined on [a, b] by

.d

F(x) = I f(x, y) dy
• c

Since f(x, y) is continuous in y in [c, d] except for at most k points, and
since f is bounded, this integral exists and F is defined. Again take a

n- 1

general one-dimensional Riemann sum S(N, F, {p;}) = 2:i= F(p;) Llxi and
choose division points Yj on [c, d]. These determine a grid N* which
partitions R into rectangles Rij' Let Ro be the union of those which
contain points of E, and let R 1 be the union of the remaining rectangles.
We may again write

m-l

F(p;) = ("f(pj, y) dy = 2: ri

+

1

f(Pi' y) dy
Yo j=o Yi

Since f(Pi' y) is continuous as a function of y in all but k of the intervals
[Vj' Yj+ d, we may apply the mean value theorem as before, and replace
these by terms of the formf(piJ LlYj' For the remaining k terms, we have
bounds of the form B LlYj' where B is an upper bound for If I in R. Adding
these estimates for F(Pi) Llxi , we arrive at

(4-3) !S(N, F, {pJ) - 2 f(Pij)A(R i) Is B 2 A(Rij)
RijcRl RijcRO

Since Ro is a circumscribing set for E and E has zero area, the right side of
(4-3) can be made arbitrarily small by requiring that d(N*) be small; the
Riemann sum S(N, F, {pJ) will converge to the integral of F, and the sum

2: f(Pij)A(Rij) will converge to the integral offon R, and we have shown

that
b

fff=f F(x)dx
.~ • a

which is the desired result. I

A standard special case of this is when we wish to evaluate ff f, where
•• D

D is the set described by a s x s b, <jJ(x) s Y s t{J(x), where <jJ and t{J are
continuous on [a, b]. If the function f is continuous on D and we extend it to
a rectangle R containing D so as to be 0 off D, the set E of discontinuities
of f will be the graphs of <jJ and t{J, and A(E) = O. Moreover, vertical lines
cut E twice, so k = 2. Hence we have:

Corollary If D is the region bounded by the lines x = a, x = b, and the
graphs of<jJ and t{J, with <jJ(x) s t{J(x), and iff is continuous on D, and <jJ and t{J
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colltinuOIiS 011 [(/, b],

(4-4)

The expression on thc right is an iterated intcgral and may oftcn be
cvaluated by antidifTerentiation. As an example, lei D be Ihe region between
the line y = x and the parabola y = x 2 , and lakef(x, y) = :q,2: then,

If I' f' 'Ixl rf = dx xy2 dy = f tlx 3
DO' "'z 0 ",l

.I X4_ X 7 I
~ .1, -)- dx ~ <W

Since this region D is such that every horizontal line cuts the boundary at

most twice, ff f can be also be evaluated by an iterated integral in which the.. ,
order of the variables is reversed.

. I ,1 .1 1\:2)'21"Hf=JodYJ,. xy2 dx=J otly --2 I'

e ,
=tf (l~y4)dJ=--k.,

In the cases which are usually encountered, the evaluation of a double

-,

Figurt' 4-5

y=C(x)

-1 T~

I

• D,

o

-J

x-sin (uy)
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integral can be reduced to the computation of a number of such iterated
integrals. As an example, consider the region D bounded by the line y = -1,
and the curves

x = sin (ny) and y = (x + 1)2(?2x + 1) = C(x)

(see Fig. 4-5). To evaluate ff f, it is convenient to split D into four regions
'D

as shown, so that

fff=fff+fff+fff+fff
D

where we have

-1 C(x)

fff= L
3

dx L
1

f(x,y)dy
Dl

o sin (lty)

ff f = f dy f f(x, y) dx
-1 -1

D2

o C(x)

ff f = L/x f
o

f(x, y) dy
D3

1 sin (lty)

If f = f/y f
o

f(x, y) dx
D4

The last two could be combined and written as

1 sin (lty)

If f = f dy f f(x, y) dx
o . A(Yl

D3 UD4

where x = A(Y) is the particular solution of the cubic equation y = C(x) valid
for -1 :-:; x :-:; O.

We can also use the relation between double integrals and iterated
integrals to prove the equality of mixed partial derivatives, promised in Sec.
3.3. The case off xy and f yx is typical.

Theorem 11 Let f be of class e" in a rectangle R with vertices
p 1 = (a1' bd, Q1 = (a2' bd, P2 = (a2' b2), Q2 = (a 1, b2), where a1 :-:; a2 and
b1 :-:; b2. Then,
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Writing the double integral as an iterated integral, we have

= ff(X, b2)]x:a2

- ff(X, b1)]x:a2

x-at x-a!

= f(a 2, b2) - f(a l, b2) - [f(a2, bl ) - f(a l, bl)]

=f(P I) - f(QI) + f(P2) - f(Q2) I

Corollary If a function f is of class C" in an open set D, then f12 = f21
throughout D.

IfR is any rectangle lying in D, then the line of argument in the theorem

shows that ff fl2 and ff f21 are both equal to f(P 1 ) - f(Qd + f(P2)
R R

- f(Q2)' where PI> QI> P2, Q2 are the vertices of R, in counterclockwise

order. Thus, ff U12 - f2d = 0 for every choice of R, and the integrand
R

must be identically 0 in D. I

Although iterated integrals having a form like (4-4) thus appear in the
course of evaluating double integrals, they often arise in other ways (e.g.,
estimations of a probability), and sometimes do not correspond immediately to
a multiple integral. For example,

(4-5)
2 x 2 -1

V = f dx f f(x, y) dy
o I

has the same general form as (4-4), and might seem to be the iterated
integral arising from the double integral off over a region D bounded by the
curves y = 1, y = x 2 - 1, x = 0, x = 2. The corresponding picture (Fig. 4-6)
suggests that this may not be so, since we have several regions. Moreover,
we note that the upper limit of the inside integral is not always larger than
the lower limit, as it should be if this iterated integral had the form (4-4).

Such an iterated integral, therefore, does not correspond to a double
integral. However, it can be written as the difference of two double integrals.
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y

A

-,
2 x

To see this, we use the fact that for any functions lJl(x) and tIt(x), i.lnd any c,
.\I>lx) • ."lx, .4>lx)

I f <IJ' ~ I f <IJ' - I f dl'
. 4>lx) • c • <

If we are dealing with an integral with limits lJl(x), tIt(x) where it is not always
true that 1Jl(.>.:) is the smaller. we can choose c less than the minimum of
either IJl or t/J. and thus retain this desirable property by splitting up the
integral.

Applying this 10 (4-5), we would proceed as foUows: Take c = -1, which
is the minimum of x 2

- 1 for 0 ::::;: x $ 2. and then rewrite the iterated integral

"'
2 x>-1 2 I

Jo'h I_I f(X.y),Jy- JodxJ_/(x,y)dy

Each of these is now the iterated integral corresponding to a double integral.
and we may now rewrite (4-5) as

(4-6) v~JJf-JJf
v, v,

where the two regions arc both shown in Fig. 4-7. D I is bounded above by
r = x 2 - I, and D2 is a rectangle.

A second approach is sometimes used. Note that D1 and D2 overlap. This
JX)rtion of each double integral in (4·6) is the same, and so can be cancelled.
We thus arrive at an alternative form

(4-7) V~JJI-JJf. ,
where these are the two regions shown in Fig. 4-6. This interpretation of the
original iterated integral could have been read from it immediately by
observing that when x is between 0 and I, .1' goes from 1 dow/1ward to x2 - 1,
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Figurt 4-7

which suggesls Ihat the region A should be regarded as negative. ralher than
positive as is the case with B.

Why have we discussed the conversion of iterated integrals into combina
tions of double ilHegrals? Consider the following.

(4-8)
. 3 ,l

V = I (Ix I t,xlr dy
. I ')(

We cannot carry out the first step in evaluating this. since we cannot find the
function whose derivative, with respect to y. is eJ</r. (This is one of an infinite
number of simple functions whose indefinite integral cannot be expressed in
terms of any of the familiar functions.) Note. however, that we COIi/tl integrate
it with respect to x. If we could con vcr! (4-8) into one or more double
integrals. and then write Ihese as iterated integrals in the opposite order of
integral ion, with tl)! outside and dx inside. we could at least carry out the first
integration step. If we apply the procedure we have outlined above, we find
that (4-8) can be expressed as the difference of two double integrals over
triangular regions, and writing each as an iterated integral, we arrive at

,2 . J' , 3 .3

V = I (Iy I e* dx - I dy I ~I)' (Ix
• I • 1 • 2 • )'

which, in lhe usual way, leads to

, .,
V = 4e - r )Ie l " (Iy - I )'e31

)' dy
• 1 • 2

and the remaining integrals can be done numerically.
The technique of reversal of order of integration. in itcrated intcgrals, is a

very useful one.
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As another illustration, we have the useful formula

(4-9)
.b • x .b bI dx I f(x, y) dy = I dy r f(x, y) dx

• a • a • a • y

which follows at once from the observation that both sides reduce to the double
integral off over the triangle with vertices (a, a), (b, a), (b, b). The following is
a special application of this which is often used. Consider the n-fold iterated
integral

The last two inner integrals have the form
X n - 2 X n - 1

J dXn_ 1 J f(xn) dXn
o 0

to which the relation (4-9) may be applied, obtaining

X n-2 Xn-l .Xn - 2

r dXn r f(xn) dXn_ 1 = I f(xn)(xn- 2 - xn) dXn
• 0 • X

n
• 0

We have thus reduced the original integral to an (n - I)-fold iterated integral.
Repeating this process,

("-3dxn _2 (n-2f (xn)(xn_
2

- xJ dXn
• 0 • 0

becomes

X n - 3 rXn
- 3 JXn

- 3 (x _X)2J
o

dXn '
xn

f(Xn)(xn-2-xn)dxn-2= 0 f(xn) n-3
21

n dXn

and the original integral can finally be reduced to the single integral

b (b _ x )n- 1J/(xn) (n _ n1)! dXn

As a final illustration of this technique, let us prove a theorem dealing with
differentiation of a function defined by means of an integral. As we have
mentioned, if f(x, y) is continuous for a ::::;; x ::::;; b, and c ::::;; y ::::;; d, then

(4-10)
d

F(x) = J f(x, y) dy
c

is continuous for x in [a, b] (Exercise 18), It is reasonable to suppose that iff
is differentiable as a function of x alone, with y fixed, so that the partial
derivative

f ( )
- of _ I' f(x + h, y) - f(x, y)

I x, Y -::l - 1m h
uX h-O
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exists for each x in [a, b] and y in [c, d], then we may differentiate (4-10)
under the integral sign, obtaining

(4-11 )
d of .d

F'(x) =J a~ dy =.1 f 1(x, y) dy
c c

We justify this under the hypothesis that f 1 is continuous.

Theorem 12 Let f and f 1 be defined and continuous for x E [a, b], y E [c, d],
and F defined by (4-10). Then, F'(x) exists on the interval [a, b] and is
given by (4-11).

d

Sincefl is continuous, Exercise 18 shows that <jJ(x) = J fl(X, y) dy is
c

continuous for x E [a, b]' Take any Xo and consider

Xo Xo d

r <jJ = r dx f fl (x, y) dy
• a • a C

Reverse the order of integration, obtaining

Xo .d .Xo d Xo off <jJ =.1 dy.l 11 (x, y) dx =Jdy J ax dx
a cae a

d

= f [f(xo , y) - f(a, y)] dy = F(xo} - F(a)
c

This shows that F is an antiderivative for <jJ, so that F' exists and is <jJ. I

For example, if

F(x) = r1 sin (xy) dy
'0 y

then

F,() r1 () d sin (xy) 11 sin xx = cos xy y = =--
• 0 x 0 x

This technique is sometimes useful in the evaluation of special types of definite
integrals. For example, let us show that for x > 0,

7</2

F(x) = flog (sin 2 e+ x 2 cos 2 e) de
o

x + 1= 1t log --
2



SO that

Differentiating the integral which defines F, we have

.n/2 2x cos2 e
F'(x) = .I 0 sin 2 e + x 2 cos2 ede

F'(x)(x 2 -1) fn/2 (x2 -I)cos2 e
.---'--'------'--'--= de

2x 0 sin 2 e + x 2 cos2 e
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Now

= fn/2 x
2

cos
2

e + sin
2
~-=_! de

o sin 2 e+ x 2 cos2 e
n r~2 de

= 2- . 0 sin 2 e+ x 2 cos2 (J

,. de I' sec2 e de
. sin 2 e + x 2 cos 2 e =. tan 2 e + x 2

= X-I arctan [x- l tan e]

SO that for x > 0 and x "# I,

, 2x In n}F(x)=-~ ---
x2

- 1 2 2x

n
x + 1

We have established this for all x > 0 except x = 1. When x = I, we have
n/2

directly F'(I) = 2 f cos2 e de = n12, or we may argue that F' is continuous,
o

so that F'(l) = limx _ l F'(x) = n12. Integrating F', we have F(x) = n log (x + I)
+ C. To determine C, we observe that

so that

n/2

F(I)=f 10g(l)de=O
o

x + 1
C = -n log 2, and F(x) = n log -2-

At times, a more complicated rule for differentiating a function defined
by an integral is needed. Consider the function given by

(4-12)
P(x)

F(x) = f f(x, y) dy
.(x)

To find F'(x), we use the chain rule; let G be the function of three variables

v

G(x, u, v) = r f(x, y) dy
• u
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We can compute the partial derivatives of G, using the fundamental theorem
of calculus for a/au and a/av.

v

G1(x, u, v) = r f 1(x, y) dy
• u

G2 (x, u, v) = -f(x, u)

G3 (x, u, v) = f(x, v)

Then, since F(x) in (4-12) is G(x, a(x), {3(x)), the chain rule of differentiation
gives

(4-13 )
PIx)

F'(x) = {3'(x)f(x, {3(x)) - a'(x)f(x, a(x)) + f f 1(x, y) dy
a(x)

then

For example, if

F(x) = (' sin (xu) du
• x2 U

sin (xeX) sin (x 3 ) • ex

F'(x) = eX - 2x 2 + I cos (xu) du
~ X. x 2

= (1 + X-i) sin (xeX) - 3x- 1 sin (x 3 )

In many cases, both with single and with multiple integrals, the best and
most efficient procedure is to apply some method of approximate integration.
Such an approach is forced on one if the indefinite integration steps are
impossible, and may even be appropriate otherwise if the final step in getting
an "exact" answer uses the approximate tabulated values of standard
functions. One simple scheme for a double integral is to construct a convenient
grid covering the region D, then compute the Riemann sums S(N) and ~(N)

for f The exact value of rr f must then lie between these numbers, and
•• D

their difference is a measure of the accuracy of the approximation. Any other

Riemann sum"' .. f(Pij)A(Rij) may also be used as an approximation. InL,.J
practice, a number of simple formulas are commonly used in the approximate

b

evaluation of single integrals. The general Riemann sum for r f can be put
• a

. ",;,n-1
IOto the form L.. 0 Ii ~x;, where ~Xi = Xi + 1 - Xi

and where;; = f (p;) is the value of f at some point of the interval [Xi' Xi + 1].

By the intermediate value theorem, if/is continuous on such an interval and A
and B are values of f there, then every number between A and B, and in
particular (A + B)/2, is a value of f More generally, if Ai' A2 , ... , Ar are



INTEGRATION 197

values of f on an interval, so is clA I + ... + crAr, where c
j
~ 0 and

L cj = 1. (This is merely a general weighted average of the numbers Ai")

Two special cases of this lead to the trapezoidal rule and Simpson's rule. For
the first, we take J; = [f(xJ + f(X i + I)]j2, and for the latter, we take
/; = [f(x;) + 4f(x) +f(xi + d]/6, where x is the midpoint x = (Xi + Xi+ d/2.
The reason behind the second choice lies in the result of Exercise 26, which
shows that Simpson's rule is exact whenever f is a polynomial of degree at
most 3; application of the formula therefore amounts to approximating f on
each of the intervals [xi' X i + l ] by such a polynomial, chosen to fitfat the end
points and the midpoint. Other methods for estimating the value of an integral
will be found in the exercises.

b

For single integrals, a good way to approximate the value of r fwherefis
• a

a function that does not have an elementary indefinite integral is to approximate
f by another function which can be integrated easily. Polynomials are the
simplest choice here, and Taylor's theorem is helpful. Consider

I

C = r jXe'/x dx
• 0

Instead of applying the expansion process to the integrand directly, we first
recall that

X
2 x 3 x4

X
S

eX -l+x+-+-+-+-
2 6 24 120

within .005 on [-1, 1]' On [0, 1], we may write

jXeolx _ jX r1 + X I / 2 + ... + X
S

/
2 jl 120

X
3

_ X I / 2 + X + ... + -
120

also good to .005. Making this replacement in the integral,

1 ( X3/2 x3 )
C - f X

I
/
2 + X + - + ... + - dx = 1.436210

o 2 120
I

While we can be sure that this answer has at most an error off (.005) dx = .005,
o

in fact the estimate we have obtained is far better than that. If one makes the
substitution u = jX, the integral becomes

1 /1C = r 2u2e" du = (4 - 4u + 2u2 )e"
• 0 0

= 1.436 563 66

More about numerical integration will be found in Chap. 10.
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Iterated integrals involving many integrations often arise in very natural
problems. Consider first the following question. Let 11 = [a, b] and 12 = [c, d]
be two disjoint intervals on the line. Choose a point in each, say Pi E Ii' We
ask: What is the expected distance between PI and P2' in the sense of
probability theory?

If we let x be the coordinate for PI and y that for P2' and let L i be the
length of I;, then the distance between the points is Iy-xl=f(x,y),
and the problem is answered by asking for the value of the double integral

V = L
1

1
L

2
If f
R

where R is the rectangle 11 x 12 with vertices (a, c), (b, c), (a, d), (b, d). In this
case, V can be calculated with ease, and the answer turns out to be the
distance between the midpoints of the two intervals (Exercise 30). [This is not
the answer if the intervals overlap!]

Suppose we now consider the corresponding problem for variable points
in the plane. Consider two disjoint sets D1 and D2 and Pi E Dp and again
ask for the expected value of the distance Ipl - P21. Following the pattern
above, let Pi = (Xi' y;), and

f(x l' Yl' x2' Y2) = Ipl - P21

= J(x 1 - X2)2 + (Yl - Y2)2

Then, the desired answer is

(4-15)

where S is the set D 1 x D 2 in 4 space.
For illustration, let D1 be the square with opposite vertices at (0, 0) and

(1, 1), and let D2 be the square with vertices at (1,0) and (2, 1). Then,
1 1 2 1

V = f dX 1 f dYI f dX2 f f(x 1, Yl' x2' Y2) dY2
• 0 • 0 • 1 • 0

This is a challenge to carry out, and it is therefore more suitable as a
candidate for numerical integration in the form (4-15).

EXERCISES
2

I Calculate f .;r;, dx From the definition of the integral. (Hint: Use a method similar to that of
I

the text For ;-;'.)

2 IF possible, give an explicit Formula For a Function F such that For all x,
(a) F'(x) = x + Ix - II (b) log F'(x) = 2x + If'

l
x O<x<l

3 Let f(x) = x - I 1 < x S 2
o 2<xs3
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x

(a) What is F(x) = I' f on [0, 3)?
, 0

(b) Is F continuous?
(c) Is F(x) = f(x)?

4 Explain the errors in illustrative examples (i) and (ii) on page 183.

5 Let F be defined by

,x (U 2+ I) duF(x) = 1 exp ----
, I U U

Show that F(I/x) = -F(x).

6 Let f be continuous on [0, 1], and suppose that for all x, °< x < I,

x I

I' f =,' f
• 0 • x

Can you determine f?

*7 Find all continuous functions f such that for all x :2: °
x

(f(x)j2 = I' f
'0

8 Evaluate the double integral 1'1' x 2y dx dy when D is the region bounded by (a) the line
" D

Y = x and the parabola y = x 2; (b) the line y = x - 2 and the parabola x = 4 _ y2,

9 Express the following iterated integral as a double integral, and then as an iterated integral
with the order of integrations reversed,

2 xI dx I f(x, y) dy
I 0

10 Show that reversing the order of integration in the integral (4-5) yields

3 2 1 Jy+lI dyJ _f dx - I dy I f dx
1 Jy+ I - 1 0

II H the order of integration is reversed in

1 x+ 1

I
o

dx t, fly) dy

I 2

the sum of two integrals of the form I dy [ ] + I dy [ ] is obtained, Fill in the blanks [ ].
o I

12 H D is a pyramid with vertices (1,0,0), (0, 1,0), (0,0, I), (0,0,0), find

HI (xy + z) dx dy dz
D

13 Express the following iterated integral as a triple integral, and then rewrite it in several other
orders of integration as iterated integrals,

2 2-x/2 2

I
o

dx II dyJx f(x, y, z) dz

14 Evaluate the preceding integral with f (x, y, z) = x + yz,

15 The line y = x divides the unit square with opposite vertices at (0, 0), (I, I) into two triangular
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sets. On which set can the function f(x, y) = yjx be integrated? Find the value of the integral
over that triangle.

16 Evaluate:

,I ,I

(a) I dy leY/x dx
• 0 . Y

2 2

(b) r dx r yeXY dy
. 1 . l/x

17 Reverse the order of integration in the following iterated integral, and compute its value.

8 (x+6)j7

r dx r xy dy
. - 6 • xl. J

18 Letf(x, y) be defined and continuous for a <::; x <::; b, C <::; Y <::; d. Let

d

F(x) = .1', f(x, y) dy

Prove that F is continuous on [a, b].

19 Prove the following formula for" reversal of order of addition" in finite sums:

i=r j=r j=,. i = j

and compare with (4-9). Hint: Try this first with numerical values for rand n.

20 Letf(x) be continuous for all x.
1 I-x

(a) Find the value of ,. dx I' f(t) dt.
. 0 • x

(b) Can you explain the answer you obtain?

21 By choosing an appropriate grid and computing S(N) and §.(N), estimate the value of
I

I' dxj(l + x 3 ) to within ,05. Compare this with the work of computing the exact value by the
, 0

usual process.

22 By choosing an appropriate grid, estimate the value of

2 I dx
f dyf-~
'0 'ox+y+1O

to within .02, and again compare by computing the exact value.

23 Let! and 9 be continuous on [a, b]. Show that

(This is the integral form for the Schwarz inequality, given in Sec. 1.3 for finite sums.)

24 Using Exercise 23, show that

I

f ~e-x dx < .47
. 0

25 Use the same method to estimate the value of

I

(a) f J!+.0 dx
, 0
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26 Show that

I
·b

( P(a) +. P(b) + 4P([a + b]/2)
P = b - a)·

'. 6

whenever P is a polynomial of degree at most 3.

27 Verify the following statements:

(a) If F(x) = r log (I + xe") du,
. - I

then

then

then

, -I (I + ex )F (x) = x log----::--
1+ e IX

(b) If F(x) = ( u- I cos (xu 2
) du,

'1

, 3 cos (x 3
) cos x

F(x)=-----
2x 2x

(c) If F(x) = I" u- 'eX" sin u du,
'0

en> + I
F'(x)=-

x 2 + I

28 Use formula (4-13) to find F'(x) if:

x 2

(a) F(x) = r t-Ie" dt
• x

3x

(b) F(x) = r cos (4x) dx
• 2x

29 Let F(x, y) = J'
\2y

if x is rational

if x is irrational

Show that

but that

, I

I' dx r F(x, y) dy = I
'0 '0

.1 .1

I dy 1 F(x, y) dx does not exist.
• 0 . 0

30 Let I I = [a, b) and 12 = [c, d) with b < c. Verify that the value of (4-14) is (c + d - a - b)/2.

31 Two points are chosen at random from an interval of length L. Show that their expected
distance apart is L/3.

32 (a) Apply Theorem II to evaluate the double integral

, 3

I' dx r (x 2y + 5xy2) dy
• 2 • -1

(b) Formulate and prove a corresponding theorem for the evaluation of triple integrals.

4.4 SUBSTITUTION IN MULTIPLE INTEGRALS

In evaluating single integrals, we use either numerical methods or substitution
and the fundamental theorem of calculus (Theorem 5). It is natural to expect
that the situation would be similar for multiple integrals; in most instances,
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however, multiple integrals are evaluated numerically or by replacing them by
equivalent iterated single integrals, and the technique of substitution is mainly
used in certain standard special circumstances, or occasionally to simplify
difficult problems. In this section, we merely quote the relevant formulas, and
defer all proofs and theoretical discussions until Chap. 7, where the necessary
machinery for dealing with transformations of coordinates has been obtained.

In one variable, we are accustomed to the following procedure for making
a change of variable in an integral. Given

• b

V = I F(x) dx
• a

suppose we wish to make the substitution x = ¢(u). The three steps are:

(4-16)

(4-17)

(4-18)

Determine an interval [IX, fJ] of u values which is mapped by x = ¢(u)
onto [a, b]'

Replace F(x) by F(¢(u)), which is afunction ofu defined on the interval
[IX, fJ].

Replace dx by ¢'(u) duo

In Theorem 8 of the preceding section, we have shown that these steps convert
the original integral into another with the same value

.P
V = I F(¢(u))¢'(u) du

. ~

Consider now a double integral

(4-19)

and a substitution

(4-20)

V = If F(x, y) dx dy

D

{

X = f(u, v)
y = g(u, v)

The three analogous steps are:

(4-21 )

(4-22)

(4-23)

Determine a region D* in the UV plane that is mapped by (4-20)
onto the region D, I-to-l.

Replace F(x, y) by F(J(u, v), g(u, v)), which is a function of (u, v)
defined on D*.

Replace dxdy by XXXXX.

We have chosen to leave the third step incomplete for the present, since
the correct formula here is somewhat mysterious. One special case is familiar
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from elementary calculus, namely, the formula arising from the coordinate
substitutions of polar coordinates:

JX = r cos fJ
\y = r sin fJ

In this case, the third step in the process is

(4-25) Replace dxdy by rdrdfJ

and a geometric explanation for this is often given.
In order to fill in the blank in (4-23), we must recall the expression given

in (3-25) for a general Jacobian. Applied to (4-20), we write

(4-26) :{:: ~ = det [~ ::] = r~: ~:1
ou ou

=1192 - 1291

Using this, the complete statement of the third step III the substitution
procedure is as folIows:

(4-27) Replace dxdy by
I

O(X,y) I
o{u,u) dudu

In the polar coordinates example, this becomes

o(x,y)=det rcos fJ -rsinfJl
o(r, fJ) Isin fJ r cos fJ

= r{(cos fJ)2 + (sin fJ)2} = r

which agrees with (4-25) above.
While there is obvious parallelism between the three-step procedure for

single integrals and that for double integrals, there is one visible difference.
In that for multiple integrals, the second step mentions that the mapping
shalI be I-to-l, and in the third step, the Jacobian (which replaces the
derivative ¢'(u)) is inside an absolute value I I. This is because it is easier
to prove a better theorem (Theorem 8, Sec. 4.3) for one variable than for
the case of several variables, which we shalI take up in Chap. 7. Later, in
Chap. 9, we wilI meet a version of the several-variables substitution more
like that for one variable.

We end this brief discussion by describing another method for carrying
out a variable substitution in a multiple integral which does not bring in the
Jacobian symbol, and which is as simple and automatic as the familiar method
used for single integrals. It wilI seem far more mysterious than the above since
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it introduces some new symbols without explanation, and depends on some
strange algebraic rules that seem arbitrary and ad hoc.

First, as in (4-18), we agree that if x = cjJ(u), then

dx = cjJ'(u) du

By analogy, we agree that if x = f(u, v), then we write

ax ax
dx = au du + av dv = f t du + /2 dv

From (4-28), we would therefore also write dy = gt du + g2dv. Accordingly,
turning to (4-23), we have

dx dy = (It du + f2 dv)(gt du + g2 dv)

=/tgt du du + /tg2 du dv + /2gt dv du +/2 g2 dv dv

We now invoke the following algebraic rules:

du du = dv dv = 0

dv du = -du dv

and using these in (4-29), we have

dx dy = 0 + /tg2du dv - /2gtdu dv + 0

= (.ftg2 - f 2gJ du dv

(We recognize that this is the same as (4-27), except that now we have dispensed
with the absolute value of the Jacobian.)

This generalizes immediately to multiple integrals of any size, and can be
used with success, provided that one is careful to multiply all factors in the
order in which they appear.

Perhaps a word of explanation about this "black magic" method might
be wise. In mathematical research, there seems to be a guiding platonic
principle, most visible perhaps in many of the newer developments, which
asserts that anything that leads to correct results, no matter how wild the
method may look, may have some inner rationale. In the present case, a
justification for the quasi-algebraic method for change of variable is found in
the theory of differential forms. This is a fairly recent invention, growing out
of earlier work (line and surface integrals, Green's theorem, and Stokes'
theorem), and will be discussed in part in Chap. 9. Among other topics, this
will contain a far-reaching generalization of the fundamental theorem of
calculus.

EXERCISES

I Let f(x, y) = xy2, and let D be the region shown in Fig. 4-8. Use the substilution in (4-24)

to evaluate ff f(x, y) dx dy.
OOD
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, b

Figure 4-8

2 A standard transformation between spherical and caTlesian coordinates in 3-space is

x=psinlj!cosO

r-"sin <f! sin 0

Z-I'cos<f!

Show that a correct replacement formula is

IIx II)' tlz = ,,1 sin Ij! II" IIIj! dO

3 In 4-space.. ~double- polar coordinates are defined by the equations

x_rcosO. ,·~rsinO. z=l'cos<f!. w_l'sinlj!

and

Obtain the correct substitmion formula, and then show that the volume of the hypersphere
xl + )'1 + z1 + ".1 :s; R1 is rr l R4j2.

4.5 IMPROPER INTEGRALS

As outlined in Sec. 4-2, the notion of area applied only to bounded sets.
If we seek to extend this to unbounded sets, a simple procedure suggests itself.
Let R 1 C R 2 c··· be an expanding sequence of closed rectangles whose union
is the whole plane; for example, we may choose R. as the square with center
at the origin and one vertex at (n, n). let D be an unbounded sct whose area
we wish to measure. We form the bounded set D. = R. n D, the part of D
in R., and assume that the boundary of D is nice enough so that each of these
has an area. Since the sets {D.l form an expanding sequence, the sequence of
their areas {A(D.)} is a monotonic sequence. If it is bounded, it converges, and
we write A(D) = lim..... "" A(D.); if it is unbounded, the sequence diverges, and
we write A(D) = 00.

To see how this process works, let D be the set of all points (x, y)
with 0 s: y s: (I + x 1

)- 1 (sec Fig. 4-9). Choosing R. as above, we have

• 1/1 1 +",11 It dx
A(D.I ~ r <Ix r dy ~ r ~-,

'-It -0 ._.I+x

= 2 arctan (/I)

A(D) = lim A(D
It

) = 11
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y--'
1+%'

D

Figure 4-9

Again, let D be the sct of all points (x, y) with Ix 2
- il :s;. 1 (see Fig. 4-10).

We have
I % n %

A(D,) ~ 8 r dx r dy + 8 r dx r_,I)'
• 0 ' 0 . I . .-,,~- I

~4+8 ((x- Jx'=l)dx. ,
S;nre x - j x' - T~ I/(x + j x'=1) " 1/(2<).

r
' ,Ix

A(Dn ) ~ 4 + 8 = 4 + 4 log II
. I 2x

and A(D) = 00,
If this example is modified slightly, a region of finite area results. let D

be those points (x, y) with Ix4
- y4 1:$ 1. The graph of D would look very

/
/

/

/
/

/
/

/
/

/ , ,
// "'y=-l

/
/

/

,,,,,,,,,
" ,,,,,

" FigUft' 4-10
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much the same as that in Fig. 4-10. As above, we have

• n

A(Dn)=4+81 (x-1x4 -1)dx
• 1

Now, it is not hard to see that, for any x > 1,

4~ 1x-yx -1<- x 3

For example, this can be checked directly by showing that

whenever x ~ 1. Hence,

n (1 1)A(Dn) ~ 4 + 8Lx- 3 dx = 4 + 8 2- 2n2 ~ 8

for all n. Since the Dn expand, {A(Dn)} is monotone increasing and lim A(Dn)

exists. We have shown that A(D) is finite, and at most 8, although we have
not found its exact value.

It is natural to ask whether or not the choice of the rectangles {R n}

affects the final values of A(D). If we require that a more general sequence
share with the special sequence the property that their interiors cover the
plane, so that any point of the plane is eventually interior to some R n , then
we can show that A(D) is independent of this choice.

Theorem 13 Let {R~} and {RJ be two expanding sequences of closed and
bounded rectangles whose interiors each cover the plane. Let D be a set such
that the sets

and D~ = D 1\ R~

have area for each n = 1, 2, 3, .... Then,

Let Un be the set of interior points of Rn and set E = Rj. The open
sets Uncover the plane, and thus E; by the Heine-Borel theorem, there
is a k such that E c Uk' This implies that for each j, there is a corre
sponding k such that Rj c Rk • Intersecting both with D, Dj c Dk and
A(Dj) ~ A(Dk ) ~ limn_ oo A(Dn). Since this holds for any j, limn_ oo A(D~) ~

limn_ oo A(D.}. By an analogous argument, we obtain the reversed inequality,
and thus equality of the limits. I
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Having extended the notion of area, we may similarly seek to extend the
notion of the definite integral

I(f, D) = JJf
D

Regarded as a function of the pair (f, D), we have shown that it is defined
when D is a bounded set having area, and f is bounded and continuous on D,
except for a set of zero area. In both cases, the word .. bounded" cannot
be deleted. For example, iff were not bounded above on D, then for any grid
N partitioning D, the upper Riemann sum S(N) would have the value 00,

since IUbpERuf(p) would be infinite for some choice of i and j. In particular,
.1

the previous definition fails to give meaning to the integrals I log x dx and
'0

.1I l/jX dx. Guided by our discussion of area for unbounded sets, let us
. 0

attempt to extend I(f, D) so that it will be defined for some unbounded regions
D and some unbounded functions f. To distinguish these from the original
notion of integral, we call them improper integrals.

00

What meaning should be attached to r f when f is continuous on the
. c

unbounded interval c ~ x < oo? Iff is positive-valued, we can fall back on
the notion of area, and define the value of this to be the area of the plane
region D = {all (x, y) with c ~ x < 00 and 0 ~ y ~f(x)}. Applying the previous
discussion,

.00 ." • !(x)

I f = A(D) = lim I dx I dy
'c n-oo'c '0

."
= lim.l f(x) dx

n-oo C

Modifying this slightly, we adopt the following definition to be applied also
when the integrand takes on positive and negative values.

Definition 5 Let f(x) be continuous for c ~ x ~ 00. Then,

• 00 • r

I f = lim I f
'c rfoo'e

when this limit exists.

To illustrate this,

00 r Ir

r e - x dx = lim r e - x dx = lim - e - x I = I
'0 rloo'O rloo 0

r00 sin x dx = lim _ cos x I,r
'0 rloo 0



INTEGRATION 209

which does not exist. Since the final step in the computation is the evaluation
of a limit, it is customary to use the terms "convergent" and "divergent" in

• 00 ~ 0()

place of "exist" and "not exist." Thus I e- X dx converges and I sin x dx
. 0 • 0

diverges. Following the same pattern, we shall understand { f to mean
-00

-r

For the expression Jex; f two distinct definitions are used.
-ex;

(4-31 )

(4-32)

ex; r c

f f = lim f f + lim r f
'-00 r-oo'c r-oo'-,

=.(f+{ f
• 00 • r

I f=lim I f
• -00 '-00' -r

We have

To distinguish these, we call the first the (ordinary) value of the improper
integral, and the second the Cauchy principal value. These agree whenever
both exist, but the Cauchy value may exist in some cases where the ordinary
value does not. The reason for this lies in the fact that the limit calculations
in the ordinary case must be computed separately, and if either diverges, so
does the integral. However, in the Cauchy principal value, the limit operations
are combined, and divergence of one may be offset by the other. For example,
consider the improper integral

rex; (1 + x) dx
• _ 00 1+ x 2

," J~ + x)~x._ = rarctan x + ~ log (1 + x 2 ) r
'ol+x I 2 10

1
= arctan r + 2" log (1 + r2

)

and since limr _ oo log (1 + r2
) = 00, the original integral IS a divergent

improper integral. However,

so that

and

• 0 (1 + x) dx 1 2

I ------- = -arctan (-r) - -log (l + r )
. -r I + x 2 2

," (1 + x) dx
.T~ = 2 arctan r
-r
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•

Figu1"l' 4-lt

Unless there is some indication (such as the prefix (CrV)) that the Cauchy
value is meant. the ordinary value is always to be understood. and is usulIlIy
the one which is appropriate to the problem. The rather arbitrary nature of
choice (ii) may be seen from the fact that

l'(I+x)dx
lim r -1 = n: + log 2

..... «l. _, I + x

One important case in which both choices agrec is that in which the integrand
is always positive, or always negative.

Let us consider now the case in which the range of integration is a bounded
set, but the integrand is unbounded. For example. can we attach a me;ming to,
r l/J.~ dx? We may again consider the set D bounded by the horizontal axis
- 0

lind the graph J' = X-Ill. This set is unbounded, and to compute its area, we
use the rectangles Rn whose vertices are (±I1. ±n) liS before (see Fig. 4-11).

I I n I'll

AtD n R.) ~ r dy r .Ix + I- ,Iy I- .Ix
• 0 • 0 • 1 . 0

= 1 + (J,-l dJ' ..... 2
- ,

which gives A(D) = 2. and we are led to write

- 'I x- ll lJX=2
- 0

More generally, iffis continuous on [a. h1 except at a finite number of points.
withf(x) 2': 0 for all x, letfn be lhe function defined on [a. h] by

fnC") = minimum off(x) and II
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If D is the set of points lying above the horizontal axis, below the graph of
f, and between the lines x = a, x = b, then the area of this unbounded set is .
given by

.b

A(D) = lim I f"
n- 00 • a

.b

Were we to take this as our definition for I f, we would find that it is not too
• a

easily applied, even whenfis uncomplicated. Moreover, this would have to be
modified to treat integrands taking both positive and negative values. Instead,
we adopt a different definition which overcomes some of these objections, and
which leads to the same results. We first isolate the discontinuities of f by
splitting the interval of integration into subintervals in each of which f is
continuous, except possibly for one endpoint. For example, ifJ(x) = 1/(x2 - 1)
and the interval of integration is [ - 1, 2], we would first write

2 0 I 2

r f(x) dx = r f(x) dx + r f(x) dx + r f(x) dx
. -I . -I . 0 . I

since the discontinuities are at I and - 1. We may therefore assume that we
are considering a function f which is continuous on a half-open interval
a < x s b and unbounded there; we do not require that f be positive.

Definition 6 Letf(x) be continuous for a < x s b. Then,

b b

f f= lim r f
a r ! a • r

whenever this limit exists.

I

Using this for the integral r x- 1/2 dx, we obtain
• 0

I If x- 1/2 dx = lim r X- I / 2 dx
o '10',

= lim 2./X II = 2
, 1 0 ,

in agreement with the former calculation. This agreement is of course not
accidental.

Theorem 14 Let f be continuous for a < x s b with f (x) ~ 0. Let D be the
region bounded by the line y = 0, by x = a and x = b, and the curve y = f (x) .

• b

Then, A(D) = I f
• a
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,b ,b

This asserts that limn _ 00 I j" and limr ) a I I are either both infinite,
• a . r

or both finite and equal. First, choose r> a and let M r = maxxE[r.bl I(x).
When n > M r , j,,(x) = I(x) on [r, b] so that

,b ,r ,b .b

IIn=IIn+IIn~II
• a • a • r . r

using the fact that I is positive. Letting n increase, we find that for any
r> a,

b b

lim r In ~ r I
n-oo'" 'r

and
• b • b

lim I j" ~ lim I I
n-x,,'Q rla',

To obtain the opposite inequality, choose any n; sinceI(x) ~ j,,(x) for all x,
whileIJx):s n,

Combining these, we have

and Jrr" :S n(r - a)
a

• b • b

I j,,:s n(r - a) + I I
. a . r

and letting r approach a, we see that for any choice of n,

, b , b

I In :S lim I I
• a r ! a' r

and thus
• b ,b

lim I In :S lim I I
n-oc'Q r!a',

Equality must hold, and we have shown that the alternative definition is
consistent with the original area definition. I

The examples which follow show how the definition is to be modified if
the discontinuity of the integrand occurs at the upper endpoint, and if there is
more than one discontinuity in the interval of integration.

• 1 dx ." dx . .
(i) I ---== = hm 1---=== = hm arcsin r

. 0 J1 - x 2
r 1 1 • 0 J1 - x 2

r 1 1

n

(ii)

2

( dx = (2 dx + ( dx
. 0 Jx (I - x) . 0 Jx (1 - x) . 12 Jx (1 - x)
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Standard integration procedure shows that

I
, dx 1+ v'x

= log, v'x (1 - x) 1 - v'x
so that

, 1I 2 dx , 1 + v'X 11 I
2 .j2 + 1I = 11m log . ---. = log --'---o=c-.-

'0 v'x(l-x) rjO I-v'x r .)2-1
However,

, 1 dx , 1 + v';; Ir
.1 1/2 J~(I-=~= !1~ log \'_ J~ 1/2 = 00

so that the original improper integral is divergent.
So far, we have extended the definite mtegral by relaxing separately the

restriction that the interval of integration be bounded, and that the integrand
be bounded. These may also be combined. We interpret

to mean
, 1 , "LI x- 1/2e- x dx + I x- 1/2e- x dx

. 0 ' 1

and speak of the original improper integral as convergent only when both of
these integrals are convergent.

If care is exercised, the techniques applicable to ordinary proper integrals
may also be used in evaluating improper integrals. If ¢(u) is of class C for
a ~ u ~ p, and if ¢(a) = a, and lim. 1 P ¢(u) = b, then the change of variable

,b ,P
X = ¢(u) converts an improper integral I j(x) dx into I j(¢(u))¢'(u) du, If

• a • i2

this is now a proper integral, the original integral was convergent; if the new
integral is also improper, then both are convergent or both divergent. For

,I

example, the substitution x = u2 in I x- 1/2 dx gives
. 0

I' 1 2u du = r12 du = 2
, 0 1I ' 0

This procedure is also valid for integrals with unbounded range of integration.
'XJ , "12

The integral r dx/(l + X
2

)2 becomes I (cos lW dO under the substitution
, 0 ' 0

"L

X = tan 0; likewise, r x- 2 sin x dx is convergent since the substitution x = llu
• 1

changes this into the proper integral

(4-33) ( - sin (1) du = r1sin (I) du
. I U ' 0 u

When the interval of integration is split into a union of subintervals, the
original integral is represented as a sum of integrals, each having the same
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intcgrand, and it is divergcnt if any onc of these diverges. A common error
is to supposc that this is true whencvcr one intcgral is reprcsented in allY

. ,
fashion as a sum of integrals. However. the intcgrals I (I + xlix dx and

·0.,
I (2x - I )/x dx arc each divergent. while their sum
·0

.1 I +x .1 2\"-I <Ix + I .
• 0 x . 0 x

is convcrgcnt.

I .'
<Ix ~ I

·0

I +x+2x-
x

I .'
t/x=IJt!x

·0

,
The convergence of an improper intcgral such as .1'0 f(x) ,Ix dcpends

upon the behavior off(x) when x is large. Thc following simple comparison
test is often used to show convergence or divcrgence. The functions f and 9
arc assumed continuous all the interval (I =::;; x < h. and h may be a number or
00.

.'
Theorem 15 LeI 0 s:f(x) s: y{x)Jor (I :s; x < b. TI'l'II. ~"{ I 9 (·ol1l'('ryl'S. so.,

f' r' .'doe$ f and .r:s; I g.

'" '" '"
Figure 4-12 will make this theorem plausible; if the area under the curve
J' = y(x) is finite. so is the arca under the curve .1' = f(x). Of coursc. in
this it is essentialthatfand yare both positive. To give a formal proof.

we define F and G by F(r) = (f. G(r) = (y, Sinccf(x) :s; y(x). F(r) $; G(r)

for all r < b. Since the intcgral of ~J converges. lim'_b G(r) exists. Since
f is positive. F is monotonic increasing. Since F(r) is bounded above by
G(r), and thcrcforc by lim._t> G(r), which is finite. Iim'_b F(r) exists. and, .
lim._b F(r) = f f s lim._b G(r) = r g. I

'" '"

A corollary of this comparison test is somctimcs called the ratio test for
improper integrals.

Figure 4-12
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Corollary Let f (x) ~ 0 and g(x) ~ 0 for a ::; x < b, and let

lim f(x) = L
xlb g(x)

b b

with 0 < L < 00. Then, the integrals r f and r g are either both convergent
.. a .. a

or both divergent.

Iflimx_b f(x)jg(x) = L, then there is a point Xo between a and b such
that whenever X o < x < b

~<f(x)<2L
2 g(x)

Thus,j(x) < 2Lg(x) and g(x) < (2jL)f(x) for all x, Xo < x < b. Applying
b b

the theorem, we see that if f g converges, so does f f, and conversely. I
a a

To apply these tests, one must have at hand a collection of known integrals
for comparison. Most frequently used are

(4-34)

rOO d:
• 1 X

1 dx
Jo ~P

C dx

Ja Ie - x IP

converges if and only if p > 1

converges if and only if p < 1

converges if and only if p < 1

00

For example, r dXj~ converges, since the integrand is dominated by
. 0

00

IjJXon the interval [0,1] and by Ijx 3
/
2 on [1,00]. The integral J dxjJ x + x 2

o
00

is divergent, since limx 1 00xj~= 1and f dxjx diverges.
1

These comparison tests apply directly only when the integrand is every-
where positive. However, the next result may often be used to reduce a
general case to this special one.

b b

Theorem 16 f f always converges if r If(x)1 dx converges.
a • a

Sincef(x) always lies between -If(x)1 and If(x)l,

0::; If(x)1 + f(x)::; 2If(x)1



converges, since Ix-3/2sinxl ::;X- 3/2 on the interval

. Isin x I Iconverges, smce 7 ::;.:x2

. Icos(l/x)1
converges smce- < x- 1/2, JX-
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b b

If f If I converges, then so does f [f(x) + If(x)l] dx, and subtracting
b 'a

.b fb
the convergent integral I If(x)1 dx, f(x) dx must converge,

, a a

The following examples illustrate the use of this in combination with the
preceding theorems.

(i) f co sin/ dx
'I x

(ii) (C0j¥X) dx
'0 x

("') I' co sin x d
111 r: x

'0 xvx
. r: sm x

[1, 00] and hm v x r: = 1.
x ~ 0 Xv x

b

A convergent improper integral f f is said to be absolutely convergent if
a

b b

f If I is convergent, and conditionally convergent if f If I is divergent. All the
• a • a

convergent examples that we have discussed so far are absolutely convergent. A
co

sample of an integral which is only conditionally convergent is f x- I sin x dx.
I

The type of argument which was used above fails here; I(sin x )/x I is dominated

by l/x, but f co X-I dx is divergent, so that Theorem 16 does not apply, and
I

this method gives no information about the convergence or divergence of either
co cof X-I sin x dx or f x-II sin x I dx. To prove convergence of the first integral
I I

and divergence of the second, a different method must be used.

Recall the familiar formula for integration by parts:

(4-35) (f(x) dg(x) = f(x)g(x) I: - (g(x) df(x)

We apply this to our integral, and have

f' sin x f' 1-- dx = - d( - cos x)
I X I X

= _ cos x /' + ('cos x d(!)
x I 'I X

cos r f' cos x
= - -- + cos (1) --2·· dx

r . I X
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Since limr _ oo r- I COS r = 0, we have shown that

I,00 sin x " 00 cos x-- dx = cos (I) - -2- dx
'I X 'I X

The technique of integration by parts has replaced the original improper
integral with another; however, the new one is absolutely convergent, since
Ix- 2 cos x I ::;; x- 2. This shows that the original integral converges.

,00

To show that I x- 1 sin x dx is itself not absolutely convergent, write
, I

,m" Isin x I r"sin x ~I r(" +Il" Isin x II _.. _- dx = I -- dx + L -- dx
. I X '1 X I '"" x

Since the minimum value of I/x on [mr, (n + I)n] is I/(n + I)n,

f
("+I)" Isin xl 1 f("+I)"

----- -- dx ~ ~--~ Isin x Idx
"It x (n + I)n "It

2 2 ,"+2 dx
>~-->-·I -(n+ l)n-n'"+1 x

and

Hence,

m-I m-I
'" ,("+I)"lsinxl 2 ,"+2dx
L I ----- dx ~ - L I -

, "It X n I '" + I X

I,mIt Isin x Id " " sin x d 2 I m + 1
-~- x ~ -- x + - og--

'I X 'I X n 2

,00

and I Isin xlix dx diverges.
, I

The device of integration by parts may be applied in other cases too. To
,00

study the improper intygral I (cos x)/(Iog x) dx, we first perform an integra
, 2

tion by parts. (The use of "00" is an abbreviation for the previous limit
operations. )

,00 cos x ' 00 1I --dx= I --d(sinx)
'2 log x . 2 log x

sin 2 1,00 sin x---+ dx
log 2 '2 x(log X)2
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00

Since r dx/x(log X)2 converges, the new improper integral is (absolutely)
• 2

00

convergent, and r (cos x)/(log x) dx converges.
• 2

The same procedure can be used to prove convergence for a general class
of improper iotegrals.

Theorem 17 (Dirichlet Test) Let f, g, and g' be continuous on the unbounded

interval c ~ x ~ 00. Then the integral f 00 f(x )g(x) dx is convergent iff and
c

g obey the following conditions:

(i) limx _ oo g(x) = 0,
00

(ii) rig' I is convergent,
• c

(iii) F(r) = (f is bounded for c ~ r < 00.
c

Take (fg = J:g(x) dF(x) = F(x)g(x) I: - (F(X) dg(x)

.r

= F(r)g(r) - F(c)g(c) - IF(x)g'(x) dx
• c

By assumption, IF(r)1 ~ M for all r ~ c, so that IF(r)g(r)/ ~ Mlg(r)1
and limr _ oo F(r)g(r) = 0. Also, IF(x)g'(x) I~ Mlg'(x)1 and by hypothesis,

rex; Ig'(x) I dx converges, so that by comparison roo F(x )g'(x) dx converges
~ c • c

This shows that limr _ oo (fg exists. I
c

Two special cases of this are used frequently.

00

Corollary 1 r fg converges iff obeys condition (iii) and g(x) decreases
• c

monotonically to °as x i 00.

For, g'(x) is always negative, so that

(Ig'(x)/ dx = - (g'(X) dx = -g(x) I: = g(c) - g(r)

and limr _ oo rIg'(x)1 dx exists and is g(c).
c
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Corollary 2 If9 is ofclass C for c ::; x < 00 and g(x) decreases monotonically

to °as x i 00, then the integrals f 00 g(x) sin x dx and f 00 g(x) cos x dx are
c c

convergent.

This corollary covers both of the illustrations given above. It IS often
applied in combination with a change of variable.

Consider the integral

(4-36)
.00I cos (x 2

) dx
• 0

00

We prove that this converges, thus showing that r f(x) dx can converge
• c

without having f(x) --+ °as x i. Make the substitution u = x 2
, and obtain

instead the integral

For u near 0, the integrand behaves like Ij~. Corollary 2 takes care of the
interval 1 ::; u < 00, and the integral above converges.

1 00

Again, f x- I sin (X-I) dx becomes f (sin u)ju du after the substitution
o 1

x = Iju, and is therefore convergent.
The discussion of improper double and triple integrals follows somewhat

the same pattern, allowing for the change in dimension. The most significant
difference is the absence of an analog for conditional convergence. The
reason for this will appear later. For the present, only positive integrands will
be considered. Let D be an unbounded plane set and f continuous and positive

in D. If we agree that ffDf is to measure the volume of the region V in

3-space lying above D and below the surface z = f(x, y), then we are led to the
following definition.

Definition 7 If f is limn_ oo rr f where Dn = D (l Rn and {Rn} is an ex-
D •• D.

panding sequence of closed rectangles whose interiors cover the plane.

As in Theorem 13, the Heine-Borel theorem shows that the value obtained
does not depend upon the choice of the sequence {RJ To illustrate this, let
D be the first quadrant andf(x, y) = xye-(X2 +y2

). Choosing Rn as the square
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with center at the origin and vertices at (±n, ±n)

• •fJ i= J
o

J/ye-<X
2

+
Y2 ) dx dy

D.
." .n

= I dx I xe- X2 ye- y2 dy
• 0 . 0

and fJ i = lim ff i = i
D "-00 D"

When D is a bounded set, but i is unbounded, the region V above D and
below the surface z = i(x, y) is again an unbounded set in 3 space. Its volume
is found by constructing the truncated functions i., where i.(p) = min {n,f (p)}.

These are bounded and the volume of V is lim._ oo rr i., which we may
•. D

accept as the definition of rr f, when the limit exists. Even in simple cases,
•• D

this process can be somewhat complicated to carry out. For example, let
D be the unit square with vertices at (0, 0), (0, 1), (1,0), (1, 1), and
i(x, y) = yx- 1/2

. Cutting i off at height n, we see that I(p)::; n when
y ::; n~ and

{
YX- 1/2

I.(p)= n
for y::; nfi
for y > nfi

Thus (see Fig. 4-13)

1/. 2 I 1/.2 .-IXHI. = f dx f _n dy + f dx f yx- 1/2 dy
D 0 .-Ix 0 0

I I 1 1 ( 1)+ f dx r yx- 1/2 dy = - + - + 1 --
1/.2 • 0 3n 3n n

and fJ i = 1. As in the case of single integrals, an alternative procedure
D

may be used. The integrand yx- 1/2 is continuous in D except on the left
edge, x = O. Let Dr be the rectangle bounded by the lines x = 1, x = r, y = 0,
and y = 1. As r 10, Dr approaches D. Since I is continuous in Dr' we may

integrate I over Dr' and define fJD I to be limr _ o fJD, I· We have

I I I r l II
.U, I = J

r
dx f

o
yx-

1/2
dy = f

r
dx 12fi 0

I dx
= fr 2fi = 1 - jr



,
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and JJf ~
v

This suggests the following general definition.

Definition 8 Ler D nt' all O{)('II St't WhO,H' bOllmlary col1si.~ts of a jillitt'
IIIll1lher ofrien'II'ise .~mootll (/lrl'es {jml i.~oJatt'd poilJ/,~, and let f b(' Colltilll/()u.~

tllld posilil't'-l'lIllIed 011 D. TIII'II, rr f CfJIll't'r~Jes {1m/lias I'aillt' c if (lml ollly
.. v

if t!lere is WI eXfJ(llIIlillY sequ('IICl' q{ closed sets {Dn} II'/Iich COIII'l'rges 10 D
ill tlrt' .w/I.~e tllllt el't'r)' polm of D i.~ imerior 10 some set Dk wllile ('ael, Dk
Iie.~ ill tile closure of D. will sllch that f is hOlillded 0/1 each Dk (//1(/

,~I;m._. rr r
•• I).

As before, the existence of the limit and the value obtained are independent
of the choice of the sequence {D,,!. To illustrate the definition. let us evaluate
the integral of (x 2 + yl)-A over the unit disk. We take D to be the sct of
(x, y) with 0 < x 2 + y2 < I and D. as the annulus 1//1 = P ~ Jx 2'+).2 ~ I.

and compute rr (x 2 + J,2t J. ilx d.\'. To make this easier. we transform 10 polar
•• D.

coordinates. selting x = r cos 0, J' = r sin O. dx il.r = r dr ilO.
, ,.

rr (Xl + )'2r Adx d)' = r elr r r-lAr dO
• • • p • 0
n.

. ,
=2n I rl-Hdr

"



so that
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,
II(x2 + y2t" dx dy = lim 2n f r'-u dr
D pjO • P,

= 2n f r' - U dr
. 0

which diverges when .Ie ~ 1 and converges to n/(1 - .Ie) when .Ie < 1.
The following example may help to show why we have restricted the

discussion thus far to integrands that are positive. Let us attempt to calculate

II f where D is the first quadrant, and f(x, y) = sin (x 2 + i). We follow
D

the pattern used before and choose a sequence of regions {Dn} that converge

to D, and examine limn_oo II f. Suppose that Dn is the square with vertices
D.

at (0, 0), (0, n), (n, 0), (n, n). Then

n n

II f = f 0 dx f 0 sin (x
2 + i) dy

D.
n n n n

= f sin (x 2) dxf cos (y2) dy + f cos (x 2) dx f sin (i) dy
• 0 0 • 0 0

= 2rsin (x 2) dx rcos (x 2) dx
o 0

00 00

and lim II f = 2 f sin (x 2) dx f cos (x 2
) dx

n- 00 D
II

• 0 0

Each of these separate integrals can then be shown convergent as was done
earlier for (4-36), by first making the variable change u = x 2

, and then using
Corollary 2 of Theorem 17. Using certain special methods in complex analysis
involving contour integration in the complex plane, it is possible to show that

(4-37) fooo sin (x 2
) dx = fooo cos (x 2) dx =~

[These are called the Fresnel integrals and arise in optics.] We are thus led

to propose 2(~)2 = n/4 as the value of If f. However, let us examine the
D

effect of a different choice for the sequence {DJ Take Dn to be the quarter
circle °~ x, °~ y, Jx2 + y2 ~ n. Using polar coordinates, we have

n/2 n

If f = f 0 dO.f0 r sin (r
2

) dr
D.

n
= "4 [1 - cos (n 2

)]

and limn~oo ff f does not exist!
.. D.
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In this example, two equally natural choices of the sequence {Dn} led to
inconsistent results.

The key to this strange behavior is the fact that, in this example, the
integral of II lover D is divergent. The following result supplies the clue.

Theorem 18 Let I be continuous on D and ff II I cpnverge. Then,
D

limn _ 00 ff I exists and has the same value lor any choice 01 the sequence
•• D

{Dn} converging to D.

This is the analog for Theorem 16, and we prove it by means of the
2-space analog of the comparison test, Theorem 15 (Exercise 7). For any

pED,O":::;I(p) + II(p)I..:::;2II(p)l,andthus If U+ III} converges. Let
D

its value be A and the value of ff II I be B. Then, for any sequence {Dn}
•• D

converging to D, lim If U + II I} = A and lim If II I = B so that
D,. D,.

~~~ if I = ~~~ Uf (f + II I) - if II I}

exists and is A-B. I

This result enables us to prove convergence for a wide class of improper
integrals whose integrands take both positive and negative values. Thus, we
can immediately know that the integral of sin (x 2 + i)e-(X2

+
y2 ) over the

entire plane is convergent. However, there is no analog for the notion of a
conditionally convergent improper integral or for Dirichlet's test, when it
comes to multiple integrals. The reason lies in the definition for convergence
of an improper double integral, and the freedom of choice of the sets {Dn} that

occur in that definition. We have stated that ff I will exist only when
. D

lim If I exists and is independent of the choice of the expanding regions
D.

Dn , which are restricted only by the requirement that every compact set interior
to D shall be covered by the interior of Dn for all sufficiently large n. With

this definition, it turns out that ffD I cannot exist without fJD II Iexisting too!

A sketch of the proof is as follows. Let II = (I I I + f)/2 and 12 = (I I I- f)/2.

We may assume that the integrals ff /; are each divergent. Note thatItI2 = 0,
• D

so that the sets where II and 12 are positive are disjoint. It is then possible



(4-38)

(4-39)
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to choose {Dn} which favor f 1 over f 2, so that rr f1 diverges faster than
.. D,.

rr f 2 , with the result that rr f, which is their difference, also diverges.
... D

n
o. .. D

n

Another illustration may reinforce this. We will attempt to integrate the
function f(x, y) = (x 2 - y2)j(X2 + /)2 over the unit square S with opposite
vertices (0, 0), (1, 1). Here are two different iterated integral calculations.

1 1 1 r y 11f
o

dx f
o

f(x, y) dy = f
o

dx x2 + y2 y=o

,I dx 1T:

=.1 0 1 + x 2 =4

r1dy r1f(x, y) dx = 1,1 dy r~211
, 0 • 0 • 0 x + Y x=o

r1 -dy 1T:

=. 0 1+ y2 = - 4

Note that the integrand f(x, y) is continuous everywhere in the square S
except at (0, 0), where it becomes unbounded, both positively and negatively.
If a third method is tried, integrating f over S with a small quarter disc of
radius p at the origin removed, and then letting p -4 0, the value of the

improper integral seems to be o! Again, the key is simply that ff If I is
s

divergent, and we do not therefore have a convergent integral ff f
s

So far, we have said little about the evaluation of improper integrals.
The methods of approximate in tegration apply as before. One must first replace
the original interval or set over which the integration is to be carried out by
a bounded set. For example, if we wish to find the approximate value of

00f e- t2 dt, accurate to .001, we first observe that
o

Choose R sufficiently large so that e - R < .0005. Then, calculate the value of
,R

1 e- t2 dt by Simpson's rule, with an accuracy of .0005. This will be the
• 0

desired answer. Many times, however, a special device may enable one to
find an expression for the exact value in terms of known constants and
functions.

As an illustration, let us find the exact value of the integral we have
just discussed. We start by replacing the integration variable "t" by "x" and
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by "y", and consider the product of the resulting integrals, converting this
to a double integral:

.R .R .R .R

I -x2d I -y2 d I I -x2- y2 d de x e y= e x y
. 0 • 0 • 0 • 0

Let R increase, and letting [ be the value we seek,

[2 = (J
o

oo

e- t2 dt) 2 = Ij e- x2 - y2 dx dy

where D is the first quadrant. The integrand is positive, and the integral
converges. We evaluate the double improper integral by an expanding sequence
of discs, changing to polar coordinates to simplify the calculations.

R ,,/2

[2 = lim r dr r e- r2r de
R~oo'O '0

TC

4

(4-40)

Thus,

[= roo e- t2 dt=j"";r
• 0 2

Other special methods for evaluating integrals will be given in the next several
chapters.

EXERCISES

I What is the area of the region bounded by y = e", y = 2 cosh x, with x ~ O?

2 Discuss the convergence of the following integrals:

(a) f0'" x2d~ 1 (b) f~'" X
3d: 1

(c) f'" sin 2x dx
• 0

(d) (

(e) f1 x
2

dx
'0 )1- x4

()f
"'l-cosx

9 2 dx
• 0 x

(h) f"'~d=x~
'o~

3 Discuss the convergence of the following integrals:

(a) f00 eX sin eX dx
• 0

_/2

(c) f sin (sec x) dx
• 0

'"(b) f x sin eX dx
• 0

(d) ( sin (Ijx) dx
o x
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I

(e) r xlogxdx
'0

1[/2

(f) ,. jlanO dO
'0

,/2

(g) r
. 0

dO
------~-

ji-=-;in'-ii

,/2

(h) I' x jsecx dx
• 0

4 For what values of ex and {3 does r
'0

dx
----- converge?
x' + x P

oc

5 For what values of ex and {3 does r x'ix - liP dx converge?
• 0

6 Let D be the unbounded triangular region in the right half plane bounded by the lines

y = 0 and y = x, and letf(x, y) = x-3/2e'-x. Does n f converge?
•• D

7 Let O:s f(p) :S g(p) for all p in a set D, and suppose that JJ
D

9 converges. Prove that JJ
D

f

converges.

8 Discuss the convergence of the improper integral

JJ x>1
x
~~y+ 1

D •

where D is the entire closed first quadrant.

9 Discuss convergence of the integral

... dx dv dz

.1.1.1 ~>+}T~-;-2+1)2

where the integration is over all 3-space.

10 Verify (4-38) and (4-39).

II For which real numbers ex is there a value c for which

r
' dx .oc dx

. 0 1 + x' = .1, 1 + x'

12 Let F(x, y) = y2jj(X 2+y2)3 and let S be the unit square with opposite corners (0, 0) and
(1, 1).

(a) Show why rr F exists.
"5

(b) As an iterated integral, would one of the two orders of integration be preferable?

(c) Show that rr F = log (I + )2)
"5



CHAPTER

FIVE

SERIES

5.1 PREVIEW

The topic ofstudy is2: ~ an = a1 + a2 + a3 + ... ,an infinite series whose terms

are numbers. For some readers, portions of this will be review. However, in
addition to the standard ratio test, comparison test, and integral test, we also
discuss the ratio comparison test, Raabe's test, and Dirichlet's test, which
apply to series that escape the other tests for convergence and divergence.
There is a brief discussion of the notion of conditional convergence, versus
absolute convergence, and the effects that rearrangements have on the former.

We present a small portion of the theory of absolutely convergent
double series, since this is directly related to the Cauchy product of series,
and since simple geometric problems often lead to double series.

Finally, we describe and illustrate a number of different techniques for
finding exact values or estimated values for the sum of specific series.
Computers have not dispensed with the need for this; one does not blindly
ask for the sum of a series, for one must know how many terms must be
added to give the required accuracy, and any method which will decrease this
number is worthwhile.

227
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5.2 INFINITE SERIES

An infinite series is often defined to be "an expression of the form .2 ~ an'"

It is recognized that this has many defects. In order to avoid some of these,
we adopt the following formal definition.

Definition 1 An infinite series of real numbers is a pair of real sequences
{an} and {An} whose terms are connected by the relations:

(5-1) An = .2 ak = a1 + a2 + ... + an
I

n~2

The first sequence is called the sequence of terms of the series, and the
second is called the sequence of partial sums. If either is given, the other can
be found from the relations (5-1). To denote the series as a single entity, one

might use the expression <{an}, {An}); it is more customary to use .2~ an or

a l + a2 + .... Although the sequence of terms is given a dominant place in these
expressions, the series itself is still the pair of sequences; we may speak of the

sixth term of the series .2 ~ 1/(n2 + n) (which is i2) as well as the sixth

partial sum (which is ~). The index "n" is a dummy letter, and may be
replaced by any other convenient choice. As with sequences, it is not necessary
that the initial term of a series be labeled with index "1". It is often
convenient to vary this, and use, for example, ao + a l + a2 + ....

There is a strong, but not perfect, analogy between infinite series .2; an
00

and improper integrals f f(x) dx. The function f(x) corresponds to the
c

sequence of terms {an}' and the partial sums 2: ak = An to F(r) = ( f This
c

correspondence means that most of the theorems in Sec. 4.5 have their analogs
in this chapter, with proofs that will seem very similar. For this reason, some
of these proofs will be abbreviated.

Certain algebraic operations are defined for series.

Definition 2 The product of the series 2 an and the number c is the series

(5-2) L (can) = cal + ca2 + ca3 + ...

The sum of the series L an and.2 bn is the series

(5-3) L (an + bn) = (a l + bd + (a2 + b2 ) + (a 3 + b3 ) + ...
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Thus, if an = lin and bn= - I/(n + 1), then

L an +L bn = (1 +1+ ...) + (-1 - j + ...)
= (1 - 1) + (1 - j) + ...

=1+i+-b+-io-+'"

which may be written as

(5-4)
00 1

~ n(n + 1)

Note that this series is not the same as the series

(5-5) 1-1+1-j+j-t+t-···

(5-6)

obtained from L (an + bn) by merely removing all the parentheses, for (5-4)

and (5-5) have different terms.

Definition 3 A series L an is said to converge to the sum A whenever

the sequence of partial sums {An} converges to A. A series that does not
converge is said to diverge.

We note that the algebraic operations described above may be performed

on either divergent or convergent series. We shall see that both L: an and

L: bn of the example above are divergent; however, their sum (5-4) is a

convergent series, for the nth partial sum is

(
1 _!) + (! _!) + ... + (! __1 ) = 1 __1

2 2 3 n n+l n+l

which converges to 1.
A frequent cause for confusion in discussions about series is the unfortunate

habit mathematicians have of using the expression "~ an" to stand both for

the series and (when convergent) for its sum, letting the context distinguish

between these meanings. In ''L an is divergent" or "L an is alternating" it is

clear that the series itself is intended, while in "L an is larger than 3," the

sum is meant. However, in "L an is positive," either is possible, since it may

be intended to mean that each of the terms is positive. A worse case is the

statement:~ an +~ bn =~ (an + bn).lfthis is a statement about series, it is

simply the definition for addition of two series; if this is a statement about
sums, it is the theorem which asserts that the sum of two convergent series is

itself convergent, and its sum is the sum of the numbers ~ an and L bn·
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Another source for confusion stems from the fact that in English, the words
"series" and"sequence" are used with almost identical meanings, whereas their
mathematical meanings are quite distinct.

The series illustrated in (5-4) and (5-6) suggests a very simple way to
construct lots of convergent series. From their nature, these are usually
called "telescoping" series.

Theorem 1 Let {bn} be any sequence with bn--+ 1.., and set an = bn - bn+ I.

Then, .2: ~ an converges to the sum A = b l - L.

For, An = (b l - b2 ) + ... + (bn - bn+ d = b l - bn+ I' which converges
to b l - L.

For example, calculating an = l/n2 - l/(n + I )2, we see that

~ 2n + 1 3 5 7
(5-7) L n2 (n + 1)2 = 4+ 36 + 144 + ...

I

converges to 1.
A series cannot converge unless its terms approach O.

Theorem 2 If.2: an converges, then lim an = O.

For, an = An - An-I, and lim an = A - A = O.

The Cauchy criterion for convergence of a sequence immediately gives a
similar criterion for series.

Theorem 3 A series .2: an converges if and only if

lim (am + am+ I + ... + an) = O.
m. n- 00

For, this sum of terms is exactly the difference (al + a2 + '" + an) 
(a l + a2 + ... + am- d = An - Am-I, and {Ak} is convergent if and only if
limm,n_ooIAn-Am=I!=O. I

One consequence of this result is both important and useful.

Theorem 4 If.2: !an I = Ia I I + !a21 + ... is a convergent series, so is

the series.2: an'

This is true whether the terms ofthe series are real numbers or complex
numbers, and it explains why the first step in working with a particular
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series is often to consider instead the positive series obtained by taking
the absolute values of all the original terms. The proof of Theorem 4 is
immediate, for

Iam + am + 1 + ... + an I :-s; Iam I + Iam + 1 I + ... + Ian I
and by hypothesis, the right side of this is approaching O. I

Because of Theorem 4, many of the convergence tests for series are
formulated for series with positive terms, but can be applied to the series

.2: Ian I and thus provide information about .2: an· (Note, however, that if

.2: Ian I diverges, one cannot therefore conclude that .2: an diverges; this is

discussed in the next section in more detail.)
The comparison test and the ratio test were extremely useful in dealing

with improper integrals; they have their analogs for series.

Theorem 5 (Comparison Test) If 0 :-s; an :-s; bn for all sufficiently large n,

and.2: bn converges, then.2: an converges.

The terms {an} are positive from some index on, and at this point
the sequence {An} of partial sums becomes monotonic increasing. They are
bounded above, so that limn _ 00 An exists. I

A corollary of this that is often easier to apply directly is:

Corollary If 0 :-s; an and 0 :-s; bn and limn_ oo an/bn= L where 0 < L < 00,

then.2: an and.2: bn are either both convergent or both divergent.

The next result is sometimes called the ratio comparison test.

Theorem 6 If 0 < an, 0 < bn, and.2: bnconverges, and iffor all sufficiently

large n, an+dan:-s; bn+dbn, then 2 an converges.

Writing the inequality as an+1/bn+1 :-s; an/bn, we see that {an/bn} is an
ultimately decreasing sequence, and is therefore bounded. Thus an :-s; Mbn
for all n, and.2: an converges by the simple comparison test. I

In order to apply either of these comparison tests, some known examples
of divergent or convergent series must be at hand.

Theorem 7 The geometric series .2:: xn = 1 + x+ x2 + ... converges to

1/(1 - x)for Ixl < 1 and diverges when Ixl ~ 1.
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The partial sums are given by An = (1 - xn+ 1)/( I - X) when x #- I
and by An = n + 1 when x = 1. I

Combining this with Theorem 3 gives the ratio test.

Theorem 8 If 0 < an' let L = lim SUPn_oc an+dan and 1=

lim infn_ oo an+dan' Then L an converges if L < 1, and diverges if I> I; if

I :'5.:: I :'5.:: L, no conclusion can be reached about the behavior ofL an'

If L < I, then a number x can be chosen so that L < x < I and
an+dan :'5.:: x for all but a finite number of indices n. Since x = xn

+ I/xn, this

takes the form given in Theorem 6 with bn = xn, and since 2: bn = 2: xn

converges, so does L an' On the other hand, when I > 1, then for all

sufficiently large n, an + dan;:::: 1, so that {an} is an ultimately increasing

sequence; as such, it cannot converge to 0, and 2: an must diverge. I

In many cases, the sequence of ratios {an+dan} is convergent; when this
happens, the statement of the theorem is simpler.

Corollary If an> °and lim an+dan = r, then 2: an converges if r < 1

and diverges if r > 1. If r = 1, no information about 2: an results.

The last part of the corollary is easily illustrated. We will see shortly that

2: lin diverges and that L I/n 2 converges; it is easily checked that r = 1 for

both.
An example to illustrate the last part of Theorem 8 is also easily supplied.

Consider the series

(5-8)
2 8 16 64 128 512
.3 + 9+ 27 + 81 + 243 + 729 + ...

Instead of calculating the ratios an + IIan' it is easier to observe that these are
the numbers Cnsuch that an+I = an cn· In (5-8) these are CI = t c2 = j, C3 = t
etc., and we find that the numbers I and L in Theorem 8 are I = j and
L = %. Since I < 1 < L, we do not yet know if the series (5-8) is convergent or
divergent. This can be settled by a different test called the root test, which also
is derived by using the geometric series for comparison.

Theorem 9 Let lim sUPn_oo lani l/n = r. Then'L an converges ifr < 1 and

diverges if r > 1; when r = 1, no conclusion can be reached.
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If r < l,choosex with r < x < 1and have lanll!n ~ x for all sufficiently

large n. Thus Ian I ~ xnfor n :2: N, and sinceL xnconverges, so doesL an·

If r > 1, then from the definition of limit superior, Ian II/n :2: 1 for infinitely
many indices n. We therefore have lak11 :2: 1, lak2 1:2: I, ... , lakj l:2: 1, ... ,

so that the sequence of terms {an) is not convergent to 0; L an must
then diverge. I

These two tests are closely connected. The ratio test is often easier to
apply; however, if a series can be shown convergent by the ratio test, it could
also be treated by the root test (see Exercise 8).

If this test is applied to the previous example (5-8), the number r is seen
to be (ik/2 < I, and (5-8) converges (Exercise 4).

The next theorem shows the close connection between improper integrals
and infinite series; it also provides a large class of useful series for comparison
purposes. It is called the integral test.

Theorem 10 Iff is positive on the interval 1 ~ x < CfJ and monotonic de

creasing with limx r 'Xo f(x) = 0, then the series .2: ~ f(n) and the improper

integral r'Xo f are either both convergent or both divergent.
. I

. n+ 1

Let an = f(n) and bn = I f
• n

Since f is monotonic,

n+ I

f(n + 1) ~ r f(x) dx ~ f(n)
• n

or an+ I ~ bn~ an· By the comparison test'L an converges ifL bn con

verges, andL bnconverges ifL an converges, so thatL an andL bncon

verge or diverge together. But'L bn converges exactly when the integral

roof converges. I
. I

Corollary The series 2:: l/nP and 2:: l/n(log n)P converge when p> 1

and diverge when p ~ 1.

This follows immediately from the behavior of the corresponding improper
integrals [see formula (4-34)]. If the first of these series is used as the comparison

series 2: bn in Theorem 6, a test called Raabe's test is obtained.
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Theorem 11 Let 0 < an and p> 1, and suppose that an+ dan S 1 - pin

for all sufficiently large n. Then, the series 2: an converges.

For the proof, we need a simple lemma:

Lemma 1 If P > 1 and 0 < x < 1, then 1 - px S (1 - x)P.

Set g(x) = px + (1 - x)P, observe that g'(x) ~ 0 and that g(O) = 1, and
conclude that g(x) ~ 1.

To see that this implies Theorem 11, observe that, with x = lin,

an + 1 S 1 _ ES (1 _ !) P = (n - 1)P
an n n nP

which is exactly bn+ llbn if bn+ 1 = 1/nP, and Theorem 6 applies.
As an illustration of the last test, consider the series

1 1 . 3 1 . 3 . 5 1 . 3 .... (2n - 1)
-+-+--+ ... + + ...
4 4·6 4·6 . 8 4·6···· (2n + 2)

The successive ratios an+ dan are i, i, "', (2n - 1)/(2n + 2) and
limn _ 00 an + dan = 1, so that the simple ratio test fails. However,

2n - 1

2n + 2

2n + 2 - 3 3
----=1---

2n + 2 2n + 2

and since this has the form 1 - pl(n + 1) with p = 1> 1, the series is
convergent by Raabe's test.

EXERCISES

I. Investigate the convergence of the following series:

1 2 3 4 5
(a) 3+ 6+ 11 + 18 + 27 + ...

1 2 3 4 5
(b) 2. - 20 + 38 - 56 + 74 - ...

1 1·2 1·2·3
(c) 3+M+~+···

1 1 . 9 1 . 9 . 25 1 . 9 . 25 . 49
(d) 4+ 4· 16 + 4· 16·36 + 4· 16· 36·64 + ...

2 Show that if2: a. converges, then 2:: a. --+ 0 as N --+ 00.

3 Investigate the convergence of2: a. where

(a) a.=~-fi,
n + 1 J

~-fi,
(b) a. =

n + 1
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3·

4 Show that in (5-8)

I
a. = 'I ~ (2 3

•
/2

)

~ 3·

if n is even

if n is odd

and that lim (a.)'/. = 2.j2/3 < 1. Apply the root test to prove the convergence of (5-8).

5 (a) Let 0 < a. and 0 < b. and a.+ ,/a. ;0: b.+ db. for all sufficiently large n. Show that if

L b. diverges, so does L a•.

(b) Prove: If0 < a. and a.+ .Ia. ;0: I - pin for some psi and all large n, then L a. diverges.

(c) Prove: If 0 < a. and a.+ dan ;0: I - lin - Aln2 for all large n, A > 0, then L a. diverges.

6 Let L a. and L b. converge, with b. > 0 for all n. Suppose that ajb. ---> 1. Prove that

7 Let {a.} l 0; show that L7 a. converges iF and only iF L7 2·a 2 , converges.

8 Show that directly that if lim._ 00 Ia. + ,Ia. I = L, then lim._ 00 Ia. 11
/. = 1.

9 Some of the following statements are true and some are false; prove those that are true, and
disprove those that are false.

(a) IfL a. and L b. converge, so does L (a. + b.).

(b) IfL a. and L b. diverge, so does L (a. + b.).

(c) If L la.1 is convergent, so is L (a.V·

(d) If L la.1 and L Ib.1 converge so does La.b•.

(e) IfL ~ a; converges, so does L ~ ajn.

"(I) If {a.} l 0 and L a. converges, then limn _ oo nan = O.

10 Show that iff ;0: 0 andfis monotonically decreasing, and if c. = ""': f(k) - r"f(x) dx, then
L "

limn _ 00 c. exists.

11 Show that if c. ;0: 0 and L c. converges, then L .j;:.ln also converges.

12 Show that if a. > 0, L a. diverges, and S. = a. + ... + a., then L ajS. also diverges, but

more slowly.

"13 Letfand/, be continuous on the interval I s x < 00 withf(x) > 0 and

('" If'(x) I dx
"

convergent. Show that the series L7f(k) and the improper integral ( f(x) dx are either both

convergent or both divergent.

"14 Show that ifL a;ln converges, then liNL~ ak ---> O.



236 ADVANCED CALCULUS

5.3 CONDITIONALLY CONVERGENT SERIES

A convergent series 2: an for which the series 2: Ian I is divergent is said

to be conditionally convergent; if 2: Ian I is convergent, 2: an is said to be

absolutely convergent. The preceding theorems show that each of the following
series is absolutely convergent.

1- t + ~ - -to + ~ - ... = i (_1)n+ l~
1 n
00 I

1 + ~ - t - i + -to + iz - ... = 2: (_1)n(n-I)/2 2n

o
00 1

I + ~ + t - -to- + -f, + -to +~ - 3b- + ... = '" (- 1)n(n- 1)(n- 2)/2 --
L n2 + Io

One may also use Theorem 2 to prove that a series having both positive
and negative terms may be divergent. For example, the series I - ~ + ~ - A +
;, - ... which has the general term

a = (_1)n+l_n_
n 4n - 3

is divergent since it is not true that limn _ 00 an = 0.
The methods given so far for testing a series do not apply to the

(convergent) alternating harmonic series

Since 2: ~ lin diverges, this series is not absolutely convergent, while

limn _ oo (- I )n+ 11ln = 0, so that Theorem 2 cannot be used to show divergence.
The next result contains as a special case the alternating series test, and is
the analog for series of Theorem 17, Sec. 4.5, dealing with improper integrals
with integrands that change sign. It is usually called the Dirichlet test for series.

Theorem 12 Let {an} and {bn} be sequences (real or complex) which obey
the following:

(5-9)

(5-10)

(5-11 )

lim an = °
2: Ian + 1 - an I converges

The series2: bnis such that its partial sums are uniformly bounded.

Then, 2: an bn converges.
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The last condition, (5-11), means that if Bn = 2:: bk , there is a number

M such that IBn I ~ M for all n. The proof of this follows a pattern
similar to that of Theorem 17 cited above; we use a discrete analog of
integration by parts, sometimes called "partial summation."

2: akbk = alb l + a2 b2 + ... + anbn
I

= alB I + a2(B2 - Bd + ... + an(Bn - Bn- d
= (al - a2)B I + (a2 - a3)B2 + ." + (an-I - an)Bn - 1 + an Bn

n- I

= anBn - 2: (ak+1 - adBk
I

Because of (5-9) and (5-11), limn_ oo anBn = 0. Since

l(ak+1 - ak)Bkl ~ Mlak+1 - akl

and (5-10) holds, the series2: ~ (ak+1- ak)Bk is convergent. These together

prove that limn _ oo 2:~ akbk exists and 2: ~ an bn converges. I

This theorem takes a simpler form when {an} is monotonic.

Corollary 1 If the sequence {an} is monotonic decreasing with limn _ 00 an = 0,

and the partial sums of2: bn are bounded, then 2: an bn converges.

2: !ak+1 - ak! = (a l - a2) + (a2 - a3) + ... + (an - an+d
I

and limn_ oo 2:~ lak+I - ak! = limn_ oo (al - an+I) = aI' so that hypothesis

is satisfied. I

A special choice of the sequence {bn} yields the usual alternating series
test.

Corollary 2 If {an} is monotonic decreasing with limn_ oo an = 0, then

2: ~ (- l)n + I an converges.

With bn = (- l)n + I the partial sums of2: ~ bn are always either 1 or 0,

and are therefore bounded. I

The following examples illustrate the use of these tests; we note that none
of the series is absolutely convergent.
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The series 1 -1 +1-*+ ... is a simple alternating series and therefore
converges. It should be noted that alternation of signs and lim an = 0 are not
alone sufficient; the partial sums of the series 1/3 - 1/2 + 1/5 - 1/22 + 1/7 
1/23 + 1/9 - 1/24 + ... are unbounded, since the positive terms form the
divergent series 1/3 + 1/5 + 1/7 + "', while the negative terms form a con
vergent geometric series - 1/2 - 1/22 - 1/23 - ....

The series I + 1/2 - 2/3 + 1/4 + 1/5 - 2/6 + 1/7 + ... converges by appeal

to Corollary 1; take an = l/n and let L bn be I + I - 2 + I + I - 2 + I +
I - 2 + "', which has a bounded sequence of partial sums.

The conditionally convergent series L~ (_I)n+ 1(I/n) is often used to

illustrate a property which is shared by all conditionally convergent series,
namely, that rearrangement of the order in which the terms appear may change
the sum or even render the series divergent. Denoting the sum of this series by S
(approximately .693), we write

(5-12)

Then

S= 1-1+1-*+~-i-+i-'"

1S = 1 - * + i- - i + -fu - fz + -h - ...
Neither the convergence of a series nor the value of its sum is altered by the
insertion or deletion of zero terms, so that

1S = 0 + 1 + 0 - * + 0 + i- + 0 - i + ...

Adding this series to the first one, we have

~S = I + 0 + 1 - 1 + ~ + 0 + i - * + ~ + 0 + ...

or, dropping the zero terms,

~S = 1 + 1 - 1 + ~ + i - * + ~ + -fi - i- + ...

If the terms of this series are compared with those of the original series
whose sum was S, it will be seen that these series are rearrangements of each
other; each term of one appears exactly once somewhere among the terms of the
other series. This emphasizes the fact that an infinite series is not merely the
"sum" of an infinite set of numbers; if we return to the view that a series
is a pair of related sequences, then we see that the two series are quite
different, having entirely different sequences of terms, and that it should not be
surprising, therefore, that they converge to different sums.

It is not difficult to see that more drastic rearrangements can convert the
alternating harmonic series (5-12) into a divergent series, or in fact into a
convergent series with any preassigned sum. This depends on three facts:

I. limn~ x 1/11 = O.
11. The positive terms of (5-12) form a divergent series 1 + 1+ ~ + i + .

iii. The negative terms in (5-12) form a divergent series -1- * - i- - i - .

Suppose we wish to rearrange (5-12) to converge to A = 10. Choose positive
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terms in order of occurrence in (5-12) until their sum first exceeds A. Follow
these by negative terms, in order, until the cumulative sum drops below A.
Continue then with unused positive terms until the cumulative sum exceeds A
again. Follow these by more negative terms until one drops below A. This
process will succeed in producing a rearrangement of (5-12) whose partial sums
shift back and forth across the assigned value A; because of (i) above, the
oscillations will decrease and the partial sums will converge to A.

Our next theorem shows that this property does not hold for a series that
is absolutely convergent.

Theorem 13 If2 ~ an is an absolutely convergent series with sum A, then

every rearrangement of)' x an converges to A.
L.." 1

Let the series') 00 a~ result from an arbitrary rearrangement of the
.:........, I

series L ~ an' This means that a~ = arn where the sequence {rn} is some
ordering of the sequence of positive integers I, 2, .... Given e, choose N

so that Lk>N lakl < e. This is possible since L lakl converges. Each of
the integers I, 2, ... , N appears once somewhere among the integers
1'1> r2' .... Choose no so that all are contained in the set {rl' r2, ... , rnJ
Write

IA - ~ a; I~ IA - ~ a. +~ a. - ~ a; I

~ IA - ~ akl +

The first is dominated by"" Iak I;if n ~ no ,then "" n a~ - "" N ak can be
L..,k>N L..,I L..,I

written as a sum of terms aj with j > N, since each term ak with k = 1, 2,

... , N already appears in the sum 2: a~. Thus, for n > no,

I
A- i a~I~L lakl + 21ajl <2e

I k>N j>N

and L ~ a~ converges to A. I

Another operation on series which can sometimes alter sums is the

removal of brackets. If the series L an has partial sums {An}' then the

partial sums of the series (a l + a2) + (a3 + a4 + as) + (a6 + a7) +
(as + a9 + alD) + ... are A 2, As, A 7, A lD , ... , a subsequence of the original
sequence An. Any subsequence of a convergent sequence converges to the same
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limit, so that any convergent series may have its terms grouped in brackets
without altering the sum. If the original series is divergent, grouping terms

may render it convergent. The series 2~ (_1)n+1 diverges, while (I - I) +
(I - I) + ... converges to 0, and 1 - (I - I) - (I - I) - ... converges to 1.

The techniques we have discussed for investigating the convergence of a
specific series whose terms are numbers are equally applicable if the terms
have variables in them; in this case, we seek the set of values which these
variables must have if the resulting series is to converge. An instance of this is

Theorem 7, where we showed that 2 xn converges exactly for those x with

Ix I < 1. Technically, what we have described is called pointwise convergence,
since we are examining the convergence of the series for each individual
choice of the variable points. (In the next chapter, we will study uniform
convergence of series of functions, which looks at such matters differently.)

Power series form the most common example ofseries that involve variables.

A general power series in x has the form 2: an xn, and a power series in

x - c (or about x = c) has the form 2: an(x - c)n. The behavior of power

series with respect to pointwise convergence is especially simple and valid
both for real and complex {an}.

Theorem 14 With any power series 2: an xn is associated a radius of

convergence R, o:-s; R :-s; 00, such that the series converges (absolutely)
for all x with IxI < R, and diverges for all x with IxI > R. Moreover,
R may be calculated from the relation

~ = lim sup Ian II/n
R n-oo

or

when the latter exists.

~ = lim Ian "!:~ I
R n-oo an

We have only to apply the root test for convergence. Let

L = lim sup Ian II/n

Then, lim sup Ian xnII/n = L IxI, so that 2 an xn converges whenever

L Ix I < I and diverges whenever L Ix I > 1. If L = 0, we see that the series
converges for all x; if L = 00, then it converges only for x = O. Setting
R = I/L,and interpreting L = 0 to correspond to R = 00, and L = 00 to

R = 0, we see that L an xn converges for all x with Ix I < R. The final

statement of the theorem comes from the fact that when lim Ian + dan I
exists, its value is always the same as lim Ian II/n. (See Exercise 8 Sec. 5.2.) I
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The corresponding facts for more general power series can be obtained

from this by substitution. The series2: an[g(x )]n may be called a power series

in g(x). If we set g(x) = y, this becomes 2: an yn. If this power series in y has

radius of convergence R, then2: an[g(x )]n converges for all x with Ig(x) I < R.

In particular, this gives the corollary.

Corollary ~f I/R = lim sup lani l/n, then 2: an(x - c)n converges for all
xwith Ix - cl < R, and diverges when Ix - cj > R.

The convergence set is thus an interval of length 2R centered at the
point c, with endpoints c- Rand c+ R, and the series mayor may not
converge at either endpoint.

As an illustration, consider the power series

(5-13 ) <. (X"~})n =1+x+2+(x+~y + ...
~ 3nJ2n + 1 3)3 9)5

If we take absolute values of the terms, then apply the ratio test, we arrive at

!~~ a~:} = !~~ h~~xllf~n:lr II ~i:n2~n! I

. Ix + 21 fin+-f Ix + 21= hm-- - -----=== = ------ -
n-oc 3 fin + 3 3

Thus, we conclude that the series converges if Ix + 21/3 < 1 and diverges if
Ix + 21/3 > 1, and we do not yet know what happens if Ix + 21/3 = I.
Rewriting these, the first becomes Ix + 21 < 3, which, for real x, is the same as
- 3 < x + 2 < 3, or - 5 < x < I. It remains to test each of the endpoints
separately. When x = 1, (5-13) becomes the series

1 1 1 1
1 +-- + - + - + ... + -===---= + ...

J3 .,/5 fi J2n + 1

which diverges (since the terms behave like n- 1/2
). When x = - 5, the series

(5-13) becomes
1 1 1 ( - l)n

1 - - ---- + --- --. - - + '" +-~= + ...
J3 J5 J7 J2n + 1

which is a convergent alternating series. We have now found the exact
convergence set for (5-13); it converges for all x with - 5 S x < I, and
diverges for all other (real) values of x.

This is typical of the behavior of many power series, except that it may be
much more difficult to decide on convergence or divergence at the endpoints.
Examples of this sort will be found in the exercises.
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Sometimes a simple substitution will simplify the work. Consider the series

(5-14) ~~ (x + I)"
L n2 (x - 3)"

1

If we set y = (x + 1)/(x - 3), this becomes L y"/n 2
, which is easily seen to

converge for all y with Iyl ~ 1. Hence, (5-14) converges exactly for those x with

1 ~1·~1x-3

This, in turn, can be written (if x "# 3) as

(5-15) Ix+11~lx-31

and since in general, Ix - bI is the distance between x and b, the relation
(5-15) is equivalent to

dist (x to -I) ~ dist (x to 3)

we conclude that (5-15) converges exactly for those x with x ~ 1.
The same techniques that work for power series are also used for other

types of series involving variable parameters. For example, let us prove the
following statement about one form of the so-called hypergeometric series:

The series

(5-16)
a a(a+l) a(a+I)(a+2)
7J + [3([3 + 1) + [3([3 + 1)([3 + 2) + ... a> 0, [3 > °

converges when [3 > 1 + a and diverges when [3 ~ 1 + a.
The term ratios are (a + 1)/([3 + I), (a + 2)1([3 + 2), and In general

(a + n)/([3 + n) so that

lim a"-t:~ = 1
n- 'X an

which indicates nothing about convergence or divergence. Raabe's test is
applicable, however, and writing (a + 11)/([3 + 11) = 1 - ([3 - a)/(11 + [3), we see
that the series converges when [3 - a > 1. If [3 - a = I, the series becomes

a a(a + I) a(a + 1)(a + 2)--- + .... +--- + ...
ex + 1 (a + I)(ct + 2) (ct + I)(ct + 2)(ct + 3)

ct ct ex ex= --- + -- + ---- + ... + .... _.. + ...
ex+1 ct+2 ct+3 ex+11

which is divergent. If [3 < 1 + ct, then the terms become even larger and the
series is also divergent.
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A somewhat more complicated example is the series

~ Si~X) = sin x + sifi~ + s~x + ...
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Lemma 2

We shall show that it converges for every value of the parameter x. Apply
Corollary I of Theorem 12 with an = I/~ and bn = sin nx; it is only necessary

to show that the partial sums of the series 2 ~ sin nx are bounded.

2"-- . k cos (x/2) - cos (n + 1-)xSill X = - -~ -------~-~-

2 sin (x/2)
1

for all x with sin (x/2) # 0.

We have

sin C)~ sin kx = sin (~) sin x + sin (~) sin 2x + ... + sin (~) sin nx

Using the identity: 2 sin A sin B = cos (B - A) - cos (B + A), this may
be written as

. (X) ,n. . (X 3X) (3X 5X)
2 Sill 2 2. Sill kx = cos 2- cos 2- + cos 2- + cos 2-

1

= cos (~) - cos ( n + ~) x

and the required relation follows. I

It is now clear that the partial sums of 2 ~ sin (nx) are bounded by

1/ Isin (x/2) I, so that Corollary 1 of Theorem 12 applies and L ~ (sin nx)/~

converges for all x except possibly those for which sin (x/2) = 0. However,
these are the values X = 0, ±2n, ... , and the series is clearly convergent for
these also.

EXERCISES

t Investigate the convergence of the following series:

232 123 2 I
(a) - + - + - + - + ..

1 234 567 8
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1 1 1 1 1 1 1 1 1
(b) 1 + --- _ .. -- + - + -----= -- +-- +--~_~ - -- + -ccc + .. ,

j3 fi J5 )7 j4 j9 )11 j6 )13

2 Determine the values of the parameters for which the following series converge,

r 4r 2 9r3 16r4

(a) + --- +- + -- + ...
2 9 28 65

(b) 1 + ~ + 2x
2

+ ~~)X3 + F.3 . 4)x
4

+ ...
3 9 27 81

"x. (x + 2)"
(c)"'_c~

... n)n+ 1

,c<. (x _ 1)2n

(e) :"' ---
.:- n2 3n

1

,x. ({In)"
(g)" --

.:- n!
I

~ (2n)!xn

(d) L n0!/
1

(11) a{J + a(a_+I){J({J + I) + a(a + l)(a+2){J(fl.~I)({J +~) +'"
.,' 2' ;-(;, + I) 3! ;'(;' + 1)(;' + 2)

, ;. xn(l. _ xn)
(I) ,,--
~ 11

" )n(k) ,,--
... (11 + 1)(2x + 3)"

x

(m) "'. sin (,\)
~ 11

I

~, nxn

(j) ~ n3 + x 2n

I

~, 1 [x + 1 jn
(1)"')11 2x + 1

3 Show why the following two statements are false.

(a) If=:: an converges, and lim Cn = 0, then 2 an en converges,

(b) If "" bn converges, and limn_x an/bn = I, then "" an converges,
~ ~

4 Show that the sum of an alternating senes lies between any pair of successive partial sums,
so that the error made in stoppmg at the 11th term does not exceed the absolute value of the
next term,

S Determine the radius of convergence of the fJllowing series:

(a) '" /1! xn

(c) "" en'xn where 0 < x < x

(b) ~. 11' xn
_l1n

1

6 Determme the radius of convergence of each of these power series:

(a) "" II(X - I)" ". II
(b) ~ 11 2 + I x

n

I
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(c) .z~ n - I (x + 2)n
...... n + I

I

7 Formal algebra yields the expression:

p(p - I) (P)(I + xy = I + px + -2- x2 + ... + n xn+ ...

Show that this series converges for any x, Ix I < I, and any p > O.

8 Discuss the convergence of the series: 2::= I (Ijfi)(x + I)nj(x - 3)".

9 Suppose that there is a sequence of points {Pnl such that IPn+ I - Pn I S Cn' where 2::= I Cn is

convergent. Show that Iimn_", Pn exists.

to It was pointed out in Sec. 5.2 that there is an analogy between improper integrals

(f(x) dx and the infinite series ~:= I an in which f(x) corresponds to an' The analog of f'(x)
"

is an+I - an' Justify this statement by comparing the Dirichlet test for series (Theorem 12)
with the Dirichlet test for integrals (Theorem 17, Sec. 4.5).

II Using Exercise 10, what is the analog for improper integrals of Theorem I on telescoping
series?

12 Is there an analog for improper integrals of Theorem 2 for series?

5.4 DOUBLE SERIES

The analog of an improper double integral is a double series LL aij' There

are several possible and acceptable definitions for convergence of double series.
We select a simple one which is often used.

Definition 4 The double series LL aij converges to the sum A if and

only if for any f. > 0 there is a number N such that

i=n j=m

A - ';' "\ a ..
LL 'J
i= I j= t

whenever n ~ Nand m ~ N.

<f.

If we arrange the terms aij in a square array with aij in the ith row and jth
column,

all al2 a l3

a21 a22 a23
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we see that this definition amounts to summing 22 aij by rectangles. As

with single series, the behavior of series with positive terms is particularly

simple, and comparison theorems may be proved. Again, if L2 laijl con-

verges, so does 22 aij; such a series is said to be absolutely convergent,

and it can be shown that an absolutely convergent series can be arbitrarily
rearranged without altering its convergence or its sum. In particular, any

absolutely convergent double series22 aij can be rearranged as a convergent

single series

One immediate application of this observation is the following important
theorem dealing with multiplication of absolutely convergent single series.

Definition 5 The Cauchy product of the series 2~ an and L: bn is the

series 2: cn' where

(5-18 )

(5-19)

The motivation for this definition comes from the study of power series.
If we treat power series simply as infinite-degree polynomials and use the same

algebraic rules for them, then the product of 2: an xn and L: bnxn will

produce a new power series, which will turn out to be 2: Cn x n
, where cn is

given by (5-18).

ao + a1x + a2 x 2 + a3 x 3 + a4 x 4 + .
bb + b1x + b2 x 2 + b3 x 3 + b4 x4 + .
aobo +(aOb 1-+ alb~+ (aOb;-+~lbl+a;b~)~i + ...

If we leave the parentheses in and set x = 1, we arrive at the definition (5-18)
introduced by Cauchy.

The following result justifies this definition.

Theorem 15 Let 2: an and L: bn be absolutely convergent, with sums

A and B. Then, their product series

L Cn =L (aobn+ a1bn - 1 + ... + anbo)
o 0

is absolutely convergent with sum AB.
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m

(5-20)

L L laijl =L lail L Ibjl
i=Oj=O 0 0

so thatL:L ~ Iaij I is a convergent double series. The seriesL:L: aij
is then absolutely convergent, and its sum is

i=n j=m PI m

lim L L aij = lim L ai lim L bj

~:: i=O j=O n-oo 0 m-oo 0

= AB

Rewriting the double series as a simple series, and inserting brackets, we
have

This theorem is also true if one of the series L an or L bn is absolutely

convergent and the other is conditionally convergent. A proof of this, together
with many other refinements and additional results, may be found in special
treatises on the theory of infinite series. Mere convergence is not enough, as
the following example shows.

Consider the convergent alternating series (for n 20)

1_L +L _~ + ... + J-l)n + ...
.j2 J3 ~4 -In + 1

and form its Cauchy product with itself, according to the scheme (5-18);

call the resultL cn • We find that the signs of this new series alternate and that

1 1 1 1 1
(5-21) Icnl = ---=--c-'C + ---_- + --c-c"'--~ + ... +---+--=

~+ 1 ~2~ J3-1n-1 ~.j2 In+ 1

However, calculation suggests that Cn does not approach O. In fact, an easy
estimate shows that Icnl > 1 (Exercise 1). Thus, (5-20) is a convergent series
whose Cauchy product with itself is divergent!

The series analog for iterated integration is iterated summation, such as in

"",' x_ ("" x_ ank ), which is interpreted to mean
Ln-I Lk-I

(5-22) where An = ~ ank

k=1
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When the terms ank are positive, the following result on reversal of order
of summation is often used.

Theorem 16 If ank Z 0 and """ 00_ {""" 00_ ank} converges to S, thenL..,n-1 L..,k-1

L:= 1 {L:= 1 ank} also converges to S.

The hypothesis asserts that each of the series L:= 1 ank = IXn is con

vergent, and that S =L ~ IXn · For any k, ank ::5: IXn; invoking the com

parison theorem, L:= 1 ank converges to a sum 13k for k = 1, 2, .... Take

any integer N and write

N 00 00

L 13k = 131 + 132 + ... + 13N = Lan. 1 + ... + Lan. N
1 n=1 n=1

00

= L {an. 1 + an. 2 + ... + an. N}
n= 1

00

::5: L IXn = S
n= 1

Since this bound is independent of N, L ~ 13k converges with sum less

than or equal to S, and we have proved that

We could now start over again with the series on the left, and obtain the
opposite inequality; this shows that the two sides are actually equal. I

This result need not hold if the term ank are not all positive. In the array
given below, the sum of the nth row is 1/2n

, so that

~, l~, a..1~ ~. 1/2" ~ 1

However, the sum of the kth column is 1/2k - 1, so that

This shows that the bookkeeper's check may fail for infinite matrices of numbers,
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unless all the entries are nonnegative. The array is:

1 1 0 0 0 0-'1

0 I 3 0 0 0 0-"4

0 0 1 7 0 0 0
[ank ] = --g

0 0 0 1 15 0 0-TO
0 0 0 0 1 31 0-n-
.............................................

EXERCISES

1 Verify (5-21), and show that lenl > 1.
2 Form the Cauchy producl of the following series:

I + 2 + 4 + 8 + 16 + 32 + ...

1-1+1-1+1-1+1-1+'"

and find a formula for the coefficients of the resulting series.

3 Find a formula for the coefficients of the Cauchy product of the series 2~ An and 2~ Bn.

4 If2~ anxn = (2: xn)(2: x 2n ), what is an?

5 Define the sine and cosine functions by

sin (x) = S(x) = 2 (_I)"x 2n + '/(2n + I)!

o

cos (x) = C(x) = 1+2 (-I)"x 2n/(2n)!
o

Show that sin (2x) = 2 sin x cos x directly by multiplying power series.

6 For which values of rand s does the double series 22:. n~' rnosn converge?

7 For which values of x does the following double series converge?

m.n= 1

8 Investigate the convergence of the series 22:n=' I/(n + 3)2k.

9 Consider22 ail and JJ f(x, y) dx dy, where f(i,j) = aij' Formulate a correct version of the

integral test for double series.

10 Investigate the convergence ofL2:.n~' 1/(m2 + n2
).
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5.5 SOME SUMS

While it is enough in some cases to know that a series Lan converges, it is

often more important to know something about the value of its sum. We know

that L ~ 1/n2 converges. Denote its sum by C; convergence implies that C is

almost equal toL71/n2 if N is large enough, but how large must we take N to

calculate C to a specified precision?
A reexamination of the integral test will help here. If an Z °and f is a

n+1

decreasing positive function withf(n) = an, and bn = r f(x) dx, then as in
• n

00

the proof of Theorem 10, an+ I ~ bn and L~ bn = f .f, and therefore
I

(5-23 )

and

(5-24)

00 00

L an ~ a I + JI f (x ) dx
I

00L an ~ f f(x) dx
n"N+I N

Applied to L l/nP, p > 1, these estimates are

(5-25)

(5-26)

L
oo

1 1
-<1+-
nP - p - 1

I

. "1000
These tell us that the number C obeys C ~ 2, and that the filllte sum L I 1/n2

will differ from the exact value of C by not more than .001. (We will find out
later how accurate these estimates are.)

Similar remarks apply to divergent series. While it may be enough some-

times to know that 2: an diverges, at other times one may need to know how

fast it diverges-e.g., how rapidly AN = L7ak approaches infinity, in a case

where an Z 0. For example, the harmonic series L l/n diverges. Calculation
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shows that
50

L ~ = 4.499 205 ...
1

100

L ~ = 5.187377 ...
1

500 1L ~ = 6.792823 ...
1

Since the series diverges and has positive terms, we know that the partial
sums must exceed 100 eventually. How many terms must we use to achieve
AN > 100? Again, the proof of the integral test suggests a way to estimate this.
As before, iffis continuous for 1 :'S: x < 00 and is positive and decreasing, then

m+1

f(m + 1) :'S: f f(x) dx :'S: f(m)
Om

n-I

so that
nL f(k) :'S: f f(x) dx :'S: Lf(k)

2 1 1

and

(5-27)
n n

f(n):'S: L f(k) - Lf(x) dx:'S: f(l)
1

Applying this, for example, to the seriesL ~ lin, we see that

n 1Lk = log n + Cn

1

where 0 < Cn :'S: 1. (In fact, limn _ oo Cn exists, by Exercise 10, Sec. 5.2.)
Applied to our case of the harmonic series, we see that AN > 100 if

log N > 100, or N > e100
, which is about 2.69 x 1043

. (R. P. Boas has informed
us that the first value of N for which AN > 100 is

1509 26886 22113 78832 36935 63264 53810 14498 59497

which is smaller, being 1.509 x 1043
.)

If we analyze the relationship between partial sums and related integrals
more carefully, we can obtain a result that is useful in estimations.
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Theorem 17 Letf E en withf(x) 2: O,f"(x) ~ Ofor 1 ~ x < 00,

Let an = f(n)for n 2: 1, and set

n n

Sn = L ak - Lf(x) dx -1/(n)
1

Then, {Sn} is a bounded sequence,. specifically,

(5-28) /(1) -1f(2) ~ Sn ~ 1/(1)

Before proving this, let us use it to obtain a standard estimate. We will
find an approximation for the value of n! which is useful when n is large.

Observe that log (n!) = L: log k. Apply the theorem with f(x) = log x, and

we find

n

(5-29) Sn = log (n!) - f log (x) dx -110g n
1

= log (n!) - n log n + n - 1 -110g n

where -1 log 2 ~ Sn ~ O. We can rewrite (5-29) as

(5-30)

(5-31 )

where Cn = exp (1 + Sn), and where we have

e
1.922 < fi ~ Cn ~ e = 2.718 ...

(In Sec. 6.5, it will be found from a different estimate that the sequence {Cn}
converges to J21t; this fact, together with (5-30), is called Stirling's formula for
factorials. )

This formula is often useful in working with series whose coefficients involve
factorials. Consider

1 + (1)(1' 2) x + (1 '2)(1' 2 . 3· 4) x 2 + .. ,+ n!(2n)! xn+ '"
(1'2'3) 6! (3n)!

We can use (5-30) to estimate the size and behavior of the coefficient of xn,

writing

n! (2n)! (nne-njn)[(2n)2ne-2n~] enc2n
(3n)! = (3n)3ne-3n~ .~

= ( n
3n

e- 3nn2
2n

) (fiCn C2n ) ~ n(~)n
n3ne-3njn33n j3C3n jn 27

Returning to the series, this tells us that it converges for Ix I < 1(- and that it
diverges at each endpoint, since the series there becomes one whose nth term
is like jn or ±jn, and thus does not approach O.
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The proof of Theorem 17 starts with several simple geometric observa
tions. Sincer is negative, f' is decreasing for <Ill x > I. Since f remains
positive. f' can never be strictly negative; thus, f'(x) ~ 0 and f itself is
increasing (Exercise J I, Sec. 3.2). Also. Fi~. 5·1 makes plausible the following
(which W<lS proved us Exercise 13. Sec. 4.2.):

(5-32) I _ -' (a+h)Ih - al(f(a) +1(1,)) ,; I I,; (b - a)1
2 'a 2

For any 11 ~ 1. we have

~ 2 3 ~

r/~r/+r/++rl
• l • I • 2 • ~- I

The left side of (5-32) gives

I k+ l

2 (f(k) +Ilk + I))'; J. I

so that adding Ihese.

I I .~

1(1)+/(2)+/(3)+---+/(,,-I)+2/(a),;1 I2 _,

and if(k)'; (I + ~ f(,,) + ~ 1(1),
This proves the right side of (5-28).

To complete the proof of the theorem, two cases must be considered.
Suppose first that II is odd. Write

.~ .3 .5 . ~

I/~I/+I/++I I
• I • I • J • ~- 2

From the right side of (5-32). we have

,
r 1,;2/(k-l)
. t- 2



254 ADVANCED CALCULUS

which yields at once

(5-33 )
, nI f ~ (2)(.f(2) + f(4) + .. , + f(n - I))

, 1

Alternatively, we can write

.n ,2 ,4,6 ,n-I.n

1 f=1 f+1 f+1 f+'''+1 f+1 f
'I 'I '2 '4 'n-3 'n-I

,2 ,n

~ (2)(.f(3) + f(5) +," + f(n - 2)) + I f + I f
, 1 ' n- 1

Adding this to (5-33), we arrive at

,n n-,I ,2 ,n

2J/~2L f(k)+J1f+J
n
_/

2

U sing the fact that f is increasing to estimate the integrals, and including
the termsf(l) andf(n) in the sum, we obtain

n n

2 .1'/ ~ 2L f(k) - 2f(l) - 2f(n) + f(n) +f(2)
1

which yields

(r + 1f(n) - ~ f(k) ~! f(2) - f(1)
'I 2 L- 2

1

and we have proved the left half of (5.28) when n is odd, When n is even,
the argument is almost the same, using

, n ,2 ,4 , n

1 f=1 f+1 f+'''+1 f
, 1 ' 1 ' 2 ' n- 2

and
,n ,3 ,5 ,n-I ,n

I f= I f + I f + '" + I f + I f
'I 'I '3 'n-3 'n-I

to end with the same estimate. I

A very similar estimation theorem can be proved if.f"(x) is positive (see
Exercise 8), Something similar can also be done with double series (see
Exercise 11),

At times, a very different process is used to obtain estimates for the sum
of a convergent series, It is usually referred to as "acceleration of convergence,"
since it is a method which replaces the given series by another whose terms
tend to 0 faster, and for which a numerical estimate can be obtained by a
partial sum involving fewer terms. The method depends on finding another
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series whose sum is known and whose terms are similar in size to those of the
given series.

As an illustration, consider the series 2: ~ I/n 2
, whose sum we denoted

earlier by C. Write

I n+l n 1
;;2 = n2 (n+0 = n2(n-+0 + n2 (n + 1)

I 1
= ~~- + ---:---

n(n + 1) n2(n + 1)

Accordingly,

The first series on the right is recognized as a telescoping series

L ~ [lIn - I/(n + I)], convergent to 1. Hence, we have replaced the original

series by one whose terms, being cubic in n, decrease more rapidly:

This process can be repeated again, to accelerate the convergence of the new
series. We have

1 n + 1 1 2n + 1 1 1
~- ~---- = --~~ = -~---- + - ---~-
n2(n + 1) n2 (n + qz 2 n2(n + 1)2 2 n2 (n + qz

and noting that

2n + 1
;?(n + 1)2

we find

(Since the first series telescopes.) The last series converges more rapidly than

the original series, since the terms decrease like n- 4
. The number C = 2: ~ I/n 2
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has now been shown to be

(5-35)

and nine terms of this gives C ;:::: 1.644767731.
Kummer replaced this ad hoc procedure by a systematic technique,

described in the following statement.

Theorem 18 Let.2: an converge, and let.2: bnconverge with sum B; suppose

also that lim a,jbn = L. Then, .2: ~ an = BL + .2: ~ Uk ak, where Uk =
1 - Lbk/ak.

The point of this result, whose proof is left to the reader, is that Uk --+ 0;
thus the new series converges more rapidly than the original series. The chief

difficulty in using this result is in finding a convenient series.2: bn with a known

sum B whose terms {bn} behave enough like those of the original series {an} so

that lim a,jbn exists. As illustrated in the examples, .2: bn is often chosen as a

telescoping series for this reason.
Simple algebraic ingenuity is often the key in evaluating the sum of a

series. Here is a sample from the early years of the subject. We will show the
following:

(5-36)
oc 1 25

.2: n2 - 4 = 48
n=3

Our first step is to write out the first half dozen terms in factored form.

11111 1 1 1
M + 2 . 6 + 3 . 7 + 4· 8 + 5 . 9 + 6 . 10 +~ + 8 . 12 + ...

We next observe the following:

1 = G-~) + G-~) + (~-113) + ...

4 4 4 4 4
= M + 5·9 + 9· 13 + 13' 17 + 17·21 + ...

This suggests the next observation:

~ = U-~) + (~- 1~) + C~ -1~) + (1~ -'"
4 4 4 4

= 2 . 6 + 6 . 10 + 10· 14 + 14· 18 + ...
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Comparing these two series with the terms in (5-36), we try two more tele
scoping series, H- i) + (i - -Ir) + ... and (! - M+ (~ - -b) + "', and thus
obtain

oc _1__ ~ (1 ~ ~ ~) _ 25.2 n2 - 4 - 4 + 2 + 3 + 4 - 48
3

Several other equally simple procedures for estimating the sum of a series
will be found in the exercises.

We end this chapter with a computation of the exact value of the number
C, showing that C = n2/6 = 1.644 934 06... ; however, this computation is done
in the spirit of the eighteenth century, rather than of today. We leave it to the
reader to evaluate the rigor of the method. (That the answer is indeed correct
will be shown rigorously in the next chapter, Sec. 6.6.)

We borrow a result which may be familiar from elementary calculus, but
if not, will be shown in the section on power series in the next chapter,
namely that

x 2 x4 x 6

cos X = 1 - - + - - - + ...
2 4! 6!

We also record a fact dealing with the roots of polynomials: If P(x) has roots
131,132' ... , 13m' none 0, and we write

P(x) = (131 - X)(132 - x) ... (13m - x)

= aO + alx + a2X
2 + ...

then ao = 131132133 '" 13m

and -a l = 132133'" 13m + 131133134135 ... 13m + 131132134'" 13m
+ ... + 131132 ... 13m-1

Thus,

(5-38)

We next observe that cos x = 0 if and only if x = ±n/2, ±3n/2, ±5n/2, ....
Hence, the roots 13k of cos~ = 0 are exactly n2/4, 9n 2/4, 25n 2/4, .... From
(5-37), we have

1 1
cos~ = 1 - - x + - x 2

- ...
2 24

Comparing this with P(x), we see ao = 1 and al = -l Hence, by (5-38),
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from which we conclude that

n2 1 1 1
-=1+-+-+-+'"
8 9 25 49

1 1 1 1 1 1
C = 1 + 4: + <) +16 + 25 + 36 + 49 + ...

n2 1 1 1 1
=-+-+-+--+--+ ...

8 4 16 36 64

n2 1
=-+-c

8 4

from which we find ic = n2/8 and C = n2/6. Thus, we are led by the "calcula
tions" to write

(5-39)
6

1 1 1
1 + - + - +-- + ...

4 9 16

(although perhaps this argument did not convince you!)

EXERCISES

I Since L: ~ l/(n log n) diverges, limn_ex; L:: l/(k log k) = 00. How many terms must be taken

before the partial sums exceed 1O?

2 Estimate:

(a)L:Jk L:
: log k

(b) -
k

1

(e) L: (logW

3 A mobile is to be made from 50 uniform sticks of length L by hanging each by a thread
1 inch long and of negligible mass from the end of the stick above it (see Fig. 5-2). When all

I
R "I

I
1

I
I
I
I
I
I
I
I
I

I
L "I

I

Figure 5-2 A balanced mobile.
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are balanced In a horizontal posItion, the whole is supported by a thread from the top stick to
the ceiling. How much space must be allowed for the rotation of the mobile?

4 Apply Exercise 4, Sec. 5.3, to show that the number S = .2 ~ (- 1)"/(11 + 1)2 lies between .818

and .828. (Remark The average of two successIve partial sums of an alternating series is often
very accurate; In this example, two such sums are .8179 and .8279, and their average is .8229,
while the true value of Sis 7t

2/12 = .82246703···.)

5 Estimate the sum of each of the following series, accurate to .005:

(a) ~ (-1)"11/10"

x

.2 I
(b) (_1)"+1

11 3

I

6 Decide how many terms of the series .2 ~ (- 1)"+ l(l/J~) would have to be used to be sure

of an estimate for the sum, accurate to .005.

7 Letf(x) 2 O,f'(x) 2 O,r(x) 2 0 for I s x < 00. Show that

Os')'" f(k) - (f - if(ll) - if(l) S H'(Il) for 11 21.
...... 1 '1

8 Letfbe of class C" on I s x <x, with f(x) > O,f'(x) < 0, r(x) > O. Suppose that the series

"> oc f(ll) converges. Using the same ideas as those of Theorem 17, prove that
L., 1

o s 2: f(ll) - JN

X

f(x) dx - if(N) s if'(N)
N

,.N "N9 Apply Exercise 7 to estimate the sums 2... 1 e and L I k3
, then compare these estimates with

the exact values. (The latter can be found by induction.)

10 Show that L; 1/(112 + 311 - 4) = 137/300.

II Apply Exercise 8 to estimate the sum of the series .2 ~ (-1)" + 1(l/J~) within .005 by grouping

terms in pairs, choosing
I I

f(x) = ;::c--- - h:.
v' 2x - I v' 2x

[You will have to select N, apply Exercise 8, and make a separate calculation for .27- I f(Il).]

. ;; (31l)!
12 DISCUSS the convergence of 2 ---'3 x"

"= I (Il!)

13 In Exercise I(e) and (d), Sec. 5.2, rewrite the terms of the series using factorials and use (5-30)
to determine convergence or divergence of the series.

14 Show that the sum of the double series in Exercise 8 Sec. 5.4 is exactly 7/24.

15 Approximately how many points p = (m, 11), with m and 11 integers larger than 0, obey
Ipl s R?

16 Show that a reasonable value for this unending product is 1/2.

17 What IS a reasonable value to assign to the unending expression:



CHAPTER

SIX

UNIFORM CONVERGENCE

6.1 PREVIEW

This chapter and the one to follow involve a noticeable increase in mathematical
sophistication and rigor. As motivation for this, the chapter begins with a
number of paradoxical examples in which a reasonable procedure is shown
to yield an incorrect answer. Each time, the procedure involves the inter
change of two limiting operations.

The main theme of most of the chapter is "uniformity," treated first for
series and sequences, and later, in Sec. 6.4, for improper integrals. A series
of functions that is uniformly convergent turns out to behave far more
rationally than one that is merely pointwise convergent. Thus, one can
integrate termwise, take limits under the summation sign, etc. The power of
this is shown by sketching a proof of the Tietze extension theorem (for sets in
n-space) and by constructing a standard example of a continuous function that
is everywhere nondifferentiable.

An important part of Sees. 6.3 and 6.4 are the illustrations of useful
techniques for evaluating integrals and summing power series. In the same
spirit, Sec. 6.5 (which is not essential for later sections) treats the gamma
and beta functions, and contains a derivation of Stirling's formula to illustrate
how one may estimate the asymptotic behavior of a typical improper integral.

Finally, Sec. 6.6 contains an introduction to the study of general orthogonal
expansions and Fourier series, presented as a study of the space of continuous
functions with a notion of convergence different from pointwise or uniform.

260
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6.2 SERIES AND SEQUENCES OF FUNCTIONS

In the last chapter, we discussed the convergence of series whose terms
involved one or more parameters or variables. In essence, we were there
dealing with a particular notion of convergence of a series of functions which
can be formalized as follows.

Definition 1 Let each of the functions Un be defined for points of a set D.

Then the series 2: un is said to converge pointwise on a set E c D if and

only if2: un(p) converges for each p'E E.

If we denote the sum of 2: un(p) by F(p), then we say that 2: Un con

verges pointwise to F on E. For sequences, a similar definition is used; {In}
converges pointwise to F on E if for each point pEE, limn_ oo fn(P) = F(p).

There are also a number of other important and useful notions of con
vergence for series and sequences of functions; before introducing these, let
us observe some of the shortcomings of pointwise convergence. Each of the
following examples represents a plausible, but unfortunately invalid, argument
dealing with series or sequences of functions.

Consider the series

00

(6-1) 2: x(l - x)n = x(1 - x) + x(1 - X)2 + ...
1

Standard techniques from the last chapter show that this converges for each
x with 0 S x < 2. For these values we denote the sum of the series by F(x).
We also note that (6-1) converges for x = 0, and thus F(O) = O. We pose the
following question:

(6-2) What is the value of lim F(x)?
x I 0

Examining (6-1), we note that limx _ o x(1 - x)n = O. This means that if we
were to let x approach 0 in the series in each term, separately, we would
obtain the series 0 + 0 + 0 + .... Is this argument valid? Can we find the limit
of a function defined by a series by taking the limit termwise?

In this example, the answer is "no." To explain this, we calculate F(x).
We have, from (6-1),

F(x) = x(1 - x) + x(1 - X)2 + x(1 - xp + ..
= x(1 - x){1 + (1 - x) + (1 - X)2 + }
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and summing the geometric series, we have

1
F(x)=x(l-x) (1 )= I-x

1 - - x

so that the correct value for limx ~ 0 F(x) = 1, not O.
Our second example is the following. Consider the series

(6-3)

This converges for every x, 0 :S x < 00, since

nx2 nx 2 x 2

~-~<-=-
n3 + x 3 - n3 n2

and 2: x2/n 2 converges. Again, let F(x) denote the sum of (6-3). This time,

we ask:

(6-4) What is lim F(x)?

If we look at the behavior of each term of the series separately, we find
lim._ oo nx2/(n 3 + x 3 )= O. Thus, termwise, the series for F(x) approaches 0,
suggesting that the answer to (6-4) is the number O. This again is false, as
seen thus.

Take any x > O. Then, for any n with x/2 < n < 2x,

nx2 (x/2)x 2 1
~--.>-;-::-,~~~

n3 + x 3
- (2X)3 + x 3 18

In the series for F(x), there are therefore (2x) - (x/2) terms, each larger than
-fg, so that since all the terms of the series are positive, F(x) 2 (3x/2)(-fg) = x/12.
Since this is true for any x,

lim F(x) = 00
xtoo

For the third example, consider

(6-5) 2:[(n + l)x - n]x· = (2x - l)x + (3x - 2)x2 + ...
I

Calling the sum of this F(x), what is limx _ 1 F(x)? Termwise, we obtain
1 + 1 + 1 + 1 + ... , which strongly suggests that limx _ 1 F(x) = 00. However,
if we expand each term of the original series, we obtain

(2x 2
- x) + (3x 3

- 2x 2
) + (4x4

- 3x2
) + ...

which is a telescoping series whose partial sum is - x + nx·, and which
therefore converges to F(x) = - x for all x, Ix I < 1. Accordingly,

lim F(x) = -1.
x-I
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The next two examples involve differentiation and integration. Consider
the series

(6-6)

which converges for all x (absolutely). If we differentiate termwise, we obtain
the supposed equality

00

.2 cos (n 2x) = F'(x)
1

However, the truth of this is dubious, since the series can be seen to be
divergent for every choice of x. (The terms do not approach 0.)

Finally, we propose to calculate the value of

(6-7)
1

lim Jn2xe- nx dx
"-00 0

For any choice of x, n2xe- nx approaches 0 as n increases, since enx grows so
much faster than n2

. Thus, the integrand approaches 0 pointwise for all x,
os x S 1, and one might conclude that the value of the limit (6-7) must be O.
However, if we put u = nx, the integral becomes

r"ue- u du = 1 - (n + l)e- n
-+ 1

• 0

All these paradoxical examples involve the reversal of two limit processes.
In the first, for instance, we were concerned with the possible equality of

(6-8) and

In the last two examples, this may not be so apparent, but integration and
differentiation both involve hidden limit operations.

In circumstances such as these, the notion of uniform convergence of series
or sequences of functions is especially useful. To simplify the discussion, we
introduce a special notation. If f is a function which is defined on a set E,
then II filE will denote the least upper bound of the set of values If (p) I
for pEE; when f is continuous on E and E is closed and bounded, this is
the maximum value of If(p)1 on E. Iff and g are both defined on E, then
Ilf - gilE is a measure of the distance between f and g over the set E. If
Ilf - gilE < e, then If(p) - g(p)1 < e for all pEE so that f approximates g
within e uniformly on E (see Fig. 2.5).

Definition 2 A sequence of functions Un} is uniformly convergent to a
function F on a set E if and only if limn_ oo IIF - fnllE = O.
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Figure 6-1 Nonuniform convergence.

If we restate this without using the special notation, it becomes: {In} con
verges to F uniformly on E if and only if for any E there is an N such that
for any n 2 N and any pEE, IF(p) - fn(P) I < E. If a sequence {In} is uniformly
convergent on a set E, then it is certainly pointwise convergent
for at least all points of E. However, it may converge pointwise on E and not
uniformly on E. Examine again the sequence

fn(x) = n2xe- nx

As we saw, this sequence converges pointwise to 0 on the interval E = [0, l]'
The convergence is not uniform on E. The maximum of fn on E occurs for
x = lin and is fn(l/n) = nle, so that limn _ oo 11f"IIE is not O. This behavior is
also evident from the graphs of the functionsfl,f2' ... (see Fig. 6-1). The
definition of pointwise convergence can also be given as follows: {In} converges
to F pointwise on E if and only iffor any e > 0 and any point pEE, there is
an N such that whenever n 2 N, IF(p) - fn(P) I < B. Comparing this with the
corresponding definition of uniform convergence, we see that the essential
difference lies in the fact that in uniform convergence, N depends only upon B,
while in pointwise convergence, N depends upon both Band p.

Uniform convergence of series is defined by throwing it back onto the

sequence of partial sums: 2~ Un converges to F uniformly on E if and only if

{In} converges to F uniformly on E, where fn =2: Uk' An alternative statement

is: 2 Un ~onverges uniformly on E if and only if2 Un converges pointwise on

E and limn _ 00 112: Uk II E = O.



UNIFORM CONVERGENCE 265

It is often convenient to adopt the viewpoint that functions defined on a
common set E can be regarded as geometric points in what is usually called
function space, and that the metric, or measure of distance between points, is
given by lif- giIE' This enables us to use geometric terminology and analogy
to help motivate concepts and calculations. For example, a sequence of functions
f" is said to have the Cauchy property uniformly on a set E if for any £ > °
there is an N such that 11f" - fm/IE < £ whenever n 2 Nand m 2 N (see
Sec. 1-6). As before, this is often written limn, m-oo IIIn - fmllE = 0. Any uniformly
convergent sequence has the Cauchy property; for, if {In} --+ F uniformly on
E, then for any point pEE,

Ifn(P) - fm(P) I = If",(p) - F(p) + F(p) - fm(P) I
:-s; IIIn - FilE + IIF - fm/IE

so that limn,m_oo lifn - fmllE = 0. The converse also holds.

Theorem 1 If limn, m- 00 1/ f" - fm liE = 0, then there is a function F to which
the sequence {In} converges uniformly on E.

Since If,,(p) - fm(P) I :-s; I/In - fmllE for each point pEE, {f,,(p)} is a
Cauchy sequence of numbers and is therefore convergent. Define F by
F(p) = limn_ oo f,,(p). F is then the pointwise limit of fn on E. To show
that the convergence is actually uniform, take any pEE and write

IF(p) - fn(P) I = IF(p) - f,,(p) + fk(P) - fn(P) I
:-s; IF(p) - fk(P) I + Ifk(P) - f,,(p) I
:-s; IF(p) - fk(P) I + 11f" - fnllE

Given £ > 0, choose N so that Il.h - fnllE < £ whenever n 2 N, k 2 N. For
each pEE, limk _ oo fk(P) = F(p); we may then choose k larger than N
and dependent upon p and £, so that IF(p) - fk(P) I < £. Making this
choice of k in the inequality above, we have

IF(p) - f,,(p) I < £ + £ = 2£

holding now for each n 2 N and each point pEE. Hence,

!IF - f"IIE < 2£

for all n 2 N, and {f,,} is uniformly convergent to F on E. I

In the language of Sec. 1.7, the space of functions is complete with respect
to uniform convergence; for series, the corresponding statement is the following.

Corollary If limn, m-ce ilL ~ Uk II E = 0, then L Uk is uniformly convergent

on E.



266 ADVANCED CALCULUS

The simplest and most useful test for uniform convergence is the following
comparison test, also called the M test.

Theorem 2 (Weierstrass Comparison Test) If IlukllE ~ M k for all k, and

2.: ~ M k converges, then 2.: ~ Uk converges uniformly on E.

For any pEE, Iuk(p) I ~ M k, so that by the simple comparison test

(Theorem 5, Sec. 5.2), ~ ~ Uk(P) converges pointwise on E. Estimating

the tail of this series, uniformly, we have 12.:: Uk(P) 1~2.:: Mk for all

pEE, and thus limn _ oo 112.:: Uk II E~ limn _ oo 2.:: M k = 0, proving uni

form convergence of 2.: Uk on E. I

As an illustration, 2.: ~ sin (nx)/n 2 converges uniformly for all x,

- 00 < x < 00, since Isin (nx)/n21 ~ 1/n 2 and 2.: 1/n2 converges.

We take up next a very important property of uniform convergence.

Theorem 3 If {In} converges to F, uniformly on E, and each function fn is
continuous on E, then F is continuous on E.

We prove that F is continuous at an arbitrary point Po E E. Given
8> 0, first choose N so that /IF - fN/IE < 8. For any point P in E we
may write

IF(p) - F(po)! = IF(p) - fN(P) + fN(P) - fN(PO) + fN(PO) - F(po)!

~ IF(p) - fN(P) I + IfN(P) - fN(PO)! + I!N(PO) - F(Po)1

~ 211 F - fNllE + IfN(P) - fN(PO) I
~28+ IfN(P)-fN(Po)1

Since fN is continuous on E, we may now choose 15 so that
IfN(P) - fN(PO) I < 8 whenever pEE and IP - Po I < J. We thus obtain

IF(p) - F(Po)1 < 38

whenever pEE and Ip - Po 1< 15, proving that F is continuous at Po· I

Stated for series, this becomes:

Corollary If each of the functions Un is continuous on a set E, and 2.: Un
converges to F uniformly on E, then F is continuous on E.

Theorem 3 and its corollary can also be described in topological terms.
Let <f? be the class of functions f that are continuous on E. Then, Theorem 3
states that the set <f? is a closed set in the space of all functions on E.
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The corollary also has another interpretation that is related to the examples
with which we started this section, for an equivalent statement is

00 00

and this has the same meaning as (6-8), dealing with the interchange of limit
operations.

Returning to the examples which opened this section, the series in (6-1)
was a series of continuous functions, but its sum is the discontinuous function
described by F(x) = 1,°< x ~ 1, F(O) = 0. The series is therefore not uniformly
convergent on [0, 1]. In fact, it cannot be uniformly convergent on the open
interval °< x < 1, even though F is continuous there. This is shown by the
following general theorem.

Theorem 4 Let E be the closure of an open set. Let {In} converge uniformly
in the interior of E. Suppose that each function j" is continuous on E.
Then {j,,} is uniformly convergent on E.

Given E > 0, choose N so that Ifn(P) - fm(P) I < E whenever n ~ N,
m ~ N, and p is an interior point of E. Since fn and fm are both continuous
on E, so is <jJ(p) = Ifn(P) - fm(P) I, and since <jJ is bounded by E on the
interior of E, it is bounded by E on all of E. This shows that
Ilfn - fm/IE ~ E for all nand m with n ~ N, m ~ N, and {j,,} converges
uniformly on E, by Theorem 1. I

A useful application of this to series of continuous functions is:

Corollary Let L ~ un(x) converge to F(x), uniformly for all x with

c ~ x < 00. Let limx too un(x) = bn < 00 for n = 1, 2, .... Then, L ~ bn
converges, and limx too F(x) =L ~ bn·

Setting x = l/t, we obtain a series of functions which converges
uniformly for 0< t ~ a. Since limt _ o un(l/t) = bn, we can define the terms
so as to be continuous at t = 0. Applying the theorem, the series is
uniformly convergent for °~ t ~ a, and we can evaluate

lim F(~) = lim F(x)
tjo t xtoo

termwise. I

Returning to Example (6-3), the series F(x) = L ~ nx 2/(n 3 + x 3
) converges

uniformly on each of the intervals [0, R], since Inx 2/(n 3 + x 3 )1 ~ nR 2/n 3 =
R2/n 2 and 2: ~ l/n2 converges. However, it cannot converge uniformly on the
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whole unbounded interval 0:-:::; x < 00, since limx ! 00 F(x) = 00, although
limx!oo nx2/(n 3 + x 3

) = 0 for each n.
The next theorem is the fundamental result dealing with integration of

uniformly convergent series or sequences. We state it in a two-dimensional
form.

Theorem 5 Let D be a closed bounded set in the plane which has area, and
let the functions fn be continuous on D. Then, if{/,,} converges to F uniformly

on D, limn _ oo IfD fn = IfD F.

If F exists since F is continuous on D. For any n, we have
D

I Ii F - Ii fn I = I Ii (F - fn) 1:-:::; Ii IF - /,,1:-:::; IIF - /"IIDA(D)

since IIF-fnIID is the maximum of IF(P)-fn(p)1 for pED. Since

limn_oo IIF - fnllD = 0, limn_oo fr fn = rf F. I
• D • D

If {In} is the sequence of partial sums of a series L~ Uk' then

ff fn = ff (Ul + U2 + ... + un) = ff Ul + ff U2 + .,. + ff Un
D D D D D

leading to the following corollary.

Corollary If each of the functions Un is continuous on D and~~ Un con

verges to F uniformly on D, then rr F = "" 00 rr Un'
"D Ll" D

This is usually abbreviated to the statement that a uniformly convergent
series may be integrated termwise. As an illustration, consider the series

L: (- t)n. This converges to 1/(1 + t) uniformly on any interval - r :-:::; t :-:::; r,

for r < 1. Integrating the series termwise between 0 and x, Ix I < 1,

x dt 00. x "'- xn + 1

r - = log (1 + x) = "" (- I)n I tndt = L (- I)n -----
'ol+t L· o n+lo 0

Thus, for any x with Ixl < 1,

x 2 x 3 x n

log (1 + x) = x - - + -- - ... + (- l)n - 1 + ...
2 3 n
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We can also extend this to the endpoint x = 1 by a special argument. If x> 0,

the series L~ (_1)n- [(xnln) is an alternating series and converges for

o :S: x :S: 1. Using the fact (see Exercise 4, Sec. 5.3) that the partial sums of an
alternating series constantly approach the sum and alternatively lie above and
below, so that the error at any stage does not exceed the next term, we may write

I
n x k I xn + [ 1

log (1 + x) - '" (- l)k - [- :S: -- :S: -
L k n+l n+1

[

for each x with 0 :S: x < 1. However, since all the functions involved in this
are continuous at x = 1, the same inequality holds when x = 1. This shows that
the series is uniformly convergent on the closed interval [0, 1], and termwise
integration is valid for all x with 0 :S: x :S: 1. In particular, setting x = 1, we have

log 2 = 1 - ~ + 1- -} + ~ - i + ...
The functions j,,(x) = n2xe- nx of Example (6-7) converge to 0 pointwise on

[

[0, 1] but do not converge uniformly on [0, 1], and their integrals f fn
o

converge to I, not O. Examining their graphs (Fig. 6-1), we see that fn has a peak
near the origin which becomes narrower but higher as n increases, leaving the
total area underneath the curve about constant.

For contrast, consider the function gn(x) = nxe - nx. These functions likewise
converge to 0 pointwise, but not uniformly, on [0, 1]. However, it is easily seen

[

from the earlier calculations with (6-7) that f gn -> o. The difference is that
o

this time, the functions gn are uniformly bounded on [0, 1]. None of the peaks
of the functions gn reaches higher than lie.

This example is an instance of a general convergence theorem for bounded
functions. While it is very useful, its proof requires techniques that go beyond
this text, involving portions of the theory of Lebesgue measure. We therefore
state the result here without proof, but include a sketch of the argument in
Appendix 6.

Theorem 6 If the functions fn and F are integrable on a bounded closed set
E, and Un} -> F pointwise on E, and if II fn II E :S: M for some M and all n = 1,

2, ... , then limn _ oo f j" = f F .
• E • E

This may often be used when uniform convergence does not occur. Let
9 be continuous (and therefore bounded) on [-1, 1]. Then, the sequence Un}
withj,,(x) = e- nX2g(x) is uniformly bounded on [-1, 1] and converges pointwise
to the function F

x;60

x=O
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This is not continuous if g(O) #- 0, so that {j,,} does not in general converge
uniformly. However, Theorem 6 applies, so that

1

lim f exp (- nx 2 )g(x) dx = 0
"-00 -1

As we have seen in illustrative example (6-6), the process of differentiation
of series is not well behaved. There we saw that a series such as

2: ~ n- 2 sin (n 2x)could be uniformly convergent everywhere, and yet not allow

termwise differentiation. Termwise integration is much better. This can be used
to obtain a valid result for differentiation, showing that termwise differentiation
is justified if the resulting series of derivatives is itself uniformly convergent.

Theorem 7Let 2: ~ un(x) converge to F(x) for each x in [a, b]. Let u~(x)

exist and be continuous for a s x s b, and let L u~(x) converge uniformly

on [a, b]' Then,L~ u~(x) = F'(x).

Setting g(x) = 2: u~(x), integrate termwise between a and x, so that

(g =i (u~ =i [un(x) - un(a)]
a 1 a 1

= F(x) - F(a)

This shows that F is an antiderivative (indefinite integral) of g, so that
F'(x) = g(x) for all x in [a, b]' I

As an illustration of this, consider the series F(x) = 2: ~ e- n2X, which

converges for all x > O. We shall show that F is continuous and of class COO
on this interval, that is, F(kl(X) exists for all x > O. The termwise derivative of

the series is (- 1)2: ~ n2 exp ( - n2x). If <5 > 0, then for all ;c 2 <5,

In 2 exp (-n 2 x)1 S n2 exp (-n 2 <5), so that the derived series is uniformly con
vergent for all x, <5 s x < 00. This shows that F'(x) exists and is given by

(- 1)2: ~ n2 exp ( - n2x) for all x > O. Repetition of this process leads to

00

F(k)(X) = (-lt2: n2k exp(-n2x)
1

k = 1,2, ...

where the series is uniformly convergent for <5 S x < 00 and any <5 > O.
We conclude this section with a number of special examples.
Let

00

(6-9) F(x) =2: x/n(x + n)
1



UNIFORM CONVERGENCE 271

Since Ix/n(x + n) I s l/n2 for all x in [0, 1], this series is uniformly convergent
there, and may be integrated termwise. The resulting series,

00 1 X dx

2: fo n(x + n)'
1

must converge. Denote its sum by y, so that

00 1 II I}
y= 2: f --- dx

Ion x+n

N·

= lim tt ~-log (N + l)}
N-oo 1 n

Since limN _ cc [log (N + 1) - log N] = 0, we have thus shown that there is a
positive number y such that

N 12: n= log N + Y + (JN

1

where lim (IN = O. The number y is called Euler's constant, and is approximately
.577 21 ....

Let

cc

converging for all x#-O(6-10) F(x) = 2: 1/(1 + n2x 2)
1

For any <5 > 0, and x z <5, we see that (1 + n2x 2r 1 S l/n2
<5

2, so that the series
is uniformly convergent for all x, x z <5. Appealing to the corollary to
Theorem 4, limx roo F(x) = O. How does F behave near the origin? When
x = 0, the series becomes 1 + 1 + 1 + ... , which suggests that

lim F(x) = 00.
x I 0

This conjecture is correct. For any N,

N 1
F(x) z 2: 1+~ix2 = g(x)

1

and g(O) = N

so that lim inf F(x) z N
x I 0

and letting N increase, we see that limx I 0 F(x) = 00. This approach cannot
always be used, and depends upon the fact that the terms of the present series
are positive. (For comparison, recall illustrative example (6-5), where we had a
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series whose terms also approached I + 1 + 1 + .. " but for which this did not
mean that the function in question approached infinity.)

Continuing our study of the function F, consider now

Since x2/{l + n2x 2) ::; l/n2 for all x, - 00 < x < 00, this series is uniformly

convergent on the whole axis. In particular, limx _ o x2F(x) = 2: 0= 0, and

Finally, consider xF(x) = 2: ~ x/( 1 + n2x2). This converges uniformly on the

intervals <5 ::; x < 00, for any <5 > 0. Does it converge uniformly for °::; x::; <5?

If so, then limx " 0 xF(x) would have to be 0; we shall show that instead,
limx " 0 xF(x) = n/2. For any n,

x rn
+ 1 x x

1 + (n + Wx 2 ::; . n -1-+-----ct2°-x~2 dt ::; -1-+;2;;2

and adding,

or

However,

00 x
xF(x) ::; f 1 2 2 dt ::; x + xF(x)

o + x t

f
00 x dt f 00 du 1
o I + x 2t2= 0 I + u2 = 2n

>

so that Pr - x::; xF(x) ::; !n, for all x> 0. Letting x approach 0, we have
limx " 0 xF(x) = !n. Summarizing what we have found, the function F behaves
near the origin like n/(2x), and for large x like Ax - 2, where

(= n2 /6).

Theorem 3, on the continuity of the uniformly convergent sum of a series
of continuous functions, is often used to construct continuous functions that
have strange and unlikely properties. For example, (1 + x 2r lX

2 sin (l/x) =
g(x) is a continuous function that is differentiable everywhere, even at x = 0,
where g'(O) = 0. Note also that Ig(x)1 ::; 1 for all x. The function g is not
monotonic on any neighborhood of x = °because of the rapid oscillations
of the sine function near there. Displacing g by forming gAx) = g(x - c), we
have a function that has the same sort of behavior at x = c. If cn is any
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-ho 1

Figure 6-2

sequence of real numbers, then
00 00

G(x) = L ;n gc.(x) = L ;n g(x - Cn)
n=1 n=1

is a continuous function that is not monotonic on any neighborhood of the
points CI , cz , .... These points Cn can be everywhere dense on the line.

The same technique makes it possible to construct a simple example of a
nowhere differentiable continuous function. Let K be the special function
defined by saying that K(x) is the distance from x to the nearest integer; K
is continuous everywhere, and periodic with period 1 (see Fig. 6-2). We note
that K also has the property that

IK(b) - K(a)1 = Ib - al

whenever a and b both lie in the same half of any interval [m, m + 1]. Set
un(x) = lO-nK(lOnx ) for n = 0,1, ... , and then define the sought-for function
H(x) for all x by

(6-11)

The function K has corners where the derivative fails to exist, and the
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function Un inherit a similar behavior at points more closely spaced, so that it
is intuitively plausible that H(x) might have a derivative nowhere. (Graphs of
UO, UI' and Uo + U 1 are shown in Fig. 6-2.) Since °~ Uj(x) ~ 10- j for all x,
the series for H(x) is uniformly convergent for all x. Since each term uj is
everywhere continuous and satisfies the relation Uj(x + 1) = uj(x), H is every
where continuous, and has period 1. We shall show that for any point b in [0, I],

H'(b) = lim H(x) - H(b)
x-b x - b

fails to exist. We choose a special sequence {x n} approaching b for which
this is easy to prove. Let b have the decimal representation

oc b
.b 1b2 b3 .•• = 2.: 1~

I

To achieve uniqueness, we adopt the convention of using terminations
... 00000oo rather than ... 999999 "', so that, for example, we write
.241 000 00 in place of the equivalent .240999999···. Given any positive
integer n = I, 2, ... , we define a real number Xn near b by

if bn is different from 4 and 9

if bn is either 4 or 9

So chosen, the pairs xn and b, lOxn and lOb, ... , lOn - I xn and lOn - I b, will
always lie in the same half of any interval [m, m+ I] which contains one of
the pair. Moreover, for j z n, IWxn and IWb will differ by some integer. The
special properties of K(x) then show that

for j = 0, 1, ... , n - 1

for j z n

and adding,

n terms

_H--,-(x--,-n,---)------c-
H--'-(b--,-) = + 1 + 1~ + 1 + 1

x
n

- b - - --

where the signs are determined by the particular digits in the decimal
representation of b. However, regardless of the signs, we see that this quotient
is an even integer for n = 2, 4, 6, 8, ... and an odd integer for n = I, 3, 5, ....
This shows that limn _ oc (H(xn) - H(b))/(xn - b) does not exist, and that H
does not have a derivative at b.

Our final illustration of the power of these techniques is directed not
toward the construction of strange functions, but rather toward showing a very
useful extension property for continuous functions defined on closed sets.

Theorem 8 (Tietze Extension) Let E be a closed set in n space, and let
f be a function that is continuous on E and obeys If (p) I ~ M for all
pEE. Then, there is a continuous function F, defined on all of n space and
bounded there by M, such that F coincides withf on E.
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By virtue of this result, any bounded continuous function on a closed set
may always be regarded as bounded and continuous on all of n space.

The proof of this result depends on the use of a special auxiliary function
which is defined geometrically.

Lemma If C is a closed set, and ¢(p) = d(p, C), the distance from p to C,
then ¢ is everywhere continuous, and strictly positive off C.

Let p, q, and c be three points with c E C. The triangle property for
distances shows that Ip - cl ::; Ip - ql + Iq - cl· Since

d(p, C) = inf Ip - cl
C E C

we have ¢(p)::; Ip - ql + Iq - cl· This holds in turn for every cE C, so
that ¢(p) ::; Ip - ql + ¢(q). By symmetry, ¢(q) ::; Iq - pi + ¢(p), so that,
putting these together, I¢(p) - ¢(q) I ::; Ip - q I. This shows that ¢ is every
where (uniformly) continuous. If ¢(p) = 0, then

p = lim Cn

for a sequence {cn} of points of C. Since C is closed, p E C. I

To prove the theorem, we produce a series .2: ~ Fn of continuous func

tions which converges uniformly in the whole plane, and whose sum on
the set E is f. Suppose that If (p) I ::; M for pEE. Divide E into three sets

A = {all pEE where ~ ::;f(p) ::; M}

{ -M M}C = all pEE where ~3- <f(p) < 3

B = {all pEE where -M ::;f(p)::; -3~}

and construct a function F I by the definition

(
M) d(p, B) - d(p, A)

Fdp) = 3- d(p, B) + d(p, A)

Since A and B are disjoint closed sets, F I is everywhere defined and is
everywhere continuous. For any point p in the plane, IF I (p) I ::; M/3. On E,
F 1 behaves as follows:

If pEA, d(p, A) = 0 and F1(p) = M/3.
If p E B, d(p, B) = 0 and F1(p) = -M/3.
If p E C, then -M/3 ::; F1(p)::; M/3.
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An examination of the values off on E shows that

If(p) - F1(p)1 ::; iM
for all pEE. Repeat this argument withf - F 1 playing the role off On E,
f - F1 is bounded by (2M )/3. We can therefore construct a function F2

which is everywhere continuous and such that IF2(P) I ::; (j-)(2M/3) for all p,
while I[f(p) - F1(p)] - F2 (p)1 ::; H)(2M/3) for pEE. Continuing this, we
arrive at a sequence of continuous functions {Fn} which obey the two
conditions:

IFn(p) I ::; jmn
-

1M all p

If(p) - {F1(p) + ... + Fn(p)} I ::; (~)nM all pEE

The first condition assures us that the series2: ~ Fn is uniformly convergent

for all p. The sum F is then, by Theorem 3, continuous everywhere in the
plane. The second condition shows that

oc

F(p) = 2: Fn(p) = f(p)
1

for all pEE. Finally, for any p

so that F is bounded on the whole plane by the same bound that applied
tof on E. I

EXERCISES

I Show that ifI. converges pointwise to I on E, then!. -+ I uniformly on every finite subset of E.

2 Exhibit a sequence {I.} which converges uniformly on every interval [0, L) for every L > 0,
but not uniformly on the interval 0 S; x < w.

3 Let I.(x) = x· for 0 s; x s; 1. Does {I.} converge pointwise on [0, I]? Does it converge
uniformly on [0, I]? Does it converge uniformly on [0, ~]?

4 LetJ.(x) = nx·(1 - x) for O:s x :s 1. Show that {I.} converges pointwise, but not uniformly,
1 1

ort [0, I]. Does lim.~x r I. = r limn~x In?
. 0 • 0

5 Let F(x) = L7x 2 j(x 2 + n2
). Study the uniform convergence of this series, and investigate

the existence of lim. j 0 F(x), limx j 0 F(x)jx, lim. j 0 F(x)jx 2
, limx 1 x F(x), limx Ix F(x)jx 2

,

limx 1 x F(x)jx.

6 Let/be continuous on the interval 0 s; x <W, and let limx~x I(x) = L. What can you say
.2

about limn~x I I(nx) dx?
• 0

7 Let 9 be continuous on [0, I] with g(l) = O. Show that {g(x)x n
} converges uniformly for x

in [0, I].
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8 Prove the corollary to Theorem 4 without making the change of variable x = I/t.

9 Extend Theorem 5 to improper integrals as follows: Suppose {In) is a sequence of functions

continuous on 0 S x < OCJ and such that If..(x) I s g(x) for all x ~ O. Suppose that ('"9 converges
• 0

and that fn -+ f where convergence is uniform on every interval [0, L] for any L > O. Prove

(fn-+ (I
. 0 • 0

*10 Let rPn(x) be positive-valued and continuous for all x in [-I, I] with

1

lim f rPn = I
'1-00 • -1

Suppose further that {rPn} converges to 0 uniformly on the intervals [-I, -c] and [c, 1] for any
c > O. Let 9 be any function which is continuous on [ - I, I]' Show that

1

lim f g(x)rPn(x) dx = g(O).
'1-00 • - 1

*11 Let fn be continuous on a closed and bounded set E, for each n, and let {In) converge
pointwise to a continuous function F. Suppose that for any pEE, the sequence {In(p)) is an
increasing sequence of real numbers. Prove that {In) in fact converges uniformly on E. (Hint:
For a given t, consider the set

Cn = {all pEE with F(p) - fn(P) ~ t)

and apply the nested set property.)

12 Apply Exercise 11 to prove the following result: Let {un) be a sequence of nonnegative

continuous functions defined on the interval [a, b], and suppose that the series L~ un(x)

converges pointwise to a continuous function F(x). Then, termwise integration is allowed;
b bJ. F(x) dx = L ~ J. un(x) dx.

13 Use the Tietze extension theorem to show that if C is a compact set in n space, 0 an open
set containing C, and f a continuous real-valued function defined on C, then f has a continuous
extension to all of n space such that f is 0 everywhere in the complement of 0.

14 Show that the special operator II liE' defined in this section by

IlfilE = sup If(x)1
XEE

has the following properties of the Euclidean norm in n space:

(a) Ilf + gilE S IlfIIE + Ilgk
(b) Ilf - gilE = 0 if and only iff = g.

15 Interpreting Ilf - gilE as a distance between the functions f and g, show that ·Hf+ g) is
equally far from f and from g.

16 If "" is a collection of functions f, then the distance from a function F to the collection is
defined to be

d(F, "") = inf IIF - filE
fEAt

Find the distance between F, where F(x) = x 2
, and the set"" of all linear functions of the form

f(x) = Ax. Choose E as 'the set [0, I]. (You will have found the best uniform approximation on
this interval to the function F by functions in the class "".)
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6.3 POWER SERIES

The basic facts about pointwise convergence of power series were presented
in Sec. 5.3. We now examine power series as functions defined by series whose
terms are polynomials. We must therefore study the uniform convergence
properties of power series.

Theorem 9 IfL 00 an xn has radius of convergence R, then it is uniformly
convergent on eve~y compact subset of the open interval - R < x < R.

Any such compact set lies in a closed interval [- b, b], where b < R.
The power series converges when x = b, and in fact converges absolutely.

Thus, L: lanlb" converges. If Ixl ~ b, then lanxnl ~ lanlb", so the

Weierstrass test applies, and the series converges uniformly on [-b, b]'
I

If this is combined with Theorem 7, it follows that a power series can
always be differentiated termwise within its interval of convergence.

Theorem 10 Let f (x) =L: an xn converge for Ix I < R, Then, l' exists,

and1'(x) =L~ nanxn- I for all x with Ixl < R.

Consider x L~ nan xn- I = L~ nan xn. Since multiplication by x does

not affect convergence properties, the differentiated series has radius of
convergence ilL, where L = lim SUPn_oo Inani l/n = lim sUPn_oo lan'l/n,
using the fact that limn_ oo nl/n = 1. Thus, the original power series and
its termwise derivative always have the same radius of convergence. The
derived series is then uniformly convergent for Ix I ~ b, and any b < R,
and, by Theorem 7, the differentiation was justified. I

Repeating this argument, we see that a function given by a convergent
power series may be differentiated as many times as desired, and the
derivatives computed termwise, within the interval of convergence.

Corollary 1 Iff(x) =L: an(x - c)n, convergent for some interval about c,

then an = f(n)(c )/n!.

For we have

pnl(x) = n!an+ 2· 3 .. · (n + l)an+ l(x - c)

+ 3·4· .. (n + 2)an + 2 (x - C)2 + ...

in an interval about c, and setting x = c, we have pnl(c) = n! an' I
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Corollary 2 If2: an(x - c)n = 2: bn(x - c)n for all x in a neighborhood

of c, then an = bnfor a = 0, 1, '" .

If the common value is f(x), then an and bn are of necessity both
given by pn'(c)/n!. I

It should be observed that this shows that a function that is analytic on
a neighborhood of c can have only one power series expansion of the form

2 an(x - c)n, and that this one is the Taylor series which is obtained as the

limit of the Taylor polynomials. Conversely, any function which is given by
a convergent power series is analytic within the interval of convergence.

Differentiation of a power series dCles not change the radius of con
vergence, but can destroy convergence at the endpoints. Consider the series

~ x
n

f(x) = L 2
1 n

which has radius of convergence R = 1. This converges in fact for all x with
- 1 ::5: x ::5: 1. If we differentiate this, we obtain

'XJ n- 1

.f'(x) = 2~
1

which converges only for - 1 ::5: x < 1. If we again differentiate it, we obtain

which now converges only for - 1 < x < 1. The first of the three series con
verges uniformly for all x with - 1 ::5: x ::5: 1 since its terms are dominated
there by 1/n2

• Theorem 9 shows that the second series converges uniformly
in intervals Ixl ::5: b with b < 1; since it is (pointwise) convergent on the
larger interval - 1 ::5: x ::5: b, it might be conjectured that it is uniformly con
vergent there as well. The truth of this follows from a general result, due to
Abel.

Theorem II LetL: an X n have radius of convergence R, and let it also

converge for x = R [for x = - R]. Then, it is uniformly convergent on the
interval 0 ::5: x ::5: R [the interval - R ::5: x ::5: 0].

Without loss of generality, we may assume that R = 1, and that

2 anxn converges when x = 1. Put Bn = 2: ak so that limn~oo Bn = O.
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Then, for any x, 0 ~ x < 1.

00

'" a x k = a xn + a xn + 1 + ...L k n n+l
n

= (Bn - Bn+1 )xn+ (Bn+1 - Bn+2 )xn+
1 + ...

= Bnxn+ Bn+ 1(xn+ 1
- xn) + Bn+ 2 (xn+ 2

- xn+ 1
) + ...

= Bnxn+ (x - l)xn{Bn+1 + Bn+ 2 x + ...}
Given E, choose N so that IBj I < E whenever j 2 N. Then, for 0 ~ x < 1,
and n 2 N,

Ii ak xk I~ EX
n + (1 - X)Xn{E + EX + EX

2 + ...}
n

~ EX
n + EX

n
( 1 - x){ 1 + x + x 2 + ...}

~ 2EX
n < 2E

This also holds when x = 1, since IBn I < E < 2E. Thus, IL~ ak x k I< 2E

uniformly for all x with 0 ~ x ~ 1, and all n 2 N, proving uniform
convergence. I

Corollary If a power series converges at an endpoint of the interval of
convergence, then the function defined by the power series is continuous at

that endpoint: If2: an rn converges, with r > 0, then limx 1 r 2:: an xn =

2: anr
n
.

[We remark that while the results on pointwise convergence, and the
general results on uniform convergence, apply equally to series of real-valued
and series of complex-valued functions, the theorem of Abel (Theorem 11)
on uniform convergence at endpoints does not generalize directly. Thus, a

power series 2: an zn can converge for all complex numbers z with Iz I = R,

but need not converge uniformly in the closed disc Iz I ~ R; it will, however,
converge uniformly in every closed polygon with a finite number of vertices
inscribed in the disc.]

Since power series are always uniformly convergent in closed intervals
which lie in the interval of convergence, they can be integrated termwise over
any such interval. The process of integration, or differentiation, is often
combined with algebraic operations and with substitution to obtain the power
series expansion of special functions; although the coefficients of the expansion
of a function f can always be obtained from the formula an = pnl(c)jn!, this
is often a long and complicated task. The following examples will illustrate
these remarks.
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Let us start from the simple geometric series

(6-12)
1

= 1 + x + X
2 + X

3 + '"
I-x

which converges for - 1 < x < 1. Repeated differentiation of this yields

1
= 1 + 2x + 3x2 + 4x3 + ... + (n + 1)x" + ...

(1 - X)2

2-- = 2 + 6x + 12x 2 + ... + (n + l)(n + 2)x" + ...
(1 - X)3

and in general

k! (k+l)! (k+2)! 2--- = k I + - - x + ----- - x + ...
(I_X)k+l . l! 2!

with convergence for - 1 < x < 1. If we choose instead to integrate the first
series, we obtain

(6-13 )
x 2

X
3

- log (1 - x) = x + - + -- + ...
2 3

convergent for - 1 < x < 1. Since the series is also convergent for x = - 1,
the corollary to Theorem 11 shows that (6-13) holds also for x = - 1, with
uniform convergence for - 1 ~ x ~ b, b < 1. In (6-13) replace x by - x,
obtaining

(6-14)
x 2 x 3 x4

log (1 + x) = x - -- + - - - + ...
234

Divide by x, and integrate again on the interval [0, x], x ~ 1

'Xlog (l+t) x 2 x 3 x"I ---- -- dt = x --- +-- - ... (- )"+1_2 + ...
'0 t 4 9 n

In the first series (6-12), replace x by _x 2
, getting

convergent for -1 < x< 1. Integrate from °to x, Ixl < 1, obtaining

(6-15)
x 3 x 5

arctan x = x - -- +-- - ...
3 5
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Since this converges for x = 1 and x = - 1, it converges uniformly for
- 1 S x S 1. In particular, setting x = 1,

nIl 1
-=1--+---+'"
4 357

where we have again used the corollary of Theorem 11.
Let us define the exponential function E by the power series

(6-17)
00 xn x 2

E(x) = "" - = 1 + x + - + ...L n! 2!o

Then, since this converges for all x, it converges uniformly in every interval
Ix I s R, R < 00. Differentiating, we obtain

00 nxn - 1 oc xn - 1

E'(x) = ""~ = "" = E(x)L n' L (n - 1)'1 . 1 .

This shows that the function E is a solution of the differential equation
y' = y. The other properties of the exponential function can also be obtained
from the series definition. To verify the relation

E(a)E(b) = E(a + b)

we form the Cauchy product of the series for E(a) and E(b), obtaining

00 an 00 bn 00 /anbO an-1b aObn}
E(a)E(b) = 2: n! 2: n! = 2: \n!O! + (n - I)! I! + ... + O!n!

o 0 n=O

00 1
= "" -- (a + b)n = E(a + b)Lnlo .

With e = E(I), en = E(n), and we may define eX for general real exponents as
E(x). Suppose we wish to expand eX in a power series in powers of x-c. Write

eX = E(x - c + c) = E(x - c)E(c)

= eel 1 +.x ~ ~ + ~~! C)2 + (.x ~!~23 + ...l
Replacing x by - x 2 in the series for E, we have

-X2 2 x
4

x
6

e = 1 - x + - -- + ...
2! 3!
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convergent for all x. Integrating this, we have

(6-18)

We note that this expansion does not enable us to evaluate the probability
00

integral r e- x2 dx merely by letting t increase, since we cannot take the
• 0

termwise limit of the right side of (6-18). [Recall that in Sec. 4-5 we used a
method to show that this improper integral has the exact value fi/2.]

The series which defines the exponential function, (6-17), is also convergent
if x is replaced by any complex number z = x + iy, and the identities derived
by multiplying power series still hold. Thus, writing eZ for E(z), we have

(6-19)

Using (6-17), we have

. l y4 (l l )e'Y = 1 - 2! + 4! + ... + i Y - 3! + 5! + - ...

Adopting the definitions suggested in Exercise 5, Sec. 5.4, we may now write
this relation as

(6-20) ex + iy = eX cos y + ieXsin y

which permits us the standard exponential definitions

(6-21 )
1. . 00 ()2" + I

sin () = - (e'9 - e- '9 ) =~ (-1)"~~~
2i ~ (2n + I)!

1. . 00 f)2"
cos () = - (e'9 + e- '9 ) = ~ (-1)"~~

2 ~ (2n)!

ei9 = cos f) + i sin f)

It is an instructive exercise to see how much of the standard trigonometric
lore can be recovered from these formulas.

Division of power series is possible, but difficult to carry out except in
relatively simple cases. The test is simple in theory. For example, one writes

~ a x"L" 00

02:"-~~-= ex
00 "2: b"x" 0

o
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exactly when there is a common open interval I of convergence for all the

series, and when, on I, it is true that the product of 2: en xn and 2: bn xn is

2: anxn.

EXERCISES

1 Find the power series representations for the following functions which converge in some
interval containing the indicated point.

(a) sin (x 2
) near x = 0 (b) l/x near x = 1

(e) log (1 + x 2
) near x = 0 (d) cosh (x) near x = 0

2 By integration, differentiation, or any other valid operation, find the functions which are
given by the following power series.

cr: x 2t1 + 1

(e) L: 2;;-.+1
·0

(b) ~ (;~)!

(d) x + x4 + x 7 + x lO + X
l3 + ...

3 Can the following functions be expressed as power series in x which converge in a neighborhood
ofO?

(a) f(x) = Ixl (b) f(x) = cos jx

4 The Bessel function of zero order may be defined by

Find its radius of convergence, and show that y = Jo(x) is a solution of the differential equation:
xy" + y' + xy = O.

*5 Let limn_ex> an = L andf(x) = L:: an x". Show that limx I' (I - x)f(x) = L.

6 Find power series expansions for the following functions about the indicated points:

(a) f(x) = xe- X near x = 0

I
(e) f(x) =-- near x = 0

1+ 2x

I
(e) f(x) = ------z near x = 0

1- x

(b) f(x) = e2x
- eX near x = 0

I
(d) f(x) = -- near x = I

1- 2x

7 Show that (sin xl' + (cos X)2 = I by showing directly that le'"1 = 1.

8 From the fact that e"e'P = e'('+Pl, deduce the addition formulas for sin (IX + f1) and cos (IX + Pl.
9 Show that F(x) = I + x 3 /3! + x 6 /6! + x 9/9! + ... can be expressed in terms of eX and the

number-~+ ij3/2_
10 Let F(x) = I + 2x + x 2 + 2x 3 + x 4 + 2x5 + .... By division, find a power series expansion
near x = 0 for I/F(x).

II Find a power series for I/F(x) where F(x) = L:: (n + I)xn.

12 If f(x) = a,x + a2 x 2 + "', then I/f(x) = I - a,x + {(ad 2
- a2 }x 2 + {2a,a 2 - (ad 3

- a3 }x3

+ Ax4 + .... Find A.
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A P

..------
B C Figure 6-3

t3 There is an approximate angle trisection method due to d'Ocagne. Given an angle 8 in a unit
semicircle (see Fig. 6-3), let P be the midpoint of the segment AB and Q the midpoint of the
arc CD. Show that angle QPC ~ 8/3.

14 Let y = f(x) be a solution of the differential equation

dy
x 1

- - xy = sin x
dx

obeyingf(O) = C. Find a power series expansion for fnear x = O.

15 Let y = f(x) be a solution of the differential equation

dy
- = x 2 + v2

dx .

By differentiating this equation repeatedly, find pnl(O) for n = 0, 1, ... , 5, and thus find the first
few terms of a power series for f about the point x = O. Can you decide whether this series
converges?

6.4 IMPROPER INTEGRALS WITH PARAMETERS

The notion of uniform convergence is not limited to sequences and series of
functions. For example, instead of a sequence Un(P)}, we may consider f(p, t)
and study the behavior of this as t -> to or t -> 00. If limt _ to f(p, t) = F(p)
for each individual choice of pin E, then one says that the limit is "pointwise
in E." Based on the analogy with sequences, we choose the following definition
for uniform convergence.

Definition 3 limt _ to f(p, t) = F(p) uniformly for pEE if, given B > 0, there is
a deleted neighborhood JV of to such that IF(p) - f(p, t)1 < Bfor all tin JV
and all pEE.

As an illustration, take f (x, t) = sin (xt )jt( I + x 2
). Then, letting t 10, and

evaluating the (pointwise) limit by L'Hospital's rule, we have

lim f(x, t) = -1x2
t I 0 + X

for all x, - 00 < x < 00. Let us prove the convergence IS uniform. For any
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x and any t "# °= to, we have

If(x, t) - F(x)1 = It(~i:x:2) - 1:x21

= 1 ~~2ISi:txt -11

Since limo_ o (sin 8)/8 = 1, we can choose {3 so that I(sin 8)/8 - II < e when
ever 181 < {3. For any R let 15 = {3/R. Then, if Ixl ::; Rand It I < 15,

Ixtl < R(~) = {3

If(x, t) - F(x)1 ::; R ISi:;t - 11::; Re

This shows that limt _ O f(x, t) = x/(1 + x2) uniformly on each of the intervals
[ - R, R]' To prove uniform convergence on the whole axis, we need an
additional estimate. Since I(sin 8)/8 I ::; 1 for all 8, we see that for any x and t,

If(x, t) - F(x)1 ::;~
l+x

Since lim1xl _ 00 2x/(1 + x2) = 0, we can choose Ro so that for any t

If(x, t) - F(x)1 < e

whenever Ix I 2: Ro . Combining these inequalities, we have

If(x, t) - F(x)1 < e

for all x and any t with It I < {3/Ro·

The continuous analog of an infinite series L~ u"(p) of functions is an

improper integral frO f(p, t) dt in which p is a parameter, and one speaks of
• c

this being pointwise convergent for pEE if it is a convergent improper
integral for each individual choice of pEE.

Definition 4 The integral frO f(p, t) dt converges to F(p), uniformly for
c

pEE if, given any e > 0, there is an ro that depends on e but not p, such that

IF(p) - .( f(p, t) dt I< e

for all r > ro , and all pEE.

Most of the theorems in Sec. 6.2 dealing with sequences and series have
analogs for continuous limits and improper integrals. Some of the proofs
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follow the same pattern, but others have essential differences brought in by
the contrast between finite sums and integrals. We give abbreviated proofs of
the former.

Theorem 12 Let limt _ to f(p, t) = F(p), uniformlyfor pEE, and suppose that
for each t,f(p, t) is continuous for all pEE. Then, F is continuous on E.

(Refer to Theorem 3, Sec. 6.2.)

The next result is the analog of the corollary to Theorem 3.

Theorem 13 Let Ioc f(p, t) dt converge to F(p) uniformly for all p in an
c

open set E, and suppose that f(p, t) is continuous for all (p, t) with pEE
and t 2 c. Then F is continuous in E.

The key to the truth of this is the fact that continuity is a local
property, and that every point in E has a neighborhood that is compact.

Given Po E E and E> 0, choose r = r(E) so that IF(p) - (f(P, t) dt 1< E

for all pEE. Then, one arrives at

IF(p) - F(Po)1 < 2E + !(f(P, t) dt - (f(po, t) dt I

However,f(p, t) is uniformly continuous for all (p, t) with Ip - Po I s 15,

cst s r, so that by Exercise 18, Sec. 4.3, limp_po j'f(p, t) dt =
c

j'f(po, t) dt, and it follows that F is continuous at Po· I
c

The simplest standard test of the uniform convergence of an improper
integral with parameters is again the Weierstrass comparison test. The proof
is similar to that of Theorem 2.

Theorem 14 Suppose thatfis continuous and obeys I!(p, t)1 s g(t) for all

t 2 c and all pEE. Suppose that {Xlg(t) dt converges. Then, Locf(P' t) dt

converges uniformly for all pEE.

We now examine the first of a number of illustrations designed to show
that what seems plausible is not always true when dealing with improper
integrals. Consider

(6-22) r
oc x 2

F(x) = 1 2 2 dt
• 1 + x t
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oc

Since the integrand obeys If(x,t)1 s 1/t2 for all x, and since r t- 2 dt con-
• 1

verges, we know that (6-22) converges uniformly for all x. We may therefore
conclude by Theorem 13 that F is continuous for all x; in particular, since
F(O) = 0, we know that the integral in (6-22) is such that limx~o F(x) = O.

Return to (6-22), and observe that

x 2

lim = lim -~~
x~oo 1 + x 2 t 2 x~oo x- 2 + t 2 t2

Can we also conclude immediately that
00

limF(x) = f C 2 dt= 1
x-co 1

That is, can we also evaluate the limit" at infinity" by simply taking the
limit inside the integral? In general, the answer must be "no." (However, see
Exercise 3.)

What we are doing here is extending a statement from the set E on which
the uniformity was established to a boundary point of E-since 00 plays this
role for the unbounded interval 0 s x < 00. (If you are uncomfortable with
this, swap 00 for 0 by the substitution s = 1/x.)

This is a situation where the analogy between series and integrals is not
perfect. What we are asking for is a direct analogy for the result stated in the
corollary to Theorem 4; the analogy for the theorem does hold, but that for
the corollary fails. Here is an instance of this.

Consider the integral

00

(6-23) F(x) = r x 2te- xt dt x;;:::: 1
• 0

For any t ;;:::: 0, limx~oo f(x, t) = 0, since ext grows faster than x 2 for any t> O.
Thus, one might expect that limx~oo F(x) = O. However, if we put s = xt into
(6-23), then the integral becomes

00

(6-24) F(x) = f se- s ds = 1
o

so that in fact, F(x) = 1 for all x ;;:::: 1 and limx~oo F(x) = 1.
We can also check that (6-23) converges uniformly for all x;;:::: 1 in the

same way.

so that

= 1 - (1 + rx)e- rx

jF(X) - (f(x, t) dt 1= (1 + rx)e- rx

S (1 + r)e- r
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for all x ;:::: 1. Since limr _ oo (1 + r)e- r = 0, we have proved uniform convergence
for (6-23) directly. [We remark that this example is not amenable to the
Weierstrass test; see Exercise 10.]

Thus, in (6-23) we have an instance of an improper integral that converges
uniformly for all x ;:::: I while limx _ oo F(x) cannot be calculated by carrying
the limit operation inside the integral; this is in contrast to the behavior of
series in the corollary to Theorem 4. The analogy breaks down, and it is
natural to wonder why. The answer lies in the behavior of finite sums versus

integrals. In the series case, we use the fact that 2~ uk(x) is continuous in

the entire set where each of the functions Uk is continuous. The analog would

be the assertion that (f(x, t) dt is continuous for all those x where f(x, t) is
• c

continuous. The proof of this statement (which was Exercise 18, Sec. 4.3)
depended upon havingf(x, t) uniformly continuous, which in turn depended
on having x in a compact set. However, in our present context, the set of x
that concerns us is 1 :-:;; x < 00, which is certainly not compact.

Indeed, this problem cannot be resolved merely by a different mode of
proof, for the substitution s = xt shows that

lim (x 2te- xt dt = lim rXse-s = 1
x-oo'O x-oo 0

which is clearly not the same as

rlim x 2te- xt dt = (0 dt = 0
Ox-.oo ~o

One convenient way around this is to require a stronger limit behavior
of the integrand as x ~ 00, namely that limx _ oo f(x, t) is uniform in t on every
interval [c, L].

Theorem 15 Let f(x, t) be continuous for x ;:::: b, t ;:::: c, and suppose that

foof(x, t) dt converges to F(x), uniformly for all x ;:::: b. Suppose also that
c

limx _ oo f(x, t) = g(t), where this convergence is uniform in t on every bounded
interval c :-:;; t :-:;; L,for any L. Then,

(6-25)
,00

lim F(x) = I g(t)dt
x-oo .. c

Given I: > 0, suppose ro = ro(l:) so that

IF(X) - .Cf(x, t) dt I < I:

for all x;:::: b. Then, choose X o = xo(ro, 1:) = xo(l:) so that I.f(x, t) - g(t) I <
I:/(ro - c) for all x;:::: Xo and all t, c:-:;; t :-:;; ro . Take any points Xl and
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X2' with Xi> xo, and an easy argument yields

IF(xd - F(x 2 )1 ~ 2E + (Olf(x t , t) - g(t)1 dt + (Olf(x 2 , t) - g(t)1 dt
"' c "' c

E
~ 2E + 2(ro - c) --- = 4E

ro - c

This shows that F(x) has the Cauchy property as X ~ 00, and that
limx _ oo F(x) exists, from which the conclusion of the theorem readily
follows. I

There are other circumstances in which we can be sure that

lim (f(x, t) dt = ( lim f(x, t) dt,
x~oo·c ·cx-oo

such as a form of the Lebesgue bounded convergence theorem. Further
refinements of this nature are left to texts on advanced real analysis.

According to the corollary of Theorem 5, Sec. 6.2, a series of functions
that converges uniformly on a compact set can be integrated termwise on that
set. This has a direct analogy for improper integrals which can also be
regarded as a statement about the interchange of orders of integration when
one is improper. (In connection with Theorem 16, we note that uniform
convergence is not enough to justify such an interchange when both integrals
are improper, as is demonstrated in Exercise 16. This is also connected with
the absence of a suitable theory of conditionally convergent improper double
integrals, as was explained at the end of Sec. 4.5.)

b 00 00 b

Theorem 16 f dx f f(x, u) du = f du f f(x, u) dx if f(x, u) is continuous
ace a

for a ~ x ~ b, c ~ u < 00, and foof(x, u) du converges uniformly for x on
• c

[a, b].

Using Theorem 9, Sec. 4.3, to reverse the order of integration, we have

so that

r b b r

f du f f (x, u) dx = f dx f f (x, u) du
.. c a .. a "' c

,00 b b r

I du f f(x, u) dx = lim f dx f f(x, u) du
"c a rfoo"a C

On the other hand,

b 00 .b r b 00

f dx f f(x,u)du= I dx f f(x,u)du+ f dx f f(x,u)du
"a C "0 'c ·a r
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• oc;.

Since I f(x, u) du converges uniformly,
• c

00

lim f f(x, u) du = 0
r 1 00 r

uniformly for x E [a, b] and

b 00

limf dxf f(x,u)du=O I
rjoo a r

Without some restriction on the integrand, and on the mode of convergence
of an improper integral, reversal of the order of integration is not valid.
Consider, for example, a function F defined by

F(x) = frO (2xu - x 2u2 )e- XU du
o

For x = 0, F(O) = O. With x> 0, we may evaluate F directly, obtaining

F(x) = lim fxu2e-XU IU=R
R-oo Ju=o

Thus, F(x) = 0 for all x ~ O. In particular, then,
1100

f F(x) dx = f dx f (2xu - x 2u2 )e- xu du = 0
o 0 0

Consider the effect of reversing the order of integration:

roo du f 1(2xu _ x 2u2 )e- xu dx = roodu fX 2ue- XU !X= 1

'0 0 '0 Jx=o
00

= f ue-Udu = 1
o

This discrepancy is explained by the fact that the original improper integral
(6-26) is not uniformly convergent for x in the interval [0, 1] over which we
wish to integrate. We have

F(x) = lim xR 2e- xR = lim g(x, R)

and the convergence is not uniform since g(I/R, R) = R/e, which is unbounded.
(The graphs of these functions for several values of R are given in Fig. 6-1.)

When certain conditions are fulfilled, an improper integral containing a
parameter can be differentiated with respect to that parameter underneath the
integral sign.
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00

Theorem 17 If r f (x, u) du converges to F(x) lor all x, a ~ x ~ b, and if
• e

f and fl = aI/ax are continuous for a ~ x ~ b, c ~ u < 00, and if
00

r Idx, u) du is uniformly convergent for x in [a, b], then for any x in [a, b],
• e

d 00 00

F'(x) = dx Ie I(x, u) du = ( fl(x, u) du

The proof is essentially the same as that of Theorem 12, Sec. 4.3. Set

cc

g(x) = r fl(x, u) du
. e

Since this is uniformly convergent and II is continuous, g is continuous,
and for any x, a ~ x ~ b,

But

and

x:X x 00

I 9 = I g(x) dx = I dx r II (x, u) du
a a a· c

cc X

= Ldu Lfl(X,u)dx

x x of
I fl(x,u)dx= I ;-(x, u) dx =f(x, u)-f(a, u)

a a uX

x 00

r 9 = r [f(x, u) - f(a, u)] du
• a • c

= F(x) - F(a)

(6-27)

Since 9 is continuous, this shows that F is differentiable, and that F' = g.

I

We shall give a number of examples which illustrate these theorems and
the manner in which they may be used in the evaluation of certain special
definite integrals.

Let us start with the formula

1 00

- = Ie-xu du
x 0

valid for all x > O. If we differentiate this, we obtain

(6-28)
1 cc

- - rue-xu du2-
x '0

To check the validity of this process, we observe that lue-xul ~ ue- bu for all

x with x 21> > 0; since rco ue- bu du converges, the integral in (6-28) is
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uniformly convergent for all x with b s x < 00. This justifies the differentiation,
and the formula (6-28) holds for every point x which can be included in one
of these intervals, that is, for every x with x > O.

More generally, the same argument may be used to show that for any
n = 1,2,3, ... ,

(6-29) n! f 00-- = u"e- XU du
X"+ I • 0

As another illustration, consider the improper integral

(6-30)
00 - x - 2x

f e__-_e__ dx
'0 x

(6-32)

2

Since the integrand may be expressed as Ie-xu du, we may write (6-30) as
1

an iterated integral

f
00 .2

dx Ie-xu du
• 0 • 1

Reversing the order of integration, we obtain

2 00

(6-31) f du r e- xu dx
• 1 • 0

This does not alter the value, since the inner integral is uniformly convergent
for all u with 1 sus 2. Using (6-27), we find that the exact value of the

2

original integral (6-30) is I u- 1 du = log 2.
1

Sometimes the operations of differentiation and integration are combined,
as in the following illustration. On page 217 we saw that the improper integral

ex;

f X-I sin x dx was conditionally convergent; we shall now show that its
• 0

value is 11t. Let

f
00 sin x

F(u) = e- XU
-- dx

'0 x

This converges for all u ? 0, and F(O) is the value we seek. If we differentiate
(6-32), we obtain

(6-33 )
ex;

F'(u) = - I e- XU sin x dx
o

which may be integrated exactly, yielding F'(u) = -(1 + u2r 1
. This is valid

for all u with u> 0, since the integrand in (6-33) is dominated bye-XU and,
as we have seen, the integral of this is uniformly convergent for all u with
b s u < 00 and any b > O. Integrating, we find that F(u) = C - arctan u, for
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all u > 0. Now, suppose we let u increase; from (6-32), it would seem that
limu _ oo F(u) = 0, so that

°= C - lim arctan u = C - 11t

and C = 11t. We then have F(u) = 1t12 - arctan u, so that

F(O) ~ foox-I sin x dx = 11t
o

There are two gaps in this argument. We have assumed that

(6-34)

and

(6-35)

. f 00 sin xlim e- xu -- dx = °
u-oo 0 X

I· f 00 - sin x d roo sin x d1m e xu-- x = -- X
u)O 0 X '0 X

Neither of these is immediately obvious, although both are plausible. The first
can be treated quickly. Since

sin x r1-- = cos (xs)ds
x ·0

it follows that Ix- I sin x lsi for all x. Thus, for any u,

Ir
oo sin x I r00 1e- xu -- dx S e- ux dx =-

'0 x '0 u

and therefore limu _ oo F(u) = 0, which is (6-34).
To verify (6-35), we show that the integral involved which defines ,F(u)

is uniformly convergent for all u ~ 0, for this will, by Theorem 13, permit us
to evaluate (6-35) as shown, taking the limit inside the integral. The Weierstrass
test will not show uniform convergence in this example, since the integrand in
(6-35) gives

.00

and I x - I Isin x Idx diverges. If we use the trick behind the Dirichlet test
• 0

(Theorem 17, Sec. 4.5) and integrate by parts once, the situation improves.
We have

'

.ooe-XU sin x dx __ f -xu -I JX=oo foo (1 + xu)e-
XU

cos x- e x cos x - 2 ._-- dx
• r X x=r r X
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and (estimating the integrand in the second integral),

I
00 • I e - ur Icos r I 00f e-xux- 1 Sill x dx s + f X- 2 dx

r r. r

2
s

r

for any u :2: o. Since limr _ oo 2/r = 0, (6-32) converges uniformly for this set of
values of u. Putting this with all the rest of the discussion, we have proved

that the value of f ocX-I sin x dx is exactly 7[/2.
• 0

Another specialized integral that can be treated by the same method is

f oc exp (- x2 - x- 2) dx
o

Consider the related integral

(6-37) F() f oc - x2 - u2/x2 du = e e x
o

As partial motivation for this choice, we observe that F(l) is the desired integral,

while F(O) is the familiar integral f oce- x2 dx which we have shown (Sec. 4.5)
o

to have the value -r;c/2. Differentiate (6-37), getting

(6-38) F(u) = -2 (J (:2 )e-X2e-U2/X2 dx

To justify this, we must show that this integral converges uniformly. Writing
the integrand in (6-38) as u- 1(u/x)2 e-(u/X)2e- X2 and using the fact that S2e-s

2

has maximum value e- 1
, we see that the integrand is dominated by (1/eu)e- X2,

so that the integral is uniformly convergent for all u :2: b > O. We cannot easily
integrate (6-38); however, let us make the substitution t = u/x, obtaining for
any u > 0,

F'(u) = -2 (u- 1t2e- 12e-(UW( ~2U) dt

oc
= -2 f e-t2e-u2/t2 dt

• 0

= - 2F(u)

Solving this differential equation, we find that F(u) = Ce- 2U, valid for all
u > O. However, the integral (6-37) which defines F is uniformly convergent
for all u, since le-x2e-U2/x21 s e- x2 for all u. In particular, F is then continuous
at 0, and limu I 0 F(u) = F(O). We know that F(O) has the value -r;c/2, so that

C = -r;c/2 and
OC

F(l)= f e-(X2+ 1/X2)dx=1--r;ce- 2
• 0
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EXERCISES

Investigate the existence and uniformity of

. x sin (xr)
hm-~-

,-0 1 + x 2

2 Let/be continuous on the interval 0 S x < CD with 1/(x)1 sM. Set

F(u) = ~ roo ufjx)}x
TC· 0 u2 + x 2

Show that lim. j 0 F(u) = /(0).
3 Show that, in fact, limx _oo F(x) = 1 where F(x) is given by (6-22).

• /2 . oo x 2u du
4 Evaluate lim f e-'''"· dO. 5 Evaluate lim f'j' ..-".

'-00 0 x-oo 0 X + U

f
oo sin2 (xu) du roo 1 - cos x

6 Evaluate ---2'--' 7 Evaluate., dx.
o u '0 x

8 Evaluate fOO e-·2cos (xu) duo
o

9 Evaluate fOO e-(X- l/x)2 dx.
o

10 Show that there is no function g(r) such that roog(r) dr converges but such that x2re- x, S g(r)
• 0

for all x ~ 1, r ~ O.

II Investigate the existence and uniformity of the limit

12 Evaluate:
1 dr

(a) lim r----=--=
x-o·o p + r2

13 Evaluate:

eX' - 1
lim---
r-O x

O<X<CD

1 X dr
(b) lim r-=

x-o· 0 Jx 2 + r2

f
oo fOO x dr

(a) lim sin (eX') dr (b) lim-- 2"2
x-oo 0 x-oo 0 1 + x r

14 Write out a detailed argument for the proof of Theorem 13.

15 Write out a detailed argument for the proof of Theorem 14.

*16 Show that (dX (G(X, y) dy # (dy (G(X, y) dx if G(x, y) = (x - y)/(x + y)3.

6.5 THE GAMMA FUNCTION

In Sec. 6.4, we discussed certain properties of functions which have been
expressed as integrals. It is the exception when such functions can be expressed
in terms of elementary functions; when this is not possible, the integral itself
is often taken as the definition of the function, and additional properties
of the function must be deduced from the integral representation. A simple
and familiar instance of this procedure is the definition of the logarithm
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function by the formula

x>o(6-39) L(x)=(dt
. I t

By making changes of variable, one may verify all the algebraic properties.
For example, to prove that L( l/x) is - L(x), we set t = l/u, and have

L(_l) = (X~t= (u(-u- 2 )du
x . 1 t . 1

.x du
= -1-- = -L(x)

• 1 u

A less familiar example is the approach to the trigonometric functions which
starts with the definition

(6-40)
x dt

A(x) = r ----2
• 0 I + t

As an example of what may be done with this, let us make the variable
change t = l/u, and obtain

r

1/X _U-2 roo du
A(x) = du=-

'00 l+u- 2
'1/x 1 + U2

00

Let K = r dt/(1 + t 2
) = limx _ oo A(x). Then, the last integral is

'0

K- rl/x~ = K- A(~)
'0 l+u x

so that we have shown the identity A(x) + A(I/x) = K. In particular, A(I) =
K/2; 1t may be defined as 2K. (6-40) can be taken as the definition of tan () by
the equation () = A(x). Exercise 2 provides a proof of the familiar identity for
tan (2()).

We devote this section to the study of some of the simpler properties of
the gamma function, as defined by the improper integral

(6-41 ) r(x) = roo uX-le- u du
• 0

This converges for all x > 0, and converges uniformly for all x in the interval
[15, L], for any 15 > 0 and L < 00, so that r(x) is continuous for all x> O. If
x is chosen as an integer, (6-41) becomes an integral which we can evaluate
exactly, so that comparing this with Eq. (6-29) of Sec. 6.4,

00

r(n+l)=f u"e-udu=n!
o
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If we write x! = r(x + 1), we therefore obtain a definition of "factorial"
applying to nonintegral values of x which agrees with the customary
definition when x is an integer. The gamma function also obeys the identity
(x + 1)! = (x + 1)(x!).

Theorem 18 r(x + 1) = xr(x) for any x > o.

Integrating by parts, we have

r(x+ 1)= ('uxe-udu= l_uxe-u1u=00 + foce-Ud(uX)
o Ju=o 0

= 0 + f oc xe-uux- I du = xr(x) I
• 0

By making appropriate changes of variable, many useful alternative
definitions of the gamma function may be obtained. We list several below,
together with the necessary substitution:

(6-42)

(6-43)

(6-44)

r(x) = 2 f oc t2x-Ie-t2 dt
• 0

1 l (1) lx-I
r(x) = f0 log t J dt

00

r(x) = eX f tX-1e- ct dt
o

r(x) = f 00 ext exp ( - et ) dt
-00

{u = -log t}

{u=et}

The first of these, (6-42), makes it possible to determine the value of r(x) when
x is any odd multiple of 1.

Theorem 19 r(!) = JTc, rG) = JTc/2 and in general,

r(n +~) = (2n)!-li
2 4"n!

Putting x = -! in (6-42), we have r(!) = 2 foo e- t2 dt = JTc. Using the
o

functional equation r(x + 1) = xr(x), we have

The general formula may be verified by an inductive argument. I
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-1

-2

-3

-4

2 3 4

Figure 6-4 The gamma
function.

If we know the values of the gamma function on one interval [k, k + 1],
we can use the functional equation to compute the values on the adjacent
intervals, and thus tabulate the function. Turning the formula around, we may
write r(x) = x-Ir(x + 1); since r(1) = 1, this shows that r(x) -- X-I as x
approaches O. In this form, we can also use the functional equation to extend
the definition of the gamma function to negative nonintegral values of x. For
example,

and r( -1) = (-~)r( -4-) = (~)~~. r(x) becomes unbounded as x approaches
a negative integer since this is the case near O. (An approximate graph of
r is given in Fig. 6-4.)

As an illustration of the use of certain techniques for estimating the
behavior of functions defined by an integral, we shall obtain a standard
asymptotic formula for r(x). When x is an integer n, this gives a form of
Stirling's approximation for n!.

Recall that in (5-30) we showed that n! = nne-n~ Cn , where the sequence
{Cn} is a bounded sequence whose terms lie b<.;tween 1.9 and 2.8. Our next
result will show that, in fact, limn_ oo Cn = fi1r, and that n can be replaced
by x, so that we obtain an asymptotic formula for x! = r(x + 1).
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Theort'm 20

This result is often written x! ..... y\,-".j2nx, but the approximation
symbol is to be interpreted in the sense of relative rather than small
absolute errOL For example. IOO! is about (9.JJ26)101~1. while Stirling's
formula gives lOOloOe- 10I1j200n, whith is aboul (9.J24H)10 In

. Thc
relative error is thus

9.3326
9.3248 - I = .cXXl8

or .08 percenl. while the absolute error is about 10lH
Starting from the original formula for r(x + I,. we make the change

of variable II = XI.

.~

nx+ 1)= I 11"('
·0

.~

Nd,,=x,,+1 I 1-'-('-'-'111
·0

so thaI

.~

~ ..0 I [IC' -T ,II
·0

The function y(l) = It,1 -, has its maximum on 0 :s; t < 'X at ( = I. where
y( I) = I. Thus. 0 :s; y(t) < I for all I oF I. t ~ O. This suggests splitting the
interval of integration into three portions 10 emphasize the contribution
near t = I. for if x is large and ( is not J. ly(t)J' witl be very small.
Choose an intcrval [n, h) about I = I, and writc

r(\' + I)'" ,~ .w

Clx) ~ ~'~-'fi~ ..0 .J},,(I))' ,II + fiU,,(I))' dl + fi.l. [,,(lll'dl

where 0 < 1I < 1 < h < 'X, (see Fig. 6-5). Our objectivc is to show thaI
lim,,_x C(x) = j2n. We first look at the first and third integrals III Ihis
sum. On the interval [0,0]. y(t):s; y(o) < I. and

..0 ("[,,(Ill' ,II ., "..0 ["(,, I)' - 0
• 0

I
I
I"

2

Fig....... 6-S
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as x increases. On the interval b :-:::: t < 00, g(t) :-:::: g(b) < 1. Thus,

~ (Xl[g(t)Y dt =~ rOO [g(t)Y-lg(t) dt
• b • b

rye

:-::::~[g(b)Y-l r g(t)dt
• 0

which again approaches °as x increases.
This leaves us with the middle integral. We choose a = 1 - 15 and

b = 1 + 15, where 15 has yet to be chosen. Then the middle integral, after
the substitution s = t - 1, becomes

(6-45)
lJ

I(x) =~ f [(1 + s)e-sy ds
-lJ

Lemma 1 For s near 0, (1 + s)e- S = e- S2h(s), where lims_o h(s) = 1.

This is seen by applying L'Hospital's rule to

h(s) = -log (1 + s) + s I
S2

The integrand in (6-45) is therefore e- xS2h
(s). We now choose b. Given

e > 0, choose 15 so that Ih(s) - 4-1 < e for all s, lsi :-:::: b. Then, for any s,
-15:-:::: s:-:::: 15,

(6-46)

We will use this to estimate I(x). First, we need a simple calculation.

Lemma 2 For any 15 > °and any c > 0,

lim~ ( e- cxs2 ds = J~
X-ex) "-J C

Put u =~ s, which turns the given integral into

(6-47)
1 rlJ.jcx

- e- u2 du
;-;: • - lJ.jCX

00

and as x increases, this converges to (ljylc) r e- u2 du, which by (4-40),
'-rye

is#. I

Returning to (6-46) and integrating between -15 and 15, we see that I(x),
given by (6-45), is sandwiched between two integrals that converge to

J1r7(~ - e) and ~1l:I(r+6)as x increases. Since e is arbitrarily small, we may

conclude that limx _ oo I(x) = a =.jfit. I
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If we admit the gamma function to the collection of functions which we
may use, many otherwise intractable definite integrals can be evaluated exactly.

1

Theorem 21 B(p, q) = f xP- 1(1 - X)q-l dx = r(p)r(q)jr(p + q), where p
o

and q are positive real numbers.

The integral defines B as a function of two real variables; it is known
as the beta function. When p and q are positive integers, the integrand
is a polynomial, and B(p, q) can be easily evaluated; the theorem makes
the evaluation possible for all positive p and q.

We follow a procedure similar to that which we used in evaluating

f 00 e- t2 dt in (4-40). Using the alternative formula (6-42) for the gamma
o

function, and introducing different dummy letters for the variables of
integration, we have

00

r(p) = 2 r y2 p-l e- y2 dy
• 0

00

r(q) = 2 r x2q-le-x2 dx
• 0

The product of these can then be expressed as

R R
r(p)r(q) = lim 4 f y2P-l e- y2 dy r x2q-le-x2 dx

R-oo 0 '0

00 00

r r
2p-l 2q-l -(x2+y2)d d= y x e x y

• 0 • 0

Since the integrand of this improper double integral is positive, we can
also integrate over the first quadrant by using quarter circles, and polar
coordinates. Replace x by r cos e, y by r sin e, and dx dy by r dr de.
Carrying this out, we have

R • ,,/2

r(p)r(q) = lim4 r dr I (rsinefP-l(rcose)2q-le-r2rde
R-oo'O '0

00 ~2

= 4 r r2P+2q-le-r2 dr f (cos e)2q-l (sin e)2 p-l de
• 0 0

In the first, put u = r2 so that dr = duj(2r); in the second, put v = sin 2 e
so that de = dvj(2 sin e cos e). Then

00 up+q+ 1/2e-u 1 (I _ V)q-l/2Vp-;-1/2
r(p)r(q) = 4 J

o
--i~~ du JO-2~1/2(1 ~-~)i72- dv

00 1

= r uP+q-1e- u du r vP- 1(1 - V)q-l dv
. 0 • 0

= r(p + q)B(p, q) I
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Many integrals which are not originally in the form of a beta function
can be converted into such a form, and thus evaluated. We give two samples
of this.

r
I dx flU - 3/4 du

• 0 (1 - X4 )1/2 = 0 4(1 _ U)I/2 = ;\:B(t 1)

qi)r(-t)
-4rm

r
rr/2_~_ rI V I /4 dv

)Sin ede = 1/2( r/2 = 1B(-i, 1)
• 0 . 0 2v 1 - v

(In the second, we have used the substitution v = sin 2 e, and in the last step,
the functional equation for the gamma function.)

EXERCISES

I Show directly from the integral definition in Eq. (6-39) that the function L has the property
L(xy) = L(x) + L(y).

2 (a) Show that the function A, defined in (6-40), has the property that

A(__2X _) = 2A(x)
1 - x 2 for any x, Ix I < 1

(b) Show how this leads 10 the identity tan (211) = (2 Ian 11)/(1 - lan 2 11).

3 Complete the induction argument in Theorem 19.

4 In terms of the gamma function, evaluate the following integrals:

1

(c) r [I - I/X]'/3 dx
'0

I dx

(b) Jo j;log (i/~
n/2

(d) f jtaiJ7j dll
• 0

5 Show that r(x)r(i - x) = (uX-I/(1 + u) duo
• 0

6 Evaluate ('Oupe-·' duo
• 0

1

7 Evaluate J x'[log (I/x)]' dx.
o

8 The error function is defined by

2 x

erf(x)= -f e-t'dr
J7('o

Use Ihis to express (evaluate) the following integrals:

.L

(a) I e- 1/,' ds
'0
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(e) F(x) = ('e- X
'2 dr

o
I

9 (a) Show that r dx/(I - X
I

/
4

) = 128/35.
'0

1

(b) Show that f (I - x 213 )3/2 dx = 31t/32.
• 0

10 Show that B(p, q) = r'"uP - I/(l + u)p+q duo (Hint: x = u/(I + u).)
• 0

II Using Exercise 10, show that I = f~'"dr/(I + r2)4 = 51t/16.

12 Express r'" (x - 1)213x - 2 dx in terms of the gamma function.
'1

13 The following identity was stated by Wallis (c. 1650)

Use Stirling's formula to show this is correct.

6.6 FOURIER SERIES

It is often useful to borrow the terms "point" and "distance" from elementary
geometry and apply them in quite different contexts in order to help motivate
and explain mathematical techniques. We have already done this in treating
n space, and have indicated in Sec. 6.2 an analog that is useful in working
with functions. We now formalize this.

A set vIt, whose members shall also be called points, is said to be a metric
space if for every pair p, q in vIt, there is a real number d(p, q) which we call
the distance from p to q, such that:

(6-48)

(6-49)

(6-50)

0< d(p, q) < 00 unless p = q when d(p, q) = 0

d(p, q) = d(q, p)

d(p, q):s d(p, r) + d(r, q) for any rEvIt

The last of these is again called the triangle law. Clearly, with d(p, q) =
Ip - q I, Rn is a metric space. All of Section' 6.2 dealt with the metric space
~[I] whose "points" were the continuous real-valued functions defined on a
fixed compact set I, using the metric (Exercise 14, Sec. 6.2)

d(f, g) = Ilf - gill = max If(p) - g(p) I
pEl

In any metric space, one can introduce all the topological concepts
described in Sec. 1.5. For example, a sequence of "points" {Pn} is said to
converge to a point p if

(6-51 ) lim d(Pn' p) = 0
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In the metric space ~[I], (6-51) is the same as saying that the functions {f,,}
converge to a function f uniformly on I.

In this section, we look at two other metric spaces, both of which have
been of central importance in mathematics and its applications, particularly
to physics. The first of these is t 2 (usually called "little L two "), which is
the natural infinite-dimensional generali7jltion of ordinary n space. The points
of t 2 are infinite real sequences, written as though the terms were coordinates:

The metric is defined by

(6-52)

(6-53)

(6-54)

= ~Ial- b~+l~-=-bJ2~

and in order to use it, the series inside the square root must converge. The
origin of the space t 2 is 0, the sequence all of whose terms are 0, so that if
we want d(p, 0) to exist, we must have

00

L lalcl2= l[p112 < 00

1

This imposes a requirement on all the points of t 2
• For example, the choice

an = lin yields a point of t 2
, sinceL~ I/n 2 converges, but the choice an = l/~

is not allowed, and does not yield a point in the space t 2
• (This explains the

"2" in t 2
; there is also a metric space t P whose poin ts are the sequences

{an} for whichL~ lanl p converges. The space t 2 is also called real separable

Hilbert space.)
Imitating n space, we also introduce a scalar or dot product in t 2

, defining

%

p. q = L akbk
1

The fact that this series is convergent for every pair of points p and q in t 2
,

and that the metric satisfies the desired laws, especially the triangle law (6-50),
follows from an appropriate form of the Schwarz inequality,

(6-55)

whose proof comes at once from the corresponding finite-dimensional version
(Theorem I, Sec. 1.3). For any n, we have



306 ADVANCED CALCULUS

and the right side is less than Ilp11211q1l2, which is finite by (6-53), so that the
series in (6-54) is absolutely convergent and is bounded as indicated in (6-55).

The space (2 has a special set of points {en} which we call its standard
basis. These are

e1 = (1,0,0, ... ,0, ... )

e2 = (0, 1, 0, 0, , 0, ... )

en = (0, 0, 0, 0, , 1, 0, ... )

We note that each has length 1, meaning that Ilenll = 1, and that they are
pairwise orthogonal, meaning that ei . ej =°if i "# j. It is customary to write
both of these facts in the single equation

(6-56)

where bij is a special function of i and j that is °unless i = j, when it is 1.
The reason for the term" basis" lies in the following result.

Theorem 22 For any p E t 2, P = 2,~ cnen, where the numbers Cn are

defined by

(6-57) Cn = P • en

The proof of this is not quite as trivial as it looks. If we start with
p = (al> a2' ... ), then (6-57) immediately gives an = cn for all n, and all that
remains is to show that

(6-58)

00

p = (CI> c2 , C3 , ... ) = 2, cnen
1

The only question lies in knowing what the right side means. As with
series of numbers, we interpret the right side as limN _ oo SN where

SN = 2,~ cnen, but "limit" must now be understood in the sense of the

metric of (2, meaning that limN_ oo lip - SNII = 0. However, since SN is a
finite sum, SN = (CI> C2 , ... , CN' 0, 0, 0, ... ), and

lip - SNI1 2 = IcN+ 112+ ICN +212+ ...

Since this is the tail of the convergent series 2, ~ ICk 1
2

, we see that,

indeed, limN_ oo lip - SNII = 0, as required. I

We state one more theorem about t 2 which will be of use to us later in
this section. We need a preliminary definition.

Definition 5 A metric space vii is called complete if every Cauchy sequence
of points in vii is convergent in vii.
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Thus, in a complete space A, any sequence {Pn} whose terms Pn are points
of A and which is such that limm.n-oo IIPn - Pmll = 0 will converge to some
point pEA. The function space ~[E] and Rn are each complete, the former
because of Theorem 1 in Sec. 6.2, and the latter by Theorem 23 of Sec. 1.7.
However, there are many metric spaces that are not complete (see Exercise 3).

Theorem 23 (2 is complete.

Since the proof of this is not needed for what we do later, and since it is
long and complicated, we have left this as a challenge in Exercise 14, where
you are asked to fill in a skeleton proof.

While the space (2 may seem to be a transparent generalization of n space,
it is not. The understanding of its geometric and analytic properties is far
from complete, even after a century of active research. By the end of this
section, some of the reasons for this will have become plain.

We now introduce another example of a metric space. The points in this
space will be continuous functions, for simplicity functions defined on a fixed
interval f = [a, b]. We use a different metric from that in the space ~(I], and
therefore use different symbols to denote both. We denote the new space by
*~[f], and the new metric is given by

(6-59)
I b \ 1/2

d(f, g) = *llf - gil = \( If(t) - g(tW dt l
We will use the elevated * in connection with operations in the new space,
to distinguish them from similar operations in the function space ~[f]. Thus,
we write

*Iim fn = g

to mean lim *llfn - gil = 0

which in turn (after squaring the result) translates into

(6-60)
.b

lim I Ifn(t) - g(tW dt = 0
rJ-OO • a

In much of the earlier work with Fourier series, the type of convergence
described by the formula in (6-60) was called mean square convergence, or
convergence in the mean; in some papers, it was denoted by I.i.m. fn(t) = g(t),
where the letters were read "limit in the mean."

Mean convergence and uniform convergence are different, just as the two
metrics II II I and * II II are different, even though both are being used on the
same collection of functions. Thus, if f(t) = t2 and g(t) = t 3 and f = [0, I],
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then computation easily shows that II I-gill = fr, while

However, there is a universal inequality between these two metrics, as shown
by the following result (Exercise 4).

Theorem 24 II I = [a, b] and I and g are continuous on I, then

*111 - gil ~ ~-a III - gill
Accordingly, if {f,,} converges to g uniformly on I, then *limn_ oo f" = g.

The converse of this does not hold. If In(t) = nJt exp (- n2t) and
I = [0, 1], then *limn_ 00 In = 0, since

r1 I f,,(t) 1
2 dt = r1n2te- 2n 2

, dt
. 0 . 0

1 .n 2

= 2 I se- 25 ds -+ °
n '0

but {f,,} does not converge to °uniformly on I, since

1
Il/nll = max I/n(t)1 = I/n(ljn

2
)1 =

Os's 1 e

for all n.
Although we have called * II II a metric on the space *~, we have not yet

verified the three requirements (6-48), (6-49), and (6-50). The first two are easily
checked. For the third, we are able to use the same approach adopted in
treating the spaces t 2 and Rn. (Indeed, as will be seen later in this section,
there is an innate similarity between the space t 2 and the space *~.) We do
this by introducing an inner product in *~ by writing

(6-61 )
b

<f, g) = r I(t)g(t) dt
, a

We use this notation, rather than I' g, in order to avoid confusion with
ordinary multiplication of functions. Notice that we are again making use of
the analogy between sums and integrals in choosing definitions (6-59) and (6-61),
which should be compared with (6-52) and (6-54). The properties of < , ) are
described in Exercise 2, and the same procedure that was used to prove
the Schwarz inequality in Rn (Theorem 1, Sec. 1.3) now proves the analog

(6-62) I<f, g)1 ~ *11/11*llgll

and from this, the triangle law (6-50) for the metric *11 II readily follows,
using the fact that *11/ + gl12 = <I+ gJ+ g).
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Following the pattern set by f2, we say that two functions i and g in *'t'
are orthogonal when neither is 0, but <f, g> = 0. An infinite set of functions
{<Pn} is said to be an orthogonal set or orthogonal system if every distinct
pair is orthogonal. This can be stated as

(6-63 )

and in integral form as

b

r <Pn(t)<Pm(t) dt = °
• a

n#m

n# m

If the <Pn have the additional property that *II <Pn II = 1 for every n, then the
set {<Pn} is said to be orthonormal on the interval I. Using the special function
(\m, this can be written in the abbreviated form <<Pn' <Pm> = bnm . We note
that a set that is merely orthogonal can be converted into an orthonormal
set by multiplying each <Pn by an appropriately chosen constant.

Unlike f2, there is no immediately obvious standard orthonormal set
for the space *'t'. Instead, one has many to choose from; indeed, one can be
constructed from any infinite linearly independent set of functions by taking
appropriate linear combinations to achieve the orthogonality. For example,
starting from the collection of all polynomials, we pick <PI to be the constant
function 1, then choose <P2(t) = a + bt to be orthogonal to <PI> and then
<P3(t) = a + bt + et2 so that <P3 is orthogonal to both <PI and <P2' etc., each
time solving for the required coefficients. For example, if I is the interval [0, 1],
then one might arrive at the following polynomials:

These are not normalized; in order to make them orthonormal, each must
be multiplied by the appropriate factor, leading to the set <PI = 1, <P2 =
J"3 (2t - 1), <P3 = J"5 (6t2 - 6t + 1), etc. Another common set, orthogonal on
the interval [-1, 1], is the Legendre polynomials, Pn(x), defined by the
formula of Rodrigues

(6-65) 1 (d)np (x) = -- -- (x 2 - l)n
n 2nn! dx

so that Po = 1, PI = x, P2 = ~x2 - 1, etc. (These can be seen to be closely
related to the polynomials <Pn given above in connection with the interval
[0,1]; see Exercise 12.)

While there are many obvious analogies between the space *'t' and the
sequence space f2, there are also many important differences. Perhaps the most
significant one is that the space *'t' is not complete. This means that there are
sequences {f,,} in *'t' which obey the Cauchy criterion limn. m- 00 * II in - im II = °
but which are not convergent. An example of such a sequence {in} is given
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y = (t)1/12n-1I Figure 6-6

!3(t) = .yt f,,(t) = t l /(2n- I)

6-6. Computation shows easily that this
3). However, there is no function 9 E *~

on the interval [ - 1, 1] by

!I(t) = t !2(t) =~

whose graphs are shown in Fig.
sequence is Cauchy (see Exercise
with 9 = *lim!n·

The reason for this is in fact quite simple: the space *Cfo is too small.
As can be conjectured from Fig. 6-6, the sequence Un} does in fact converge to
a function g, in the special metric defined in (6-59), but this function turns
out to be the discontinuous function

g(t) = 1 ~
-1

if t > 0
if t = 0
if t < 0

which is not in the space *~. The situation is similar to what would happen
if we were to try to build analysis on the rational numbers alone; here, we
would find that a sequence of rationals could be a Cauchy sequence but still
fail to converge if its limit (in the reals) were a number such as .)2, which is
not rational.

It would therefore seem plausible that we could overcome this defect in the
function space *~ by enlarging it to include many more functions, all dis
continuous, so that any sequence Un} that is Cauchy in the metric * II II will
now converge in that metric to one of the functions in the new space. This is
(almost) what is in fact done in a thorough and complete treatment of the
topic of Fourier series. However, certain technical difficulties must be overcome.
As a first step, *~ is enlarged by including all the piecewise continuous functions
on the interval 1 = [a, b]. However, the resulting space is still not large enough,
and one must include functions having an infinite number of discontinuities.
The basic definitions of the metric and inner product given in (6-59) and
(6-61) remain the same, but Riemann integration must be replaced by Lebesgue
integration to handle the new functions that appear. Finally, while the metric
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still obeys the triangle law, one can now have *llf - gil = 0 without havingf
and g identical; for example, suppose f and g agree except at one point of the
interval I. Since a treatment of all this would take us far afield, we will instead
continue to work with the smaller function space *CC of continuous functions,
and accept the fact that it is not metrically complete.

Having defined the notion of an orthonormal set {cPn}, it is natural to ask if
the pattern followed in the space t 2 still holds, so that one can choose a natural
orthonormal set which forms a basis for the space *CC. Let us formulate a
general definition.

Definition 6 An orthonormal set {cPn} in *CC is called a Fourier basis for *CC
if every f E *CC has the unique ex.pansion

(6-66)

(convergent in the metric of *CC), where the coefficients {cn} are given by

(6-67) for n = 1, 2, 3, ...

Here, the elevated * in (6-66) indicates that the convergence of the series
is in the topology of the space *CC, meaning that *limN~oo SN = f where

SN = L7 cncPn' which in tum is equivalent to limN~oo *llf - SNII = O. The

sequence {cn} is usually called the sequence of Fourier coefficients of f with
respect to the set {cPn}; it is important to note that {cn} can be constructed for
any orthonormal set {cPn}, whether they form a basis or not. We shall usually
write f"" {cn} to indicate the association between the function f and the
sequences of Fourier coefficients. In the same way, it is always possible to form
the formal series

(6-68)

00

2: cncPn = ClcPl + C2cP2 + ...
1

where the coefficients Cn are given by (6-67); this is called the Fourier series for
fwith respect to the orthonormal set {cPn}. The word "formal" is used here to
emphasize that nothing is implied about the convergence of the series (6-68)
in any of the possible meanings.

Because of their importance, we rewrite some of these formulas in integral
form. Thus, given any orthonormal set {cPn}, and a function f E *CC, we have
f"" {en}, where

(6-69)
.b

Cn= I f(t)cPn(t) dt..
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and the association off with its Fourier series is often written

00

(6- 70) f(t) ~ .2 Cn<Pn(t)
1

(Note that "~" is used here instead of" =" to emphasize that this is a formal
series, rather than one that is known to converge.) The set {<Pn} is a basis if and
only if

b

lim f If(t) - SN(tW dt = 0
N-oo a

for every f E *~. [In the older literature, one says that the senes (6-70)
converges to f in the mean.]

From the above discussion, it is clear that a basis for *~ will play the
same role there as that played by the standard basis {ek } for the space t 2

.

However, we have not yet shown that such a basis exists for *~. Unlike in t 2
,

none is immediately obvious, and indeed, much of the research in general
Fourier theory deals with the study of different orthonormal sets, the develop
ment of methods to decide which form a basis for *~, and the study of the
various modes of convergence of the series (6-70) and the degree to which the
Fourier coefficients {cn} characterize f

The systematic development of classicial Fourier series started with the
work of Fourier about 1820 in connection with the study of wave motion and
the flow of heat. Fourier asserted that the system

(6-71 )
1

yl2~'

cos (nx)
---

yin
sin (nx)
--_.

yin
for n = 1, 2, 3, ...

(6-72)

formed a basis for *~[ -n, n]' (We indicate a proof of this later on.) It is easy
to verify that this system is orthonormal by using the trigonometric identities

2 sin A sin B = cos (A - B) - cos (A + B)

2 sin A cos B = sin (A + B) + sin (A - B)

2 cos A cos B = cos (A - B) + cos (A + B)

For example, if n ¥- m,

f
" sin nx sin mx 1 f"

J
-- r= dx = - {cos (n - m)x - cos (n + m)x} dx

. -" n v n 2n -"

1 fSin (n - m)x sin (n + m)x.I"
----. ---_.,--- - ------ ----

2n n - m n + m _"

=0
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while I,rr sin n.x sin nx d _ 1 rrr (1 2) d_ x - -- - - cos nx x
, - rr Jn .jn 2n . - rr

n= -- = 1
n

j(x)(6-73 )

The Fourier coefficients ofj(x) on the interval [-n, n] with respect to the
functions (6-71) will lead to a Fourier series having the form

'" Ao 1= +i A cos ~x +i B sin ~
.j2n 1 ·.jn 1· In

where the A k and Bk ar~ calculated from (6-67). However, it is easier to absorb
the terms involving .jn into the coefficients, arriving at the more traditional
series

(6-74) j(x)
1 00

:2 ao +L (a. cos nx + b. sin nx)
1

where the coefficients are now given by the formulas

1 rr

a.=- r j(x)cosnxdx
n· -rr

1 rr

(6-75) b. = - r j(x) sin nx dx
n· -rr

For example, ifj(x) = x, then we find a. = 0 for all n, and b. = (2In)( -1).+ 1.

(In calculating these, it is helpful to observe that any odd function, obeying
g( - x) = - g(x), has a vanishing in tegral over any symmetric interval [ - c, c];
sincej(x) = x is odd and cos nx is even, a. = 0.) After dividing by 2, we there
fore obtain the following Fourier series:

(6-76)
x

2
. 1'2 1 '3 1 '4Sill x - 2 Sill X + 3 Sill X - 4Sill X + ...

Following the treatment of (5-17), we can apply Dirichlet's test to show that
the series is convergent pointwise for every x. This shows that (6-76) cannot
be taken as equality for all x on [ - n, n], for the right side is 0 if x = n or - n.
However, if we set x = n12, (6-76) becomes

nIl 1 I
4 1- 3+ 5- 7+ 9-'"

4
(6-77)

which agrees with the result in (6-16), found from the power series for arctan x.
Again, if[(x) = x 2/4, then the same process (simplified by observing thatf

is an even function) yields the Fourier series

x 2 n 2 1 1
- - cos x + - cos 2x -- cos 3x + ...

12 4 9
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SinceL ~ 1/n2 converges, we see that the series converges uniformly for all x.

However, we do not as yet know that the function to which it converges must
be x 2/4. We can check that this is plausible by setting x = n in (6-77) to obtain

n
2

n
2

1 ~ ~ _L ...
4 12 + + 4 + 9 + 16 +

which is confirmed by the "computation" in Sec. 5.5 that led to (5-39),

although at this stage we certainly cannot say we have proved L 1/n2 = n2/6.

Additional "confirmation" of the consistency of all this can be seen by
looking at the formal derivative of (6-77) and comparing the result with (6-76).
However, legitimate doubts should arise, since if we differentiate (6-74) in
the same way, we then obtain the relation

(6-78 )
1

2
~ cos x - cos 2x + cos 3x - cos 4x + ...

and this series diverges for every choice of x. The mixture of sense and nonsense
which these examples illustrate make it necessary to develop more theory.

We suppose that {<Pn} is an arbitrary orthonormal set, not necessarily a
basis, and we propose to study the relationship between a function! and its
Fourier series; there are three main questions which we examine. The first deals
with the Fourier coefficients themselves. If!~ {cn}' then we ask if the sequence
{cn} uniquely characterizes the function! among all other functions in *~, and
if so, how properties of! are reflected in {cn}. The first half of this question can
be rephrased usefully. If! and g both have the same Fourier sequence, then
<f, <Pn> = <g, <Pn> for all n, and if h = ! - g, <h, <Pn> = 0 for all n. Since! = g
if and only if h = 0, we are led to ask if 0 is the only function in *~ that is
orthogonal to all the functions <Pn. The uniqueness question for a given
orthonormal set {<Pn} is therefore the same as asking if the set is maximal in *~,

meaning that no additional function can be found in *~ which is orthogonal
to all the <Pn already chosen and which is not identically O. If an orthonormal
set {<Pn} is maximal in *~, then every! in *~ is characterized uniquely by its
Fourier coefficients. (Instead of " maximal," some writers on Fourier theory use
the more ambiguous terms" complete" or "closed.") It should be noted that a
given set might be maximal with respect to *~ but not maximal with respect
to a larger space of functions, since it might be possible to find a discontinuous
function that is orthogonal to all the original <Pn which could then be adjoined
to the set to form a larger orthonormal set.

Once we have found the Fourier coefficients {cn} for f, we can form the

Fourier seriesL ~ Cn <Pn· The remaining questions deal with the convergence of

this series, and in particular, whether it converges to f, either in the mean (i.e.,
in the topology of the space *~) or in more familiar ways such as pointwise
or uniformly on [.

We start by looking at finite linear combinations (sums), such as
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P =L7an <Pn· We call these Fourier polynomials, by analogy with elementary

algebra; in the classical trigonometric case, these are called trigonometric
polynomials. We prove several useful identities.

Lemma 1 If P = L7an <Pn , and f E *<6', then

(6-79)
N N

(J. P) = L an(J. <Pn) = L ancn
I I

(6-80)
ifk ~ N
ifk> N

For, (J. P) = (f, al<PI + a2 <P2 + ... + aN<PN)

= al(J. <PI) + a2(J. <P2) + ... aN(J. <PN)

Lemma 2 If P = L7an <Pn, then

(6-81 )

N

For, */IPI/ 2 = (P, P) = Lan(P, <Pn)
I

N N

=L an(<Pn, P) =L lan l2 I
I I

We next use these to show that the partial sums of the Fourier series for a
functionfprovide optimal approximations toJ. among all Fourier polynomials.

Theorem 25 Iff"" {cn} and SN =L7Cn <Pn, then

(6-82) */If - SNII ~ *lIf - PI/

where P may be any Fourier polynomial of the form L7an <Pn·

We have

*llf - PI/ 2 = (f - P,.f - P)

= (J.f) - (J. P) - (P,.f) + (P, P)
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Then, by (6-79) and (6-81), this becomes

N N

*III - Pl12 = <.f,I> - 22: anCn+2: lan l2
1 1

and then, with minor adjustments,

N N

(6-83) *III - PI1 2= *IIII1 2- 2: Icn l2+2:, Ian - Cn l2
1 1

Since the numbers cn are determined by I, the minimum of the right-hand
side of (6-83), as the an vary, is clearly achieved uniquely by the choice
al = Cb a2 = C2 , ... , and the optimal polynomial P is SN itself. I

From this simple result, we obtain a large number of very useful
implications.

Corollary 1 III'" {cn} then

(6-84) converges

(6-85) lim Cn = 0

(6-86)
00

2: Icn l2~ *IIII/ 2
1

(Bessel's Inequality)

These all arise from the identity

(6-87)
N

*/II - SN/1
2 = *IIII12- 2: Icn l2

1

which comes from (6-83) by setting an = cn. Since the left side of (6-87)
cannot be negative,

N

2: Icn l2~ *IIII1 2
1

for any N, and (6-84), (6-85), and (6-86) follow.

Corollary 2 III'" {cn} and SN is the Nth partial sum ol the Fourier series

2:~ Cn <Pn , then *III - SNII is monotonic decreasing as N --+ 00, and

(6-88)
00

I = *2: cn <Pn = *lim SN
1 N-CLj
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if and only if

(6-89)

(6-90)

This follows directly from (6-84); the relation (6-89) is sometimes called
Parseval's formula.

At this stage, we can now apply these results to the study of any specific
orthonormal set, such as the Legendre polynomials or the classical trigono
metric functions, (6-71). For example, because of (6-85) we know immediately
that the trigonometric series (6-78) cannot be the Fourier series of a function
in *~, since the coefficients do not converge to O. Again, the following
trigonometric series is not a Fourier series

. 1.() 1.()
Sill X +fi Sill 2x + J3 Sill 3x + ...

since.L ~ (l/fiy diverges. We note that this series in fact converges pointwise

for all x, by the Dirichlet test. This leads to the reasonable conjecture that
(6-90) ought to be the Fourier series (in some sense) for something, even if
it is not the Fourier series for a well-behaved function. We return to this at
the end of the present section.

Turning now to the classical trigonometric Fourier series, based on the
orthogonal functions (6-71) and the formulas (6-74) and (6-75), the Parseval
relation becomes

(6-91 )

which, by Corollary 2, is a necessary and sufficient condition for the Fourier
series (6-74) to be convergent "in the mean" tof(x), in the metric of*~.

If we apply this to the series (6-76), Parseval's relation becomes the
assertion

(which is by now an old friend). Thus, we see that we can conclude that the
Fourier series (6-76) is convergent in the mean to x/2 if we can finally establish
the series identity (5-39), and vice versa.

As we have seen from (6-78) and (6-90), not every series in the
orthogonal functions 1>" is a Fourier series, including some that converge
pointwise as series of functions. This is not the case if we use the notion of
convergence in the space *~, for then every convergent series is a Fourier series.
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Theorem 26 LetL ~ an cPn converge in *<6' to a function g E *<6'. Then

i. L ~ 1an 1
2 < 00.

ii. g'" {an}.
iii. Iff is any function in *<6' and f '" {en}, then

(6-92)

The proof uses the Schwarz inequality, (6-62). Let FN=L; an cPn,

so that we have, by hypothesis, *limN_ ce FN = g. By Lemma 1, for any
f E *<6',

so that

N

<f, g) - L ancn = <f, g) - <f, FN>
1

and thus by (6-62),

I<f,g>-~ ancnl= I<f,g-FN>I

~ *llfll*lIg - FNII

But, limN _ ce *Ilg - FNil = 0, and we have proved (iii). To obtain (ii), we take
f as cPk' and (6-92) gives us <cPk> g> = ak, so that g '" {an}, from which (i)
follows. I

It is natural to ask if the condition L~ Ian 1
2 < 00 is sufficient to imply

that the series L~ an cPn converges. The complicated nature of this question

can be seen from the following simple observation.

Theorem 27 IfL ~ 1an 1
2 converges, then the seriesL ~ an cPn is a Cauchy

series, meaning that the sequence of partial sums is a Cauchy sequence in the
space *<6'.

For, if FN= L7an cPn' then, applying Lemma 2 to the Fourier

polynomial
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M

*IIFM - FN I1
2 = 2: lan l2

N+l

and sinceL 1an 1
2 converges, the right side of this approaches 0 as Nand M

become large, proving that {Fk } is a Cauchy sequence in the metric of *~.

However, as we have seen, the space *~ is not complete, and not every
Cauchy sequence converges. As mentioned earlier, this can be overcome by
enlarging the space *~ by including a great many discontinuous functions.
When this is done, arriving at a function space:? that is complete, then every

seriesL ~ an ¢n withL ~ Ian 12 < CIJ is convergent, and is therefore the Fourier

series of a member of :? (As noted before, this process requires a much more
thorough discussion of integration and Lebesgue measure theory, and is best
treated as a subject in itself.)

Let us return to the initial question: How can one tell if an orthonormal
set {¢n} is a Fourier basis for the space *~?

Theorem 28 The set {¢n} is a basis for *~ if and only if the collection of all
Fourier polynomials P is dense in *~.

By "dense," we mean that given anyf E *~, and any E > 0, there is a P
with * II f - P II < E. This clearly holds if {¢n} is a basis, since P could be
chosen as one of the partial sums of the Fourier series for f, which by
assumption converges tof Conversely, suppose the polynomials are dense;
we must then prove that the Fourier series for any f converges to f
Choose any E, and then P with *llf - PII < E. Suppose that P has the form

L ~ an ¢n' Then, combining the minimality property of the partial sums

{Sk} of the Fourier series2 Cn¢n for f and their monotonic property

(Theorem 25), we have

*llf - Skll ~ *llf - SNII ~ *llf - PII < E

for all k > N, and *limk~oo Sk = f, andf = *2:~ cn¢n' I

At this point, we leave the general theory and turn instead to some
results that deal specifically with the classical trigonometric Fourier series.
Our first theorem shows that the Fourier coefficients of a function f E *~

characterize the function.

Theorem 29 The trigonometric functions (6-71)form a muximal orthogonal
set on the interval [ - n, n].
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What we must prove is that iffis continuous in the interval I = [-1t, 1t]
and if

(6-93 ) (' f(x) cos (nx) dx = r" f(x) sin (nx) dx = 0
. -n . -n

for all n = 0, 1, 2, ... , then f is identically 0 on I. We first note that
because of (6-93),

(6-94) r f(x)P(x) dx = 0
-"

for any trigonometric polynomial of the form

N

P(x) = L (akcos (kx) + Pk sin (kx))
o

We will use this to show thatf(x) = 0 for every x E I by choosing a very
special trigonometric polynomial P(x), and do this first for x = O. Suppose
thatf(O)"# 0, and assume thatf(O) > O. Sincefis continuous, there is an
6> 0 and a neighborhood about 0 in Ion which f(x) > 6. We next wish
to choose P(x) so that it is extremely small outside this neighborhood of 0,
but very large for the points x near 0; such a function clearly cannot
satisfy relation (6-94). To construct P(x), we need two elementary results
about the cosine function.

Lemma 3 Each of the functions (cos x)m is a trigonometric polynomial.

The proof is by induction. We have (cos X)2 = -1- + (1) cos 2x. Suppose
that

(cos xt = Co + Cl cos X + C2 cos (2x) + ... + CN cos (Nx)

Then, using the identity (6-72),

N

(cos xt+ 1 = L Ck cos X cos (kx)
o
N

=L 1Ck(COS (k + l)x + cos (k - l)x)
o

Lemma 4 If Ix I ~ 1t, then

(6-95)

This is a routine application of Taylor's theorem with remainder.
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Using these, we now construct the needed polynomial P(x). We suppose
thatf(x) > E for all x with Ixl < b. Then, if Ixl < 15/3, we have by (6-95)

ib 2 + cos X > ib 2 + 1 - -H~b2) = I + ~b2

while if 15 < Ix I ~ n,

- I + ib 2 ~ ib 2 + cos X < ib 2 + 1 - ~b2 = 1 - iab 2

Choose n very large, and set

P(x) = (tb2 + cos xV"

Then, expanding this in powers of cos x and using Lemma 3, we see that
P(x) is a trigonometric polynomial which is uniformly arbitrarily large
for Ixl < 15/3 and uniformly arbitrarily small for 15 < Ixl ~ n, and for it
(6-94) must fail. This shows that f(O) = O. A similar argument can be
made at any point x = c on the interval I by using the polynomial

P(x) = (ib 2 + cos (x - C))2"

where If(x)1 > E for all x with Ix - cl < b. I

We next use this to prove that any sufficiently smooth periodic continuous
function has a classical Fourier series that converges to it uniformly on the
interval I. We prove this in two steps.

Theorem 30 Let f be ofclass C on [ - n, n], and suppose that f (n) = f (- n).

Then the Fourier coefficients {a"}, {b"} for f obey .L:: la"1 < 00,

2~ Ib"1 < 00.

By hypothesis,f' is continuous on [-n, n]. Using formulas (6-75), we
find the Fourier coefficients off' in terms of those off

1 ."
!X"= I f'(x)cos(nx)dx

n· _"

I I" n r"= ~ f(x) cos (nx) _" + ~. _/(x) sin (nx) dx

= (-l)"(f(n) - f(-n)) + nb"

= 0 + nb"

1 "
/3" = ~ L"f'(x) sin (nx) dx

1 I" n f"= n f(x) sin (nx) _" - ~ _/(x) cos (nx) dx

= 0 - nan
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Since IXn and fJn are Fourier coefficients of a function in *<i&', Theorem 26

applies andL IIXnl2and L IfJnl2both converge; accordingly, L n21anl2
and L n21bn 1

2 both converge. However, a simple argument with Schwarz'

inequality shows that in general, ifL n21 Cn 12 converges, so must the series

L Icnl, for

for all N. Applying this separately, we have L Ian I and L IbnI both

convergent. I

The next result depends upon the fact that the trigonometric orthogonal
set is uniformly bounded.

Theorem 31 Iff is continuous on [- rr, rr] and has Fourier coefficients

{an}, {bn}, and L lanl and L Ibnl both converge, then the Fourier series

forf
00

iao +L (an cos (nx) + bnsin (nx))
1

converges uniformly tof(x) on [-rr, rr].

First, we observe that the hypothesis on the coefficients ensures that
the series (6-96) converges uniformly on I to some function g(x),
necessarily continuous. The relation between the norm *11 II and II III
(Theorem 24) implies that the series (6-96) converges to 9 in the metric of
*<i&', and Theorem 26 implies that the sequences {an}, {bn} must be the
Fourier coefficients of g. Accordingly, f and 9 are both continuous on I
and have the same Fourier coefficients. By Theorem 29,/ = g. I

Combining the last two results yields a number of useful corollaries.

Corollary 1 Any periodic function f of class C' on [ - rr, rr] has a uniformly
convergent Fourier series.
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In particular, this applies to the function x 2/4, so that we have at last
verified (6-77) and the formula for the sum of the numerical series l/n 2

• We
next obtain one form of the Weierstrass approximation theorem.

Corollary 2 Any periodic continuous function on [ - n, n] can be uniformly
approximated there by trigonometric polynomials.

In Sec. 2.3, Theorem 7, we saw that f could be approximated uniformly
by continuous piecewise linear functions, formed from a finite number of
line segments. By rounding off the corners, we see that such a piecewise
linear function can be uniformly approximated by a function g of class C.
If f is periodic, so that f(n) = f(-n), then g can be chosen to obey
g(n) = g(-n), and if we now approximate g on [-n, n] by a partial
sum of its uniformly convergent Fourier series, the resulting trigonometric
polynomial will be the desired !1niform approximation to the function.f

If we now apply Theorem 28, we obtain the following.

Corollary 3 The trigonometric orthonormal set (6-71) is a basis for *CC, and
every continuous function f has a Fourier series which converges to it "in the
mean," that is, in the metric of the space *CC.

We must prove that the trigonometric polynomials are dense in *CC.
By Corollary 2, they are uniformly dense in the space of periodic continuous
functions on [ - n, n], and thus by Theorem 24, they are also dense in the
metric *11 II· We need now only observe that the periodic functions are
dense in *CC. For, iffis continuous, butf(n) #- f(-n), then a continuous
function g can be chosen which coincides with f exactly, except in a small
neighborhood of x = n, and which is such that g( - n) = g(n) and *II f - gil
is as small as desired. (The same argument shows considerably more;
the trigonometric polynomials are dense in the metric *11 II in a much
larger space than *CC, including, for example, all Riemann-integrable
discontinuous functions. Thus, any piecewise continuous function on
[ - n, n] is the limit in the mean of the partial sums of its Fourier series.)

We conclude this brief introduction to the theory of general Fourier
series with two remarks. The first deals with the sequence space t 2

. Perhaps
it has been apparent that this space has played a central role. Given any
infinite orthonormal set ¢n in *CC, the correspondence f "" {cn}, where Cn=
(r. ¢n)' defines a mapping from *CC into t 2

, because of the Bessel inequality.
If the set {¢n} is maximal, this mapping is I-to-1. However, even if {¢n} is a
basis, this mapping need not be onto, so that the complete image of *CC will
not fill up t 2

• However, the mapping has several very nice properties. For
example, it preserves distance and angle; this is the geometric meaning of
Parseval's relation, (6-89), and (6-92). For, iff"" {cn} and g "" {bn}, and p and q
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are the points in {2 identified with the sequences {en} and {bn}, then

*111 - gil = lip - qll
and <f,g)=p'q

Thus, each basis for *~ yields a different congruent embedding of *rt as a
subset of {2. The seemingly simple space (2 contains all the complexity
associated with any basis for the space of continuous functions, as well as
that for the enlarged function spaces mentioned earlier in this section.

Our second remark returns to several examples given earlier, namely the
senes

(6-97)

and

(6-98)

sin x +~ sin (2x) +~ sin (3x) + ...

cos x - cos (2x) + cos (3x) - cos (4x) + ...

The first converges for all x, by Dirichlet's test. The second converges for no x.
Neither is a Fourier series, for the coefficients do not satisfy (6-84). The
series can be obtained by formal differentiation of the following series:

1 1
(6-99) -cos x - -- cos (2x) - -- cos (3x) - ...

2)2 3J3
(6-100) sin x - ~ sin (2x) + ~ sin (3x) - ...

which are in fact Fourier series [again by reference to (6-84)]. This suggests
that (6-97) and (6-98) ought to be (in some new sense) the Fourier series for
the derivatives of the functions associated with the Fourier series (6-99) and
(6-100).

Such a mathematical theory has been developed, based on what is called
the theory of distributions. For it, one must first invent a new concept of
differentiation; it then turns out that the "derivative" of a function which
does not have an ordinary derivative can exist but may be something quite
different from the conventional notion of function, and it is these objects that
have Fourier series such as (6-97). (Some aspects of this are discussed in
Appendix 6.)

EXERCISES

1 Find the angle between the following points in (2.

p = (1,~. ~.~.~....) q = G. ~. }, ~....)
2 Verify the following properties of the inner product and norm in the space *((j.

(a) d(f, g) = d(g, f) and d(f, g) = 0 if and only iff = 9
(b) <f, g, + g2) = <f, g,) + <f, g2)

<f, rxg) = rx<f, g) = <rxf, g)

*llfll = )(1,])-
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3 Verify that the functionsf.(t) = t 1
/(2.-1) are "Cauchy in the space " '1&'[ -1.1]'

4 Prove Theorem 24 by estimating the integral in (6-59).

5 Use (6-72) to finish verifying that the set (6-7 i) is orthonormal on [ -n. n].
6 Verify formulas (6-74) and (6-75).

7 Verify (6-76).

8 Verify (6-77).

9 Find the Fourier series of eX on [-n. n] with respect to the orthonormal functions in (6-71).

10 The space of complex-valued continuous functions on the interval I = [0.1] can be made an
1

inner product metric space by means of the definition: (f, g) = " f(t)g(t) dt. IIJII = j<J.T)
. 0

and d(f, g) = Ilf - gil where 9 is the complex conjugate of g. Verify the following properties:

(a) (f, g) = (9.1) = (g,f)

(b) P(f, g) = (Pf, g) = (f, 71g)

(c) Ilcxfll = IcxlllJil
(d) IIf - gil = 0 implies thatf = 9

(e) (f, g) + (g,f) s 211fll Ilgli

(f) I(f, g)1 s Ilfll Ilgil

(g) Ilf + gil s Ilfll + Ilgll
(h) Complex (2 has points p = (a" a2 • •.• ) where the a. are complex numbers obeying

L la.1 2 < 00. What is an appropriate definition for the inner product P'q?

11 (a) Verify that the set {<t>.l = {ei
'

X
}. for n = 0, ± 1, ±2, ±3, .... forms an orthogonal set on

[0,2n]. Find the normalizing constants that convert this set into an orthonormal system. and
find the formula for the Fourier coefficients of a functionf(x) with respect to these functions {<t>J

(b) Show how this set is related to the set (6-71).

12 (a) Use (6-65) to obtain the Legendre polynomials for n s 5.
(b) Verify directly that P3 is orthogonal on [-1, 1] to PI and to P2'

(c) Make a change of variable: t = (x + 1)/2. and compare the result with the special
orthogonal polynomials <t>.(t) in (6-64).

13 The Chebyshev polynomials 1;,(x) are defined by the recursion

To(x) = 1

T,(x) = x

1;,+tlx ) = 2x1;,(x) -1;,-,(x)

(a) Find 1;,(x) for n s 5.
(b) Verify that T,,(cos lJ) = cos (nlJ).

(c) Verify that IT,,(x) lsI for -1 s x s 1.

(d) Verify that if n # m

1 dx
r 1;,(x)Tm(x)----- = O.
'-1 j1=7

14 Complete the following proof that (2 is complete.
(a) If p = (b" b2 , b3 , ... ) E (2. define for any k,

U,(p) = L b.e••
.>,

(b) Verify that II U,(p)II s IIpll.11 v,.(p)II s IlpII,lim,_oo II U,(p)11 = Ilpll, and lim,_oo II v,.(p)11 = o.
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(c) Let P. = (a~, ai, a3, ... ) be a Cauchy sequence of points in t 2
• Use U,(P.) to prove that

{a~} is a Cauchy sequence for each k.

(d) Let c, = Iim._a) a;; and prove that q = (c" c2 , C3' ... ) belongs to (2.

(e) Show that for any £ > 0, there is a ko and an N such that II V.o(p.)11 < 2£ for all n ;:>: N.

if) Prove that lim._a) lip. - qll = O.



CHAPTER

SEVEN
DIFFERENTIATION OF TRANSFORMATIONS

7.1 PREVIEW

This chapter deals with the central core of multidimensional analysis, the study
of transformations from n space into m space. A key tool in this is the dif
ferential (or derivative) of such a transformation T, regarded either as a matrix
valued function or as a function whose value at a point is a linear transforma
tion. Thus, one has T(po) = L, where L is the unique linear transformation
such that

lim IT(po + dp) - T(po) - L(dp) I= 0

,1p-O Idp I
a formula that resembles the corresponding one for the derivative of a function
of one variable.

In terms of this general concept of differentiation, which extends the
previous concepts defined for real-valued functions, we then obtain the general
chain rule in the simple form d(ST) = dS dT, and study the existence of local
and global inverses for transformations and the properties of nonsingular
mappings, defined as those T having a nonvanishing Jacobian. This leads im
mediately to the implicit function theorems, which give sufficient conditions for
the existence of a solution of a system of nonlinear equations, and to the study
of functional dependence.

327
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7.2 TRANSFORMATIONS

In Chaps. 1 and 2, we discussed many general properties of functions that were
defined on one set and took values in another set, both possibly being subsets
of a space of high dimension. However, most of the material discussed since
then has concentrated on the study of scalar-valued (i.e., numerical-valued)
functions. In the present chapter, we will be working almost entirely with
functions whose range of values will be points in m space, for some specific
choice of m such as 2 or 3. These were called vector-valued functions, to
distinguish them from scalar-valued functions. To emphasize a different view
point which lays stress on their role as mappings, we shall now use the
special term transformation. Thus, if A is a set in n space and B a set in m space,
a transformation T of A onto B is a function whose domain is A and whose
range is B. We shall say that T carries a point p into the point T(p) = q
and call q the image of p under the transformation T. If p is a point in the
plane and q a point in space, we may write p = (x, y) and q = (u, v, w) so that
T(x, y) = (u, v, w). In this case, we may also describe the transformation by
specifying three coordinate functions, and writing

l u = f(x, y)
T;,v=g(x,y)

lw = h(x, y)

For brevity, we may also refer to such a transformation as a mapping from
R 2 into R 3

, even though its domain may not be all of the plane.
To illustrate these notions, let us begin with a particular transformation

of the plane into itself:

(7-1) T)u = x
2 + y2

\v=x+y

Under T, the point (x, y) is sent into the point (u, v). For example, the image
of (1,2) is (5,3), the image of (0,2) is (4,2), and the image of (2,0) is also
(4,2). Any set of points in the XY plane is carried into a corresponding set of
points in the UV plane. It often helps to compute the image of a number of
selected curves and regions. To determine the image of the horizontal line
y = c, make this substitution in the equations for T, obtaining

Ju = x2 + c2

\v=x+c

This can be regarded as parametric equations for the image curve in the UV
plane, or x may be eliminated, resulting in the equation:

u = (v - C)2 + c2

(In Fig. 7-1 these curves are shown for several choices of c.) Turning to
regions, we first observe that the point (a, b) and the point (b, a) both have the
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Figurt, 7-1

same image. Thus. the line r = x divides Ihe X Y plane into two half planes
which are mapped by .,. onlo the same set in the U V plane. To determine
this sct. we lirst find the lIll<tge of the line J' = x. Substituting into (7-1), we
obtain /I = 2x 2, I' = 2x. which arc p<lrametric equations for the parabola
,.2 = 211. The image of any poim (x . .\') lies within this curve, for

2/1 - ,,2 = 2(x 2 + .1'2) _ (x of y)2

= x 2 + .1'2 - 2x.1' = (x - JV ~ 0

Conversely. it is easy to see that every point (II, d on or within this parabola
is in turn the image of a point (x,.\") (see Fig. 7-2). Accordingly. one may

.....c..o---
('=-1-----/-- "
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picture the effect of T approximately as follows: first fold the X Y plane along
the line }' = x. and then fit the folded edge along the parabola /,2 = 211. and
flatten out the rest to cover the inside of the parabola smoothly. (fo permit
the necessary distortion, think of the X Y plane as a sheet of rubber.)

As another illustration. consider the following transformation of 2·space
into 3-space.

(7-2)
IU=."I: + r

S:'/'=x-r
III'=x2

The image of (I, 2) under S is (3. -I. I). The image of the line.r = x is the
curve given in pam metric form by

l'I=2\"
. 1,=0
Iw = x 2

which is a parabola lying in the UIV plane. The image of the whole X}' plane
is a parabolic cylinder resting on the UV plane (sec Fig. 7.:\).

Since transformations belong to the general C<ltegory of functions. one may
also consider their graphs. Except in the simplest cases, this is usually diflicult
and of little help; for example. the graph of the transformation T described
by (7-1) is the set of all points (x, .1". II, r) in R" for which (7·1) holds. thai is.
the set of all points

for~oc-<x<'X- and -oc-<.r<-x.

Therefore, we usually adopt other de\,jces in studying tmnsformations. The
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general transformation from Rn to Rm can be described by means of the
equations:

(7-3)

lYl :fl(X1, x 2, , x n)
Y2 - f2(X 1> x 2' , xn)

T:'

i~:~ '~'~~(~':" ~';" :::: '~~;
where we have written p = (x l' x 2 , ••• , x n ) for the general point in n space, and
q = (Yl' Y2' ... , Ym) for the general point in m space. (Note that the subscripts
on the functions!; do not indicate partial differentiation.) The labeling of the
coordinates of p and q is quite arbitrary; convenience and habit are the guiding
criteria. For example, the general transformation from I-space to 3-space can
be described by

lx=f(t)
T:-y=g(t)

j z = h(t)

where we have put p = t and q = (x, Y, z). In this case, it often helps in
studying T to regard these equations as a particular set of parametric equations
for a curve in R 3

. Similarly, when n = 2 and m = 3, we may write

Ix = f(u, v)
, Y = g(u, v)
jz=h(u,v)

and regard these as a set of parametric equations for a surface in R 3
.

Transformations can be combined by substitution to yield new transforma
tions, provided the dimensions of the domains and ranges are compatible. If T
is a transformation from Rn to Rm

, and S is a transformation from Rm to
Rk the transformation R defined by R(p) = S(T(p)) is a mapping from Rn into
Rk

; R is often called the product or composite of Sand T. For example, let T
be the mapping which sends (x, y) into (xy, 2x, - y) and S the mapping which
sends (x, y, z) into (x - y, yz). Then, the mapping R = ST sends (x, y) into
(xy - 2x, -2xy). T is a mapping of R 2 into R3

, and S a mapping of R 3 into
R2

, so that R is a mapping from R 2 into R 2
•

In order to calculate the product R = ST, given equations for Sand T, it is
convenient to use the same coordinate labels for points in the middle space in
both transformations. Thus, if T sends (x, y) into (r, s, t) and S sends (r, s, t)
into (u, v), as shown in Fig. 7-4, and if the equations for T and S are

(7-4)
~ r = xy

T:~ s = 2x
j t = - Y

S)u=r-s
\v = st

then R sends (x, y) into (u, v) and we can read off the equation for R = ST
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Figure 7-4

directly from (7-4), obtaining

R:Ju = xy - 2x
\v = -2xy

In this particular example, since T maps 2-space into 3-space, and S maps
3-space into 2-space, we can also form the product of Sand T in the
opposite order, obtaining H = TS, which will be a mapping from 3-space into
itself. To calculate H, one might restate the equations for Sand T with new
coordinate labels for the points. Suppose we say that S maps (x, y, z) into
(u, v), and T maps (u, v) into (r, s, t). Then, (7-4) would appear instead in the
form

(7-5) s)u=x-y
\v = yz

lr = uv
T:< s = 2u

It = -v

and H = TS is seen to be

lr = (x - y)yz
H>s = 2(x - y)

j t = - yz

Note that ST "# TS.
The definition of continuity for a function as stated in Chap. 2 applies to

transformations, as do many of the theorems in Sees. 2.2, 2.3, and 2.4 which
were proved there for functions whose values could either be numbers or
points. For convenience of reference, we restate some of these here, with
references to the earlier discussion.

Definition 1 A transformation T defined on a set D is said to be continuous
at a point Po E D if and only if for any e > 0 there is a <5 > 0 such that
IT(p) - T(po)/ <e whenever Ip - Po 1< <5 and p E D.

We remark that a transformation described by equations such as (7-3) is
continuous on a set D exactly when each of the component functions /; is
continuous on D.
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Theorem I Let T be a tran~formation defined on a set D in n space and
taking values in m space. Then, T is continuous on D if and only if T- 1 (CD)
is open, relative to D,for every open set CD in m space.

This was Theorem 3, Sec. 2.2. We observe that the word "open" could be
replaced by "closed," since the complement of any open set is closed, and
vice versa.

Theorem 2 Let T be a transformation defined on a compact set C in
n space and taking values in m space. Then, T is continuous on C if and only
if the graph of T is a compact set.

This was Theorem 12, Sec. 2.4, and the proof there was written to apply
to this general case, although the accompanying figure illustrated the one
variable form.

Theorem 3 Let the tran~formation S be continuous on a set A and T
be continuous on a set B, and let Po E A and S(Po) = qo E B. Then, the
product transformation TS, defined by TS(p) = T(S(p)), is continuous at Po.

This is Theorem 5, Sec. 2.2; in general, the product or composite of
continuous transformations is continuous where it is defined.

Theorem 4 Let T be continuous on a set D. Then, any compact set
C c D is carried by T into a compact set T(C), and any connected set SeD
is carried into a connected set T(S).

This combines Theorems 13 and 15, Sec. 2.4, and generalizes the more
elementary properties of real-valued functions usually described as the inter
mediate value theorem and the fact that continuous functions always achieve a
bounded maximum on any closed and bounded set.

Many of these statements follow in fact from the simpler statements about
scalar-valued functions because one can throw the argument back upon the
coordinate functions!; that describe a general transformation T, as in (7-3). For
example, Theorem 4 above implies that the continuous image of any compact
set C must be a bounded set. This follows from the fact that each of the scalar
functions J; is bounded on C.

EXERCISES

I Discuss the nature of the transformation T of R2 into R2 which:
(a) Sends (x, y) into (x + 3, y - 1). (b) Sends (x, y) into (y, x).
(e) Sends (x, y) into (x - y, x + y). (d) Sends (x, y) into (x 2

, /).

2 Verify the fact that every (u, v) inside the parabola v2 = 2u is an image under the transforma
tion T described by (7-1) of a point (x, y).
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3 What is the image of the line x = 0 under the transformation S described by (7-2)?

4 Discuss the nature of the transformation T which sends (x, y) into (x 2 - y2, 2xy).

5 Find the products in each order of each pair of transformations given in Exercise I.

6 When a transformation T of R" into R'" is described by means of coordinate functions, as in
(7-3), show that T is continuous in a set D if and only if each coordinate function/; is continuous
in D.

7 Construct a transformation of R2 into R2 which maps the curve y = x 2 onto the horizontal
axis, and the line y = 3 onto the vertical axis.

8 (aT Formulate a definition of uniform contmuity for transformations.
(b) Show that a transformation T which is contmuous m a closed and bounded set D IS

uniformly continuous there, by representing T in coordinate form.

9 A transformation T is said to be distance preserving if IT(p) - T(q) I = Ip - qI for all points
p and q in the domain of T. Sho~ that the transformation of the plane into itself which sends
(x, y) into ((x + y)/J2, (x - y)/J2) is distance preserving.

10 Discuss the nature of the transformations T of R2 mto R2 described by:
T T

(a) (x, y) ---> (sin x, cos y) (b) (x, y) ---> (x 2 + y2, x 2
_ y2)

(c) (x. y) ~ (xy. y) (d) T(x, y) = (xy. X
2y2)

(e) T(x, y) = (x cos y, x sin y)

II A transformation T on R" to R" is said to be distance decreasing if there is a constant r,
r < I, such that

IT(p) - T(q)ls rip - ql

Show that the transformation defined by T(x, y) = (3 - h. } - !Y) is distance decreasing.

*12 Let T be any distance-decreasing transformation of the plane into itself. Prove that T leaves
exactly one point of the plane fixed; that is, T(p) = p has one and only one solution pO.

13 Write a set of equations for the transformation T which reflects the plane
(a) Across the line x = 0 (b) Across the line x = 2
(c) Across the line y = x (d) Across the line y = 2x - I

7.3 LINEAR FUNCTIONS AND TRANSFORMAnONS

The section which follows this one is devoted to the theory of differentiation
for general transformations. The key to this is the use of linear and affine trans
formations as local approximations to a general transformation. For this, only
the most elementary aspects of matrix theory and linear algebra are needed;
an abbreviated summary of the latter is given in Appendix 3, although the
present section is intended to be sufficient without requiring a review of this.

Definition 2 A transformation T from Rn to Rm is said to be linear if
and only if it has the following two properties:

(7-6) T(p + q) = T(p) + T(q)
T(2p) = 2T(p)

for all p and q
for any real number 2

These defining properties immediately prescribe the form of linear transforma
tions.
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Theorem 5 The general linear transformation L from Rn to Rm has the
coordinate form:

(7-7)

I YI = allx l + a l2 X2 + + alnxn

i Y2 = a21x I + an X 2 + + a2n xn

I;~ .~. ~·~:~·I· ~ .~~~.~~. ~ ~ .~~~.~~

where the coefficients aij are (real) constants.

For, if we use the standard basis vectors ek for Rn, so that p =

(XI' X 2 ' .•. , xn ) is written as

n

p = 2 X k ek = X I el + ... + Xnen
I

then L(p) = L( 2: Xkek), which by (7-6) can be written

q = L(p) = 2 L(ek)Xk
I

and if L(ek ) is the point (a lk , a2k' a3k' ... , amk ) in m space, and
q = (YI' Y2' ... , Ym), then we have obtained the formula (7-7).

The linear transformation L described by (7-7) is also completely specified
by giving the coefficient matrix

(7-8)

whose columns are the points L(ed; the formula in (7-8) has the abbreviated
equation

(7-9) Y= Ax

where x and yare column vectors and we use the standard way of multiplying
matrices. Note that we could also write formula (7-7) as Yj = vj • p, using the
ordinary dot product of vectors, where vj is the jth row of the matrix A.

Scalar-valued linear transformations form an imp~rtantspecial case. These
are merely real-valued functions that are also linear according to definition. As
linear transformations from n space into I-space, the general formula (7-7)
yields

(7-10)

and the corresponding matrix has only a single row. Restated, every linear
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n

L.....--__C_'j Im

Figure 7-5 Size restrictions for multiplication of matrices.

function on n space has the form L(p) = v . p where v is the specific vector
(ai' a2 , .•• , an) associated with L.

For linear transformations, the product of two transformations can be cal
culated by multiplying their representing matrices. If T maps n space into k
space, and S maps k space into m space,

(7-11)

Then,

then the product ST maps n space into m space, and its matrix is [S][T],
where [S] is the matrix for Sand [T] the matrix for T. (Multiplication oj
matrices is done row-by-column, calculating the dot product to obtain the
appropriate entry in the product matrix; see Fig. 7-5.)

As an illustration, consider the following linear transformations of the
plane into itself; we give both the equations and the representing matrices.

S: U = 2x - 3y [S] = [2
1

- 3
1
J

v = x + y

T: ~: 3; : ; [T] = [~ ~ J

[S][T] = fi -n[~ ~ J = f- ~ - iJ

so that ST has the equation

U = -7x - y

v = 4x + 2y

Note also that

[T][S]=f; ~H~ -~J=f~ =~J
which is not the same as [S][T].

The geometric character of a linear transformation is determined by its
matrix. The discussion is simplest for square matrices, representing mappings
of a space into itself.

Theorem 6 Let L be a linear transformation of n space into itself, rep
resented by an n-by-n matrix A = [aiJ Then, L is a I-to-l mapping if and
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only if the matrix A is nonsingular, meaning any of the following equivalent
statements: (i) the determinant det (A) is not 0, (ii) the rows of A are
linearly independent, (iii) the columns of A are linearly independent.

A review of the terms and concepts used in this result may be found in
Appendix 3, together with a sketch of the proof. The statements in the theorem
have immediate translation into statements about the solution of the system
(7-7) of linear equations in the special case when n = m and there are the same
number of equations as unknowns. If det (A) #- 0, then for any given set of yj'

there is one and only one solution for the Xi' In particular, when YI = Y2 = ... =
Yn = °then the only solution of the system is XI = x 2 = .. , = xn = 0. Con
versely, if det (A) = 0, then L is not I-to-l, and there exists a point p =
(XI' x 2 ' ... , x n) #- 0 with L(p) = O. Accordingly, when det (A) = 0, the system
of linear equations obtained by setting Yj = °for all j has a solution Xi not
all 0.

A linear transformation L that is nonsingular has an inverse, C I, and the
matrix representing it is called the inverse of the matrix A that represents L.
Thus, if det (A) #- 0, there is a unique matrix A - I such that AA -I = A -I A = J,
the n-by-n identity matrix. There are a number of computational ways to
construct A - I from A. If n = 2 and

then

where d = det (A) = ad - bc #- °
At times it is economical of notation to use the same symbol for a linear

transformation and for a matrix representation of it, where this will not lead
to confusion. Thus, one might write det (L) rather than det (A).

The behavior of a singular transformation L is further characterized by
the rank of its matrix. The rank of A is defined as the number of rows
(equivalently, the number of columns) that are linearly independent; rank (A)
is an integer between °and n. One can have rank (A) = °only if all the
entries in A are 0, and rank (A) = 1 only if all the rows are multiples of
one of the rows, itself not (0,0, 0, ... , 0) = O.

Theorem 7 Let L be a linear transformation represented by a square
n-by-n matrix A .. then thefollowing statements are equivalent: (i) rank (A) =
r .. (ii) L maps all of n space onto an r-dimensional subspace of n space ..
(iii) the null space of L, which is the set of all points p with L(p) = 0, is a
subspace of n space of dimension n - r.

When r = n, this result reduces to that of the preceding theorem. For a
review of the concepts that appear in these two results and a sketch of their
proof, we refer again to Appendix 3.
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A linear transformation is continuous everywhere, since this is clearly true
for a linear function. More than this is true; any linear transformation from
Rn into Rm is everywhere uniformly continuous. This is equivalent to the next
theorem.

Theorem 8 Let L be a linear transformation from Rn into Rm represented
by the matrix [aiJ Then, there is a constant B such that IL(p)1 ::;; Blplfor
all points p.

I~~ 1
1/2

We shall find that the number ILL 1ail, will serve for B. Put

p = (Xl' X2, ... , xn ) and q = L(p) = (YI' Y2' ... , Ym), so that
n

Yi= L aijxj i= 1,2, ... ,m
J= 1

We have Ipl2 = L~=l IX jl2and Iql2 = L~=I IYiI 2
. Accordingly,

I n 12 n n n
IYi 1

2::;;,L laijllxjl, ::;; L laijl2 L Ixjl2= Ipl2 L laijl2
Ij=1 l j=1 j=1 J=I

where we have used the Schwarz inequality (Sec. 1.3):

Adding these for i = 1, 2, ... , m, we obtain

m m n

Iql2 = L IYil 2
::;; Ipl2 LL laijl2

i=1 i=1 J=I

It should be remarked that the number B which we have found is not the
smallest number with this property. For example, the transformation L specified
by the identity matrix

l~ ~ J

is such that IL(p)1 = Ipl, while the theorem provides the number

B=fi> I

However, this is not the case for linear functions. Let L be specified by the row
matrix [c I' C2' ... , cn]. Then, according to the theorem,
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This is best possible, for taking p = (c1, C 2 , ..• , cn), we have

L(p) = c c + ... + c CI Inn

In the study of general transformations on n space. It IS convenient to
introduce a class of special transformations that is somewhat larger than the
linear transformations. These are called affine, and have the simple form

T(p) = A(p) + f3
where A is linear and f3 is a fixed vector. In coordinate form, an affine trans
formation from Rn to Rm is described by writing T(p) = q, where p =
(x), X2,· .. , xn), q = (YI' Y2' ... , Ym), and

YI = al1x1 + a l2 x 2 + + alnxn + b l
Y2 = a21 x 1 + a22 x 2 + + a2n xn + b2

These can be regarded as the generalization of straight lines, since the equation
for an affine map from R to R is merely Y = ax + b.

Since the effect of the added vector f3 is to translate rn space by a shift in
a certain direction, the geometry of affine transformations as mappings is deter
mined again by the nature of the linear transformation A (see Exercise 11).

EXERCISES

I Let L be the linear function specified by the coefficient matrix [2,0, - I, 3]. What is
L(I, 1, -I, -I)? What is L(2, 0, 0, I)?

2 Find the linear function L such that L(I, 0, 0) = 2, L(O, 1,0) = -1, L(O,O, 1) = 3.

3 Find the linear function L such that L(I, 0, -1) = 3, L(2, -1,0) = 0, L(O, I, 0) = 2.

4 Let T be the linear transformation of R 2 into R 2 specified by the matrix

[ 2 -I]
-3 0

Find the images of the points (1,2), (- 2, 1), (1,0), (0, I).
5 Let T be the linear transformation specified by

o -1]
3 1

Find the images of (1,2, I), (1,0,0), (0, 1,0).
6 Find the matrix representation for the linear transformation T which

(a) Maps (1,0,0) mto (0, I, I), (0, 1,0) into (1,4,0), and (0,0,1) into (2,3,1).
(b) Maps (1, 1,0) into (0,0, I), (0, 1, I) into (1,0,0), and (1,0, 1) into (1,0,0).
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7 Compute the ranks of the following matrices:

(a)[} 2

-~] (b{~
1 -f]-I -I

1 0

(c) [ ~
-6

-In
(d)[i -I 0

- ~]-4 3 I
-2 4 I 1

8 By computing ranks, discuss the nature of the image in UVW space of all of XYZ space. If
either transformation is nonsingular, find the equations for its inverse.

, u = x + 2y - 3z
(a) 1v = 2x - y + 4z

I w = 3x + Y + z

lu=y-z
(b); v=3x-y+3z

/w=x+z

9 Compute the indicated matrix products:

[2 -3J [-I 4J(a) 0 1 I 3

-1][ 23]o -1 2
I

(b) [_ ~

(d) [-~
-I

-7
o

-1
o
1

~J[ ~ -0
0] [-1 1]1 3 2'
I -2 0

10 Find the product ST of the transformations given by

S: (x, y, z) ---+ (6x - y + 2z, 2x + 4z)

T: (x, y) ---+ (x - y, 2x, -x + 2y)

Can you form the product TS?

II (a) If T is an affine transformation, show that for any points p and q and all real A,

T(Ap + (1 - A)q) = H(p) + (I - A)T(q)

(b) What is the geometric meaning of this conditIOn?
(c) Does this condition characterize affine transformations?

*12 Given any function f of one variable, infinitely differentiable, define

M(f) = [j, J f~]
f" 21'

Verify the following facts:

(a) 11 M(f) = M(f')
dx

(b) M(f)M(g) = M(fg)

(c) M(P(f)) = P(M(f)) where P IS any polynomial

(d) eM If) = M(ef ) (e) M(~) = M(ff'
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7.4 DIFFERENTIALS OF TRANSFORMATIONS

In Chap. 3, we defined the (total) derivative of a scalar-valued functionf defined
on an open set S to be a vector-valued function Df defined on S and con
structed from the partial derivatives off Specifically, if y =f (x!, x2, ... , x n ),

then

(7-12) (
ay ay ay ay )

Df = ax!' aX2' ax3' ... , aX
n

At any point PES, Df(p) is a numerical vector with n components, the values
!;(p) of the partial derivatives offat p; this was also called the gradient offat p.

In this section we take the next step and define the derivative of a vector
valued function T; this will turn out to be a matrix-valued function whose
entries are the partial derivatives of the coordinate functions describing T.
Note that we prefer to treat T at present as a transformation.

We adopt a slightly different notation and terminology from that used for
he simpler case discussed in Chap. 3. The derivative of a transformation T

will now be called the differential of T, written dT. This is because our view
point must now be somewhat more abstract in order to develop a general
theory. If T defined on a set S eRn, and is of class C' there, then dT will be a
function that is also defined on S, but whose value at a point pES is a linear
transformation L on n space. Since linear transformations can be represented
by matrices, dT can also be regarded as a function on S whose value at each
point of S is a matrix with numerical entries. Computationally, dT is therefore
a matrix-valued function on S whose entries are the first partial derivatives of
the component functions that describe the transformation T. The dual role of
dT, as a function whose values are linear transformations, and as a function
whose values are numerical matrices, is chiefly a notational problem and will
become clearer as we develop more of the theory.

Let us start by considering a transformation T of R3 into itself which is
given by a set of equations such as

(7-13)
~ u = f(x, y, z)

T: 1v:: g(x, y, z)
w - h(x, y, z)

We shall say that T is of class c(n) in a region D whenever each of the coordinate
functions f, g, and h is of this class in D. In particular, T is of class C' in D if
all the partial derivatives au/ax, au/ay, ... ,aw/ay, aw/az exist and are continuous
in D.
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For transformations of class C, we define dT for such a T as that in (7-13)
by

au au au
- - -
ox oY oz

[ I, 12

~} AU AU AU
dT = gl g2 -

hi h2 h3
ox oY oz

ow ow ow
- -- --

ox oY oz

If this is evaluated at a point P E D, the resulting matrix of numbers specifies a
linear transformation of R3 into itself which is called the differential of T at p.
(This can be denoted by dT Ip ; we shall occasionally use merely dT when the
context makes clear at which point we are computing the differential of T.)

To illustrate this, let T be given by

I u = x 2 + y - z
(7-14) ! u = xyz2

j W = 2xy - y2z

The differential of T at (x, y, z) is

(7-15)
[

2X 1
dT = yz2 xz2

2y 2x - 2yz

-1 ]
2xyz
_ y2

so that the differential of T at Po = (1, 1, 1) is

(7-16 )

The differential of a general transformation is obtained in the same fashion.
If T is a transformation from R" into Rm and

(7-17)

then

(7-18)

0Yl 0Yl 0Yl
oX 1 OX2 ox"

dT= .

oYm oYm oYm
oX 1 OX2 ox"

If T is of class C in a region D, we have thus associated with each point of
D a linear transformation.



DIFFERENTIATION OF TRANSFORMATIONS 343

It may be observed that if (7-17) is written in the explicit coordinate form

IYl :!1(X1, X 2 ,· •. , x n )

(7-19) T:,Y2-!2(X 1,X2"",xn)

I~~ ~·j~(~·l·'·~~·"'·'·'·' .;~)
then the rows of the matrix (7-18) are exactly the total derivatives, as in (7-12),
of the coordinate functions in (7-19). In our new notation, we write these as
4h d!2' etc.

Before examining the significance of the differential dT and explaining its
role in obtaining local approximations to T, we will try to clarify the dual
nature of dT, using for this purpose the more familiar case of a scalar function
g whose differentiation theory was discussed in Chap. 3. As preparation for the
next paragraph, please review the connection between linear functions Land
their representation in terms of vectors and dot products as outlined in Sec. 7.3.

Suppose that g is a real-valued function of class C' defined on an open set
Sin 3-space. Writing g(x, Y, z), we recall that its vector-valued derivative in S
is the function Dg defined by (7-12) as

(7-20) Dg(p) = (gAp), gy(p), g.(p)) for pES

On the other hand, the differential dg is a function defined on S whose value
at pES is the linear transformation that is represented by the I-by-3 matrix
[gAp), gy(p), g.(p)). Such a matrix with only one row represents a linear function
Lon R3

, so that we now have dg(p) = L; like any linear function, L is defined
everywhere in R3

, and if u = (a, b, c), then by (7-10),

L(u) = gAp)a + gy(p)b + gz(p)c

However, we can also use the alternative dot product formulation of this and
have

L(u) = [gAp), gAp), g.(p)] . (a, b, c)

which, from (7-20), can also be written

L(u) = Dg(p) . u

Since L = dgl p , we have proved the following basic identity connecting the
differential dg of the scalar function g with the vector-valued derivative Dg
treated in Chap. 3.

Theorem 9 For any pES and any u E R3,

(7-21 ) dglp(u) = Dg(p)· u

The obvious similarity of the notation on both sides of this equation
emphasizes the identity itself and shows that our new viewpoint gives nothing
basically new when we apply it to scalar-valued functions.
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Turning now to transformations T, which in the present context can be
regarded merely as vector-valued functions defined on an open set S, we again
will refer to the differential of T in two ways. The primary meaning of dT is
a function defined on S whose value at any point Po E S is a linear transforma
tion L; the secondary meaning is a function defined on S whose value at any
point Po E S is the matrix that represents the corresponding linear transforma
tion L. The latter is what we calculate with when we work with derivatives of
transformations; the former is what we use when we prove theorems. The
significance of the differential lies in the next result, which shows that these
linear transformations provide local approximations for T.

Theorem 10 Let T be of class C in an open region D, and let E be a
closed bounded subset of D. Let dTlpo be the differential of T at a point
Po E E. Then,

(7-22)

where

(7-23)

where

uniformly for Po E E.

Let T be given by T(xI' X2' ... , xn ) = (YI' Y2' ... , Ym) where Yi =
<p;(p) = (/J;(x l , x 2, ... , xn ). (The subscript on <Pi does not indicate dif
ferentiation.) Then

T(po + ~p) - T(po) = (~YI' ~Y2' ... , ~Ym)

~Yi = <p;(Po + ~p) - <p;(Po)

To each of these, we apply the approximation theorem for functions, in
the stronger form outlined at the end of the proof of Theorem 8, Sec. 3.3,
to write [using (7-21)]

Combining these, we have

where

and

T(po + ~p) = T(po) + L(~p) + R(~p)

L(~p) = (d<Pl(~P), d<P2(~p), , d<Pm(~P))

R(~p) = (RI(~p), R2(~P), , Rm(~P))

If we now set ~p = (~x I' ~x2' ... , ~xn)' then
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where the partial derivatives are evaluated at Po. Thus,

L(dp) = dT Ipo (dp)

where dT Ipo is the linear transformation with matrix (7-18). Again we know
that for each i, i = 1, 2, ... , m, lim tip- 0 IRi (dp) 1/ Idp I = 0, uniformly for all
Po E E. Since

it follows at once that

uniformly for Po E E. I

We can restate the property described in this theorem in a form which
relates it directly to the familiar notion of derivative from elementary calculus;
(7-22) and (7-23) together imply that ----------

(7-24) lim l2:!!'o + dp) - T(po) - L(dp)1 = 0
tip-O Idp I

For comparison, we note that a function of one variable is said to be dif
ferentiable at X o if there is a number A such that

lim fJX.(),f~x)~!(xo) -.A dx = 0
tix-O dx

Guided by this observation, we are led to formulate a general definition of
differentiability that does not make reference to coordinate functions, partial
derivatives, or matrices, and which can therefore be regarded as the primary
definition from which all others follow.

Definition 3 Let T be defined on an open set S eRn, and taking values
in Rm

• Then, T is said to be differentiable at Po E S if there is a linear
transformation L on Rn to Rm such that (7-24) holds. In this case, we write
dT Ipo = L, and call Lthe differential (or derivative ) ~r T at Po. T is said to
be differentiable in SifT has a differential at each point of S.

Now that we have adopted this definition, a number of facts can be
checked easily. First, T cannot have two different differentials at the same
point Po (Exercise 10); second, if dT exists at Po, and T is described by
T(x b x 2, ... , xn) = (v!, Y2, ... , Ym), where each Yj is a specified function of the
Xi' then all the partial derivatives oy/oxi exist at Po, and the linear trans
formation L = dT Ipo has (7-18) for its representing matrix. (This is verified
in Exercise 5 in a typical case.) Finally, Theorem 10 now tells us that any
transformation of class C' in an open set S is differentiable everywhere in S.
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The differential of a transformation T is also seen to correspond to the
initial terms in a power series representation for T. Suppose that T(x, y) = (u, v),
where

{
u = f(x, y)
v = g(x, y)

and suppose that we can expand f and g in double power series at the origin.

u = aOO + alOx + aolY + a20 x 2 + allxy + ao2y2 + .

v = boo + blOx + b01Y + b20 X
2 + bll xy + b02 / + .

Then, this can be written

T(x, y) = (aoo, boo) + f::: ::: ~ f: ~ + R(x, y)

where R = (R l, R2) and

Note that

Rl = a20x2 + allxy + ao2y2 + .

R2 = b20 X
2 + bll xy + b02y2 + ..

dTlo= falo aOl]
blO b01J

and that the expression for T(x, y) given above corresponds exactly to the
form in (7-22), with Po = (0,0) and dp = (x, y). This process of cutting off all
terms in a power series higher than the first order is called linearization,
and is a frequently used technique for gaining understanding about the local
behavior of a transformation.

Our next result is the general chain rule of differentiation for products
of transformations. It includes the earlier forms of the chain rule that were
discussed in Sec. 3.4 in connection with differentiation of composite functions.
Consider two transformations Tand S, with Tdefined from R" into Rk and S
from Rk into Rm. Their product STis the composite mapping from R" into Rm.
We show that d(ST) = dS dT.

Theorem 11 Let T be~i~ an open set D, and let S be
differentiable on an open set containing T(D). Then, STis differentiable on D,
and if p E D and q = T(p), then

(7-26 ) d(ST) Ip = dS Iq dT Ip

Before proving this, we illustrate it in several typical cases similar to
some treated in Sec. 3.4; the calculations are reduced to multiplication of
matrices.
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Let Sand Tbe given by

Iu = f(x, y, z) jx = F(s, t)
S:i u = g(x, y, z) T:lY=G(s,t)

Iw = h(x, y, z) z = H(s, t)

Their differentials are

au au au ax ax
- -

ax ay az as at

au au au
dT=

ay ay
dS = - - -

ax ay az as at

aw aw aw az az
ax ay az as at

The transformation STis given by

I
u = f(F(s, t), G(s, t), H(s, t))

ST: u = g(F(s, t), G(s, t), H(s, t))
w = h(F(s, t), G(s, t), H(s, t))

and its differential is

au au
- --

as at

d(ST) =
au au
- -

as at

aw aw
as at

Multiplying the matrices, we obtain

dSdT =

au ax au ay au az
--+--+--
ax as ay as az as

au ax au ay au az
---+--+-
ax as ay as az as

awax away awaz
---+--+-
ax as ayas azas

au ax au ay au az
--+--+--
ax at ay at az at

au ax au ay au az
--+--+--
ax at ayat azat

awax away awaz
--+--+-
ax at ay at az at

However, this is exactly the matrix which results from computing the partial
derivatives by the chain rule and substituting into d(ST).

Other instances of this general formula for computing the differential of a
composite transformation will be found in the exercises. The more complicated
examples of Sec. 3.4 can also be obtained in this fashion. Consider, for
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Figure 7-6

example, the following set of equations:

u = f(x, y, z)
z = g(x, y, t)
y = h(x, t)

These may be used to express u in terms of x and t, and the corresponding
diagram is Fig. 7-6. We introduce three transformations, R, S, and T, such
that u = (STR)(x, t). R is the mapping of R2 into R3 given by

~ x = x
R:\ y = h(x, t)

I t = t

Tis the mapping of R3 into R3 given by

Ix = x
T:, y = y

Iz = g(x, y, t)

S is the mapping of R3 into R 1 given by

S: u = f(x, y, z)

In order to find the partial derivatives au/ox and au/at, we shall find the
differential

[
au oUJ

d(STR) = ox' at

By Theorem 11, d(STR) = dS dT dR, where we have

Computing these products, we have

dS dT = (fl + f3gl' f 2 + f 3g2, f 3g3]

and dS dT dR = (fl + f 3g1 + (f2 + f 3g2)h l , (f2 + /3g2)h2 + /3g3]
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SO that we may read off the correct expressions for the desired partial
derivatives

au
ax = f l + f 3 9 I + f 2 hI + f 3 92 hI

auat = f 2 h2 + f 3 92 h2 + f 3 93

We now return to the proof of Theorem 11. We have T(p) = q. Take
tlp small, and write tlq = T(p + tlp) - T(p). Thus, q + tlq = T(p + tlp),
and (ST)(p + tlp) = S(q + tlp). Apply the local approximation theorem
(Theorem 10):

The same theorem applied to T(p + tlp) yields

tlq = T(p + tlp) - T(p)

(7-27)

and combining these, we have

(7-28) (ST)(p + tlp) = ST(p) + dSlqdTlp(tlp) + R(tlp)

where

(7-29)

To prove ST differentiable at 'p, we must now show that
lim~p_o IR(tlp)I/ltlpl = O. We use the fact that Sand T are each
differentiable, which implies that R 1(tlq) < eItlq I for small Itlq I and that
R2(tlp) < eltlpl for small Itlpl. We also use the standard boundedness
property of linear transformations, stated in Theorem 8. This enables us
to know that there is a number M such that

IdT Ip (tlp) I ~ M Itlp I

IdSlq (R 2(tlp)) I~ MIR 2 (tlp)1

for all tlp. From (7-27), we next have
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Then, using this in (7-29), we have

IR(.1p) I ~ MIR 2 (.1p)1 + el.1ql
~ Mel.1pl + e(M + 1)I.1pl
~ (2M + 1)el.1pl

and since e is arbitrarily small, lim~p_o IR(.1p)I/I.1pl = 0 I

Before leaving the chain rule, we note that if Sand T are of class C',
the correctness of the formula d(ST) = dS dT can be verified as illustrated
above by falling back upon the earlier versions of the chain rule. The advantage
of the proof given above is that it merely requires existence of the differentials,
and therefore gives a sharper theorem.

We conclude this section with the mean value theorem for general
transformations. To avoid making the notation too complicated, we state it
only for transformations from 3-space into 3-space; the general formulation
of the result is evident from this. Note also that this mean value theorem
differs from the corresponding result for scalar functions, given in Theorem 16,
Sec. 3.5, in that we cannot now expect to have a single auxiliary point p*.

Theorem 12 Let T be a transformation of class C' defined for all
points p = (x, y, z) in an open set D by

I
u = f(x, y, z)

T: v=g(x,y,z)
w = h(x, y, z)

Let D contain the points p' and p" and the line segment which joins them. Then,
there are three points pt, p~, and pj lying on this line segment such that

T(p") - T(p') = L(p" - p')

where L is the linear transformation represented by the matrix

(7-30)

This may be proved by applying the mean value theorem (Theorem 16
of Sec. 3.5) to each of the functionsf, g, and h. Setting

p" - p' = .1p = (.1x, .1y, .1z)

we have



at (1,1)

at (I, -2,3)

at (I, -1) and (I, 3)
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where pf is some point on the line segment joining p' and p". Similarly,

g(p") - g(p') = gl(P!) L\x + g2(P!) L\y + g3(P!) L\z

h(p") - h(p') = hi (p;) L\x + h2(p;) L\y + h3(pj) L\z

and the result follows. I

The following consequence of this theorem is sometimes handier to use.

Corollary Let T be a transformation of class C' on an open set D in
n space, and let E be a compact set in D. Then, there are numbers M and
<5>0 such that IT(p)- T(q)1 ~Mlp-ql for all p and q in E with
Ip - q I < <5. If E is convex, <5 = diam (E).

To show this, let <5 1 = dist (E, bdy (D)); <5 1 > 0 since E is compact.
Let E1 be the set of all points p whose distance from some point of E is
not more than <5 1/2. Then E1 is also compact, and E eEl c D. Moreover,
if <5 < <5d2 and p and q lie in E1 with q E E and Ip - ql < <5, then the
entire segment from p to q lies in E l' Applying Theorem 12, T(p) - T(q) =
L(p - q); the functions in the matrix for L are continuous on E1 and
thus bounded there, and the auxiliary points pf, pL ... , P: which are
used in the qefinitions of L and which lie on the segment from p to q
also lie in E 1.ffhus, the entries of L are uniformly bounded, and Theorem 8
provides a number M such that IL(p - q)1 ~ Mlp - ql. If E itself is
convex, then the segment joining p and q lies in E whenever p and q do,
so that we do not need to construct the set Eland do not need to have
p and q close together. As before, the bound M on L is obtained from
uniform bounds on E of all the functions in the matrix for L, and we
again have IL(p - q) I ~ M Ip - q I, and therefore

(7-31) IT(p) - T(q)1 ~ Mlp - ql

EXERCISES

I Compute the differentials of the following transformations at the indicated points.

ju = xy2 - 3x'
(u) \ v = 3x _ 5y2

ju = xyz2 - 4y2
(b) \ v = 3xy2 _ y2 z

~ U = x + 6y
(c) 1v = 3xy

jw=x2 -3y2

2 If Lis a linear transformation, show that dLjp = Lat every point p.
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(b) S)u = F(x, y)
\v = G(x, y)

3 Using the methods of Sec. 3.4, verify Theorem 11 for the following transformations:

(a) S: u = F(x, y) T·Jx = c/>(t)
'\y = t/J(t)

T.Jx = c/>(t)
'\y = t/J(t)

4 Let w = F(x, y, t), x = c/>(t), y = t/J(t). Show that Theorem 11 can be applied to yield Eq. (3.22)
for dwjdt.

5 Let T be a transformation from R2 into R2 given by u = f(x, y), v = g(x, y). Let L be a
linear transformation

L = [~ ~]
such that T(po + ~p) - T(po) = L(~p) + R(~p), where lim"p_oR(~p)jl~pl = O. Prove that
L=dTlpo'
6 Prove: If Tis of class e" in an open connected set D, and dT = 0 at each point of D, then Tis

constant in D.

7 Is there a transformation T of the plane into itself whose differential at (x, y) is given by

[3:2y
:;]

8 Is there a transformation whose differential is

9 Explain the difference between (7-24) as applied to a scalar function of one variable and
(7-25).

10 Show that a differentiable transformation (Definition 3) cannot have two different differentials
at the same point.

11 Given the transformation

on E, the unit square with (0,0) and (I, I) as diagonal corners, show that an estimate for the

Lipschitz constant M for E in (7-31) isv!130.

12 Consider the transformation T(x, y) = (u, v) defined on the unit square E: 0 ~ x ~ I, 0 ~ y ~ I,
where

u=2x2 +6xy-4x3 j3-3xy2 and V=X 3 _ y2

Show that an estimate for the Lipschitz constant M for E in (7-31) is M = )65.

7.5 INVERSES OF TRANSFORMATIONS

Much of the discussion in Sec. 2.7, dealing with inverses of functions of one
variable, applies with few changes to the study of inverses of transformations
from n space to n space. If T is a transformation of the plane into itself, and
maps a set D l-to-l onto a set D', then this defines a transformation T- 1

which maps D' onto D, reversing the action of T. If p E D, then T- 1T(p) = p,
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and if qED', TT- I(q) = q. A transformation which is not 1-to-1 may have
a number of partial inverses. For example, the transformation

(7-32) T· Ju = 2xy
. \v = x 2 _ y2

maps the whole XYplane onto the UVplane. It is not 1-to-1 in the whole
plane, since T sends both (1,1) and (-1, -1) into (2,0). More generally,
T(p) = T( - p) for any point p. However, if we take D to be the open half
plane {all (x, y) with x> O}, then T is 1-to-1 in D. To see this, let
T(x, y) = T(a, b). Then 2xy = 2ab and

x 2 _ y2 = a2 _ b2

0= X2(X 2 _ y2 _ a2 + b2)

= x4 _ X 2y2 _ a2x 2 + b2x 2

= x 4 _ a2b2 - a2x 2 + b2x 2

= (x 2 + b2)(X 2 - a2)

Hence, x 2 = a2, and since x> °and a> 0, x = a and y = b. T thus maps
D onto a set D' in the UV plane in a 1-to-1 fashion. This mapping has an
inverse which maps D' onto D. Solving Eqs. (7-32), we obtain

SI: JX = f
v

+
J

;2+
v
2r

2

j y = u[2v + 2Ju2 + v2r 1/2

The set D' is the set of points (u, v) for which v + J.--cU2--+-V-'2 > 0, that is, all
points (u, v) except those of the form (0, c) with c sO.

The graphical approach used in Sec. 2.7 can still be used here, and the
proof given there for Theorem 25 also proves the following theorem.

Theorem 13 If T is continuous and 1-to-1 on a compact set D, then T
has a unique inverse T- 1 which maps T(D) = D* 1-to-1 onto D, and T- 1

is continuous on D*,

For, the graph of T is itself a compact set by Theorem 12, Sec. 2.4,
and the graph of T- 1 is just the reflection of the graph of T and is also
compact, so that the transformation T- 1 must also be continuous. I

(Another equally brief proof of this theorem is outlined in Exercise 14.)
It is easy to tell if a real-valued continuous function f of one variable

is 1-to-1 on an interval, for it must be monotonic there; iff is differentiable,
and f'(x) =F °on an interval I, then f is 1-to-1 on I and has an inverse that is
also differentiable (Theorem 7, Sec. 3.2). We seek a similar criterion for
transformations. The special case of linear transformations gives the clue.
If Lis a linear map on R" into itself, it is 1-to-1 if and only if it is nonsingular,
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and this is equivalent to the condition det (L) # O. This would lead one to
conjecture that a general transformation Tis 1-to-1 on an open set D if dT
is nonsingular at every point of D. (Note that this reduces to the requirement
.f'(x) # 0 if T is a function f on R to R.) We shall see that this conjecture
is almost correct. We introduce the following:

Definition 4 If T is a transformation from Rn into Rn which is of class
C' in a set D, then the Jacobian of T is the function J defined in D by

J(p) = det (dT Ip)

For example, if Tis given by

J(p) =then

~u=f(x,y,z)

j v:: g(x, y, z)
I w - h(x, y, z)

fl(p) f2(p) f3(p) o(u, v, w) I
gl(P) g2(P) g3(P) = o( )
h

1
(p) h2(p) h3(p) x,y,z p

The Jacobian of the transformation given in (7-32) is

!

2Y 2xl=_4(X2+y2)
2x -2y

One is thus led to the conjecture that if J(p) # 0 throughout a region D,
then Tis 1-to-1 in D. This conjecture is false. A simple counterexample is
supplied by the transformation

(7-33 ) T: {u = xc?S y
v = x Sill Y

whose Jacobian is

J(x )= IC?SY -xsiny I=x
,y Sill Y X cos Y

In the right half plane D = {all (x, y) with x > O}, J is never O. However, Tis
not 1-to-1 in D, for (a, b) and (a, b + 2n:) always have the same image. The
effect of the transformation may be seen from Fig. 7-7, where a set of SeD is
shown, together with its image T(S). We notice that although T is not 1-to-1 in S,
two distinct points of S which have the same image must be widely separated;
thus, in S (and in fact in D), Thas the property of being locally 1-to-1. We
give this a formal definition.

Definition 5 A transformation which is defined in an open set D is said
to be locally 1-to-1 (or locally univalent) in D if about any point p E D
there is a neighborhood in which Tis 1-to-1.
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"•

The transformation in {7';\J) illustrates the fact that a transformation can
be locally 1-10-1 in a region D without being globally l-t0-1 in D. (This is nol
true for functions of one variable; sec Exercise 15.)

We afC now ready 10 state the fundamental theorem on the existence of
inverses for transformations.

Theorl"l11 14 Lei T he (/ I"wl.~foml(llioll froll1 Rn into Rn whidl i.~ of
class C' ill till UIJf!/I Sf'f D. ami slippose that J(p) :F 0 for each P E D. Then,
Tis lucall)' 1-10-1 ill D.

The proof of this depends upon the mean value theorem for (rans
formations (Theorem 12, Sec. 7.4). Again, although our present result is
true rcg<lrdless of the value of II, we shall wrile out a proof only for the
case 11 = 3: the general C'<l.SC requires no change in method. Let us suppose
lhat Tis described by

I" ~ fix, y, ,)
, I' = y(x, y, z)
III' = lI(x, y, z)

Given a point rED, we shall produce a neighborhood of p in which
Tis 1-10-1. Let p' and p" be two points near p such thaI the line
segment joining p' and p" lies in D. By Theorem 12, we may then choose
three points pt, pi, and pj on this line segment such that

(7.341 TIp") - T(p') ~ L(p" - p')

where Lis the linear transformation represented by
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Introduce a special function F defined for any triple of points of D by

[

fl(Pd f2(pd f3(Pdj
F(PI,P2,P3)=det gl(P2) g2(P2) g3(P2)

hl (P3) h2(P3) h3(P3)

Thus, F(pT, pi, pn = det (L), and F(p, P, p) = J(p). Moreover, since TEe,
F is continuous, so that, since J(p) #- 0, there is a spherical neighborhood
N about P and lying in D such that F(Pl' P2' P3) #- °for all choices of
the points PI' P2' and P3 in N. We shall show that Tis I-to-l in N.
We must therefore show that if P' and p" are points of N for which
T(p') = T(p"), then p' = p". Since p' and p" lie in Nand N is convex, the
entire line segment joining p' to p" also lies in N; in particular, each
of the points pT, pi, and p~ is a point of N. Using the characteristic
property of N, we have

F(pT, pi, pn = det (L) #- °
The linear transformation L is therefore nonsingular. Returning to Eg.
(7-34) and using the assumption that T(p') = T(p"), we have L(p" - p') = °
or L(p') = L(p"). But, since L is nonsingular, L is l-to-1, and p' = p". I

Corollary If T is a transformation from Rn into Rn which is of class C
in a neighborhood of a point Po, and J(po) #- 0, then Tis I-to-l on a
(usually smaller) neighborhood of Po, and has there an inverse T- 1

•

Thus, a transformation Tdefined on an open set D whose Jacobian never
vanishes on D is very well behaved there; it has continuous local inverses
everywhere, although it need not have a single inverse defined on the total
image set T(D). The next result describes an important property of such maps.

Theorem 15 Let T be of class C 0/1 an open set D in n space, taking
values in n space; suppose that J(p) #- 0 for all p E D. Then, T(D) is an
open set; thus, T carries every open set in D into an open set.

Take any point qo E T(D). We must show that qo is surrounded by
a neighborhood which is composed entirely of image points of D. Let
Po be any point in D with T(po) = qo. Since D is open and J(po) #- 0,
we can choose a closed neighborhood N about Po (a closed disk if n = 2,
a closed ball if n = 3) which lies in D and on which T is a I-to-l
transformation. Let C be the closed set which is the boundary of N
(a circle for n = 2, a spherical surface for n = 3). Since T is continuous
and I-to-l in N, Theorem 4 shows that the image T(C) of this set is a
closed and bounded set which does not contain qo, the image of Po. Let
d be the distance from qo to the nearest point of T(C) (see Fig. 7-8).
We shall show that any point within d/3 of qo is in T(D). Let ql be any
such point, so that Iql - qo I < d/3. As p wanders throughout N, how
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close does T(p) come to (It '! The square of the distance from T(p) to ql is

4>(p)~ IT(p)-q,I'

whit:h is continuous for pEN. Let p* be a point in N for which q,(p) is
minimum; this is then a point whose image T(p*) is as close as possible
to lhe point (Ii. Can p* lie on C, the boundary of N? When p is on C,
IT(p) - /10 I ~ II, so that IT(p) - Iii I ~ (/ - :\11 = H Thus, the closest that
T(p) can gel to lfl for p on C is jll. However, the point Po itself has
image /10' which is only !II away from ql' Thus. lhe point p* will not lie
on C, and is therefore an interior point of N. Since p* minimizes q,(p),
the partial derivalives of q, must all vanish at p*. To see what this implies,
we return to a coordinate description of T, and obtain a formula for 1>.
Let us suppose thaI II = 2, so that TOlay be given by

J" ~ fix, J')
\ I' = .//(x, J')

Lei lfl = ((I, h). Then, the formula for the distance between ql and
(1/. t') = T(p) gives

4>(pl ~ (" - a)' + (" - b)'

The partial derivatives of q, are given by

0/1 (II'
t/Jdp) = 2(11 - a) ilx + 2(t' - b) cx

GU a"
q,2(P) = 2(11 - a) (l.r + 2{v - h) t1.r

Al the extremal point p*, both arc 0, so that

(7-35)
0= (1/ - a)!;(p*) + (I' - b)ydp*)

0= (II - a)!2(p*) + (I' - b)Y2(P*)
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The determinant of the coefficient matrix of these equations, regarded
as linear equations in u - a and v - b, is

I
fl(p*) gl(P*) 1= J(p*) i' °
f2(p*) g2(P*)

The only solutions of (7-35) are then the null solutions, u - a = 0,
v - b = 0. Thus, T(p*) = (u, v) = (a, b), and T(p*) = ql. This shows that
the minimum value of 4J is actually 0, and the point ql is always the
image point of some point in N. This holds for any point ql lying in the
neighborhood of radius d/3 about qo, so that qo is an interior point of
the image set T(D). Since qo was any point of T(D), T(D) is an open set. I

One fact about mappings with nonvanishing Jacobians remains to be
proved. We must prove that the local inverses are themselves differentiable
transformations, and find a formula for their differentials.

Theorem 16 Let T be of class C' in an open set D, with J(p) i' °for all
p E D. Suppose also that T is globally l-to-l in D, so that there is an
inverse transformation T- I defined on the open set T(D) = D*. Then, T- 1

is of class C' on D*, and d(T- 1)Iq = (dTjpr \ where q = T(p).

Let qo and qo + !J.q be nearby points of T(D). We shall show that
T- 1 is of class C' by exhibiting a linear transformation which has the
characteristic approximating property of the differential, and whose entries
are continuous functions. By Exercise 5, Sec. 7.4, this transformation
must be the differential of T- I and the entries are the required partial
derivatives.

Let Po = T- 1(qo) and p = T-1(qo + !J.q), and set !J.p = p - Po. Thus,

(7-36) !J.q = T(p) - T(po) = T(po + L1p) - T(po)

(7-37) !J.p = T-1(qo + !J.q) - T- 1(qo)

Let dT be the differential of T at Po. By the approximation property
(Theorem 10), applied to (7-36), we have

(7-38) !J.q = dT(!J.p) + R(!J.p)

where

(7-39) lim IR(!J.p) I=0
~p-o l!J.pl

Since J(po) i' 0, dT is a nonsingular linear transformation and has an
inverse (dTr 1. Applying this linear transformation to both sides of (7-38),

(7-40) (dTr I (!J.q) = (dTr ldT(!J.p) + (dTr I (R(!J.p))

=!J.p + (dTr 1(R(!J.p))
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so that, starting from (7-37),

T- '(qo + Aq) - T-'(qo) = Ap

= (dTr '(Aq) - (dTr '(R(Ap))
= (dTr l(Aq) + R*(Aq)

where

(7-41 )

If we show that

(7-42)

R*(Aq) = - (dTr '(R(Ap))

lim IR*(Aq)1 = 0
t.q-O IAq I

then we will have shown that T-' satisfies the requirements of Definition 3
and is therefore differentiable at qo, and that its differential at that point
is (dTr '. To prove (7-41) we use the boundedness theorem for linear
transformations to choose a number M such that l(dTr1(u)j ~ Mlul for
all u. We apply this twice to obtain from (7-41)

(7-43 )

and from (7-40),

(7-44)

IR*(Aq)1 ~ M IR(Ap)1

Because of (7-39), we can assume IR(Ap) I ~ e IAp I, and putting this in
(7-44), we obtain (1 - eM)IApl 5 MIAql, and then

M
(7-45) IApl ~ 1 _ eM IAql

Returning to (7-43), we have

M2

IR*(Aq)1 ~ MelApl 5 e 1 _ eM IAql

and since e is arbitrarily small, (7-42) is proved.
The proof of the rest of Theorem 16 is easy. Now that we know

that T-' is differentiable, and that dT-' = (dTr 1 at corresponding
points, then since the entries of (dTr' are rational functions of the
entries of dT, and since the latter are all continuous in D, so are the
entries of (dTr', and since T-' is continuous, these become continuous
function on the set D* = T(D). Hence, T- 1 is of class C in D*. I

We may illustrate all of this with the transformation used earlier:

(7-46) {
u = x cos y

T: .
v = x Sin Y

whose Jacobian is J(x, y) = x. Since this is 0 only on the vertical axis, T has
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local inverses about any point Po = (xo, Yo) with Xo #- O. To find these
explicitly, we must solve (7-46). We have u2 + v2 = x 2

, and 2uv =
2x 2 sin y cos y = x 2 sin (2y), so that sin (2y) = 2uv/(u2 + v2

). If Po is a point
in the right half plane, so that Xo > 0, then the desired solution for x is
x = Ju 2 + v2

. If Xo < 0, then x = - Ju 2 + v2
. If sin (2yo) #- ± 1, then one of

the inverses for the sine function may be chosen so that in an interval about
Yo, Y = ~ arcsin (2uv/(u 2 + v2

)). If sin (2yo) = 1 or - 1, then we proceed
differently; we have

u2
- v2 = X2

(COS
2 Y - sin 2 y) = x 2 cos (2y)

so that cos (2y) = (u 2
- V

2
)/(U

2 + v2
). Choosing an appropriate inverse for the

cosine function, we obtain y = ~ arccos ([u2
- v2

]/[u2 + v2
]) in an interval

about Yo' For example, with Po = (1,0) we have as equations for the desired
inverse

!x=p:tv
S: ; r 2uv J

Iy=~arcsin l~+V2

This transformation is defined and of class C at all points (u, v) #- (0,0).
If we also rule out u = 0, the simpler equivalent formula y = arctan (v/u)
may also be used. Computing the differential of S, one finds

f
(U 2 +UV2)1/2 (u 2 +VV2 ) 1/21

dS =
-v U

u2 + v2 u2 + v2

so that the Jacobian of S at (u, v) is (u 2 + v2t 1/
2

. It will be noticed that this
is X-I, in agreement with Theorem 16 and the fact that the Jacobian of Tis x.
Also, changing back to x and y, the differential of S may be written as

~
cos y Sill Y ~dS = -x-Isiny x-Icosy

so that

dSdT= ~_xC~~~ny x_si:;syH~~:~ -:;~:~~ = ~~ ~~ =/

As we have seen from (7-33), a transformation T can be locally 1-to-1
on an open set D without being globally 1-to-1 on D. In fact, it is possible
to have such a transformation which maps an open disk D onto itself and is
locally 1-to-1 but not globally 1-to-1 on D. The sequence of pictures in
Fig. 7-9 is intended to suggest the stages in a construction of such a
mapping; note that Tis at most 3-to-1 and that Tis certainly not 1-to-l on
the boundary of D.
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On thc other hand, it can be shown thilt if T maps a convex set D onto
anothcr convcx set D- in such a way that ..he boundary of D is mapped
cxactly onto the boundary of D-, and if Tis locally I-to-I in D, thcn Tmust
be globally l-to-l in D.

Other criterlil have been obtained that look at thc nature of the differential
liT For example. if T is defined on a rectangular region D in the plane,
and if neither the Jacobian of T nor any of the diagonal entries of liT has a 0
value in 0, then T must be globally 1-10-1 in D. (For a referell(:e to this
and other results. see an article by Gale and Niknido in /I.1(1/II('III/II;s("lIe
Al1IlII/t'lI. vol. 159, pp. 81 ·93, 1965.)

EXERCISES

I Find Ihc Jaeotllans of c;u:h of Ihe lriHlsformillions lk-scribcd in Excrcise 10. Sec. 7.2.

2 Computc the J~'CObl;HlS of rhc follo"'ing rransformalions:

(")
111= ,.' cos y Ib,

jll = ~l

I"", t" sin.r 11' -)"IX

lei
lu=x1 +2.\'I'+.r2

"(rI)
Ill-x+ .r

I, = 2_\ + 1y 1,- .. 2.:.r '

J J),s<:U~S the tue:lllx:hal'ior of lhe Ir"nsformMions in Exercise 1_

4 Where it IS posslblc. tind formulas for Ihe locill im'crscs of thc lmnsfornlillrons in Excn,:Ise 2.

S I-Ind thc "n,,~e under e:leh of lhc trallsform;lhonS of E.~ereisc 2 of rhe open SCi
D., [all I'. rI. U < \ < I. U < I" < I:. For which is thc imagc <In opcn sct'?

6 Thc SCl-ond half of lhc proof of Theorem 15 assumed that T was a transformalion froll)
1'SJ'iIIT inlo 1,sp<lcc, Carr}' ,,"l lhc corrl'Sponding discusSl<ln Wllh II ... J,

7 LCl'r hc the rran,f,'rm"ri"n _",ntling (,..r) into (2.\' + 4y. \ - 3.r), Fintl T- l 'Ul.1 vcrify directly
lhal rhc dilTercnl1<11 of "1"-' IS /<IT)-I
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8 Let Tbe a transformation from R3 into R3 which is of class C in an open set D, and let
J(p) = det (dT Ipl. Show that J is continuous throughout D. Is the rank of dT a continuous
function of p?

9 Let T(x, y) = (u, v). Show that
o(u, v) o(x, y)
~---=I
o(x, y) o(u, v)

10 (a) Find an example of a function f that is infinitely differentiable on an Interval I, maps 1
onto itself l-to-l, has a continuous inverse f-', but for which f-I fails to be differentiable at
some point of 1.

(b) Show by an example that a transformation of the plane can be I-to-I, have an
everywhere-defined inverse, and still have the Jacobian vanishing somewhere.

II Let T be defined by

Ju = sin x cos y + sin y cos x
T'

. \v = cos x cos y - sin x SIn y

Find the Jacobian of T. Is there anywhere that Tis locally I-to-I?

12 The following transformation is continuous everywhere in the plane and differentiable there
except on the lines y = ±x.

lu = x 2 + y2 - Ix2
_ y2

1

T'
. V=X 2 +y2+lx2 _y2

1

(a) Find dTwhere it exists.
(b) Discuss the local and global mapping behavior of T.
(c) Is Tdifferentiable at (0,0) according to definition 3?

13 Let T be the transformation sending (x, y) into (2xy, x2 + y2) and S the transformation
sending (x, y) into (x - y, x + y).

(a) Using the Jacobians, discuss the local and global mapping behavior of Tand S.
(b) Obtain formulas for the two product transformations, ST and TS, and then repeat part (a)

for these new transformations.

14 Prove Theorem 13 by filling in the details in the following argument: T- I is continuous if
its inverse carries closed sets into closed sets; however, the inverse of T- I is T and any closed
subset of D is compact.

15 Letfbe a real-valued continuous function defined for - 00 < x < 00. Suppose thatf is locally
I-to-I everywhere. Prove that f is globally l-to-1. [Note: Do not assume that f' exists.]

16 Let J T(P) denote the Jacobian of a transformation Tat the point p. Show that if S and Tare
transformations from n space into itself, and T(p) = q, then JST(p) = JS(q)JT(p).

17 Let D be the unit disk, x 2 + y2 :::; I. Consider a transformation T of class C on an open set
containing D,

J
u = f(x, y)

T'
. \ v = g(x, y)

whose Jacobian is never 0 in D. Suppose that T is near the identity map in the sense that
IT(p) - pi s j for all p E D. Prove that there is a point Po with T(po) = (0,0).

7.6 THE IMPLICIT FUNCTION THEOREMS

The theorems of the present section have to do with the solution of one or
more equations in several unknowns. They are existence theorems in that they
give assurance that there are solutions, but do not give directions for obtaining
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them. In the simplest of these situations, suppose we are concerned with the
solution of an equation F(x, y, z) = 0 for one of the variables as a function of
the others. To "solve for z," for example, means to find a function ¢ such that
F(x, y, ¢(x, y)) = 0 for all x and y in some open set. This is not always possible.
In general, there are two reasons for this. One reason is illustrated by the
equation

x2
- Z2 + (z - y)(z + y) = 0

This cannot be solved for z, for z is not "really" present. The second reason
is illustrated by the equation

x 2 + l + Z2 + 10 = 0

This cannot be solved for z, and in fact, there is no real triple (x, y, z) which
satisfies the equation. Our first result is a theorem which gives sufficient
conditions for such an equation to be solvable for z.

Theorem 17 Let F be a function of three variables which is of class C
in an open set D, and let Po = (xo, Yo' zo) be a point of D for which
F(po) = O. Suppose that F3(po) # O. Then, there is afunction ¢ of class C
in a neighborhood N of (xo , Yo) such that z = ¢(x, y) is a solution of
F(x, y, z) = 0 for (x, y) in N, and such that ¢(xo' Yo) = Zo.

Consider the following special transformation from R3 into R 3
:

\u=x
T: 1v = Y

Iw=F(x,y,z)

This is of class C in D, and its Jacobian is

J(p)=det[ ~ ~ ~ ]=F3(P)
F 1(p ) F2 (p ) F3 (p )

Since J(po) = F3(PO) # 0, we may apply the principal result of Sec. 7.5
(Theorem 16) and conclude that there is a transformation T- 1 which is
of class C in a neighborhood of qo = T(po) = (xo' yo, 0), and which is an
inverse for T. Moreover, from the nature of the equations which describe
T, we have for T- 1

Ix = U

T- 1
: ~ y = v
I z = f(u, v, w)

wherefis of class C in a neighborhood of qo. Since T and T- 1 are inverses,
we must have

(7-47) w = F(x, y, z) = F(u, v,f(u, v, w))
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(7-48 )

holding identically for all (u, v, w) near (xo, Yo, 0) = qo. Set w = 0, replace
u by x and v by y, and define </J by </J(x, y) = f(x, y, 0). Then, (7-47) becomes

0= F(x, y, </J(x, y))

holding for all points (x, y) in a neighborhood of (xo, Yo). This shows that
z = </J(x, y) is a solution of F(x, y, z) = O. Since f is of class C, so is </J. I

By the same device, we can find sufficient conditions for the solution of an
equation F(x, y, z, u, v, ... ) = 0 for anyone of the variables as a function of the
remaining. In addition to the differentiability conditions, the two requirements
are: (1) there is a point Po that satisfies the equation, and (2) the partial of F
with respect to the sought-for variable does not vanish at Po.

Turning to the more complicated cases in which more than one equation
is involved, the following will amply illustrate the general procedure.

Theorem 18 Let F and G be of class C in all open set Dc R5
. Let

Po = (xo' Yo' zo, uo, vo) be a point of D at which both of the equations

F(x, y, z, u, v) = 0

G(x, y, z, u, v) = 0

are satisfied. Suppose also that 8(F, G)/8(u, v) # 0 at Po. Then, there are
two functions </J and ljJ of class C in a neighborhood N ~f (xo, Yo, zo) such
that

{
u : </J(x, y, z)
v - ljJ(x, y, z)

is a solution of (7-48) in N giving Uo and Vo at (xo, Yo' zo)·

To prove this, we construct a special transformation from R5 into R5

i

t! = X

t 2 = Y
T: t 3 = z

t4 : F(x, y: z, u, v)
t 5 - G(x, j, z, u, v)

The Jacobian of Tis

J = det[g
F1

G1

8(F, G)
---

8(u, v)
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By our hypotheses, J(po) # 0, so that T has a local inverse there. The form
of this must be

x = t 1

Y = t 2

Z = t 3

U =I(t1, t2 , t 3 , t4 , t s )
v = g(t 1, t 2 , t 3 , t4 , t s)

whereIand 9 are of class C. Setting t4 = °and t s = °to correspond to the
original equations F(x, y, z, u, v) = °and G(x, y, z, u, v) = 0, and replacing
t l' t 2 , t 3 by x, y, and z, and defining

</J(x, y, z) = I(x, y, z, 0,0)

l/J(x, y, z) = g(x, y, z, 0, 0)

we have

0= F(x, y, z, </J(x, y, z), l/J(x, y, z))

°= G(x, y, z, </J(x, y, z), l/J(x, y, z))

holding for all (x, y, z) in a neighborhood of (xo, Yo, zo)' Thus, u =
</J(x, y, z) and v = l/J(x, y, z) are the desired solutions. I

To give a simple illustration of this theorem, let us discuss the solution of
the following equations for u and v.

Jx 2
- yu =°

IXY + uv = °
Put F(x, y, u, v) = x 2

- yu and G(x, y, u, v) = xy + uv. We find

~(F, G) = 1-y °I= - yu
J(u, v) v u

Thus, if xo, Yo, uo, Vo satisfy Eqs. (7-49) and Yo Uo # 0, then there are con
tinuous solutions for u and v around the point (xo, Yo)' The limitation Uo # 0,
Yo # °is needed, and both imply Xo # 0. In this example, it is possible to solve
explicitly and obtain

x 2

U=-'

Y
_ y2

V='~

X

which is valid at all points (x, y) except those on the axes.
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The general case follows the same pattern as Theorem 17. Given a system
of m simultaneous equations

<Pl(Xl' X 2 ,···, x n) = 0
<P2(Xl' x 2 ' •.. , xn) = 0

<Pm(XI> x 2 ' ••• , xn) = 0

in n variables, and a point p = (Xl' X2 , .•• , xn ) that satisfies the system, we can
(in theory) solve for a specific set of m of the variables, say Xi" Xi2' ... , x im ' in
terms of the rest in a neighborhood of p if the Jacobian

at p.

EXERCISES

I Can the curve whose equation is x 2 + Y + sin (xy) = 0 be described by an equallon of the
form y = f(x) in a neighborhood of the point (0, OJ? Can it be described by an equation of the
form x = g(y)?

2 Can the surface whose equation is xy - z log y + eX< = 1 be represented In the form z = f(x, y)
in a neighborhood of (0, 1, I)? In the form y = g(x, z)?

3 The point (I, - I, 2) lies on both of the surfaces described by the equallons X 2(y2 + Z2) = 5 and
(x - zjl + y2 = 2. Show that in a neighborhood of this point, the curve of intersection of the
surfaces can be described by a pair of equations of the form z = f(x), y = g(x). ,

4 Study the corresponding question for the surfaces with equations x 2 + y2 = 4 and 2x 2 + y2 
8z2 = 8 and the point (2,0,0) which lies on both.

5 The pair of equations

J xy + 2yz = 3xz
lxyz + ~ - y = 1

is satisfied by the choice x = y = z = 1. Study the problem of solving (either In theory or in
practice) this pair of equations for two of the unknowns as a funcllon of the third, in the vicinity
of the (1, 1, 1) solution.

6 (u) Let f be a function of one variable for which f(l) = O. What additional conditions on f
will allow the equation

2f(xy) = ((x) + flY)

to be solved for y in a neighborhood of (1, I)?
(b) Obtain the explicit solution for the choicef(t) = t 2

- 1.

·7 With f again a function of one variable obeyIng f( I) = 0, discuss the problem of solVIng the
equationf(xy) = f(x) + fly) for y near the point (I, 1).

8 Using the method of Theorem 18, state and prove a theorem which gives suffiCient conditions
for the equations

F(x, y, z, t) = 0 G(x, y, z, t) = 0 and H(x, y, z, t) = 0

to be solvable for x, y, and z as functions of t.
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9 Apply Theorem 18 to decide if it is possible to solve the equations

xi + xzu + yv 2 = J and

for u and vas functions of (x, y, z) In a neighborhood of the points (x, y, z) = (I, I, I), (u, v) = (I, I).

10 Find the conditions on the function F which allow you to solve the equation

F(F(x, y), y) = 0

for y as a function of x near (0,0). Assume F(O, 0) = O.

II Find conditions on the functions f and 9 which permit you to solve the equations

f (xy) + g(yz) = 0 and g(xy) + f(yz) = 0

for y and z as functIOns of x, near the point where x = y = z = I; assume thatf(l) = g(l) = O.

7.7 FUNCTIONAL DEPENDENCE

In Sec. 7.5, we studied at some length the properties of transformations of class
C whose Jacobian is never 0 in an open set. We found that they map open
sets onto open sets of the same dimension, are locally I-to-I, and therefore have
local inverses. In this section, we examine the behavior of a transformation T
whose Jacobian vanishes everywhere in an open set.

We illustrate this first with a simple example. Consider the transformation
described by

T' Ju = cos (x + y2)
. \v = sin (x + l)

At (x, y), the Jacobian of T is

J( ) d r-sin (x+y2) -2ysin(x+y2)1
x, y = et l cos (x + l) 2y cos (x + y2)J

= -2y sin (x + y2) cos (x + y2) + 2y sin (x + y2) cos (x + l)
=0

This transformation fails to have many of the properties which were shown
to hold for those with nonvanishing Jacobian. For example, although it is
continuous and in fact of class Coo, it does not map open sets in the XY plane
into open sets in the U V plane. Since u2 + v2 = I for any choice of(x, y), T maps
the entire XY plane onto the set of points on this circle of radius 1. Further
inore, it is not locally I-to-l. All the points on the parabola x + y2 = C map into
the same point (cos c, sin c), and as c changes, these parabolas cover the entire
XY plane. Thus, any disk, no matter how small, contains points having the
same image. Speaking on the intuitive level for the moment, T might be called
a dimension-reducing transformation; if we regard open sets in the plane as
two-dimensional, and curves as one-dimensional, then T takes a two-dimen
sional set into a one-dimensional set.
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All this degenerate behavior of T stems from the fact that the functions
which we chose for the coordinates u and v were not independent, but were
functionally related. There was a function F such that

F(u, v) = °
for all x and y, namely

F(u, v) = u2 + v2
- 1

Definition 6 Two functions, f and g, are said to be functionally dependent
in a set D if there is a function F of two variables, which itself is not
identically °in any open set, such that F(f(p), g(p)) = °for all p ED.

A similar definition may be formulated to describe functional dependence
for any finite set of functions. As a special case of this, we say that a function
g is functionally dependent in D upon the functions fl,f2 ' .. . ,fm if there is a
function F of m variables such that

for all p E D. When the function F is a linear function, g is said to be linearly
dependent uponfl,f2' ... ,fm. In this case, there are m numbers C I , C2, ... , Cm

such that g can be expressed in D as a linear combination of the functions fj:

g = CIiI + Cd2 + ... + Cmfm

Linear dependence is thus a special case of the general notion of functional
dependence. The sine and cosine functions are linearly independent, since
neither is a constant multiple of the other; however, they are functionally
dependent, since

for x in the interval [0, in].
We return to the study of a general transformation from R3 into R3

. Let
us recall the effect on a linear transformation T of the vanishing of its Jacobian.
If T is represented by a matrix A = [au], then the Jacobian of T is det (A); if
this is 0, then T maps all of R3 onto a (two-dimensional) plane, or onto a
(one-dimensional) line, or onto a single point. Which it does is determined by
the rank of A. If rank (A) = 2, the image is a plane, and if rank (A) = 1, it is a
line. Using this as a guide, one is led to guess the correct generalization of
this for transformations T which are not linear. When the Jacobian of T
vanishes throughout the open domain D, we expect T to be a dimension
reducing transformation. It will map D onto something like a surface, or a
curve, or a single point; which it is will depend upon the rank of dT, the
differential of T. In the statements of the next two theorems, we shall use the
terms "surface" and "curve" in their intuitive meanings; we postpone formal
discussion of these notions until Chap. 8.
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Theorem 19 Let T be a transformation from R3 into R3 described by

u=f(x,y,z)
v = g(x, y, z)
w = h(x, y, z)

which is of class C' in an open set D, and suppose that at each point p E D
the differential dT has rank 2. Then, T maps D onto a surface in UVW
space, and the functions f, g, and h are functionally dependent in D.

Theorem 20 I{ T is given by (7-50), and dT has rank 1 at each point
ofD, then T maps D onto a curve in U V W space, that is, f, g, and h satisfy
two independent functional relations in D. In particular, about any point of
D there is a neighborhood in which one of the functions can be used to
express each of the others.

The conclusion of the first theorem says that near any point of D, one
may write either u = ¢>(v, w) or v = tJ;(w, u) or w = y(u, v). As p moves about in
D, one may be forced to change from one type of relation to another. Thus,
all the points (u, v, w) which arise as image points T(p) lie on the graph of
a surface. Similarly, the conclusion of the second theorem says that near any
point of D, one may write either u = ¢>(v) and w = tJ;(v), or v = a(w) and
u = fJ(w), or w = y(u) and v = '1(u); again, it may not be possible to adhere
to one of these relationships throughout D. Thus, in this case, the points (u, v, w)
lie on the graph of a curve in UVW space. Stated in terms of Jacobians, we
have the following simple condition for functional dependence.

Corollary If u, v, and ware C' functions of x, y, and z in D, and if
8(u, v, w)j8(x, y, z) = 0 at all points of D, then u, v, and ware functionally
related in D.

We prove both theorems together. The differential of T is given by

[

fl f2 f3]
dT = gl g2 g3

hi h2 h3

Let us first suppose that dT has rank 1 at all points of D. This means that
every 2-by-2 submatrix of dT has 0 determinant, but at least one entry of
dT is not O. Let us suppose that at a point Po E D,.fl (Po) # O. Writing the
first line of (7-50) as f(x, y, z) - u = 0 and regarding the left side as
F(x, y, z, u), we may apply the implicit function theorem (see Theorem 17);
since F1 = fl, which does not vanish at Po, we can solve the equation
f(x, y, z) - u = 0 for x, getting

x = K(y, z, u)
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Making this substitution in the remaining equations of (7-50), we obtain

(7-51 )
v = g(K(y, z, u), y, z) = G(y, z, u)

w = h(K(y, z, u), y, z) = H(y, z, u)

We shall next show that the variables y and z are not really present, that is,
that G and H do not depend upon y and z. To show that y is absent, let
us return to Eqs. (7-50), and differentiate the first and second with respect
to y while holding z and u constants. (This may be done since Eq. (7-51)
allow us to regard y, z, and u as the independent variables.) Doing so, we
obtain

ax
o=fl ay + f2

av ax
ay = gl ay + g2

Solving the first, we have ax/ay = - f2/fl and

av = G ( z u) = flg2 - gd2
ay I y, , fl

However

is the determinant of one of the 2-by-2 submatrices in dT, and by
assumption, it has the value O. Thus, in a neighborhood of Po, we find
that GI(y, z, u) = O. By a previous result (Theorem 13, Sec. 3.3), this shows
that G does not depend upon y. Similar computations show that G and H
are both independent of y and of z. We may therefore write Eqs. (7-51)
in the simpler form

v=¢(u)
w = t/J(u)

This proves Theorem 20. I

To prove Theorem 19, let us assume that dT has rank 2 throughout
D. This means that the Jacobian of T is 0 at each point of D, but that
about any point Po ED is a neighborhood in which one of the 2-by-2
submatrices is nonsingular. We may suppose that it is the upper left-hand
submatrix. Thus, a(f, g)/a(x, y) #- O. By the implicit function theorem, we
can solve the equations

f(x, y, z) - u = 0

g(x, y, z) - v = 0
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for x and y as functions of u, v, and z, obtaining

(7-52) x = F(u, v, z)
y=G(u,v,z)

Substituting these into the last equation in (7-50), we have

(7-53)
w = h(F(u, v, z), G(u, v, z), z)

= H(u, v, z)

Now, because J = 0, the variable z plays no role here and H does not
really depend upon its third variable. To see this, return to Eqs. (7-50),
and differentiate each with respect to z, holding u and v constant. (This may
be done since Eqs. (7-52) and (7-53) allow us to regard u, v, and z as the
independent variables.) Doing this, we ~btain

ox oy°= II OZ + I2 OZ + I3

oX oy
0= gl OZ + g2 OZ + g3

ow ox oy
o~ = hi OZ + h2 OZ + h3

Solving for ow/oz, we obtain

Jow
oz

II I2 - I3
gl g2 - g3
hi h2 -h3

II I2 °
gl g2 °
hi h2 - 1

Since J = 0, we have ow/oz = H3(U, v, z) = °in a neighborhood, and w
must be expressible as w = ¢(u, v); z is a ghost in H. This proves the
functional dependence of w on u and v (Theorem 19). I

So far, we have discussed only transformations whose domain and whose
range lay in spaces of the same dimension, e.g., transformations from R2 into
R2

, from R3 into R3
, etc. The techniques that have been developed will also

apply to other types of transformations. Several samples will be sufficient to
illustrate the manner in which this is done.

Theorem 21 Let T be a transformation which IS oI class C' in an open
set D in R3 and mapping this into R2

. Let T be described by

u = I(x, y, z)
v = g(x, y, z)
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Then, if the differential dT has rank 2 throughout D,j and g are functionally
independent in D, and T maps D onto an open set in the UV plane; while
if dT has rank 1 throughout D, then f and g are functionally dependent in D,
and the image of D under T is a curve in the UV plane.

o(u, v) _ o(u, v) _ o(u, v) _ 0
a(x, y) - J(y, z) - oCz:X) -

throughout D, then about every point of D is a neighborhood in which
u = ¢(v) or v = t/t(u).

Theorem 22 Let T be a transformation from R 2 into R3 which is of class
C' in an open set D, and is given there by the equations

x = flu, v)
y=g(u,v)
Z = h(u, v)

If the rank ofdT is 2 throughout D, then T maps D onto a surface in X YZ
space, while if the rank of dT is 1 throughout D, T maps D onto a curve.

Both of these may be reduced to special cases of Theorems 19 and 20.
To prove Theorem 21, we adjoin an equation w = 0 to make T a trans
formation from R 3 into R3

. Its differential is now

whose rank is always the same as that of dT. I

To prove Theorem 22, we introduce a dummy variable w into Egs.
(7-54) which describe T to again make T a transformation from R3 into
R3

. (For instance, one might write x = flu, v) + w - w.) The differential of
the resulting transformation is

whose rank is again the same as that of dT. I

For future use, we note that the condition that the rank of this matrix
be 2 may also be expressed in the equivalent form

(7-55) r
~(X2-Y)12 + f~(Y,!)12 + rO(Z,X)j2 >0
o(u, v)J o(u, v)J o(u, v)
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The rcader will have noticed that thc hypotheses of re<.'ent theorems havc
been of IWO types_ II was assumed eithcr that the Jacobian was nonzero cvery
where ill a rcgion D. ur th,1I it W;:IS idenlically 0 in the region; it was assumed
lhat a matnx either hold rank 2 everywhere in D. or had rank I everywhere in
D. For a general transformatIon T: R3

...... R-I
• the following behavior would be

much more typical: The Jacobian would be nonzero cverywhere in space.
except on certain surfaces. On these surfaces. liT would have rank 2. except
on certain curves. On these curves. ciT would have rank I. excepl for certain
points wherc the rank is O.

We shall say that it critical point for T IS any point where the Jacobian
IS 0: more generally. if T is a transformation from R" into Rm

, then a poilll p
is a critical point for T if the rank of (IT at p IS less than optimal. i.e.. less than
Ihe smaller of II and m. (Note that for 11 function f of" variables. values in R I.

this would require that df= 0.)
What sort of behavior should one expect for a transformation in the

neighborhood of a critical point? Even in the simplest cases. one is led into
serious dillicultics: one simple example rnay serve to illustrate the possibilities.

Consider the transformation T from R2 into R2 given by

The differemial is dT ~ 1
2

.< 0 Io 2.1"

and J{x. .r) = 4x.\". The rank of (IT is 2 everywhere except on the lines
x = 0 and .r = O. On these. it has rank I. except for the origin where the
rank is O. Thc effect of T may be indicated crudely by Fig. 7-10. We see

"

T- ,

'j
,

,

,
, -

i --



Ju = x2

(a) \v = y

lu = x - y
(e) lv = x 2 + y2 - 2xy
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that the lines x = 0 and y = 0 are the creases along which T folds the X Y
plane, and where T is locally 2-to-l, while the origin corresponds to the point
of the final fold, and at which T is locally 4-to-1.

EXERCISES
By consideration of their differentials, discuss the nature of the following transformations:

lu=x+y
(d) < v = x + z

Iw = y2 + Z2 - 2yz

2 Show that the following sets of funclions are functionally dependen t and find the functIOnal
relationship.

(a)
u = log x - log Y

x 2 + 3y2

v= 2xy-

lu=x+y+z
(b) i v = xy + zx

j w = x2 + y2 + Z2 + 2yz

3 Find the functional relation of the following pairs if such a relation eXists.
(a) u = log (x + y) v = x2 + y2 + 2xy + I
(b) u = (x + y)/x v = (x + y)/y
(e) u = x + Y v = x 2 + y2

4 For the transformation

x+y
u = - --

1- xy

. a(u, v)
(a) Venfy that -_.. == o.

a(x, y)

(x + y)(1 - xy)v =_. _.
(I + x 2)(1 + y2)

(b) Express v in terms of u.

5 In the proof of Theorem 20, complete the argument to show that the functIOn G in Eqs. (7-51)
is independent of z.

6 Discuss the nature of a transformalion T whose differential is of rank 0 throughout an open
set D.

7 Let u = F(x, y) and v = G(x, y), and suppose that F and G are functIOnally dependent in a set D.
Show that a(u, v)/a(x, y) = 0 in D.

8 Show that x - y, xy, and xeY are functionally dependent.

9 Let u = fIx, y, z) and v = g(x, y, z) and suppose thatf and g are funclionally dependent In an
open set D, with F(u, v) = 0, where F1(u, v) and F2(u, v) are never both O. Show that

a(u, v) a(u, v) a(u, v)
- = ---=- =0

a(x, y) a(y, z) a(z, x)

in D.



CHAPTER

EIGHT

APPLICATIONS TO
GEOMETRY AND ANALYSIS

8.1 PREVIEW

This chapter deals with a number of geometric applications of integration and
differentiation. Building on the techniques of the previous section, we treat the
change-of-variable formula for multiple integrals in Sec. 8.3, using an approach
that emphasizes the role of the differential of the transformation T that
describes the coordinate change. The key idea is to look at the integral of a
function f over the image set T(D) as though one had integrated some other
function over the set D, then use differentiation to evaluate this new integrand.
Thus, one needs a multiple-integral form of the fundamental theorem of
calculus. This is supplied in Sec. 8.2, which gives an elementary treatment of
set functions and a weak version of the Radon-Nikodym theorem, which is the
key also to the physical notions of density and mass and to some of the basic
aspects of probability theory.

The remainder of the chapter deals with curves and surfaces, discussing
such topics as tangents, normals, curvature, arc length and surface area, and
integration of functions along a curve or over a surface. There is also a brief
intuitive introduction to the notion of manifold, as an extension of "surface,"
in order to present the contrasting concepts oforientability and nonorientability.

375
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While it might seem somewhat out of place, Sec. 8.5 turned out to be the
appropriate place to discuss the total second derivative of a function or
transformation, since this characterizes geometric aspects of the associated
graphs; as the Hessian, it also discriminates between saddle points and extreme
points.

8.2 SET FUNCTIONS

By the term set function we mean a function F which assigns a number F(S)
to each set S in some specified class of sets. By contrast, the term point functions
might be used for the functions f which have been discussed up until now,
and which assign a number f(p) to each point p in a specified set of points.
Examples of set functions are common in pure and in applied mathematics,
embracing such diverse notions as area, force, mass, moment of inertia, and
probability. To illustrate this, let d be the class of compact sets in the plane
which have area. Then, the area function A, which assigns to each set SEd its
area A(S), is a set function defined on the class .91. Taking an example from
physics, we suppose we are given a specific distribution of matter throughout
space, which in some places may be continuous, and in others, discrete. With
this, we may associate a particular set function m by taking m(S) to be the
total mass of the matter lying within the set S. In particular, if the distribution
of matter is taken to be only a single particle of mass I located at the origin,
then m(5) = °whenever S fails to contain the origin, and m(S) = I if S
contains the origin. Again, if a horizontal plate is subjected to a variable load
distribution, we may obtain a set function F by choosing F(5) to be the total
force pressing down on each region 5 of the plate. Finally, if an experiment
involves dropping shot from a height onto a target board, then to each region
S of the target we can associate a number P(5) which is the probability that an
individual shot will land in S.

All the examples presuppose that one starts with a prior knowledge (e.g.,
the meaning of area, mass, force, or probability). Reversing the procedure,
one might postulate the existence of the set functions, together with certain
appropriate properties, and then use them to develop the corresponding
physical or mathematical notions. One property that a set function may
possess, shared by all those mentioned above, is particularly important. .

Definition 1 Let ~ be a collection of sets such that if SI and 52 belong
to~, so do 51 U S2' 51 n S2' and SI - 52' Then, a set function F defined
on ~ is finitely additive if F(SI U 52) = F(Stl + F(S2) whenever 51 and 52
are disjoint members of~.

A finitely additive function F must automatically satisfy certain other
properties. For example, F(0) = 0, since 5 and the empty set 0 are necessarily
disjoint, and hence F(S u 0) = F(5) = F(5) + F(0). Again, if the sets Sk E ~
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are pairwise disjoint, then

(8-1)

We note also that there are corresponding addition formulas which apply when
the sets are not disjoint (see Exercise 2).

Another property shared by many set functions is positivity; F is said to be
positive if F(S) ~ 0 for all S E K. This is equivalent to the property of being
monotone, which means that F(Sl) :s; F(S2) whenever Sl C S2 (Exercise 3).

An extensive category of finitely additive set functions can be constructed
by means of integration. Let ¢ be a real-valued point function defined and
continuous on the whole plane. Then ¢ yields a set function defined on the
class sl by the equation

(8-2) F(S) = rr ¢
.. s

The fact that F is finitely additive is merely a restatement of one of the
familiar properties of integration. Note also that F will be a positive set function
if and only if ¢(p) 2: 0 for all points p (Exercise 5).

The central result of this section will show that every finitely additive set
function obeying certain simple conditions must have the form (8-2), where the
appropriate point function ¢ is obtained from the set function F by a process
analogous to differentiation. Indeed, the entire result can be regarded as the
multiple integration version of the fundamental theorem of calculus that con
nects integration and differentiation in one variable. For concreteness, we work
with set functions defined on the class d of Jordan-measurable subsets of the
plane~i.e., bounded sets B that have an area A(B). The same analysis could
be done for n space.

We introduce a special type of limit operation.

Definition 2 Given an arbitrary set function F, not necessarily additive,
and defined at least for all rectangles R, we write limR " Po F(R) = c if and
only if, given £ > 0, there is a b > 0 such that

(8-3) IF(R)-cl<£

whenever R is a rectangle containing the point Po and with diameter
diam (R) < b.

The rectangles R can be thought of as "closing down" on the point Po,
and the limit value c, when it exists, can be regarded as the value which F
should assign to the set consisting of Po alone. (The restriction to rectangles
makes this notion of limit rather special, but it is all we need for simple
applications. )



378 ADVANCED CALCULUS

If the set function F has such a limit for each point p in a region D,
then this process defines a poin t function f on D by writing, for each p E D,

(8-4) f(p) = lim F(R)
Rjp

(8-5)

Definition 3 We say that the limit (8-4) holds uniformly for all p in a
set E if and only if, given E > 0, there is a 6 > 0 such that

IF(R) - f(p)1 < E

for every pEE and every rectangle R containing p with diam (R) < 6.

Using these notions oflimits, we now introdl1ce a process of differentiation
of set functions defined on the class .s1, with respect to the area function A.

When the derivative of F exists, it will be a point function f; not all set
functions have derivatives.

Definition 4 An arbitrary set function F, defined on .91, is said to be
differentiable on a set D if

lim FJR}
Rjp A(R)

exists for each p E D, and to be uniformly differentiable on D if (8-5) exists,
uniformly for all p ED.

It is to be understood in the definition that A(R) > O.
This is not a new concept, especially in the case of the examples of set

functions which we have given above. Taking F as the mass function m, the
value of the quotient m(S)/A(S) is the average mass per unit area (or volume,
if we take the corresponding three-dimensional derivative) in the region S.
As S closes down on p, the limit can be interpreted as the density of matter
at p. Similarly, the derivative of the set function force is the point function
pressure (= force per unit area). Not all set functions have a derivative; the
mass function produced by an isolated unit point mass at the origin fails
to have a derivative there since m(S) = 1 for any S containing 0, while
A(S) - 0 (see also Exercise 8).

Our first result shows that the special additive set function defined by
(8-2) is differentiable everywhere, and that the integrand 1> can be recovered
from F itself.

Theorem 1 The set function F given in (8-2) is uniformly differentiable
on any compact set E, and its derivative is the point function 1>.

Given E, we can choose a small number 61 and a compact set E1

containing E such that if pEE and Iq - pi < 61, then q E E\. The function
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¢ is uniformly continuous in E I' Given e, we can choose 15 < 15 1 SO that
if pEE and ·Ip - ql < 15, then I¢(p) - ¢(q)1 < e. Let R be any rectangle
containing p and with diam (R) < 15; note that R lies entirely in E 1• By the
mean value theorem for integrals,

F(R) = rr ¢ = ¢(q)A(R)
•• R

where q is some point in R. Thus, F(R)/A(R) = ¢(q), and we have shown
that

I
~(R) - ¢(p) I< e
A(R)

holding now for any choice of R, diam (R) < 15, and any pEE. I

The main result of this section is the converse of this, showing that a
simple set of properties characterizes the set functions obtained by integration
as in (8-2). In addition to finite additivity, we will use another property that is
obviously true of those functions F defined by (8-2).

Definition 5 A set function F is a.c. (area continuous) if F(S) = 0 for
every set S with A(S) = 0 with SEd.

In fact, set functions F defined by (8-2) even obey the following more
restrictive condition: For any compact set E, there is a number M such that
IF(S) I ~ MA(S) for all sets SEd, SeE (Exercise 6).

Theorem 2 Let F be an additive set function, defined on d and a.c.
Suppose also that F is dijJerentiable everywhere, and uniformly dijJerentiable
on compact sets, with the derivative a point function f Then,f is continu~us
everywhere, and

(8-6) F(S) = If f
s

holds for every rectangle S. If F is positive on an open set D (meaning
that F(S) ~ 0 for any set SeD, SEd), then (8-6) also holds for all sets
SEd contained in D.

The pattern of the proof of this is similar to that of the fundamental
theorem of calculus for functions of one variable, as given in Sec. 4.3.
We first prove that the derivative f is continuous. Let E be any closed
disk. Since F is uniformly differentiable in E, given e we can choose 15 so
that
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for any pEE and any rectangle R containing P, and with diam (R) < b.
Let PI and P2 lie in E, with Ipi - P21 < 15/2, and choose R, diam (R) < 15,
so that PI' P2 E R. Then,

~ I: + I: = 21:

proving that.f is (uniformly) continuous in E. Next, define a set function
Fo by using (8-2) with <P = J By Theorem 1, Fo is also uniformly
differentiable on compact sets, and its derivative is also the point functionJ
Construct a third set function H by H(S) = F(S) - Fo(S). This is again
finitely additive, a.c., defined on sd, and uniformly differentiable on
compact sets, and its derivative is everywhere.f - .f = 0. We will now
show that any such set function is necessarily 0, at least on rectangles.
Let E be a large closed disk. Then, since the uniform derivative of H in E is
the point function 0, we know that for any I: > °there is a 15 > Osuch
that if R is a rectangle contained in E with diam (R) < 15, then

I~(~/1 = I~(~1- °I< I:

or, IH(R)I ~ I:A(R). Now take any rectangle S in E, and express it as the
union of rectangles R l , R2 , ... , Rn, each of diameter smaller than 15 and
mutually disjoint except for edges. Since each edge has area°and H is both

a.c. and additive, H(S) = l: H(R;). Applying the general estimate above,

we then have IH(R;) I ~ I:A(R i ) and
n

IH(S) I ~ I: 2.: A(R;) = I:A(S)
I

Since this holds for every 1:, H(S) = 0, and it follows that F(S) = Fo(S)
for any rectangle, and hence for finite unions.

To extend this now to general sets S E sd contained in an open set
D where F is a positive set function, we use the fact that F is monotonic,
and approximate S from inside and outside by finite unions of rectangles.
If Sn C S with A(Sn) -> A(S), then F(Sn) ~ F(S), and since Sn is a finite
union of rectangles,

which converges to ff .f = Fo(S) by properties of integration. This
•• S

argument shows Fo(S) ~ F(S) for any SeD. A similar argument using
circumscribing sets Sn that are unions of rectangles yields F(S) ~ Fo(S),
and we have completed the proof. I
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This result provides the justification for obtaining the mass of a body by
integrating a density function over the corresponding region, for computing
the force on a wall by integrating a pressure function, or for finding the
probability of an event by integrating a probability density function. You
will meet it again in courses in measure theory, where it is generalized to the
Radon-Nikodym theorem.

In the next section, we apply Theorem 2 to derive the formula for change
ofvariable;; in a multiple integral, which was discussed without proof in Sec. 4.4.

EXERCISES

Do the following describe set functions that are finitely additive?
(a) F(S) is the square of the area of the plane set S.
(b) F(S) IS the area of the smallest closed circular disk which contains the closed set S.
(c) F(S) is the moment of mertia of the plane set S about an axis through the origin,

and perpendicular to the plane.
(d) F(S) is the diameter of the closed set S.

2 (a) If F is additive onel, then prove that

(b) Is there a similar expression for F(S, u S2 u S3)?

3 Show that any additive set function F defined on .91 is positive on .91 if and only if F is
monotonic.

4 If F is positive and additive on .91, show that for any finite collection of sets So E .91,

"'nF(U7 So):O; LI F(S,).

5 Show that if F is defined by (8-2), where ¢ is continuous, then F ~ 0 if and only if ¢ ~ O.

6 Let F be defined by (8-2), with ¢ continuous on the whole plane. Show that for every
compact set E there is a number M such that IF(S) I :0; M A(S) for all S E .91 with SeE.

7 By considenng the one-dimensional case, show why Theorems 1 and 2 are analogous to
the fundamental theorem of calculus (see Theorems 5, 6, and 7, Sec. 4.3).

8 Let I be a bounded function which is continuous everywhere in the plane except at the

origin. Define F by F(S) = 1'1' f Is F differentiable at the origin? (Your answer will depend
., s

upon the nature of the discontinuity off)

9 Let m be the set function described in the first paragraph of this section, based upon a single
particle of unit mass, located at the origin. Show that Iim S )po m(S) exists for each point Po but
that m is not a differentiable set function on a square containing the origin.

10 Let I be a function of one variable, defined on the interval

-oo<x<oo

Define a set function on mtervals by F(I) = I(b) - I(a), where I = [a, bJ, and assign the same
value to F(I) whether the endpoints of I are included or not.

(a) Show that F is an additive set function, for intervals.
(b) Show that lim r I Xo F(I) exists iflis continuous at xo·
(c) When is F differentIable?

*11 Let I be a continuous function of two variables, defined on the whole plane and of class C.
For any rectangle R, whose vertices are Po = (xo, Yo), P, = (x o, Yd, P2 = (x l' Yd, P3 = (x" Yo),
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and Xo < XI> Yo < Y" let

F(R) = f(Po) - f(Pd + f(P 2 ) - f(P 3 )

(a) Show that F is an additive set function on rectangles, In the sense that, if a rectangle
R is the union of rectangles RI> R2 , •.. , R", which have disjoint interiors, then F(R) =

2:: F(R.).

(b) Show that the derivative of F exists and is the point function 9 = f12 = a2f!(ax ay).

8.3 TRANSFORMATIONS OF MULTIPLE INTEGRALS

In this section we shall discuss certain additional properties of transformations,
in particular, their effect on volume and area. This is a subject of considerable
technical complexity, and one that is still near the frontier of research.

To gain some insight into what may be expected, let us start~ith a
linear transformation L from R" into R". If D is a bounded set in R" whose
n-dimensional volume is v(D), what can be said about the n-dimensional
volume of the image L(D)?

Theorem 3 The volume of L(D) is kv(D), where k = Idet (L)I.

This asserts that the effect of L on volumes is simply to multiply by a
fixed numerical factor k, which is independent of the set D. Moreover, if L is
singular, this factor is 0, so that the image of any set D is a set of zero
volume; this agrees with the fact that in this case, the image of all n space
will be a set of lower dimension. To make the geometry easier, let us take
n = 3 so that L may be represented by a matrix of the form

A general set D in 3-space which has volume can be approximated from
inside and outside by finite unions of cubes; thus, the general result will
follow if it can be shown to hold when D is restricted to be a cube. In this
case, the theorem can be interpreted as the equivalent of a familiar statement
about determinants, and the fact that the general 3-by-3 matrix A can be
factored as a product of simpler matrices. The proof for the general n-by-n
case can be found in any of the standard references quoted in Appendix 3.
Rather than digress here,! we merely show that the formula v(L(D)) = kv(D)

I

holds whenever D is a tetrahedron with one of its vertices at the origin.
Let the other vertices be Pj = (x j , Yj' Zj), for j = 1,2,3. The volume of such a
tetrahedron can be expressed by the formula

(8-7) v(D) = (i)ldet (U)I
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where U is the matrix

(8-8)

The transformation L carries D into another tetrahedron D' with vertices (0,0,0)
and Pi = (xi, Yi, zi), for j = 1, 2, 3. Form the corresponding matrix U' from
these points. The fact that Pi = L(PJ can also be expressed by the matrix
equation U' = AU. Since the determinant of the product of two square matrices
is the product of their determinants, we also have the equation det (U') =
det (A) det (U). Since the volume of the tetrahedron D' is (i)ldet (U')I, this
shows that

v(L(D)) = kv(D)

where k = Idet (A)I.
L carries the triangular faces of the tetrahedron D into the corresponding

faces of D'. It is natural to ask if there is an equally simple relation holding
between the areas of these triangles. However, such is not the case; the area
of the image of a triangle under a linear transformation of 3-space into itself
will depend not only upon the area of the original triangle, but also upon its
position. Congruent triangles may have images of different area. [Consider,
for example, the effect of the simple projection (x, Y, z) ---> (x, Y, 0).] Of course,
this cannot happen if the transformation maps 2-space into itself, for here
Theorem 3 tells us that the area of any set D in the plane, and that of its
image L(D), are connected by the formula A(L(D)) = kA(D), where k depends
only upon L and not upon D.

If, however, we consider linear transformations from 2-space into 3-space
(or more generally, into n space), then we can obtain a result of comparable
simplicity. Let L be the transformation represented by the matrix

If R is a rectangle with vertices (0,0), (a, 0), (0, b), and (a, b), then L carries R
into a parallelogram L(R) with vertices (0,0,0), aPI' bP2' and aP I + bP2'
where

PI = (all' a21' a31 ) P2 = (aI 2' a22, a32)

The area of R is labl; the area of L(R) is

IaP I II bP21 sin () = lab II Pili P21 sin ()

where () is the angle between the lines OPland OP2 (see Fig. 8-1). Thus,
we again have a relation of the form A(L(D)) = kA(D), where

k = IP 1 1IP21 sin ()
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Q

--'1r----_ n 1~+bP2
I
I,

is a wnstant which is determined solely by the matrix of L To obtain an
explicit formula for k. we recall that the cosine of the angle between two
vectors (points) may be found by means of their inner producl

(P . p )
cosO= I 2

11',111',1
Using this. we find that

k~ 11',111',1';00

J (I', '1', )'1"
~ 11',111',1,'- 11',111',1 I
= l1P.1 21P21 2- (PI '1)2)2:. 2

1.(- ,,,'. ,(~ )'\ '"
= \~ (/lid ~ (l'i2 ) - L "il 11i2 I

,~I '~I ,~l

In the g~ncral ~asc wh~re L is a linear transformation from 2-spacc into" spar."C.
the resuh is the same. with

(~-9)

For example. if L is the transformation

[ ~ -~]
-1 1

o 3

then

k 2 = (I + 4 + I + 0)( I + 0 + I + 9) - (- I + 0 - I - O)~ = 62

and k = /"62.
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There is a special identity involving determinants which gives an alternative
expression for k. For example, direct computation shows that for n = 3,

k 2 (2 2 2 )( 2 2 2) ( )2= all + a 2 1 + a 31 a 12 + a22 + an - a ll a l2 + a21 a22 + a31 a32

In the general case, k 2 is equal to the sum of the squares of the determinants
of all the 2-by-2 submatrices of the matrix for L. Thus, in the numerical
example given above, we would have

-I 1

2

I Io + -I
- I /2 11

I + 0
- I /2 I 2 0/2

3 + -I 1

1
2 0 1

2

1- 1 1 1
2

+ 0 3 + 0 3

= 4 + 0 + 9 + 4 + 36 + 9

= 62

Let us turn now to the study of a general (nonlinear) transformation T
If T is of class C' in an open set Q, then the approximation theorem allows
us to write as in Theorem 10, Sec. 7.4,

(8-10) T(p + i1p) = T(p) + dTlp(i1p) + R(i1p)

(8-11) where lim ~_(L\[J) I = 0
~p-O li1pl

uniformly for all points p in any closed bounded subset of Q. If T is a
transformation from R" into R", then dT Ip is a linear transformation from
R" into R". As such, it alters volumes by the factor

k = Idet (dTlp) I= IJ(p)1

the absolute value of the Jacobian of T at p. If it is true that the local
behavior of T is the same as the behavior of dT, then we would expect the
volume ofT(D) to be about J(p)v(D) if D is a sufficiently small set surrounding p.
As a first step in proving this, we have Theorem 4.

Theorem 4 If E is a closed bounded subset of Q of zero volume, then
T(E) has zero volume.

Since E is compact and v(E) = 0, we can enclose E in a finite union
of balls B I , B2 , ... , BN , each of diameter less than any preassigned 15,

and such that 2:7 v(Bk ) < e. Also, by the corollary to Theorem 12,
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Sec. 7.4, we know that there is a constant M such that if Po E E and
Ipo - pi < 15, then IT(p)- T(po)! < Mlp- Pol· Accordingly, the image
under T of any ball B of radius r < 15 will be a subset of another ball of
radius Mr, whose n-dimensional volume is M"v(B). Thus, T(E) is a set that

can be covered by the union of balls of total volume ""N M"v(Bk ) < M"c;.
L....l

Since M depends only on E, and c; is arbitrarily small, T(E) is a set of
zero volume. I

As an application of this, we see that any nonsingular C transformation
takes Jordan-measurable sets (i.e., sets that have an area or a volume) into
Jordan-measurable sets.

Corollary Let T be a C transformation on an open set 0 on which its
Jacobian J(p) never vanishes. Then if D is a compact subset of 0 which
has a boundary that has zero area (volume), the same is true for T(D).

For T carries open sets into open sets. Thus, the image of the interior
of D is an open set contained in the compact set T(D), and hence contained
in <\-je interior of T(D). Accordingly, every boundary point of T(D) is
tt.e image of a boundary point of D; bdy (T(D)) c T(bdy (D)). Since
v(bdy (D)) = 0, v(T(bdy (D))) = 0, and the boundary of T(D) is a subset of
a set of zero volume, and therefore of zero volume itself. This is the
criterion for T(D) to be a set having a measure in the Jordan sense. I

What can be said about the value of v(T(D)), in comparison with the value
of v(D)? Suppose that for concreteness we consider a transformation from
3-space into itself, given by a formula such as

(8-12)
Ix = f(u, v, w)

T: 1y = g(u, v.' w)
w = h(u, v, w)

which we may abbreviate by T(u, v, w) = (x, y, z).
hypothesis on T, we can find a formula for v(T(D)).

With an appropriate

Theorem 5 Let T be a transformation from 3-space into 3-space, with
T(u, v, w) = (x, y, z), which is of class C and l-to-l in an open set 0, with
J(p) "# °throughout O. If D is a closed bounded subset orO in UVW space,
then the volume of its image is given by

v(T(D)) = JJJ dx dy dz = JJJ I~i~: ~'~\ Idu dv dw = JJJ IJ I
nm D D

In proving this, we shall use the theory of differentiation of set functions,
as developed in Sec. 8.2. Define a set function F on the class of sets D
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possessing volume by the equation

F(D) = v(T(D))

Since Tis I-to-I, disjoint sets have disjoint images, and F is an additive
set function. If F has a derivative 1, that is, if the limit

lim F(Dl = f(p)
D l p v(D)

exists, then by Theorem 2, Sec. 8.2, extended to 3-space,

F(D) = v(T(D)) = JJJ f
D

In the light of the remarks made earlier about the local behavior of T,
it is easy to conjecture that this will hold, and that f(p) = J(p). Since
this result is important in itself, we single it out.

Lemma 1 With Q and T as above, let E be a compact subset of Q. Then

lim ~(!(C)) = IJ(p)1
C l p v(C)

where C ranges over the family ofcubes lying in Q with center pEE, and the
limit is uniform for all pEE.

We start from the more precise statement of the approximation
property of the differential of a transformation, as given in Theorem 10,
Sec. 7.4. Given £, there is a b > 0 such that for any point Po E E and
I~p I < b, p = Po + ~p,

(8-14)

where IR(~p)1 < £I~pl·

In applying this, we first consider the case in which dT Ipo = I, the
identity transformation. Since I(~p) = ~p, (8-14) becomes

(8-15) T(p) = T(po) + ~p + R(~p)

If the remainder term R(~p) were absent, then this equation would assert
that the transformation T is nothing more than a translation; it would
shift a cube with center at Po so that its center would become T(po),
without altering lengths or direction. The term R(~p) causes a slight
alteration of this picture. To estimate its effect, we see from (8-15) that
whenever I~p I < b,

(8-16) IT(p) - T(Po)1 < I~pl + £I~pl = (I + £)I~pl
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Intuitively, this metlns that the actual image of each point in C is onl)·
slightly displaced, and thtlt the image of the entire cube (. lUUSt cover
a smaller concentric cube completely, and lie inside ;mother (see Fig. 1:':-2,
which shows the analogous situation for the pl,lIlc, rathcr than J-Sp;.ICC).
Accordingly, the volume ofthe inmge set nC) will lie betwecn (I - ~d'\v(C)

and (I + 21:)J V(('), which yields

( I _ 2/:)J < v(T(C)) < (I + '1:)"
- viC) - -

and letting C dose down, I: can become arbilr<lrily small and we arri\'e at

"

,'(TIC))
1m = I

(" I P v(C)

This is (8-1 J) for our present special case, since we ha\'e assumed lhal
({Tlr = I and det (1) = JAp) = I.

This plausible geometric argument about the way a transformation T
which obeys (8-15) must map small cubes re4uires a more rigorous proof.
To show that this is possible, we give an argument for the corresponding
assertion about mappings of spheres, which happens to be slightly easier.
Since the result itself is of some use, we makc lhis a separate slalement.
(By an appropriate translation of space, we can assume lhal we arc studying
the given transformation T at the origin. 0, and that dTlo = I and
T(O) = 0: in fact. we assume slightly less than this.)

Ll'mma 2 LeI 13 hi' (he dllSt'd hall in II Sf1/ll't', n'lI/t'l" 0, I'tldill.\ r.
Le( The II C Ir{m!;f(m"lIli/l/lI/(~filll'd 011 1/11 O{WI! set COII(lIillill.cl13 III/which
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its Jacohian J(p) never vanishes. Suppose also that T is close to the
identity map, meaning that there is a number p such that 0 < p < 1and

(8-18 ) IT(p)-pl-s,pr for all p E B

Then, T maps B onto a set T(B) that contains all the points in the open
ball centered at 0 of radius (1 - 2p )r.

We give a proof that is quite similar to that for the open mapping
theorem (Theorem 15, Sec. 7.5). Take any point qo with Iqo I < (1 - 2p)r;
we wish to show that there is a point p E B with T(p) = qo. Consider the
real-valued function defined on B by

lj;(p) = IT(p)-qol

and let m = min p E B lj;(p), which we assume is achieved at a point Po in B.
We note that lj;(qo) = IT(qo) - qo I -s, pr by (8-18); thus, m -s, pro We next
show that the minimum cannot be achieved on the boundary of B. For,
if p E bdy (B),

lj;(p) = IT(p) - p + p - qo I
~ Ip - qo I - IT(p) - pi
~ Ip - qo I - pr ~ Ip I - Iqo I - pr

Howt:ver, Iqo I < (1 - 2p)r and Ipl = r, so that

lj; (p) > r - (I - 2p)r - pr = pr

and ~f(p) > m everywhere on Ipi = r.
We now know that the minimum of lj;(p), and thus the minimum of

lj;(p)2, must occur at a point Po interior to B. The function lj;(pf is of
class C, and its differential must vanish at Po. The 3-space case of the
next step is typical of the general case, so we may suppose that T is
described by (8-12). Then, if qo = (a, b, c),

lj;(p)2 = (x - a)2 + (y - b)2 + (z - cf

and at Po, we must have

ox oy oz
(x - a) au + (y - b) a~ + (z - c) ou = 0

~ oy ~

(x - a) ov + (y - b) o~ + (z - c) o~ = 0

~ oy ~

(x - a) if~ + (y - b) a~ + (z - c) o~ = 0

Since the coefficient matrix is exactly J(po), which is not 0, the only solution
of this system is x - a = y - b = z - c = 0, and we have shown that
T(po) = qo·
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A similar argument can be made for cubical sets, using a different
function ljJ; this takes care of the proof of Lemma 1 when dTlpo is the
identity matrix.

Suppose now that dTlpo = L. Since det (L) = l(po) #- 0, L is non
singular and has an inverse C I. Since T E C' and the entries of C I are
continuous functions of Po and E is compact, we can choose a number Mo
(again by the boundedness theorem for linear transformations) such that
IC I (s) I :-s; Mol s I for all points s and all Po E E. Return to (8-14) and
apply C I to both sides, obtaining

C '{T(p) - T(po)} = C '{L(t1p) + R(t1p)}

or C I T(p) - C I T(po) = C I L(t1p) + C I (R(t1p))

= t1p + C I(R(t1p))

In this, IC ' (R(t1p))1 :-s; MoIR(t1p)1 :-s; Moelt1pl. Setting T* = CiT, we
have now shown that

(8-19) T*(p) = T*(po) + t1p + R*(t1p)

where IR*(t1p)1 :-s; Moelt1pl. This differs from (8-15) only in that we have
a different transformation T* replacing Tand we have replaced e by Moe
in the estimate of IR(t1p)l. Using (8-19) in place of (8-15), the previous
argument applies, and we find

(1 - 2M e)3 <'1T *(C)l < (1 + 2M e)3
o v(C) 0

so that

lim ~(!*(C)) = 1
qpo v(C)

However, T* = CiT, so that

v(T*(C)) = v(C l(T(C))) = Idet (C I )lv(T(C)),

since C I is linear. But, det (C I) = l/det (L) = 1/1(po), and we arrive at

lim _1__ v(T(C21 = 1
C I Po 11(Po)1 v(C)

which (finally) proves (8-13). I

The proof of Theorem 5 itself is immediate. Since the set function
F is defined on cubes by F(C) = v(T(C)), the lemma shows that F is
uniformly differentiable on E, with derivative at p the point function 11(p) I.

By Theorem 2, F can be obtained by integrating its derivative, and for
any set D having volume,

F(D) = v(T(D)) = fff 111 = fff I ~(X,~,-Zll du dv dw I... .,. c(u r, w)
D D'
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With a slight modification of the argument, we also obtain a general
theorem dealing with transformation of multiple integrals.

Theorem 6 Let T be a tran~formation from 3-space into 3-space, with
T(u, v, w) = (x, y, z), which is of class C and 1-to-l in an open set Q with
J(p) "# 0 throughout Q. Let D* be a closed bounded set in XYZ space
which is the image under T of a set Dc Q in UVW space. Let f be a
continuous function defined on D*. Then,

(8-20) JJJ f(x, y, z) dx dy dz = JJJ f(T(u, v, w))IJ(u, v, w)1 du dv dw
D' D

The set D and D* are assumed to possess volume. Iff is a constant
function, the result is covered by Theorem 5. We may suppose that f is
everywhere positive by adding, if necessary, a suitable constant. We may
also suppose that f is continuous throughout Q. [This is a typical
application of the Tietze extension theorem (Theorem 8, Sec. 6.2).] Define
a set function F on subsets of Q having volume by

F(S) = rrr f
T(S)

Let E be a closed bounded subset of Q which contains D in its interior.
Let C be a cube lying in E. Applying the mean value theorem for integrals,
we can write F(C) = f(q*)v(T(C)), where q* E T(C). As the cube C closes
down on a point Po, T(C) closes down on T(po), and q* approaches
T(po). Thus,

lim F(CJ = lim f(q*)v(T(C))
C!pov(C) C!po v(C)

= f(T(po)) lim v(~~~))
C! Po V

= f(T(po)) IJ(Po)1

using Lemma 1 for the last step. Moreover, since f is uniformly continuous
on T(E), we have uniform convergence of this limit for all Po E E. Having
thus computed the derivative of the set function F, application ofTheorem 2
yields

F(D) = rrr f = ffr f(x, y, z) dx dy dz... ...
T(D) D*

= JJJ f(T(u, v, w))IJ(u, v, w)1 du dv dw
D

= JJJ f(T(u, v, w)) I~i~::" ~; Idu dv dw I
D
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It is enlightening to compare this result with the corresponding theorem
dealing with transformation of (substitution into) integrals of functions of one
variable. As stated in Theorem 8, Sec. 4.3, the substitution x = ¢(u) in the

b • f3

integral I j(x) dx results in the integral .I j(¢(u))¢'(u) du, where ¢(rx) = a
a a

and ¢(f3) = b. Comparing these, we see that the factor ¢'(u) = dxjdu corresponds
to the Jacobian a(u, v, w)ja(x, y, z) and the new limits of integration [rx,f3]
to the set D. However, the one-variable theorem was considerably stronger
than the present form of the several-variable theorem. For example, there is no
need to have ¢'(u) ¥- 0, nor must ¢ be a I-to-I mapping from the interval
[rx, 13] onto the interval [a, b]. Another contrast is that ¢'(u) rather than 1¢'(u)1
appears; however, the explanation for this lies in the fact that the simple one
variable integral is a directed or oriented integral, while we have so far not
oriented the multiple integral. This suggests, correctly, that similar improve
ments can be made in Theorem 6. In Chap. 9, we shall obtain such a result,
using a different approach which assumes that T is of class C.

Returning to the result given in Theorem 6, we recall that the symbols
"dx dy dz" or "du dv dw" serve to show what integration is to be performed,
but have no meaning out of context; nor does the order dx dy dz have as yet
any different meaning from the order dy dx dz. As in Sec. 4.3, we might
emphasize this by writing (8-20) in the form

HI j(x, y,z)~ = HJ j(T(u, v, w))IJ(u, v, w)l~
D' D

The rule for change of variable in a triple integral can be given thus: To
make the substitution x = ¢(u, v, w), y = IjJ(U, v, w), z = e(u, v, w) in the triple

integral rrf j(x, y, z) dx dy dz, replace the region D* by the region D in the
... D*

UVW plane which corresponds to D* under the transformation, replace the
integrandj(x, y, z) by

j(¢(u, v, w), ljJ(u, v, w), e(u, v, w))

and replace dx dy dz by la(x, y, z)ja(u, v, w)1 du dv dw. In the one-variable case,
the notation assisted the application of the rule. When the substitution was
x = ¢(u), the formula dxjdu = ¢'(u) made the replacement of dx by ¢'(u) du a
routine operation. It is natural to ask if a similar formalism can be used for
multiple integrals. In Sec. 4.4, where we gave a preliminary discussion of
change-of-variable techniques for multiple integrals, we gave a preview of such
a routine, using differential forms such as

ax ax ax
dx = ~ du + - dv + - dw

au av aw

and a multiplication process to obtain the (correct) replacement for dx dy dz.
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We conclude this SL'I..,tion by giving a number of illustrations of the use
of these forrnuills.

Consider first the tr:lnsfornmtion described by

I,=u+'·T' .
·IY=/·-1I2

lind let 0 he the set in the UV plane bounded by the lines II = 0, ,. = O.
llnd II + ,. = 2. The image of 0 is the SCt 0* bounded by x = 2. .r = x. and
.I" = _Xl (see Fig. R-3). Computing the Jacobian of T.

o(x. d I' 'IJ(II. 1") = ~ - = det = I + 211
("(II. v) - 211 I

By Thcorcm 5. the arca of 0* is

JJJ~JJ('
" "

2 l 0-

.1
0

d, .1
0

(I + 21111111

. ,
= I (l-2 - 5,. + 6) ill" = if

• 0

For comparison. we may calculate the area of 0* directly:

.2 .., . l

A(O*' = I tlx I lIy = I (X + x 2
) tlx = 1i

'0 '_xl '0
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With thc same SCI D*, let us evaluale the integral ff Ih d.l· (>: - F + I)!.
, , Ir

Using the same transformation, this becomes

1
"(1 + 2/1) till IJI' ,1 ,1 ~ (I + 2/1)dllI, , ~ I d" I., (// + /I + I) , 0 ' 0 (//2 + II + I jl
D

12
dl' [_(112+11+ I) 'l~ 1~~

'0 ~.o

, ,
= I {I - (I"! - 51' + 7r ': lir

'D

~ 2 - J) I"ctan UJ -"'ClaD (J)) I
= 2 ~ 53 arclan ('2)

For ,mother example. consider the integral

II "p (X - J') dx ,1,-
·,i. x + .r

where D* is the region hounded by lhe lines x = O. r = O. x + .r = I. The
form of lhe integnmd suggests the use of the linear transformalion

T' III = X - .1"

'1,. =x + r

This maps D* onto a triangular region D (see Fig. ~-4). Sim:c T is linear.
it is sufficicnt 10 observe that Tsends (0.1) inlo (-I. I). (1.0) into (1.1).
and (0.0) into (0.0). The lllversc of Tis thc (linear) transformation

~II + k
~111 + k

y

u·
v=-u

---'1''-------.

Figurt' K-4
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so Ihat

Acwrdingly.

o(x. Y) I!= delvi", oj -!
11 ~ I, ,, -

I·fexp (X - .r) dx dy = ,I',f He" ") dll dr
.• X + I"
II' . IJ

dl"J" t""'/lrl= l f
-,. . 0

, ,
= ~ 1(1'-(' 1)l"dl'

'0 4

Another vcry familiar lransformalion is x = r cos O,.r = I" sin 0, which we
regard as a mapping from lhe (r. 0) phme inlo the (s. .r) planc. The Jacobian
of this Iransformalion is

il(x, y) IcoS (} - I" sin (}I= det - r
0(1". OJ sin f} I" cos (} -

so Ihal dx dy is to he n:pliu.:cd by I" dr dO when transforming a double illlegral.
Theconditioll l(p) '!' 0 rcquires that we avoid Ihe linc r = 0 in the (r. 0) planc;
Ihis corresponds to the origin in the (x..r) plane. If D* is a region in the Xl'
plane which does nol contain the origin. then Ihe inverse transforll1ation
I" = Ix! + /)1 2. () = arctan Cr.x) deterll1ines a region D in the (I". f)) plane
which is mapped onto D* 1-10-1. and in which J{p) '!' 0 (see Fig. R-5).
Theorem 6 then gives the familiar forllluia

JJ f{x . .\") dx d.r = If f{1" cos 0, I" sin O)r 1/1" dO

"

\,
\,

,
\,

\

y

T(p)

"
n

,



,

,,
"

,'(p, 0)

-'
[(p,O) ,

I;i~ur<' K-6 Polar c<)"r..hn"l~ marring.

If D* is a region containing the origin. then the corresponding SCi D \1"111
contain points on the line r = 0 where J(,,) = O. ThCtlTCl1l 6. as staled. docs 1101

apply. However. for this familiar transformatioll. il is not dillicull III exlentl il.
If 0* has the origin for an interior point. we C<l1l divide it into two pieces b~

the horizontal axis: each of these will have the origin as a boundary point.
and if we can prove formula (8-11) for such a sct. addition will gi\"c it for a
general sct D*, Assuming therefore Ihal D'" lies in the half plane r ~ O. we
choose a region D in the (r. 0) plane which is maprx.1..l 01110 D"'. 1-to-1. neepl

for the points of D on I' = O. all of wl1lch map mIn (0.0) (Sl-'C Fig. X.6). Lei
D~ he the SCi whieh I!'> obtained from D· hy removing thc point!'> within the
open disk of radius p. ami cenler O. The corrcsponding sct D" is \lhlained h~

removing all the points (f. II) in J} with 0:$ r < JI. III 1>". J(/I) = r -# O. so that
Theorem 6 applies. and

JJ {(x . .1') dx dy = rrItr eos O. ,. sin 0),. ,Ir rill
II,.

This holds for all/, > O. so that wecan ohtaill (}i-~ I) h~ allowing 1'10 :tpproach O.
A similar Ire;tltllenl can be applied In the CIIU,t1iOIlS

(8-22)
Ix = I' sill 11 cos II

.r = " sin 11 sin (J

1::=,Jcosq)

which serve 10 define Ihc system \)f spherical c\l\lrdin,t1cs (s..."\., Fig. X-7). If \\C
regard (H-:!:!) as describing a transfonn:llion T mapping (p. ql. 0) into (x. l". ::).
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y

x
Figure 8-7 Spherical
coord mates.

then T has for its Jacobian

- p sin ¢ sin e
p sin ¢ cos e

o

p cos ¢ cos e
p cos ¢ sin e

- p sin ¢

( ) sin ¢ cos ec x, y, z . A. . ee = Sin 'f' Sin
c(p, ¢,) cos ¢

= p2 sin ¢

Thus, dx dy dz is to be replaced by p2 sin ¢ dp d¢ de in transforming a triple

p
Figure 8-8 Sphencal coordI
nate mappmg.
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integral with this substitution, It will be observed that T maps the region
(Fig, 8-8)

D = {all (p, <p, e) with 0 ~ p, 0 ~ <p ~ n, 0 ~ e~ 2n}

onto all of X YZ in a fashion which is I-to-I at all interior points of D, It is not
I-to-I on the boundary of D; for example, the entire face p = 0 maps onto the
single point (0,0,0), Moreover, the Jacobian is also 0 at points on portions of
the boundary, However, by a limiting argument similar to that used above,
the transformation formula can also be shown to hold for bounded subsets
of D,

EXERCISES

I Show that the linear transformation which sends (1, 1) into (2, 5) and (1, -1) into (0, -1) is
an area-preserving transformation.

2 Let A = [a,,] be a matrix with two columns and four rows. Show that the number

k Z
= 2~= 1 (a,d Z 2~= 1 (a,zf - (2~= 1 ail aiZYIS In fact the same as the sum of the squares of the

determinants of all of the 2-by-2 submatrices,

3 Make the indicated change of variables in the following integrals, and evaluate the result.

1 x

(a) r dX" xy dy, x = u + v, Y = u - v
'0 '0

1 1 +x

(b) r dx r xy dy, x = u, y = u + v
• 0 • I-x

(c) JJ xy dx dy,
D

x = uZ
- vZ

, y = 2uv

where D is the unit disk, XZ+ yZ :S I.

4 Let D* be the parallelogram bounded by the lines y = ix, y = ix + 2, y = 3x, y = 3x - 4.

Make an appropriate substitution, and evaluate 1'1' xy dx dy.
·'lJ·

5 Let D be the region In the first quadrant which is bounded by the curves xy = I, xy = 3,

XZ - yZ = I, and XZ - yZ = 4. Make an appropriate substitution, and evaluate 1'1' (X Z+ yZ) dx dy.
.• D

6 The equation of a curve in polar coordinates is r = sin (0/2) for 0 :S 0 :S 2n. Find the area of
the regIOn which is bounded by this curve.

7 In 4-space, "double" polar coordinates are defined by the equatIOns

x = r cos 0 y = r Sin 0 z=pcosrj> w = P Sin rj>

Obtain the correct formula for making this substitution in a fourfold mulltple integral, and use
this formula to show that the volume of the sphencal region XZ+ yZ + zZ + wZ :S RZ is inzR4

,

8 The linear transformation L whose matrix IS
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mapslheumtcubewith vertIces (0,0,0),(1,0,0),(0, 1,0),(0,0, 1),(1, 1,0),(0, I, 1),(1,0, 1),(1, I, I)
mto a parallelepIped R. Fmd the area of each of the faces of R, and find its volume.

9 Let P = (-1,0) and Q = (1,0) and let p = (x, y) be any point with y ~ 0. Set s = IP _ pl2
and t = IQ - p12. Show that the correspondence p ---> (s, t) provides a coordinate system for the
upper half plane, and discuss this as a transformation between (x, y) and (s, t). What is the image
in me (x, y) plane of lines in the (s, t) plane? Where is a(s, t)ja(x, y) zero'!

10 (Alternative approach to Theorem 6.) Let T be the transformation described by x = u,
y = ljI(u, v). Let D be the region bounded by the lines u = a, u = b, and the smooth curves v = P(u)
and l' = oc(u) with P(u) > oc(u) for all u E [a, b). Let D* be the image of D under T, and suppose
that ljI2(U, v) > °for all (u, v) ED. Show that for any funclIon f which is continuous in D*,

JJ f(x, y) dx dy = JJ f(T(u, V))ljI2(U, v) du dv
W D

(Hint. Write each side as an iterated integral, and use the substitution formula for single integrals.)

*11 (Continuation) Let T be a transformation of class C in an open set n which is described by

x = </>(u, v)

y = ljI(u, v)

Assume also that a(x, y)ja(u, 1') > °throughout n. Show that in a sufficiently small neighborhood
of any point pEn, the transformation T can be factored in one of the following two ways:

or

Jx = s
\y = G(s, t)

Ix = s
Lv = G(s, t)

)s = </>(u, v)
\t = v

/s = </>(u, v)
\t = u

where G is a function of class C' which IS determined by the functions </> and ljI.

12 (Continuation) When such a factoring is made, show that Exercise 10 can be applied to each
successively to obtain the result stated in Lemma I.

8.4 CURVES AND ARC LENGTH

In our treatment of these topics, we shall deviate from the older traditional
approach and adopt one which is of greater significance for applications in
analysis. The terms "curve" and "surface" have several meanings in mathe
matics. For example, in one usage, "curve" means a set of points which has
certain topological properties associated with the intuitIve notion of "thinness."
The word is also used to refer to a set of equations. We adopt the following
formal definition.

Definition 6 A curve ~' in n space is a mapping or transformation from
R' into Rn

.
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For example, the general continuous curve in 3-space is a continuous trans
formation of the form

(8-23 )
Ix = ¢(t)
'y=ljJ(t)
Iz = 8(t)

Ix = sin t

l.v = cos t

o~ t ~ 2no~ t ~ 2n

{
X = c?S t
y = Sill t

o~ t ~ 2n

defined for t in one or more intervals [a, b]. In more familiar terminology, we
have identified the notion of curve with what is often called a parametric
representation. A point p in R 3 is said to lie on the curve when there is a t for
which p = y(t). The set of all points which lie on y is called the trace of ~'.

It is important to keep in mind the fact that the curve is the transformation
(8-23) and not the set of points lying on y. Many different curves can have the
same trace. For example, each of the following curves has for its trace the unit
circle C = {all (x, y) with Xl + i = I}.

Ix = cos (2t)
\y = sin (2t)

However, the three curves are quite different. The first and third have length 2n,
while the second (which goes around C twice) has length 4n. Again, the first
curve starts and ends at (1,0) and goes around C in the counterclockwise
direction, while the third begins and ends at (0, 1) and goes in the opposite
direction. Such distinctions are of great importance in the analytical theory of
curves. In this section, we shall take up some of the simpler portions of this
theory.

We begin with some convenient terminology. If a curve y is defined for
the interval a ~ t ~ b, then the endpoints of yare y(a) and y(b); the former is
called the first point on y, and the latter the last point on y. A curve y is closed
if its endpoints coincide, so that y(a) = y(b). The three curves given above are
examples of closed curves. A point p which lies on a curve y is said to be a
multiple point if there is more than one value of t for which y(t) = p. A curve
is said to be simple if it has no multiple points; the mapping y is then I-to-1.
A continuous closed curve is said to be simple if the only multiple points are
the coincident endpoints. (The terms "Jordan arc" and "Jordan curve" are
also used.) In the examples given above, the first and third are simple closed
curves, but the second is not.

The trace of a continuous curve can fill an entire region of the plane (see
Appendix 2). The existence of such space-filling curves is one reason why we
do not attempt to define a curve as a particular kind of point set but concentrate
instead upon the mapping itself. (It can be shown, however, that a simple curve
cannot be space-filling.)

It is also convenient to impose certain differentiability requirements.

Definition 7 A curve y is said to be smooth on an interval I if~' is of
class C and the differential dy is always of rank 1 on I.
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Figure 8-9 x = 1-'. .I = Ir' I.

When ~' is given in the form (8-23), this asserts that cP', If/, and e' exist and
are continuous on [a, b] and that at no point of this interval do all of them
become O. This latter condition can also be written as

(8-24) (
dX)2 (dy)2 (dZ)2+-- +- >0
dt dt dt

-ex:<t<ex:

The word "smooth" is used to suggest that the motion of a point which traces
the curve has no abrupt changes of direction. The need for a condition such
as (8-24) to ensure this is shown by the following example of a curve of class
C which violates condition (8-24) when t = 0:

".Ix = t
3

"Lv=l t3 1
We note that dxldt = 3t2, and that dyldt = 3t 2 for t 2: 0 and - 3t2 for t ~ 0;
both are continuous, and both become zero for t = O. However, the trace of y
is the set of poin ts (x, y) with y = Ix I (Fig. 8-9).

A line is the simplest smooth curve. Recall from (1-20) that this is given by

(8-25) I'(t) = Po + vt - ex: < t < ex:

where the point (vector) v obeys the restriction Iv I ¥- O. For example, in 3-space,
the general straight line is

~ x = Xo + at
(8-26) , y = Yo + bt

IZ = Zo + ct

where a2 + b2 + c 2 > O. Since ~'(O) = Po and y( I) = Po + v, the line (8-25) may
be graphed as the line which goes through Po toward Po + v, in a direction
which is specified by v. Since we have defined the notion of direction in n space
by means of the points on the unit sphere, we form the unit vector f3 = vII v I,
which has length 1 and specifies the same direction. In the customary language
of analytical geometry, v is a set of direction components for the line, while f3
is a set of direction cosines; either may be used. A line through (1, 2, - 1)
toward (3, 1, 1) has the equation

,,(t) = (1,2, -1) + {(3, 1, I) - (1,2, -1)}t

= (1,2, -1) + (2, -1, 2)t

or x = 1 + 2t,y = 2 - t,z = -1 + 2t. The direction of this line is f3 = (j, -j, j).
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We observe that the coordinates of v can be obtained from (8-26) by
differentiation; a = dxldt, b = dyldt, and c = dzldt. This suggests a similar
procedure for the general smooth curve.

Definition 8 U' y is a smooth curve, then the direction oj"~' at a point p
corresponding to the value t is f3 = vII v I, where

, (dX dy dZ)
v=y(t)= dt'dt'dt

When the parameter t is interpreted as time, v is interpreted as the velocity
vector of the point whose position at time t is y(t), and the speed of the point
along its path is

v = J(dX)2 + (dJ')
2

+ (dZ)2\1
/
2I I 1 dt dt dt I

Because of the restriction that dy always have rank 1, there is no t where
itt) = (0,0,0), so the speed is never 0.

For the same reason, the unit vector f3 is always well defined and a direction
exists at each point p on a smooth curve. At a multiple point, y can have several
different directions corresponding to the value of 1'(t) for each t at which ~'

passes through the point. Two curves with the same direction at a common
point p are said to be tangent there. The straight line cc

a(t) = Po + vt -oc<t<oc

where Po = y(to) and v = i(to), is tangent to ~' at Po.
In discussing a particular curve, it is helpful to plot the trace of the curve,

being sure to record points in the order assigned by t. Consider, for example,
the plane curve

-oo<t<oc(8-27) Ix = t - t 3

y: ly = t 2 - t

which has the trace shown in Fig. (8-10). The origin is a double point
cocresponding to both t = ° and t = 1. Differentiating, we have /(t) =
(1 - 3t2, 2t - 1), so that

and

i(O) = (1, -I)

1'(1) = (-2,1)

At the origin, ~' has two tangent lines. The first is x = t, Y = - t with slope
- 1, and the second is x = - 2t, .r = t with slope -1. The direction of~' for a
general value of t is

y'(t) (I - 3t2, 2t - 1)
{3 = 1/(t)1 = (9t4 - 2t 2 - 4t + 2)12
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Figure 8-10

0~t~2

Thus,~' is horizontal [fJ = (1,0)] when 2t - 1 = 0, and it is vertical [fJ = (0, 1)]
when 1 - 3t 2 = 0.

Taking a curve in 3-space as a second illustration, consider

~ x = sin (2m)
;': , y = cos (2m)
I z = 2t - t2

In graphing the trace of this curve, it is helpful to observe that

x 2 + y2 = 1

for all t (see Fig. 8-11). ~' is a closed curve, but is not simple since t = ~ and
t = i both correspond to the point (0, -1, i). We, therefore, have /(t) =
(2n cos (2m), - 2n sin (2m), 2 - 2t). At t = 0, this becomes (2n, 0, 2), and at
t = 2, (2n, 0, - 2), so that the curve has two tangen t lines at the poin t (0, 1, 0),
which is at once the first and last point on ~'.

We next take up the important subject of arc length. If;' is a smooth curve
defined for a ~ t ~ b, then we define the length of ~' by the formula

(8-28)
• b

Lb,) =.1 1/(t)ldt
a

In 3-space this takes the form

.h i(tlX)2 (dl')2 (tlZ)2\li2
Lb') = I \ +. + I dt

. a tit tit dt

Alternatively, this formula can be obtained by starting with a geometrical
definition for the length of a curve. Given ~', let us choose a subdivision of the
interval [a, h] by points t j , a = to < t l ... < tn = b, and set Pj = ~,(tJ The
consecutive line segments joining Po to PI' PI to P2 , ... , form a polygonal
path C. Since each point Pj lies on ~', we speak of C as inscribed in /. For such



(R·'9)

-_ ...--- ----------- ...~

j

y

FiJ:"u'K-tl

a polygon. we deline length by

L(C) = lPo - 1\ I+ IPI - 1'21 + .. ,
~ ~ 1'('iooJ - 'I'ill

j=O

Intuitively. the length of y itself will exceed Ihat of an~ (If thesc inscribed
polygons. This suggests that we adopt the following general Jdlnition. whether
y is smooth ur not.

Ddinilion 9 TIl(' lell.lfllll!{ II Ollllillllllll,\ ('1/1"/"1' :' ;.\ defined Itl hI' lilt' "'IN

IIp/wr hlllllltl ,!rIhI' IIIIII/hel"s L(C). a'hen' Crall!"'., ol""r 1111 PIl1.IWms ill.\("fih,'"
lilY·

Whell the SCi of nUl1lbcrs L(C} has no finite upper hound. thcn wc write
L(y) = 'i. and say that y has inlinile length. If L(y) < j . 11wlI Y is said to he
rectifiahle.

TIwOrl'fll 7 ~r y i.' 1/ ,'1/11111111 1'111"1"1' II'lm,\(' domllill i.\ Ih" i,,/el'l'o/lll. hI. 11t('1I
Y i., r('oilillhl", (/1111 L(y) ;,\ oin'lI hy.filflllllill (!\-1H).

We shall prove this for curves in Ihe plane: the proof of Ihc gcncral
case follows the salllc method. Consider a gcneral insnilx't.l polygoll C.
The length of the ;lh segmcnt is

IY(I j+ d - y(I)1 = aX(I j+ d - X(I)]~ + P'(I j+ Ll - )"(1JW: II!
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where we have written the curve as x = X(t), y = Y(t), a :<:;; t :<:;; b. Since X
and Yare differentiable functions, we may use the mean value theorem and
write the right side as

{[X'(ri)(t j+ 1 - tJJl + [Y'(ri)(t j+ 1 - tJ]2}1/2

= {[X'(riW + [Y'(riWr/ 2 I1tj

where I1tj = tj+ 1 - tj and ri and ri are two points in the interval [t j , tj+ I].
Thus,

n- 1

L(C) = ~ {[X'(riW + [Y'(riW}I/2I1t j
j;O

b

This closely resembles a Riemann sum for the definite integral f f(t) dt,
'Q

wheref(t) = {[X'(tW + [Y'(tW}I/2. In fact, it would be one/if the points
in each pair ri, ri were to coincide.) Introduce a special function F by

F(t', tn
) = {[X'(t'W + [Y'(t n wr/2

and observe that F(t, t) = f(t) while

n- 1

L(C) = LF(ri, rj) !!t j
j;O

Since i' is smooth, F is continuous in the closed rectangle R consisting of
the points (t', tn

) with a :<:;; t' :<:;; b, a :<:;; tn :<:;; b. Accordingly, F is uniformly
continuous in R; given e, we may choose b so that IF(p) - F(q)1 < e
whenever p and q lie in Rand Ip - ql < b. In particular, we shall have

IF(ri, rj) - F(t j , tj)1 < e

or equivalently,

IF(ri, ri) - f(tj)1 < e

whenever ri and ri lie in an interval [t j , t j + d with I1tj < b. Assuming that
the subdivision of [a, b] has mesh less than b, we obtain

I:~F(,;. 'i) I1tj - ZfIr) I1t j I"~ IF(,;. 'i) - f(r)ll1t j

n- 1

:<:;; e L I1tj = e(b - a)
o

However, L~-l F(ri, r'j) I1tj = L(C), while L~-I f(r j ) !!t j is a Riemann

sum for the integrall~ 1, so that we find that L(C) approaches this integral
as the mesh size of the subdivision decreases. Since L(i') is the least upper
bound of the numbers L(C), and since L(C) increases (or at worst, remains
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the same) when an additional subdivision point is introduced, we also have
,b

L(y) = I f, the desired formula. I
• a

For example, let us find the length of the helical curve x = cos t, Y = sin t,
z = t 3/2 for 0 ~ t ~ 4. The function f is

f(t) = ly'(t)1 = {( -sin t)2 + (cos t)2 + ((i)t I/2 )2}1/2

=F+ (£)t
.4

so that its length is I F+ (l)t dt = (80JIO - 8)/27.
'0

It is interesting that formula (8-29), which was motivated by the geometric
definition of arc length, also arises in a different context (see Exercise 12). A
real-valued function f of one variable defined on [a, b] is said to be of bounded
variation there if there is a number M such that

(8-30)
m-I

L If(tk+d - f(tk)1 ~ M
o

for every m and every set of points t j with a = to < t l < t 2 < ... < tm = b. It is
easily seen that any monotonic function on [a, b] is of bounded variation, even
if it is not continuous, and the same holds for any continuous function f for
which!, exists everywhere and is bounded on [a, b] (Exercise 13). The class of
functions that are b.v. is rather large, since (Exercise 12) it contains any
function that is the difference of two monotonic functions. What is also true
(but not obvious) is that this characterizes the class; every functionfthat is b.v.
on [a, b] has the formf= gl - g2' where gl and g2 are monotonic on [a, b].
It then follows that not every continuous function is of bounded variation.
The connection between these concepts and arc length is still present; a
continuous function f is b.v. if and only if the graph off is a rectifiable curve
(Exercise 15).

As we have seen, different curves may have the same trace. Some of these
curves are closely related and have many properties in common.

Definition 10 Two curves I' and ,'* are said to be parametrically
equivalent when the following conditions hold: (i) }' is a continuous mapping
from an interval [a, b] into R"; (ii) y* is a continuous mapping from an
interval [IX, /3] into R"; (iii) there is a continuous function f which maps [IX, /3]
onto [a, b] I-to-l with f(IX) = a,.f(fJ) = b and with j·*(t) = I'(f(t)) for all t
in [IX, fJ]'
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Briefly, this means that }' and 1'* are connected by a reversible change of
parameter. For example, the following three curves are equivalent.

Jx = t
\y = t Z

O~t~l

Jx = t Z

\y = t4

O~t~l

Jx = ~(l + t l
/
3

)

Lv = !(l + 2t 1
/
3 + t2/3)

-l~t~l

so that

It should be noticed that the second of these is not smooth, due to the fact that
dx/dt = dy/dt = 0 when t = 0, while the third is not even of class C at t = O.

When we consider parametric equivalence of smooth curves, more is true
of the functionf If,' and 1'* are smooth and are parametrically equivalent, with
,,*(t) = i'(f(t)), thenfitselfwill be of class C, withf'(t) > 0 for IY. < t < p. For,
at apoint to, find c= f(t o), and since /(c) #- 0, there is a component of I' whose
derivative is not 0 at c, say }'k' Since I' is C, y,,(t) #- 0 on a neighborhood of c,
and }'k 1 exists locally and is of class C. Thus,f(t) = Yk Iy:(t) locally at to, and
fis of class C everywhere on the interior of [IY., p]. From the chain rule, we then
have dy* = (d,')f'(t), so that if f'(to) = 0, dy* Ito = 0, and y* would fail to be
smooth.

The relation of equivalence separates the class of all smooth curves into
classes of mutually equivalent curves. All the curves in anyone equivalence
class have the same trace, and also share other geometric properties. We cite
the next two results as examples.

Theorem 8 Let i't and yz be smoothly equivalent smooth curves, and let
p be a simple point on their trace. Then, YI and Yz have the same direction
at p.

Let ')!z(t) = I'df(t)), wheref'(t) > 0 for all t.lfp = yz(c), then p = YI (c*),
where c* =f(c). To find the direction of Yz at p, we write

d
y:Z(t) = dt YI(f(t)) = /I(f(t))f'(t)

1'2 = /1 (f(c))f'(c) = Y1(C*)f'(c)

The direction of I'z at p is therefore

Y2(C)

1I'2(C)1
/dc*)f'(c)

11"1 (c-*)I7.cff
i'1(C*)

1/I(c*)1

which is thus the same as the direction of YI at p. I

Equivalent curves also have the same length.

Theorem 9 Ifi'l and I'z are smoothly equivalent curves, then L(yd = L("z).
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Assume that Y2(t) = Yt(f(t)) for a ~ t ~ b. Then, as before,

Y2(t) = it (f (t ))f'(t)

Sincef'(t) is never negative, 1}'2(t)! = lit(f(t))lf'(t) and

• b • b

L(Y2) = I 11'2(t)1 dt = I lit(f(t))lf'(t) dt
• a . a

Putting s = f(t) and IY. = f(a), f3 = f(b), this becomes

• P
L(Y2) = I lids)1 ds = L(}'d I

• >

In the equivalence class containing a smooth I"~ one curve has a special
role. This is obtained by using arc length as a parameter. If/' is defined on the
in terval [a, b], define a function g by

.r

g(t) = I 1/1
• a

Then, g'(t) = ly'(t)1 for all t, a ~ t ~ band g(a) = 0, g(b) = L(/,) = I, so that g
is a C I-to-l map of [a, b] onto [0, I]. Its inverse, which we call f; maps [0, I]
onto [a, b] and is also of class C. Let I'*(t) = I'(f(t)); i!* is then a smooth curve
which is equivalent to 1', and is distinguished among all the curves equivalent
to I' by the fact that I(dldt )y*(t) I= 1 for all t. Many of the formulas involving
curves take on a simpler form if arc length is the parameter. The geometric
concept called curvature is one example. We first need some additional
terminology.

As with general transformations, a curve I' is said to be of class em if the
coordinate functions which describe the curve are of class em, and to be analytic
if the coordinate functions are analytic, that is, representable by power series.
All the examples that we have discussed are analytic curves, and may be
represented in the form

'/'(c)(t - e)2
y(t) = y(e) + i(c)(t - c) + I - - + ...

2!

convergent for all t in a neighborhood of c. In this Taylor series representation
of 1', the coefficient of t - c determines the direction of the curve when t = c
It is natural to ask for similar geometric interpretations of the remaining
coefficients.

Definition 11 If I' is a curve of class C' with arc length as the parameter,
then the curvature of I' at the point corresponding to t = c is

(8-31) k = 1/,(e)1
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Several illustrations will help motivate this. First, a straight line obviously
should have zero curvature. Since a line is given by ~,(t) = Po + vt, ·((t) = 0 as
it should. Next, the curvature of a circle is the same everywhere, and should
be small if the radius is large. The equation of a circle of radius R, with arc
length as parameter, is

~,(t) = (R cos (tIR), R sin (tIR))

for

/(t) = (-sin (tIR), cos (tIR))

which clearly satisfies I/(t) I = I as required. Then,

/'(t) = (_R- t cos (tIR), _R- t sin (tIR))

and I/'(t)/ = IIR for any t; thus, a circle of radius R has curvature k = llR
everywhere.

We can use this to give a geometric approach to curvature. The idea is to
define the curvature of a general curve at a point Po to be the same as that of
the best-fitting tangent circle at Po. For simplicity, we assume that Po is the
origin 0 and also assume that ~. is an analytic curve given by a power series

(8-32) p = ~·(t) = at + bt2 + ct 3 + ...

where a, b, c, ... are points (vectors) in 11 space. Note that ')'(0) = 0, ')"(0) = a,
/,(0) = 2b.

Construct the circle which is tangent to ~' at 0 and passes through p (see
Fig. 8-12). Its radius is R = R(t), and its curvature is l/R. As t ---> 0, P moves
along the curve ~. toward 0, and we define the curvature of}' at the point 0 to
be IIRo, where Ro = limt~o R(t). We have Ipl = 2R sin e and cos e=
(a . p)1 Ia II p I· This pair of equations can be solved for R by eliminating e, to
obtain

(8-33 ) . 2_ (la I2) Ipl21pl2R - -- - -.--------------
4 lal 2 1pl2 - (a. p)2

R

\
R

Figure 8-12
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Now, from (8-32) we have

a' p = lal 2t + (a' b)t2+ (a' c)t3+ ...
and squaring this, in the usual way one multiplies power series,

(a· pf = lal4t2+ 2(a· b)lal2t3 + {(a' b)2 + 2(a' c)laI2)t4 + ...
In the same way, if we take the dot product of (8-32) by itself, we obtain

(p' p) = Ipl2 = lal 2t2+ 2(a' b)t3 + {lbl2 + 2(a' c)}t4 + ...
and then

lal 21pl2 = lal 4t2 + 2(a' b)lal2t3 + {lal2lbi2 + 2(a· c)laI2}t4 + ...
Ipl21pl2 = lal 4t4 + 4(a· b)lal2tS + ...

Substituting these into (8-33), we arrive at

and thus obtain

R = lim R(t) = r Ja I
2
Ia I

4
. 1

1
/
2

o 1-0 14{laI2IbI2-(a'bf}J

Substituting for a and b the values /(0) and ("(0)/2, and writing k for l/Ro,
the curvature, we have a general formula for k, valid even if arc length is not the
parameter and Po is not 0,

(8-34)

Suppose now that the curve y does have arc length for the parameter. Then,
1[" 1 = 1, so that (8-34) reduces to

(8-35) k = JI?"T2 - (y' . y';)2

However, this can be reduced still further. The characteristic property of
curves with arc length as the parameter is 1/1 = 1, which we can write as

(8-36) /(t) . y'(t) = 1 all t

Differentiate this, and obtain

(8-37) 2/(t) . /'(t) = 0 all t

and use this in (8-35) to find the simple formula k = Ii'" I, as given m our
original definition, (8-31).

As an illustration of the use of the general formula (8-34), return to the
curve given in (8-27), for which the origin is a multiple point. We have
/(t) = (1 - 3t 2

, 2t - I) and /'(t) = (-6t, 2). The point p is at (0,0) when t = 0
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and when t = I, from which we find the respective curvatures to be

J(2)(4) - (_2)Z
k -

1 - (J2)3

1

J2

k _ J(S)(40f- (14)2
Z - (J5)3

2

svfs
Curvature is a geometric property of curves; by this we mean that it is

preserved under appropriate parameter changes, as was shown in Theorems
8 and 9 for length and direction. Thus, if Yl and Yz are curves of class en that
are smoothly equivalent under a parameter change.f; also of class C", and P is
a simple point that is on both curves, then Yl and Yz have the same
curvature at p. Since the curvature reflects only the magnitude of the vector
function y"(t) and not its direction, it might be expected that there are other
geometric aspects of curves which can be described in terms of Y" and the
higher derivatives of y. This is the classical differential geometry of curves,
and we leave this to more specialized treatments of the subject.

Equivalence classes of curves have been introduced in topology and
differential geometry to obtain alternative definitions for the notion of" curve."
In this approach, a curve is no longer an individual mapping Y, but is,
instead, an entire equivalence class of such mappings, under a prescribed
collection of permissible parameter changes. Depending upon the nature of
these, special designations are used, such as "Frechet curve," "Lebesgue curve,"
etc., when one wishes to refer to the individual equivalence classes. As an
example, let us consider briefly the notion of an algebraic curve. One of the
simplest ways in which a curve in the plane can be given is by an equation of
the form y = f(x); this can be thrown at once into a standard parametric
form x = t, Y = f(t). One also says that an equation of the form F(x, y) = 0
specifies a curve. In a sense, one is again speaking of equivalence classes
here, the class of all curves x = ¢(t), y = ljJ(t) which satisfy the equation
F(¢(t), ljJ(t)) = O. If F(x, y) is a polynomial, then one might restrict ¢ and IjJ
to be rational functions of t, and thus discuss the class of curves which are
equivalent to a given curve under 1-to-1 birational correspondences. For
example, the circle X Z + yZ = 1 has the rational parametrization x =
(I - tZ)/(1 + tZ), Y = 2t/(1 + tZ). The situation becomes considerably more
complicated when we turn to space curves. Here, one deals with pairs of
algebraic equations, F(x, y, z) = 0, and G(x, y, z) = 0; again, with this one may
associate a class of curves x = ¢(t), y = ljJ(t), z = Oft) which satisfy both
equations for all t and whose coordinate functions ¢, 1jJ, f} are of specified
sort, for example, rational functions.

One may also consider the effect on a curve of a transformation
which is applied to the space containing its trace. If y is a curve whose trace
lies in a region D and T is a continuous transformation which maps D onto
a region D*. then T carries Yinto a curvey* lying in D* defined by y*(t) = T(y(t)).
If T is I-to-I in a neighborhood N of Po and y is a simple closed curve
lying in N, then y* is a simple closed curve lying in T(N). Suppose that D
and D* are each sets in the plane. As p moves along the trace of y, T(p) will



412 ADVANCED CALCULUS

y

Figure 8-13

x

v

u

move along the trace of y*. They may move in the same direction~i.e., both
clockwise or both counterclockwise~orthey may move in opposite directions.
When the first holds for all simple closed curves i' in N, T is said to be
orientation preserving; when the second holds, T is said to be orientation
reversing. When T is a nonsingular linear transformation, this may be deter
mined by the sign of det (T); if det(T) is positive, T is orientation preserving,
and ifdet(T) is negative, T is orientation reversing. For a general transformation
of the plane, the same role is played by the sign of the Jacobian. For example,
the transformation

(8-38 ) ju = x 2 _ y2
T'

. \v = 2xy

has Jacobian 4(x 2 + l), which is never negative. T is therefore orientation
preserving at all points of the plane, with the possible exception of the origin.
Here, the Jacobian is 0; examining the image of a general curve y which
loops around the origin, one sees that T preserves the orientation of I"~

but not its winding number. In Fig. 8-13 the curve Y2 which loops the origin once
has an image y! which loops the origin twice. There is a similar theory for
transformations from Rn into Rn

; again, Tis orientation preserving in a region
D if the Jacobian of T is everywhere positive in D, the orientation reversing
in D if the Jacobian is everywhere negative. The behavior of T near points where
J(P) = 0 is indeterminate. In 3-space, the notion of" orientation preserving"
can be visualized in terms of a spherical surface enclosing a point Po and its
image under T(see Fig. 8-14).

We may also examine the effect which a transformation has upon angles
at a point. If two smooth curves i'l and i'2 pass through a point Po, their
images under T will pass through T(po). Let 0 be the angle between i'l and i'2
at Po. (More precisely, 0 is the angle between the tangent lines to i'l and
i'2 at Po·) If T is of class C', then the image curves will be smooth, and we



Orientation
reversing

T-->

Orienlation
p.es~rvinll

(H-W)

can speak of the angk 0* which they form ill T({'ol (see Fig. 8-15). Tis said
to be a conformal transformation if it is always true thaI 0* = O. and direcd~'

conf()l"mal if Tis also orienl:ltiOn preserving.

TIll'urcm If) J.t'1 .,. he (I Iwm/iml1l11ioll from R 2 ;1110 R l Il"hil"l, is of
doss (" ill 1111 Oflt'll reyirm D. FIII"thermore, leI T /)(' cOI!/imlllllllm/ lIaft' "
stril'lf.r f)fJ.~ilirl' }I/(,(/hitm Ihrouyholl/ D. Tl1t'II_ (1/ each poiI/( o( D. tile
eli/krelll illl 0'- T Iw_~ (/ mll1ris 1"t'(lI"I'.\('llta/ iOI! of the It",,,

1-:1 ~ I
Equivalently. if Tis described by

II = f(x. r)

I"=Y(x.y)

thell Theorem 10 Slales that II and r must obey the Cauch~'-Riemann

dilTr.:rclltiaJ equations: IIA = f J.• II, = - l"A in D.

,
I
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Let T be conformal at a point Po ED which we may suppose to be the
origin for convenience. The coordinate axes form a pair of curves which
are orthogonal (meet at right angles) at the origin. Their images will be
curves which must be orthogonal at T(O, 0). Since the axes have equations
x = t, Y = 0 and x = 0, y = t, the equations of their images under Tare
u = f(t, 0), v = g(t, 0) and u = f(O, t), v = g(O, t). The direction numbers
of the tangent to either of these are found by computing (du/dt, dv/dt);
when t = 0, this results in (fJ, gd and (f2' g2), respectively, where the
partial derivatives are evaluated at (0, 0). These directions are perpendicular
if their inner product is 0; this gives us one relation connecting the
functions f and g, namely,

(8-40)

To obtain a second relation, we consider another pair of orthogonal lines
through the origin; we choose the lines of slopes I and - I with
equations x = t, Y = t and x = t, Y = - t, Their images are the curves
u = f(t, t), v = g(t, t) and u = f(t, - t), v = g(t, - t). At t = 0, the tangents
to these have direction numbers (fl + I2' gl + 92) and (II - I2' 91 - 92);
since these must be perpendicular,

(8-41) 0 = (f12 - I/) + (91 2 - 9/)

Multiplying this by I/ and making use of (8-40),

°= II
2 f2 2 + 91

2
I/ - (I/ + g/)f/

= g/g/ + gl2f/ - (f/ + 9/)f/
= (f22 + 9 / )(912 - I/)

If the first factor were 0, then f2 = 92 = °and the Jacobian

o(u, v)
a(;;~Y) = II92 - f2g1

would be 0. Thus, g/ = I/. Returning to (8-41), we must also have
II 2

= g2 2, so that 9 I = ± I2 and 92 = ± fl' If the choice of signs were the
same in each, then (8-40) would hold only if all the quantities were 0, and
the Jacobian of T would again be 0; thus, we either have f2 = gl and
II = - g2 or we havef2 = - gl andfl = g2. In the first event, £IT, which is

would have the form

This can be ruled out, since a matrix of this form always has a negative
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determinant, while T has a positive Jacobian. When the second possibility
holds, dT has the form

as stated in the theorem. (The entries, of course, need not be constant;
we are only describing the form of the matrix.) I

The converse of this theorem is also true; if T is a transformation of
class C whose differential is represented by a matrix of the form

at each point of a region D, then T is conformal at all points of D, except
those where the Jacobian is 0 (see Exercise 7). An example of a conformal
transformation is supplied by that given in (8-38). The differential of Tat
(x, y) is

r2x -2y I
12y 2x j

which has the required form; T is therefore conformal everywhere in the
plane, except at the origin. It fails to be conformal there; two lines through
the origin which form the angle fJ have as images two lines forming the
angle 20 (see Fig. 8-16).

It may be shown that there is no similar extensive class of transformations
of Rn into itself, with n> 2. If such a transformation T is required to be
conformal throughout an open set, then it may be shown that T is necessarily
a linear transformation plus a translation, where the linear part is represented
by an orthogonal matrix; thus, the only conformal transformations of 3-space
into itself are the ordinary rigid motions.

y

Figure 8-16 1I = x' - .1'2 = 1'2 cos 2<jJ
I' = 2xy = 1'2 SIn 2<jJ

x u
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EXERCISES

I Plot the trace of the plane curve x = r', .I' = 1" - 4r for - x < r < x. Fmd the tangents at
the double pomt.

2 Find the curvature of the helical curve of Fig. 8-11 at the double point.

3 Express the length of the loop of the curve (8-27) as a definite mtegral.

4 Find the curvature of the curve x = r' - 2r, .I' = 3r, Z = - r-', w = r - r' at the orlgm.

5 If;' IS the curve given by y = I(x), show that the curvature IS given by

1f"(x)1
k=

(I + ('(x)')'!'

h

and the length of;' between x = a and x = b by I' {I + [J'(xW: 12 dx
, .

6 If;' IS a curve which satIsfies the equation F(x, .1') = 0, show that the curvature at a pomt
on ;' is given by

k = IFllF,' + F22 FI ' - 2FJ, FI,I
IFI ' + F,'I J

'

7 Using the converse of Theorem 10, show that the transformation

r = 3x' .I' - .1'"

is directly conformal everywhere in the plane except at the origin.

8 Find the length of one arch of the cycloid x = a(r - sm r), .I' = a( 1 - cos r).

9 Find the angle between the curves where they intersect:

\ x = r I x = S2

, .I' = 2r I l' = 1 - s
j Z = r' I 'z = 2 - s'

to Let ;' be a curve in 3-space which satisfies both of the equatIOns f (x, .1', :) = 0, g(x, .1', :) = 0.
Show that the direction of;' at a pomt on it has direction components

(I
12 13 1, I13 II I, III 1'1)
g, g3 g3 gl gl g,

It If fl and ;'2 are smoothly eqUIvalent curves of class C' and if the parameter change IS
effected by a function I which is also of class C", show that ;'1 and ;-, have the same curvature
at corresponding points.

12 Let I = gl - g, where gi is monotonic on [0, 1] and not necessarily contmuous. Prove that
,I

I IS of bounded variation on [0, 1], and that I I eXists.
. 0

13 IfI is continuous, and (' exists and IS bounded on [0, 1], show that I IS of bounded variatIOn
on [0, 1].

.1

14 Let I be continuous on [0, I],f' eXist for all x, °< x < 1, and I If'1 < x. Show that j IS of
'0

bounded variation on [0, 1].
15 Suppose ;' IS given by x = ¢(r), y = !/J(r), 0<::: r <::: 1. Prove that ;' is a rectifiable curve if and
only if ¢ and !/J are of bounded variation.

16 Letl E C on [0, 1]. Prove thatl = gl - g, where gl and 9, are monotonic.

17 Find a rational parametrizatIOn for the hyperbola x' - y' = 1.

18 The graph of the equation x J + y' = 3xy IS known as the folium of Descartes. Show that a
rational parametrization of thiS IS x = 3r/( 1 + 1"), Y = 3r'/( I + 1"), and graph this curve.
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8.5 SURFACES AND SURFACE AREA

The most elementary portions of the theory of curves in n space, outlined in
Sec. 8.4, can be presented in a way that is relatively free of topological
difficulties. This is much more difficult to do for the theory of surfaces; for
this reason, certain topics in the present section will be presented on the
intuitive level. Many of the basic definitions are direct analogs of those for
curves.

Definition 12 A surface L in n space is a transformation or mapping from
R2 into R".

For example, the general continuous surface in 3-space can be expressed
as a continuous transformation of the form

(8-42)
Ix = </J(u, v)

L:'y=t/!(u,v)
I z = e(u, v)

whose domain is a set D in the UVplane. A point p is said to lie on the surface
L if p = L(U, v) for some (u, v) E D, and the set of all points that lie on L is
called the trace of the surface L. As with curves, may different surfaces can
have the same trace. A point p lying on L is said to be a multiple point
if it is the image of more than one point in the domain of L. A surface is
simple if it has no multiple points; the mapping L is then I-to-l in D.

Any set D which lies on one of the coordinate XYZ planes is the trace
of a simple surface which is obtained from the identity mapping; if D is
contained in the X Yplane, then the surface may be defined by x = x, y = y,
z = 0, using x and y as parameters rather than u and v.

Let L be a continuous surface whose domain D is such that its boundary
is the trace of a simple closed curve y defined for a :":::: t :":::: b. The image of y
under L is a closed curve r defined by r(t) = L(}'(t)) which is called the
boundary or edge of L (see Fig. 8-17). We shall use aL as a notation for r,
rather than bdy (L), to emphasize the fact that we are dealing with both
curves and surfaces as mappings rather than sets of points. The trace of aL is
the image, under L, of the boundary of the parameter domain D. If the
boundary of D is composed of several simple closed curves, as indicated in
Fig. 8-18, aL will also be made up of several closed curves.

Any simple closed curve}' will be the edge aL of an infinite number of
different surfaces, In Fig. 8-19, we show a closed curve}' whose trace is a
simple trefoil knot, and in Fig. 8-20 we show the trace of a surface whose
edge is "r'. To see how this can be done in general, let }' be a continuous
mapping from the unit circle u2 + v2 = I into 3-space. We can extend this
function }' in an infinite number of ways so that it becomes a continuous
function L defined on the unit disk D into 3-space. For example, we can set
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Figun' ~17

The mapping 1: is then a surface whose edge (~1: IS ;'.
To oblain a nicc Iheory, it is again L-Dllvcnicl11 to imposc ccrtain

difTercntiability rcquircments.

Dl'linilioll U A .~lIr.l(Ic(' :E is said to hi' smoolll if 1: is of dflS,~ C I/W/ tI:E

i,~ ~r nlll/.: 2 11"·OI1.(/IIUII/ D,

Whcn 1: IS described by (8-42). then

t-X tx
iJlI t,.

d:E =
?r
?/1

t:: c:

(~11 ?r

l:iIlUrt'lol-lll

"
y
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l'il:un'1l-19 Simpk d"....-.llrl'f,"1 r.

IR-.J}

The requirement lhal this havc rallk 2 is equivalenl to the assertion thai lhe
2-hy-2dclcnnlllanls formL-'d from this matrix do not all \·anish at any poi11l of D,
This can also he givcn in thc form:

I"(X-dl' I"I'-'ll' 1"I',Xl' 0
t(/I. ~,) + i'(~I. r) + ('(II. r) I >

The significan..:c of this condition is 10 he found in lhe fact thai if {R-4J) 11Ulds.
r is locall} 1-10-1 in D (see Theurem 21. Sec. 7,7), It also corresponds 10 the
intuiti\'e nolion of smoothness in Ihc sense of "lack of sharp corners,"

Consider. for example. Ihe surfaces given by the following selS of equalions:

I.\:= "
r 1 : y=r

I : = " 1/2 + r
l

"

1.\:=lIcosr
r 2 : \' = II SlIl I-

I': = 1/

D2:0~1I'S:
O:::;r:::;::'71

,

0,

"

Figurt'R-21 (;rarh "r'!:, ;U1d ,'r,o

"!' C

y
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....il;ur{· 8-22 Gr<tph or L~ amI 'L l

The trace of each is a portion of the conc whose cquation is Xl + .1,1 =:1

(sec Figs. 8-21 and 8-22). The edge of 1: 1 is the cune 1'1: 1 whose trace IS the
circle C. The edge of L 2 is the curve i'L 2 whose Iral:e is the curve consisting
of C and the line segment L taken twice, once in each direction, 1: 1 is not a
smooth surface. since i"'::,i'li = 11/(/1 1 + /'1)1 1 is not continuous at ,,= O. r = 0:
geometrically. this corresponds to the presence of the point of the cone as an
interior point of the surface. 1: 2 is a smooth surface on the interior of D2 •

SlIlce

o

and

l
eo, ,.

SlIl I'

- /I sin r I' + Isin r
IICOS/' I

II cos /" I' 1Io + cos/" I
,

-USlll/"

, 'I J' '1' , "= u- + II cos I" ~ + rr SlIl fl~ = _Ir

which is 0 only on the edge /I = 0 of the rectangle D2 . (The fact Ihal the
rank of 1fT is less than 2 when 1/ = 0 is matched by the fact that the cun'e
i'1: 2 scnds this cntire edge of D 2 int0 the point al the apex of the culle.)

Any equation of the form: = .l"(x, .1') will serve to define a surface. either
by the equations x = /I• .r = r. :: = f(rl. fl. or simply x = x. .r = y. :: = fix. r).
An equation of the form F(x, .1'. =) = 0 which can he solved locally for one of
the variables leads similarly 10 one or more surfaces. Sometimes it is possihle
to obtain a single smooth surface whose trace is the entirc set of points
(x . .1'.::) satisfying the equation F(x. y. =) = O. For eX;II11ple. a suitable choice
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v

x

(27,0) u

Figure 8-23

for the unit sphere X
Z + l + zZ = 1 is

(8-44)
~ x = cos u sin v
< y = sin u sin v
j z = cos v

where D is the set of (u, v) obeying 0 :s; u :s; 2n, 0 :s; v :s; n. The edge of this
surface is the closed curve whose trace is the semicircular arc (J taken twice
in opposite directions (see Fig. 8-23).

By the term "plane" we shall mean any surface of the form

(8-45) P = L(U, v) = Po + au + f3l'

defined for all (u, v), where a and f3 are assumed nonparallel in order to
satisfy condition (8-43). Since Po, Po + a, and Po + f3 lie on L, the trace of this
surface contains these three noncollinear points. If the surface lies in 3-space
and a = (ai' az , a3 ), f3 = (b l , bz , b3 ),

Po = (xo, Yo' zo)

then (8-45) becomes

lx = Xo + alu + bll'
L: ' y = Yo + az u + bz v

Iz = Zo + a 3 u + b3 V

Put

(8-46)



(8-47)
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and n = (A, B, C). Then, from (8-46),

A(x - xo) + B(y - Yo) + C(Z - zo)

= A(alu + blv) + B(a2 u + b2v) + C(a3u + b3 t')

= (Aal + Ba 2 + Ca3)U + (Ab l + Bb2 + Cb3)t·

a l a l b l b l al b l

= a2 a2 b2 u + b2 a2 b2 v
a3 a3 b3 b3 a3 b3

=0+0=0

Thus, every point (x, y, z) on the trace of I: satisfies the equation

A(x - xo) + B(y - Yo) + C(Z - zo) = 0

which justifies our use of the word" plane" for the surface I:. The requirement
that I: be smooth is equivalent to the condition A 2 + B 2 + C 2 > 0, and may
thus be stated in the form nolO. In the analytical geometry of 3-space, the
vector n is a set of direction numbers called the normal to the plane

A(x - xo) + B(y - Yo) + C(Z - zo) = 0

Since (x - Xo, Y - Yo, z - zo) = v is a vector from the point Po to the general
point (x, y, z) on the plane, this equation asserts that n . v = 0, and n and v are
always orthogonal. By analogy, we may introduce a normal vector for a general
smooth surface.

Definition 14 If I: is a smooth surface in 3-space described by the
standard equations (8-42), then the normal to I: at a point p is

n = (oJy,:) o(z,:x) o(x, y))
o(u, v)' o(u, v)' o(u, v)

Comparing this with (8-46), we see that this gives the correct answer when
I: is a plane. Moreover, the next theorem shows that this is in agreement
with the intuitive notion of the normal as a "direction which is orthogonal
to the surface" (see also Exercise 19).

Theorem 11 Let I: be a smooth surface and p a point lying on I:. Then,
the normal to I: at p is orthogonal to any smooth curve which lies on I: and
passes through p.

Let I: have domain D, and let ;' be any smooth curve whose trace
lies in D. The mapping I: carries j' into a curve r lying on the surface I:
(see Fig. 8-24). The equation of r is r(t) = I:(y(t)). Let us suppose that r
passes through p when t = O. The direction of r is determined by the
vector v = r'(O). Since r(t) = (x, y, z) where (x, y, z) = I:(u, 1') and (u, v) =

j,(t), we apply the chain rule of differentiation to find that
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(
aXdll OXdll (;yi)lf ())"dv u;dll ilZ(l,,)

'~Id~)(dy)~ + . + .. +
all .11 i'1! dl ell dl 01 dl UII .11 av dl

ts ('." tx
I~'I til tl"

t." t." I~S

(T til PI"

I~.I· (~.r t.l· 1//1 ty f'.r t.r dl"
I'll (~11 tr ,I<

+
I~/" tu PI" d/

I~; ('; t:: I~; t; t;
til til h· h· tlf tl"

rill d/"
=0 +0 =0

d/ ,I<

sil1CC;1 matrix with two columns alike has lero determinant. I
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Two smooth surfaces in 3-space which pass through the same point Po
and which have at Po normals pointing in the same or in opposite directions
are said to be tangent at Po. The normal n = (A, B, C) to the general plane
(8-45) is given by (8-46) and hence is determined by a and [3; since

~(u, v) = Po + au + f3v

these may be obtained by partial differentiation, with

and

_ _ ~~ _ (ax ay az)
a - ~u - au - au' au' au

_ _ ~~ _ (ax ay az)
f3 - ~v - a - a ' a ' av v v r

The tangent plane to a smooth surface ~ at a point Po is therefore given by the
equation

We may also obtain a formula for the normal to a surface ~ when it is
described by means of an equation F(x, y, z) = O.

Theorem 12 If ~ is a swface which satisfies the equation

F(x, y, z) = 0

where F is of class C, then the normal to ~ at a simple point Po lying on ~

is a scalar multiple ofdF Ipo = (F 1(Po), F2(PO)' F3(PO)), unless this is (0, 0, 0).

Assume that ~ has the form x = ¢(u, v), y = lj;(u, v), z = O(u, r) for
(u, v) ED. Then,

F(¢(u, v), lj;(u, v), O(u, v)) = 0

for all (u, v) ED. Differentiating, and setting (u, v) = (uo, vo) so that
(x, y, z) = Po, we obtain

ax ay az
o= F1 (Po) a~ + F2(PO) a-u + F3(PO) au

ax ay az
0= F1(Po) au + F2(PO) av + F3(PO) ar

If we set f3 = (Fdpo), F2(po), F3(po)) = dFlpo' these equations assert that
f3 is orthogonal to both ~u and ~v at Po; but, the normal vector n is also
orthogonal to these, so that f3 is a multiple of n. I

As with curves, we say that a surface ~ is of class Ck if the coordinate
functions that defined the mapping ~ are all of class Ck on the parameter
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domain, and is analytic if the coordinate functions are analytic in U and v.
This means that an analytic surface can be represented locally as an absolutely
convergent double Taylor series

L(U, 1') = L(Uo, 1'0) + (u - Uo)Lu+ (v - l'o)Lv

+ ~{(u - Uo)ZLuu + 2(u - uo)(v - Vo)L uv + (v - Vo)ZL vv } + ...

where the coefficients Lu, Lv' L uu ' L uv ' etc., are vector-valued functions.
Noting that Lu and Lv are the columns of dL, and thus together

determine, for example, the normal to the surface at any point by (8-47), one
might reasonably expect that the other coefficients in the series expansion of
L(U, v) would also have geometric significance. While we will leave this for more
advanced works dealing with the classical differential geometry of surfaces, a
few additional remarks may be helpful.

Up until now, we have spoken only of the first total derivative Dg of a
scalar function 9 and the first differential dTof a transformation T. However,
Dg (or dg) is itself a vector-valued function, and thus can be viewed as a
transformation, so that one may automatically apply the definitions of Chap. 7
to obtain its derivative or differential d(dg) = dZg. Suppose we try this with
w = g(x, y, z). We have dg = (gx' gr' gz), and then

dZg = [~:: ~::. :::]
gzx gzr gzz

Thus, the second (total) derivative of a scalar function turns out to be a
matrix-valued function. Note that if 9 is of class C', the matrix dZg is symmetric
because grx = gX}' , gxz = gzx' etc.

For the general case, suppose we have a real-valued function
g(x I, X z, ... , xn ) of class C' in an open set D. Then, dZg is defined in D and is
the matrix-valued function

dZg = [~.:.:... ~.:.~ .. ~~~ '.'.' ...~~~1
gnl gnZ gn3 gnn

[This is sometimes called the Hessian matrix of g, and its determinant the
Hessian of g.]

While we have not met dZg before in earlier topics, it has been implicit
in several. For example, in Theorem 19 of Sec. 3.6, the nature of a critical
point Po for a function f(x, y) was determined by examining the sign of the
expression (/IZ)Z - fl1fzz' Note that this is exactly the negative of the
determinant of dZf Thus, we could now restate Theorem 19 as follows: A
critical point Po for f(x, y) is an extreme point if dZf Ipo has a strictly
positive determinant, is a saddle point if the determinant is strictly negative,
and is undetermined if dZf Ipo is singular.
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This result for two variables suggests that there is a similar theorem for
functions of n variables, characterizing the nature of critical points of f by
properties of the second derivative d2f This is correct, but it is not sufficient
merely to look at the sign of the determinant of the matrix (8-48)-i.e., the
sign of the Hessian of f Instead, one must analyze the behavior of the
quadratic form associated with the symmetric matrix d2f Ipo = [aij] = A. This
arises by the same approach used in the proof of the two-variable version
in Sec. 3.6. If Po is a critical point for f, then Taylor's theorem shows that
on a neighborhood of Po,

f(po + L1p) = f(po) + 0 + Q(L1p) + *R(L1p)

where L1p = (L1x l' L1x 2' ... , L1xn) and
n

(8-49) Q(L1p) = L aij(L1x;)(L1xJ
;. j= 1

and where I*R(L1p) I ~ lL1pI2. The local behavior of f at Po IS therefore
determined by the behavior of Q(L1p), and there are three cases.

Definition 15 A nonsingular symmetric matrix A is:

i. Positive definite if

Q(u) = L aijuiuj > 0
i.j= 1

for all U = (UJ> U2 ' .•• , un) i' O.
ii. Negative definite if Q(u) < 0 for all U i' O.

iii. Indefinite if neither (i) nor (ii) holds.

Correspondingly, one arrives at the following characterization theorem for
critical points.

Theorem 13 Let f be of class C" in an open set D, and let Po ED with
df Ipo = 0, so that Po is a critical point for f Let A = d2 f Ipo and assume
det (A) i' O. Then, Po is a local minimum for f if A is positive definite, is a
local maximum if A is negative definite, and is a saddle point if A is
indefinite.

A simple sufficient criterion for A to be indefinite is that two of the
diagonal entries in A have opposite signs. Algebraic criteria which use the
determinants of diagonal submatrices of A can be given, and are mentioned
in Appendix 3.

Another example of the role of d2f may be given. Suppose w = f(x, y),
where x = ¢(t), Y = t/J(t). Write this as w = f(y(t)) with y(t) = (x, y). Then, by
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the usual chain rule,

dw Idt = (df) y'(t) = Ux
,(t)

dx dy
= fx dt +~. dt

1,.] fdX
/dt I

Y dy/dt J

(8-50)

In the usual way, differentiate again, and obtain

d
2
w (dX) 2 dx dy (dY) 2 d

2
x d

2
Y

dt 2 = fxx dt + ~fxy dt dt + fndt + fx d(T + fy dtT

We now recognize this result as

(PW
dt2 = Q(i(t)) + (cif)y"(t)

where Q is the quadratic form associated with d~f However, if we choose to
write Q(u) as A(u)(u), (8-50) becomes

d2w
dt 2 = d~fi(t)y'(t) + dfy"(t)

and we see that we have returned to the type of notational simplicity of the
one-variable calculus; if w = f(y(t)), then dw/dt = f'(y(t))y'(t), and d2w/dt2 =
f"(y(t))y'(t)i(t) + f'(y(t))y"(t).

It is natural now to ask for the second derivative of vector-valued
functions (transformations), and to ask if they too have useful geometric
interpretations. Suppose we have

Ix = f(u, v)
L:l y =g(u,v)

l w = h(u, v)

Then, we may write

and thus are led to write

This allows many different descriptions. It is a 3-vector whose entries are
2-by-2 matrices, or the linear transformations that they represent. Or it is a
solid array, obtained by stacking three 2-by-2 matrices on top of one another
(see Fig. 8-25). Note that the vector-valued partial derivatives ~uu, ~uv = ~vu,



428 ADVANCED CALCULUS

Figure 8-25 <i 2L

(u, v) ED

and L vv are visible in this array as the vertical columns, forming in fact the
Hessian matrix (with vector entries)

d2L = fL uu Luv I
IL vu L vv J

In the differential geometry of surfaces, these are used to discuss the various
aspects of curvature for surfaces, just as d2

}, = "/ was used to discuss this
for curves.

We turn next to the topic of surface area.

Definition 16 The area ofa smooth surface L with domain D is defined to be

(8-51) A(L) = JJ In(u, v)1 du dv
D

= rr J I 8(x,y) 1

2

+ I ~(Y'-~ 1

2

+ I 8(z, x) 1

2

\1/2 du dv
.. \ 8(u, v) 8(u, v) 8(u, v) I

This rather arbitrary definition can be motivated by geometrical consider
ations. First, it agrees with our previous notion for area when L is merely a
region embedded in one of the coordinate planes. For example, if L is the
surface defined by x = u, y = v, z = °for (u, p) ED, then L u = (1. 0, 0) and
Lv = (0, 1,0) and the normal n is (0,0, 1). The integral for the area of L

becomes rr 1 du dv, which is precisely A(D), the area of the set D. Again,
•• D

when L is the portion of a plane defined by

~x=alu+blv

L: ,y = a2 u + b2 V

Iz = a3 u + b3 v
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then

and (8-51) yields

A(L) = JJ k du dv = kA(D)
D

where k
2

= I:~ ~~ 1
2

+ I~: ~: r+ I:: ~: 1
2

Since L, in this case, is a linear transformation, this result is in agreement with
that obtained earlier (8-9). We may also use this to justify (not prove!) the
general formula. Suppose that the domain of L is a rectangle R. If we subdivide
R by a net into small rectangles Rj' then in anyone of these, the transforma
tion L might be expected to behave very much like its differential

ax ax
-- "--,

au av

dL =
ay ay
au av
az az

- --

au av
As a linear transformation from R2 into R3

, this multiplies area by the factor
k, where

ax ax 2 ay ay 2 az az 2
-- -.

au av au av au av
k2 = + +ay ay az az ax ax

_.- -au av au av au av

= I a(x, y) 1
2
+ I a0~zl r+ I ~(:0112a(u, v) a(u, v) a(u, v)

Referring to Fig. 8-26, we may expect that the area of the surface L should be
approximately Lk(Pj)A(RJ, where Pj is an appropriate point in Rj at which the
Jacobians are evaluated. Since this has the form of a Riemann sum for the

integral rr k, we are led to the formula (8-51) as a reasonable definition for
A(L). . . D

We remark that there are many ways to generalize this approach to surface
area. The analog of the method used for arc length does not work here, since
there is no simple inequality between the area of an inscribed polyhedron and
the area of the smooth surface itself, as there was between the length of a curve
and the length of an inscribed polygon. For more information about the
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problem of an adequate general definition of surface area, we refer 10 the
article by Rad6 given in the Reading List.

As an illustration of the use of formula (8-51), lei us find the surface area
of the torus (douglmul) in Fig. (H-27), whose equation is

18-52)

We have

!.\: = (R - cosdcos II

r: ..1'= (U - cos r)sin II

I:: = sin,.

[

-(R - cos r) sin II

tiL = (U - c~s r) cos /I

-JT5115JT
-JTSrSn
R>I

Sill r cos "]
Sill r Sill II

cos ,.

so that

In(lI, rW = 1- (R - oos r)(sin l
II sin r + cos l

II sin '"W
+ I(R - cos d ws II cos 1"11 + I(R - cos r) sin /I cos rf

= (R - cos r)1(sin 1 r + cos 2
/I cos l

f + sin l
/I cosl 1')

=(R-cosr)l

,

Figun' K-27
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,

y
D

Accordingly.

. ~ ~

A(l:) = I fi/l J (R - cos d III" = (211VR
- ~ - ~

Again. cOIl~ider the ~urface de~cribed by the equation == 2 - Xl - .1'. with
(x. r) reslricted to lie in the triangle D bounded by Ihe lines \: = o. .r = I.
-'" = x (~ee Fig. t\-2!<). Using x and y ill place of /I and r. we find thai

, 1"(".-1/' I"(''''ll' 1,,(,·'11'In(x. 1')1- = , . +, . +,
. dx, y) dx,.r) dx. .\")

~ I + (:')' + (:')'
I".\" f"J"

1 + 4x l + I = 1 + 4x l

so tlml Ihe arca of this surface i~

A{l:) = JJ ./2 + 4x 2 !1x dy

"
. I r • I

= I 11x,,-2 + 4x 2
.1 IIr

• 0 .\

.,
=1 (l-x)...,,'2+4.\:2 11x

."
This either can he evaluated approximately or may be transformed into an
c1emenlaryform hythesubstillition /I = 1- I 2 tan O. The former, with a division
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of [0, 1] into 10 subintervals, gives A(~) = .811; the latter eventually gives
A(~) = 1log (J2 + )3) + J2/6 = .809.

The important notion of parametric equivalence applies to surfaces as it did
to curves, with appropriate modifications.

Definition 17 Two smooth surfaces, ~ alld ~*, are said to be smoothly
equivalent if there is a transformation T mapping D*, the domain of~*, onto
D, the domain of~, which is I-to-l, is of class C', and has a strictly positive
Jacobian in D*, and such that ~*(u, v) = ~(T(u, v)) for all (u, v) E D*.

As with curves, it can be shown that if two smooth surfaces are continuously
equivalent, then they are smoothly equivalent. The notion of equivalence
separates the class of all smooth surfaces into distinct subclasses, all the surfaces
in a subclass being mutually equivalent. All the surfaces in a subclass have
the same trace and the same normal direction at any point (see Exercise 5).
They also have the same area.

Theorem 14 If ~ and ~* are smoothly equivalent surfaces, then
A(~) = A(P).

We may assume that P(u, v) = ~(r, s) = ~(T(u, v)), where T maps the
set of points (u, v) forming the domain D* of ~* onto the set of points
(r, s) forming the domain D of~. The area of ~ is given by

'rIIO(X,y)/2 10(y,z) 1

2
/0(Z,X)j2}1/2A(~)= I .~- +--. + ... -- drds

.. o(r, s) o(r, s) a(r, s)
D

To this double integral, apply Theorem 6, and make the change of variable
produced by the transformation T. D will be replaced by D*, rand swill
be replaced by their expressions in terms of u and v in the integrand, and
dr ds will be replaced by la(r, s)/a(u, v)1 du dv. This results in the formula

( ) ( ) -rrlla(x,y)/2 10(y,Z)/2 ja(z,x)/2}1/2 0(r,s)d d8-53 A ~ - --- + ._.- +---- u v
D', a(r,s) a(r,s) a(r,s) o(u,v)

However, since P(u, v) = ~(T(u, v)), the chain rule of differentiation
(Theorem II, Sec. 7.4) asserts that d~* = d~ dT, so that

a(x, y) o(x, y) a(r, s)
---- ---

o(u,v) a(r,s)a(u,v)

a(y, z) o(y, z) a(r, s)
- ---

a(u, v) a(r, s) o(u, v)

o(z, x) o(z, x) o(r, s)

a(u, v) a(r,s) a(u, v)
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If we use these relations in (8-53), we obtain

A(L) = rr II o(x, y) 1

2

+ 1
00" 3) 1

2

+ I 0(Z'3) 1

2

\ 1/2 du dv
D~ \ O(U, v) O(U, v) O(U, v) I

= A(P)
proving equality of the areas of the surfaces. I

From a more sophisticated point of view, it is now natural to alter the
terminology so that the word "surface" no longer refers to an individual
mapping L but rather to the entire equivalence class that contains L. Depend
ing upon the notion of equivalence that is used, one speaks of Frechet surfaces,
Lebesgue surfaces, etc. It is in the guise of equivalence classes, perhaps, that
one is best able to speak of "the" surface defined by an equation F(x, y, z) = 0;
this may be understood to be the equivalence class of smooth surfaces L
which satisfy this equation.

So far, we have been chiefly concerned with the local theory of surfaces,
that is, the behavior of a surface in the neighborhood of a point lying on it.
Such considerations have to do with the existence and direction of a normal,
with the curvature of the surface at the point, or with the relationship between
the normal vector and curves which lie on the surface and pass through its
base. Much of the modern theory of surfaces deals instead with properties" in
the large," which require consideration of the surfaces as a whole. For example,
all smooth surfaces might be said to be approximately locally planar; thus, the
essential distinction between a sphere and a torus is a property" in the large."
Similarly, the property of being orientable is one which cannot be settled by
local considerations.

To discuss such aspects as these, it is necessary to deal with the more
general notion of a two-dimensional manifold. This can be thought of as a
generalization of our previous notion of surface, and is motivated by consider
ing the union of a number of pieces of surfaces to form a larger object.

Definition 18 A 2-manifold M is a set of mappings Ll' L2' ... such that
(i) the domain of each is an open disk D in the (u, v) plane and (ii) each
L j is a continuous 1-to-1 mapping having a continuous inverse.

If we denote the trace of L j by Sj' then the trace of M is defined to be the
union of the sets Sj' It is usual to require that the trace of M be a connected
set ofpoints; a manifold that is not connected is therefore the union of a number
of connected manifolds. We may say that the manifold M is the union of the
surface pieces (or surface elements) L j' This may be visualized as shown in
Fig. 8-29. It is not necessary that all the mappings L j have the same domain.
Any smooth surface which is simple is a manifold with just one surface element;
any smooth surface L with multiple points is a manifold with a number of
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surface clements, for the mapping r is locally 1-10-1. and its domain c,m be
covered with open disks DJ in each of which L is I-to-I. Each of the mappings
LJ call be thought of as carrying the coordinate system in D (or in Ojl up Into
the trace of M, where it creates a local coordinate system in the image set Sj'

For this reason. the mappings Lj are sometimes called dmrts. and the entire
collection an adas.

In order to speak of d ifTerentiability properties tlfa manifold. it is conVCtl ienl
to impose restrictions on Ihe way the surfilce elements fit together. Lei L; and
L J be any two pieces of M. and let S = 51 fl S}. the intersection of their Iraces
(see Fig. 8-30). Since L; maps D onto S,_ it maps a pan of it. Di • onlO ."J". In
the same way. L j maps a part, Dj • also onto S, 1-10-1. (Ill Fig. X-JO wc have
shown D; and Dj disjoint. although this may 1101 be the case ill generill.)
Consider the transformation Tij from D into D which is detined on Dj hy

7;1({)) = Lj-ILj(p)

This is:.l I-to-I mapping of D1 onto Dj . Such a mapping is defined for every
pair of overlapping scts S; and 51. (Note lhal 7;} and "lj; are inverses. alld that
7;; is the identity map of D onto itself.) The manifold AI is said to be <l

ditfen'n1iablc manifold of class C if each of the transformations 7;} i~ or class
C and has a non vanishing Jacobian. More generall}. ,\1 IS or class Ck (or c' l
if all the maps 7;) arc or class Ck (or C'). In lerms or Ihe concepl or local
coordinate systems. these requirements arc inlerpreted <IS meaning Ih;1I Ihe
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Figur.' K-30

changc-of-variable equations which relate the competing coordinates of a point
whid1 lies in two local coordinate patches must themselvcs re reversible ilnd
of class Ck (or C' ).

We are now ready to say what is meant by an orimlabll' manifold.

Definition 19 A ''!llj'I"l'lltillhll' I/I{/I/if(,ld M is oriel/Ia/J!e !f e(jcll ~r ,,,,,
{"omW(·liollll"m/.~rormmioll.~ T;j JICI_~ (/ positi/'(' JtI(·ohitlll. OIJruwiw. M ;.'i saill
10 he IllJl/or;('II/C//J!e.

An oricntablc manifold can be givcn a consistent oricntation byoricnting
D. Choose. once and for all. a positive "side" for D. This may be done by
choosing which way a normal to D shall point. This in turn determincs a
direction of positivc rotation for simple closed curves lying in D, counterclock
wise about the normal- The mappings r i carry these o\'cr to the individual
surface elemcnts. Since the Jacohian of the transformation T;j is positive. T;j
is an orientation-preserving mapping of Dj onto Dj : this guarantees that the
oricntations produced by r; and !:j are consistcnt in the overlapping sct (sec
Fig. g-J I). Thus. we arrivc at a cOllsistent sense of "outward" nonnal on .\'1.
or equivalently. a consistent sense of positive rotation ror neighborhoods of
points on M. The Mobius strip is a familiar example or a nonoricntablc
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Figun' 8·)1

manifold (Fig. 8-32). Ifol1c starts with an "outward" normal at one point of
the strip. and attempts to carry this around the strip, one finds that it will
havc revcrsed direction when the starling point is again reached. To verify
that this manifold is nonorientablc directly from thc dcfinition, we cxpress I'd
as the union of two surface clements, defined by the same mapping 1: but
with differing domains. Let

x ~ (2 - ,,;" (;l) '0<"

(8-54) 1:: ,r= (2-rSlll G)) sin/I

and let 1: 1 be the surface oblained by restricting (II, r) to the rectangle
11'1 < I, 0 < II < 2n. and 1: z the surface obtained by restrictlllg (II, r) to the
rectangle 11'1 < 1, 1111 < Ir'2. The Iraccs of these overlap, and together cover

,

y

Fil:lln·l'I-.12 Mohilh ~tr;r {rwllnricnlahlc).
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the twisted strip completely. The sets D. and D2 are not connected: examining
the equations for L and Fig. H-JO. we see that D. consists of the two rectangles

D'l = ~all (II, d with Id < I and 0 < II < ;J
D'; = iali (II. r) with 11'1 < I and in < II < 2n]

The transforllllltion 'Iii is therefore given by

. ( ) )(11. d in D']
121 11,1:=1 '"(II - 2n, -I') In Dl

and has negative Jllcobian in D';.
Another property "in the large" is the classification of manifolds as open

and closed: this has little to do with the previous use of these words. A
manifold is closed if it is COIl1Pllct, that is. if it has the property that any
sequence of points lying on it has a subsequence which converges to a point
lying on it. A manifold that is not closed is called Opl'fl, The surface of a sphere
defines a closed manifold: if we punch out a closed disk, the resuiling manifold
is open. since a sequence of points whieh converges to a JXlint on the deleted
rim of the disk will have no subsequence converging to a poinl on the manifold.
A closed manifold hllS no edge or boundary: to define II llotion of boundllry
for an open manifold, it is convenient to modify the construction by contracting
the open domains of the surface elements Lij so that we have overlapping of
the sets Sj only along their edges. If this is done. then the manifold can be
regarded as obtainL>d by gluing these surfll(.'e clements together along specified
edges. When there ;Lre only a finite number of such pieces. the edge of the
manifold is defined to be the curve or set of curves whieh is made up of the
unmatched edges. When a manifold is orientable. Ihe surface elements can be
oriented so that each matched edge occurs once in one direction and once in
the other; these may be sllid to cancel out. and the remaining unmatched curves
constitute the oriented boundllry of the manifold (see Fig. 8-33). (A detailed
treatment of these subjects must be left to a course in topology or modern
differential geometry.)

~, ."

Fij{UTt· H-3.1 M'lIlifokl wilh two "'-"llld;uy cun'es forrn"'d from simple clements.
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'EXERCISES

1 Plot the trace of the surface x = U
2

- V
2

, .I' = u + v, z = U
2 + 4v, lui ~ I, 0 ~ v ~ I, and find

the tangent plane at (- i, 1, 2).

2 Show that all the normal lines to the sphere (8-44) pass through the origin.

3 Let 1: be the surface described by z = f(x, .1'), (x, .1') E D, with f E C. Show that the normal to
I: at Po is (-f,(po), - f2(PO)' I), and that the area of I: is

A(I:) = JJ }I +~n +f~
D

4 The curve y given by x = t, .I' = t 2
, Z = 2t 3

, - oc < t < 00, has a POint In common wIth the
surface I: given by z = x 2 + 3.1'2 - 2xy. What is the angle bt:tween y and the normal to I: at thIs
point?

5 Show that two surfaces which are smoothly equivalent have the same normal directIOns at
corresponding points.

6 Find the surface area of the sphere (8-44).

7 Set up a definite integral for the surface area of the ellipsoid

8 Set up an integral for the area of the Mobius strip as described by (8-54).

9 Show that the normal to a surface I: is always orthogonal to I: u and I:,.

10 Find the surface area of the portion of the paraboloid z = x 2 + .1'2 which is cut out by the
region between the cylinder x 2 + .1'2 = 2 and the cylinder x 2 + .1'2 = 6.

II Show that an alternative expression for the area of a surface I: with domain Dis

A(I:) = JJ {1I:u I2 1I:v I2
- (I: u ' Ey}I!2 du dv

D

[In the study of the differential geometry of surfaces the notatIOn E = lI:u I2, F = I: u • I: v ' and
G = I I: v 1

2 is customary.]

12 Let

axax ayay azaz
F= +-- +

au av au av au at·

G = (a~)2 + (a
y

)2 + (az) 2
av av av

Show that the inequality (7-55) can also be expressed as EG - F 2 > O.

13 A surface I: is described by

Ix = 2A u cos t'

< \' = 2Bu sin v
I~ = u2 (A cos 2 v + B sin 2 v)

Describe the trace of I: and find its area.

14 Fmd the area of the portion of the upper hemisphere of the sphere with center (0,0,0) and
radius R that obeys x 2 + .1'2 - Ry .:; O.
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15 Let ~ be a C" surface defined on an open-connected set D in the U V plane. Suppose dZ~ = °
m D. Prove that ~ is a plane.

16 If two smooth surfaces ~[ and ~z of class C are parametrically equ[valent, prove that the
contmuous functions that relate them are of class C.

17 Let f be of class C' on the plane, flO, 0) = I and fl(O, 0) = fz(O, 0) = 0. The graph off is a
surface defined by

Ix = u
~~ V = v

j ~ = flu, v)

Choose any 8, °S; 8 < n. Let y.(t) = (t cos 8, t sm 8) be a line in the parameter space, and let
r.(t) = ~(y.(t)) be the corresponding curve on ~.

(a) Find the curvature k. of r. at the point (0,0, I).
(b) What is the connection between k. and dZf?

"(e) Show that the largest value of k., as 8 varies, is the largest eigenvalue of dZf

18 A two-dimensional surface in 4-space is a mapping from RZ into R4
• If

~(u, v) = (x, y, z, w)

with domam D, then the area of ~ [S defined by

A(~) = JJ {I~" IZI~" 1
2 - (~" • ~")Z}I!2 du dv

D

Fmd the area of the surface whose equation is x = 2uv, y = u2
- vZ

, Z = U + v, w = u - v, for
u2 + v2 S; 1.

"19 A three-dimensional surface in 4-space is a transformation X from a domain D in R3 into R4
.

The three-dimensional volume (analogous to surface area) of X is defined to be V(x) = rl'r jK,
••• D

where K is the sum of the squares of determinants of the 3-by-3 submatrices of dX· Thus, if X is
given by x(8, 1/>, t/J) = (x, y, z, w), then

K = Io(x, y, z) IZ+ Io(y, z,w) I
Z

+ Io(z, w, x1lZ+ Io(w, x,j') I
Z

0(8,1/>, t/J) 0(8,1/>, t/J) 0(8,1/>, t/J) 0(8,1/>, t/J)

The boundary of the four-dimensional ball of radius R is a three-dimensional manifold called
the 3-sphere, given either by the equation XZ+ yZ + zZ + wZ= R Z or parametrically by x =
R cos t/J sin I/> cos 8, y = R cos t/J sin I/> sin 8, z = R cos t/J cos 1/>, w = R sin t/J, for - (n/2) S; t/J S; n/2,°S; I/> S; n, 0,.::; 8 S; 2n. Show that the "area" of the 3-sphere is 2n zR 3

•

20 Check Theorem II for a surface ~ given by the equation F(x, y, z) = 0, by showing directly
that if Po is a point on ItS graph [so that F(po) = 0], then the vector dF 1 Po = (F [(Po), Fz(Po), F3(PO))
is orthogonal to the tangent at Po of any smooth curve lying on ~ and passing through Po.

8.6 INTEGRALS OVER CURVES AND SURFACES

In Chap. 4, we discussed integration in some detail, based on a simple approach
in which the fundamental idea is the integral of a function defined on an
interval, a rectangle, or an n-dimensional cell. In this section, we deal with a
direct generalization, the integral of a function along a curve or over a surface,
done in such a way that the integral of the function f == 1 yields the length of
the curve or the area of the surface, respectively. This is also related to the
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discussion of set functions in Sec. 8.2, since many of the usual applications of
this deal with the calculation of physical quantities such as mass, gravitational
attraction, or moment of inertia, in which the function to be integrated plays
the role of a density.

Let I' be a smooth curve, given as a C' mapping from [a, b] into 3-space,
and letjbe a real-valued function that is defined and continuous on the trace
of Yo Since the trace is the image of [a, b] under a continuous mapping, it is
compact, and we may therefore assume thatjis in fact continuous everywhere
in R 3

. We then define the integral ofjalong I' by

(8-55)
b

r j= r j(y(t))ly'(t)! dt
• Y • a

Note that the integration is done back in the parameter space, although the
values ofjare determined on the points p that lie on y. Note that ifj(p) = I for

all p, then (8-55) becomes r 1 = L(y), the length of Yo If I' and 1'* are equivalent
smooth curves, then . Y

r j= r j
• y • y*

(see Exercise 5)0 If we choose 1'* as the curve which is equivalent to I' and
which has arc length as parameter, then Iy*'(s)! = 1 for all s E [0, I], where 1 is
the length of 1'; by (8-55) we then have

(8-56)
./

r j = I j(y*(s)) ds
• Y • 0

Since y*(s) is also a point on the trace of 1', this is frequently written

(8-57) r j = r j(x, y, z) ds
• Y • Y

and for this reason, an integral along a curve I' is sometimes referred to as the
result of "integrating with respect to arc length."

With arc length as the parameter, the integral of a function along I' can be
given a different interpretation, much closer in format to that of the ordinary
one-dimensional Riemann integral. If the length of I' is I, we choose points Sj

with °= So < SI < S2 < ... < Sm = I, and think of these as partitioning the
curve I' into short sections 1'1' 1'2' ... , I'm' where Yj is the mapping obtained by
restricting I' to the subinterval [Sj_I' sJ Choose a point Pj on Yj' and form the

sum 2: j(pJL(Yj)' It is then easily seen that this will converge to r f as the
• y

norm of the partition of [0, I] approaches 0, in the same way as was the case
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for the usual integral of a continuous function on a real interval. For, in fact,

m m s.

L f(p)L(y) =L f(Pj) JJ ly'(s)1 ds
1 1 Sj_ 1

m

=L f(pj)(Sj - Sj_ d
1

which converges to (8-57).
Suppose now that we interpret the function f as giving the linear density

(mass per centimeter) of a wire, which we can suppose varies from point to
point. Then,f(pJL(Yj) is an estimate for the mass of the section Yj' and (8-57)
becomes the definition of mass of the entire segment of wire 'I.

As an illustration, let us find the center of gravity of a uniform wire which
is bent into the shape of a semicircle. To describe this shape, we shall use
the curve 'I whose equation is x = cos t, Y = sin t, °:os; t :os; n. By definition, the
center of gravity will be the point (x, y) where

Mx = rxp ds
• y

My = f yp ds
y

and M = rp ds
• y

The function p specifies the density of the wire (mass per unit length), M is the
total mass of the wire, and the first two integrals are the moments of the wire
about the lines x = °and y = 0, respectively. Since the wire is uniform, p is
constant, and M = pL(y) = pn. From the equation for 'I,

li(t)1 = I(-sin t)2 + (cos t)21 1
/
2 = I

andy has arc length for its parameter. Substituting for x and y, and using
(8-56),

rpx ds = p r1t cos t dt = °= M x
• y • 0

• .1tI py ds = p I sin t dt = 2p = My
• y • 0

so that the center of gravity is (0,2In). Other examples involving integrals
along curves will be found in the Exercises.

Turning to integrals over surfaces, let L be a smooth surface with domain
D, and let f be a continuous function defined on the trace of L. A subdivision
of D into sets Dij produces a subdivision of L into small surface elements Lij'
Let Pij be a point lying on Lij and form the sum Lf(Pij)A(LiJ If these have a
limit as the norm of the subdivision of D tends to 0, then this limit is called
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the value of the integral off over the surface L, and is written as rr f By an
.. r

argument which is analogous to that used for integrals along curves, we arrive
at the equivalent expression

(8-58)

where

JJ f = JJ f(L(U, v))ln(u, v)1 du dv
r D

In(u, v)1 = Ja(~')'L + o(~ Z)2 + o(z, X)2\ 1/2

\ o(u, v) o(u, v) o(u, v) I
Thus, evaluation of the integral of a function over a surface is reduced to the

evaluation of an ordinary double integral. Iff is constantly I, then rr f = A(L),
.. r

the area of L. For this reason, the general integral rr f is often written
.. r

rr f(x, y, z) dA, and one speaks ofintegratingfwith respect to the element of
.. r

surface area, over the surface L.
To illustrate this, let us find the center of gravity of a thin uniform

sheet of metal which is in the shape of the paraboloid z = x 2 + y2, with
x 2 + y2 ~ 1. The center of gravity is the point (0,0, z), where

Mz = II pz dA
r

and M = rr p dA. Since the sheet of metal is uniform, p is constant, and
.. r

M = pA(L). To compute this, we need the value of Inion L. Using x and y
as the parameters for L rather than introducing u and v, and Exercise 3,
Sec. 8.5, we have In(x, y)1 = [I + 4x 2 + 4y 2]1/2, so that

A(L) = JJ )I--+- 4(xz-+?) dx dy
D

where D is the unit disk, x 2 + l ~ 1. The form of the integrand and of D
suggest that we transform to polar coordinates. Accordingly, the integrand
becomes (I + 4r2 )1 / 2, dx dy is replaced by r dr de, and D is replaced by the
rectangle °~ e~ 2n, °~ r ~ 1. Thus,

.2" . 1 _

A(L) = I de I )1 + 4r 2 r dr
. 0 . 0
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In the same fashion, we have

JJ z dA = JJ (X 2 + i)~l+ 4(x2 + y2) dx dy
1: D

.2" . II de I r\/f+ 4? r dr
. 0 . 0

1~ (5~5 +~)

Z = G) ~~ ~t = .56

Thus, in all cases, the integral of a function f "along the curve Y," or
"over the surface L" reduces to ordinary integration of the related function
f(y(t)) or f(L(U, v)) over the appropriate parameter domain. While we have
illustrated only the case in which f is a real-valued function, the same thing
is done iff is complex-valued, or vector-valued, or even matrix-valued, since
in each case, one merely integrates component by component. Thus, if
F(p) = (.f(p), g(p), h(p)), then the integral of F along y is

As we shall see in the next chapter, many physical problems lead to the
consideration of a special class of integrals of functions along curves and
over surfaces.

EXERCISES

I Find the center or gravity or a homogeneous wire which has the shape or the curve
y = V + e- ')/2. - 1 ~ x ~ 1.

2 The moment or inertia or a particle or mass m about an axis or rotation whose distance
is I is defined to be mI'. Show that a reasonable definitIOn ror the moment or inertia or a wire
in the shape or the plane curve y abou t the Y aXIs IS

1= .r px 1 ds

3 A wire has the shape or the curve y = x 2
• - 1 ~ x ~ 1. The density or the wire at (x, y) is

kJyo What is the momen t or inertia or the wire abou t the Yaxis?

4 Formulate a definitIOn ror the moment or inertia or a wire in space about the Z axiso

5 Let II and "2 be smoothly equivalent curves, and let f be continuous on their trace. Show

by (8-55) that ,0 f = I' f
'}'l '}'2

6 The rorce or attraction between two particles acts along the line joming them, and its
magnitude is given by km l m2 r- z, where m, and m2 are theIr masses, and r is the distance



444 ADVANCED CALCULUS

between them. Fmd the attraction on a unit mass located at the origin which is due to a
homogeneous straight wire of mfinIte length, whose distance from the ongin is I.

*7 Let ~I and ~2 be smoothly equivalent surfaces, and let f be continuous on their trace.
Show by (8-58) that

JJ f = JJ f

8 Fmd the moment of inertia of a homogeneous spherical shell about a diameter.

9 A sheet of metal has the shape of the surface z = x 2 + y2, 0 'S x 2 + y2 'S 2. The density at
(x, y, z) IS kz. Find the moment of inertia about the Z axis.

10 What IS the force of attraction upon a unit mass located at (0,0, I) which is due to a
homogeneous cIrcular disk of radius R, center (0,0,0), and lying in the X Y plane? What
happens if R is allowed to become infinite?

*1) Show that the force of attractIOn within a spherical shell of constant density is everywhere O.



CHAPTER

NINE

DIFFERENTIAL GEOMETRY AND VECTOR
CALCULUS

9.1 PREVIEW

The topics in this chapter are a strange mixture of applications and
sophisticated theory. The study of the vector calculus (Stokes' theorem, Green's
theorem, Gauss' theorem) is sometimes justified by its role in the solution of
Laplace's equation, Poisson's equation, the inhomogeneous wave equation,
and the study of electromagnetic radiation and Maxwell's equations, as
described in Sec. 9.6. On the other hand, the theory of differential forms,
sketched in Sees. 9.2, 9.4, and 9.5, gives a view of the surprising interplay
between analysis and geometry that has marked many of the most significant
mathematical advances of the current century.

In Sec. 9.2, we introduce I-forms and 2-forms as functionals that assign
numerical values to curves and surfaces, and present some of the accompanying
algebraic formalism. In Sec. 9.3, we relate this to the more traditional
algebra of vectors in 3-space, showing how vector-valued functions give rise
to the study of line and surface integrals and differential forms. We state the
generalized Stokes' theorem in Sec. 9.4, and then restate it (and prove it) in the
form appropriate for the plane and 3-space. We note that Theorem 8 and the
related Lemma I are an important part of this treatment. Finally, in Sec. 9.5
we discuss exact forms and locally exact forms (or closed forms) and the
geometric conditions under which they are equivalent. This leads us back to
simple connectedness and its higher-dimensional analogs. Theorems 3 and 15

445
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provide the framework for this, along with Lemma 1; unfortunately, we have
had to leave the general theory at this incomplete stage, referring to more
advanced texts on differential topology for the rest of the story.

9.2 DIFFERENTIAL FORMS

The integral of a function along a curve, or over a surface, is an example of a
function whose domain of definition is not a set of points. For example,

rf is a number that is determined by the pair (y, f) consisting of the
• y

smooth curve y and the continuous functionf, and defined by (8-55). Similarly,

the value of rr f is determined by the pair (L, f), and can therefore be
• '1:

regarded as a function of the pair; ¢(L, f) = rr f If L is held fixed, then
•• 1:

the value is determined by the choice off, and one might write aU) = rr f to
•• 1:

indicate that we are dealing with a numerical-valued function a whose domain
is the class of all continuous functions f defined on the trace of L. Again, if
f is defined in an open region Q of space, and we regard L as the variable,

we write F(L) = rr f, thus obtaining a function whose domain is the
•• 1:

class of smooth surfaces L having their trace in the region n.
The name" functional" is sometimes used for functions such as F and a

to distinguish them from the more usual type of function. We shall say that F
is a curve functional if its domain is a class of smooth curves with trace in a
specific open set; F will then assign the numerical value F(y) to any such curve y.
Likewise, F is a surface functional on the open set Q if F assigns the
numerical value F(L) to any smooth surface L whose trace lies in Q. For
emphasis, we will sometimes use" poin t function" for an ordinary numerical
valued function whose domain is the set of points Q itself. Finally, for
consistency, we introduce the term region functional for functions F whose
domain is the class of compact sets K c Q. Note that these are precisely the
set functions discussed in Sec. 8.2, of which the following is a typical example.

F(K) = JJJ 9
K

where 9 is a point function defined in Q.

We can also generalize this to n space. We would have functionals of
each dimension k = 0, 1, 2, ... , n. If k "# 0, k"# n, then a k-dimensional
functional F on an open set Q would assign a numerical value F(L) to any
smooth k-dimensional surface L whose trace lies in Q. (Recall that L itself
is a C mapping from a rectangle in Rk into n space.) When k = 0, we identify



,.. with an ordinary point function defined on n. and when k = ", we identify
F with Ihl..' Fel1l:ral sCi function defined on compact subsets of O. (In order
10 prcserv(' consislency. onc can introduce 7..ero-dimensional surfaces in " space
as maps which send the origin 0 into a point p in 1/ space. and II-dimensional
surfaces as maps which send a region in II space into ilself. point by point.)

In the theor) of intcgration of functions of one variable, one writes
.' .I f rather than I f in order to effect the orientation of the integral. We
a . Id. bl

speak of integrating "frorn II to IJ" rather than integrating "over the interval
.~ .b

[/I, h]." Moreover. we write I f = -I f Similarly. we can introdu(:e orientation
• b • Q

into the integral along a (·un·e. Let us use -;' for the curve which is obtained

by reversing the direction of ;'. so that if C = r..r then - C = J ,f.

Likewisc. we can introduce orientation into double integrals. or more
generally. into integration over surfllces. If D is a region in the (II. r) plane.
then D C',m be assigned onc of two orient<llions. corresponding intuitively to
the two "sides" of D. Stllted another way. a normal vector can point forward.
toward the viewer. or bllckward. away from the viewer. This. in turn. leads
to an accepted sense of "positive" rotation. It is conventional 10 assign the
term "positive"to a counterclockwise rotation. and "negative" to a clockwise
rotation. Oncea diTl..'Ction of positive rotation has been assigned to D, it. in turn,
indu(,'CS an orientation in the boundary curves of D. as indicated in Fig. 9-1; in
the standard description... trace each boundllry curve in a direction which
keeps the left hand in D." (Note thllt turning Dover hlls the effect of reversing
thc orientation.) When D has been oriented. - D will indiclIte the region

endowed with the opposite orienlation. When D is positively oriented. ff f has
•• D

its usual meaning. When the orientation of D is reversed. it is natural to

reljulre th.lt the ltl1cgral chllnge sign. thus. II f = -If f.
.. ~D .. D

"

/)

Fi~ur<' 9-1 ()nclllalioll.
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z

x
Right-hand system

(positive orientation)

Figure 9-2

y

y

z

(\
Left-hand system

(negative orientation)

x

In 3-space, a region 0 may be assigned one of two orientations. The
most familiar instance of this is in the choice of labels for the axes of a
coordinate trihedral. There are only two essentially different systems. They are
called" right-handed" or "left-handed"; as indicated in Fig. 9-2, they may be
distinguished by viewing the origin from the first octant. If the trihedral is
rotated so that the X axis moves to the position occupied by the Y, the Y to
the Z, and the Z to the X, then the direction of rotation will be counter
clockwise for a right-hand system, and clockwise for a left-hand system. We
choose, by convention, to call the right-hand system positive. Any other labeling
of the axes may be brought into one of the two that are shown, by a rotation.
This has the effect of permuting the labels cyclically; thus the positive systems
are XYZ, YZX, and ZXY, and the negative systems are Y XZ, XZY, and ZYX.
Just as the choice of orientation for a plane region whose boundary is a
simple closed curve y induces an orientation in y, and vice versa, so orientation
of a three-dimensional region whose boundary is a simple closed surface S
induces an orientation in S, and conversely. If 0 is a solid ball and S is the
sphere which forms its boundary, then, viewing S from outside, positive
orientation of 0 gives counterclockwise orientation of S, and negative
orientation of 0 gives clockwise orientation of S (see Fig. 9-3). Moreover, if the
direction of the normals to S is chosen to correspond to the local orientation
of S, then it will be seen that positive orientation of 0 goes with the fact
that the normals to S always point out of the region, while negative
orientation of 0 makes the normals point inward.

When a region 0 has positive orientation, we define the value of the
oriented integral of a function f over 0 to be the same as before; when 0 has

negative orientation, we define the value to be - rrr f If - 0 indicates 0
"'0

with the opposite orientation, then we have

JJJ f = -JJJ f
-0 0
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s

PositIve Oflentation
or the regIon n

Negative Orlcntation
o! the region !l

."
In the intq;ral of a function of one variable. the not,llion I f conveys..

the orientation of the interval of integration by means of the position of the
limits. a and h. In discussmg oriented multiple integrals. this device is no
longer possible. However. anOlher device is available. In the expression

rr n·\..r) rJx /(\".the symhol"dx {(r·· has hccnllsed so far only to eonvcy the
•• />

names of the varia hIes of integnil ion. let us use it now to convey the orientation
of D as well. writing" dx dr" when D has the same orientation as that of the X)'
plane. and "dy II.\"" when it has the oppositc orientation. Accordingly. the
e{lui-Ilion governing reversal of orientation in a double integral becomes

(9- II

"
..

This relation is emb<XJied in the symholic equation

d.r dx = -II.\" Ily

A similar device may he used in triple mtegrals_ The X, l: and Z axes
are positively orienled when they occur in one of the orders XYZ. YZX.
ZXY, and negati\l..'ly oriented in the orders XZl: ZYX. YXZ. Thus. we
may eOllVCY the orientation of a region over which iI triple integration is to
be performed hy writing "dxdyd:·' (or "dJ"d:dx" or "d:dxlly") when the
region has the same orientation as X YZ space. and "/Ix d: {J.r" (or "d: IIx dr"
or "dr IIx II:") when it has the opposite orientation. For example. We would
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have

JJJ f(x, y, z) dy dx dz = - JJJ f(x, y, z) dx dy dz

We observe that this relation is also consistent with the symbolic equation (9-2).
Since dy dx = -dx dy, dy dx dz = -dx dy dz. Again,

dy dz dx = dy(dz dx) = dy( -dx dz) = -dy dx dz

= - (-dx dy) dz = dx ely dz

It is not possible to put all curve-functionals into the form

F(y) = rf
• y

where the function f is independent of y. As we shall see, an example is
furnished by the class of functionals that are known as line integrals. These
form a special division of the more general category known as differential
forms. In n space, there are n + I classes of differential forms, called in turn
O-forms, I-forms, ... , n forms. In 3-space we shall deal with O-forms, I-forms,
2-forms, and 3-forms, while in the plane, we shall meet only O-forms, I-forms,
and 2-forms. For simplicity, we begin with the theory of differential forms
in the plane (n = 2), starting with the class of I-forms. These are also called
line integrals.

Definition I The general continuous Ijorm in the X Y plane is a curve
functional w denoted by

W= A(x,y)dx + B(x, y) dy

where A and B are continuous functions defined in a region n. rr y is a
smooth curve, with equation x = ¢(t), y = ljI(t), a ::; t ::; b, whose trace lies
in n, then the value which w assigns to y is defined by the formula

(9-3)
, b

w(y) = , [A(y(t))¢'(t) + B(y(t))ljI'(t)] dt
, a

The rule for computing w(y) can be stated thus: Given the differential
form wand a curve y, we "evaluate w on y" by substituting into w the
expressions for x, y, dx, and dy which are obtained from the equations of y,
following the familiar custom of replacing dx by

~~ dt = ¢'(t) dt
dt

and dy by ljI'(t) dt; this results in an expression of the form g(t) dt, which
,b

is then used as an integrand to compute I g(t) dt, where [a, b] is the domain ofy.
. a
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To put this in a more evident way, the value of w(y) is usually written

rw = r[A(x, y) dx + B(x, y) dy]
')' ','

and one speaks of integrating the differential form w along the curve y. If we
choose A = 1, B = 0, then w = dx, so that dx (and dy) are special I-forms.
For example, dx assigns to the smooth curve I' the value

. .b

I dx = I ¢'(t) dt = ¢(b) - ¢(a)
• )' . a

which is the horizontal distance between the endpoints of y. Since every
I-form can be expressed as a linear combination of dx and dy with function
coefficients, dx and dy are called the basic I-forms in the XY plane.

Let w = xy dx - / dyand let " be given by x = 3t2, Y = t3
, for °~ t ~ 1.

On I"~ we have
w = (3t 2)(t3 )(6t dt) - (t 3 )2(3t2 dt)

= (I8t 6
- 3t 8

) dt
. .1

Thus Iw=1 (18t 6 -3t8 )dt=¥-i=H
• y • 0

Let us compute the integral of the same I-form along the straight line
from (0,0) to (2,4). The equation for this curve is x = 2t, Y = 4t, °~ t ~ 1.
On 1', w = (2t)(4t)(2dt) - (4t)2(4dt) = -48t2 dt, so that

• 1

IW= f (-48t 2)dt= -16
• y • 0

As we shall show in Theorem 2, f w = f w whenever 1'1 and 1'2 are
• y 1 • Y2

smoothly equivalent curves. In this last example, for instance, we may also use
the parameterization y = 2x, x = x, °~ x ~ 2. Making this substitution
instead, we have on I'

and

w = x(2x) dx - (2X)2(2dx)

= -6x2 dx
. .2I (xydx-y 2 dy)= j (-6x 2)dx= -16

• y • 0

in agreement with the previous calculation.
Certain general properties of I-forms (line integrals) in the plane can be

seen at once from (9-3). Reversal of the orientation of a curve changes the
sign of the integral, since the direction of integration in the integral containing
dt will be reversed. We may state this in the form

J w=-fw
- y • y
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y

(0,1) I----E------, (1, 1)

(1,0) x Figure 9-4

If the curve 'Y is the union of a finite set of curves

'Y = 'Y1 + 'Y2 + ... + 'Yn

then rw = r w + f w + ... + r w
'Y 'y, 'Y2 'y.

As an example, let us compute the integral of w = xy dx + y2 dy along
the closed polygonal path which forms the edge of the unit square, 0 ::; x ::; 1,
0::; y::; 1 (see Fig. 9-4). We write

'Y = 'Y1 + 'Y2 + 'Y3 + 'Y4

where these are the four sides of the square. We evaluate each of the line

integrals r w separately. On 'YI> y = 0 and x = x, with x going from 0 to I;
• Yj

thus, on 'Y1, w = 0 dx + 0 = 0 and r w = O. On 'Y2' x = 1 and y = y, with y
• Y,

going from 0 to 1; thus,

w = (1)(y)O + y2 dy

. r1
and I w = y2 dy = 1. On 'Y3' Y = 1 and x = x, with x going from

• Y2 • 0

because of the orientation of 'Y3; thus,

w = (x)(I) dx + (1)0 = x dx

I to 0

o
and r w = r x dx = -1. Finally, on 'Y4' x = 0 and y = y, with y going from

• Y3 • 1

1 to 0, so that w = 0 + l dy and

,0

r w = I l dy = -~
• Y4 • 1
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Adding these, we have

Integration of a I-form is especially simple if it involves only one of the
variables. For example, let w = A(x) dx and let y be a smooth curve whose
starting point is (xo, Yo) and whose last point is (XI' YI)' given by X = ¢(t),
Y = l/J(t), 0 ~ t ~ 1. On y we have

w = A(¢(t))¢'(t) dt

so that
I

rw = r A(¢(t))¢'(t) dt
• y • 0

(9-4)

Making the substitution X = ¢(t), this becomes merely

• .XIIw=1 A(x)dx
• }' • Xo

(In particular, we note that the value of rw in this case depends only upon
• y

the location of the endpoints of y and not upon the rest of the trace of the
curve.) Comparable statements can be made for I-forms w = B(y) dy. (See
Exercises 6 and 7.)

The general I-form (line integral) in 3-space is

w = A(x, Y, z) dx + B(x, y, z) dy + C(x, y, z) dz

and the method of evaluating w(y) = rw for a curve y is the same. If y is
• y

given by X =¢(t), y =l/J(t), z =8(t), for 0 ~ t ~ 1, then we define the value
of the line integral by

rw = rA dx + B dy + C dz
• y • y

r
I dx f I dy

= A(¢(t), l/J(t), 8(t)) -d- dt + B(¢(t), l/J(t), 8(t)) d- dt
• 0 tot

.1 dz
+./0 C(¢(t), l/J(t), 8(t)) dt dt

As an illustration, let w =xy dx - Y dy + 3zy dz and y be: x =t2
, Y =t,

z = _t3
• On y, we have

w = (t 2 )(t)(2t dt) - (t)(dt) + 3( - t3 )(t)( - 3t 2 dt) = (9t 6 + 2t4
- t) dt

If the domain of y is [0, 1], then

. .1Iw = I (9t 6 + 2t4
- t) dt = i + ~ - 1

• y • 0
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Let us turn now to the theory of 2-forms. These will be a special class
of surface-functionals. In the case of 2-forms in the plane, the theory is
especially simple. As defined in Chap. 8, a surface in n space is a mapping
from a region D in the parameter plane into n space. When n = 2, the notion
of surface degenerates into the ordinary notion of a transformation T of the
plane into itself, and a smooth surface is such a transformation which is of
class C and whose Jacobian is never O. A simple smooth surface (surface
element) is thus a I-to-l continuous transformation with nonzero Jacobian,
which maps a region D of the (u, v) plane into a region in the (x, y) plane.
Since the Jacobian is continuous, it must be always positive in D, or always
negative in D; in the former case, T is orientation preserving, and in the
latter, orientation reversing. We may thus identify such a surface with its
trace in the (x, y) plane, oriented according to the sign of the Jacobian of T.
The notion of "surface" becomes simply that of an oriented region in the
plane. We adopt the following definition for 2-forms in the plane.

Definition 2 The general continuous 2jorm in the X Y plane is a region
functional denoted by

(9-5) w = A(x, y) dx dy

where the function A is continuous. If Q is a region (having area) in the
domain of definition of A, then the value which w assigns to Q is defined by

w(Q) = JJ A(x, y) dx dy
n

In line with our previous discussion, it is also natural to consider
expressions of the form A(x, y) dy dx; this is also a 2-form, but by means of
the convention that dy dx = - dx dy, we may replace it by - A(x, y) dx dy,
which is again of the form (9-5). The general 2-form in the plane becomes
merely the oriented double integral [see (9-1)].

The situation in 3-space is more complicated. In addition to the basic
2-form dx dy, we also have dy dz and dz dx; moreover, their coefficients may be
functions of three variables. Thus, the general 2-form in space becomes

w = A(x, y, z) dy dz + B(x, y, z) dz dx + C(x, y, z) dx dy

This is a surface-functional, and the value which it assigns to a surface L is

denoted by If w. However, we cannot explain the meaning of this symbol
. I

further, nor the method for evaluating it, without some additional machinery.
We complete the roster of differential forms in the plane by defining a 0

form to be merely any continuous function (= point function). In space, we
must also define 3-forms.
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Definition 3 The general continuous 3jorm in X YZ space is region
functional denoted by

w = A(x, y, z) dx dy dz

where the function A is continuous. If Q is a subset (having volume) of the
domain of definition of A, then the value which w assigns to Q is defined by

w(Q) = JJJ A(x, y, z) dx dy dz
Q

Thus, the 3-forms in space are oriented triple integrals; a 3-form in which
the order is not dx dy dz can be reduced to this form by permuting pairs.
The 3-form C(x,y,z)dydzdx is the same as -C(x,y,z)dydxdz and as
C(x, y, z) dx dy dz.

We next introduce an algebraic structure into the system of differential
forms by defining addition and multiplication of forms. Any two forms of the
same class are added by combining coefficients of like terms. For example,

(x 2 dx + xy2 dy) + (dx - 3y dy) = (x 2 + 1) dx + (xy2 - 3y) dy

(2x + y) dx dy + (xy - y) dx dy = (2x + xy) dx dy

(3dx + xyz dy - xz dz) + (y dx - dz) = (3 + y) dx + xyz dy - (xz + 1) dz

When two terms contain the same differentials, but in different orders, they
must be brought into agreement before adding their coefficients, using the
convention:

(9-6)

dx dy = -dy dx

dy dz = -dz dy

dz dx = -dx dz

For example,

(x dy dz + y2 dx dy + z dx dz) + (3dy dz - z dy dx + x 2 dz dx)

= (x dy dz + 3dy dz) + (y2 dx dy - z dy dx) + (z dx dz + x2 dz dx)

= (x + 3) dy dz + (y2 + z) dx dy + (z - x 2) dx dz

Multiplication of differential forms is governed by the rules set forth in
(9-6) and the following:

(9-7) dx dx = dy dy = dz dz = 0

Except for these conventions, and the necessity of preserving the order of
factors, multiplication can be performed as in elementary algebra. Stated in
different terms, the system of differential forms in 3-space is a linear associative
algebra whose basis elements are 1, dx, dy, dz, dxdy, dydz, dzdx, and dxdydz;
whose coefficient space is the space of continuous functions of three variables;
and whose multiplication table is specified by the relations (9-6) and(9-7).
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For example,

(2dx + 3xy dy)(dx) = 2(dx dx) + (3xy)(dy dx)

= 0 + (3xy)( -dx dy)

= -3xy dx dy

(2dx + 3xy dy)(x dx - y dy)

= (2x)(dx dx) + (3x 2y)(dy dx) + (- 2y)(dx dy) + (- 3xy2)(dy dy)

= 0 + (3x 2y)( -dx dy) + (-2y)(dx dy) + 0

= -(3x2y + 2y) dx dy

Taking a somewhat more complicated example involving three variables,

(x dx - z dy + i dz)(x 2 dy dz + 2dz dx - y £Ix dy)

= x3 dx dy dz + 2x dx dz dx - xy dx dx dy

- x 2z dy dy dz - 2z dy dz dx + yz dy dx dy

+ y2x 2 dz dy dz + 2y2 dz dz dx - / dz dx dy

= x 3 dx dy dz - 2z dy dz dx - y3 dz dx dy

= (x3 _ 2z - y3) dx dy dz

Such computations may be shortened by observing that any term which
contains a repetition of one of the basic differential forms dx, dy, dz will be O.
Accordingly, the product of two 2-forms in space, or in the plane, and the
product of a I-form and a 2-form in the plane are automatically O. In
general, the product of a k-form and an m-form is a (k + m)-form; if k + m
is larger than n, the number of variables, then there will be repetitions, and such
a product will be O. Since a O-form is merely a function, multiplication by a
O-form does not affect the degree of a form. For example,

Finally we define a notion of differentiation for forms. In general, if w
is a k form, its derivative dw will be a (k + I )-form. We give the definition of dw
for forms in 3-space.

Definition 4

1. If A is a O~form (function) of class C, then dA is the I-form

aA aA aA
dA = - dx + dy + a dzax ay z

11. If w is a I-form A dx + B dy + C dz whose coefficients are functions of
class C, then dw is the 2~form

dw = (dA) dx + (dB) dy + (dC) dz
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Ill. It w is a 2~form A dy dz + B dz dx + C dx dy whose coefficients are of
class C', thell dw is the 3-form

dw = (dA) dy dz + (dB) dz dx + (de) dx dy

In (ii) and (iii), dw is to be computed by evaluating dA, dB, and de,
and then computing the indicated products. Since dA is a I-form, (dA) dx is
indeed a 2-form and (dA) dy dz a 3-form. The derivative of a 3-form may be
computed in the same fashion, but since it will be a 4-form in three variables,
it will automatically be O. Differentiation of forms in two variables is done in the
same fashion. Some examples will illustrate the technique.

Form

A = x 2
.\'

A = xy + yz
w = x 2y dx

w = (xy + yz) dx

w = x 2y dy dz - xz dx dy

Derivative

dA = 2xy dx + x 2 dy
dA = y dx + (x + z) dy + ydz
dw = d(x 2y) dx

= (2xydx + x 2dy) dx
= _x2 dx dy

dw = d(xy + yz) dx
= (ydx + (x + z) dy + .I' dz) dx
= (x + z) dy dx + .I' dz dx

dw = d(x 2y) dy dz - d(xz) dx dy
= (2xy dx + x 2 dy) dy dz

- (z dx + x dz) dx dy
= 2xy dx dy dz - x dz dx dy
= (2xy - x) dx dy dz

This extensive barrage of definitions is partly justified and motivated by
the following result.

Theorem 1 If u = /(x, .1') and v = 9(x, .1'), then

(9-8)
8(u, v)

du dv = - - - dx dy
8(x, y)

We have du = /1 dx + /2 dy and dv = 91 dx + 92 dy, so that

du dv = (II dx + f2 dY)(91 dx + 92 dy)

= /Igl dx dx + /192 dx dy + /291 dy dx + f2 92 dy dy

= /192 dx dy + /291 dy dx = (I192 - f2 9d dx dy

=1/1 /2!dXdy =8CU,V)dXdY I
91 92 8(x, y)
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Recalling that the theorem on transformation of multiple integrals requires
one to replace du dl' by c(u, l')jc(x, y) dx dy when making the substitution
u = f(x, y), v = g(x, y), this theorem makes it possible to carry out such
substitutions by the same routine procedure that one uses in singlefold integrals.
For example, in Sec. 8.3 we considered the integral

rr exp ((x - y)j(x + y)) dx dy,
.• D*

where D* is the triangle bounded by x = 0, y = 0, x + Y = 1. We set u = x - y,
v = x + y, which maps D* onto another triangle D with vertices (0, 0), (1, 1),
(-1, 1). We have du = dx - dy, dl' = dx + dy, so that

du dl' = (dx - dy)(dx + dy) = dx dy - dy dx = 2dx dy

Accordingly, we have

rr exp (X - Y) dx dy = rr eU/t'~ du dl'
iJ: x + y v·

from which one may proceed as before to complete the problem.
It should be observed that (9-8) does not have the absolute value of the

Jacobian. The reason is that we can now make good use of the orientation of
double integrals (2-forms) in the plane; if c(u, l')jc(x, y) is negative, then the
corresponding mapping sending (x, y) into (u, v) will be orientation reversing,
and the formalism of (9-8) will assign the correct sign to the result of the change
of variable in the integral.

We are at last ready to explain the meaning to be attached to a 2-form in
3-space, and more generally, a k form in n space.

Definition 5 The general continuous 2:form in space is a surface-junctional
denoted by

w = A(x, y, z) dy dz + B(x, y, z) dz dx + C(x, y, z) dx dy

where A, B, and C are continuous functions defined in a region n. Let L be
a smooth surface with domain D defined by

Ix=iP(u,l')
. Y = ljJ(u, v)
I z = O(u, v)

(u, v) ED

whose trace lies in n. Then, the value which w assigns to L is defined by

JJ w = JJ {A(L(U, v)) dljJ dO + B(L(U, v)) dO diP + C(L(U, 1')) diP dljJ}
l: D

We note that again, rr w is computed by a straightforward process of
.. l:
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substitution; w is evaluated on the surface by using the equation for L and the
operations of differentiation and multiplication for differential forms. For
example, let w = xy dy dz + x dz dx + 3zx dx dy, and let L be the surface

On L, we have

lx=u+t'
, \' = u - v
j ~ = Ul'

O~u~l

O~v~1

dy dz = (du - d!')(v du + u dv) = (u + v) du dv

dz dx = (v du + u dr)(du + dv) = (v - u) du dv

dx dy = (du + dv)(du - dv) = - 2du dv

and

w = (u + r)(u - v)(u + v) du dr + (u + !'Hv - u) du dv + 3uv(u + 1')( -2) du dv
= (u 3 - 5u21' - 7uv2 - 1'3 + t,2 - u2) du dl'

so that

.. .1 .1II w = I du I (u 3
- 5u2t, - 7uv2 - 1'3 + 1'2 - u2) dv

.. '0 • 0
1:

,I

= I (u 3
- ~U2 - ~u + iz) du

'0

= -2

Again, let w be the same 2-form, and let L be the surface given by
z = x 2 + .1'2, with 0 ~ x ~ 1, 0 ~ y ~ 1. On L, dz = 2x dx + 2y dy, so that

dy dz = dy(2x dx + 2y dy) = - 2x dx dy

dz £Ix = (2x dx + 2y dy) dx = - 2.1' £Ix £1.1'

and on L we have

w = xy £1.1' dz + x dz dx + 3zx dx dy

= (xy)( - 2x dx dy) + x( - 2.1' dx dy) + 3(x2 + y2)X dx dy

= (3x 3 + 3x/- 2x2y - 2xy) dx dy

Thus, the integral of this 2-form over L is

.. .1 .1

II w = I £Ix I (3x 3 + 3xl - 2x 2y - 2xy) dy
.. . 0 '0

1:

,I

= I (3x 3
- x 2) £Ix = -fz

'0
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When two surfaces are parametrically equivalent, then a 2-form will assign
the same value to both. This, together with the analogous statement for line
integrals, is the content of the next theorem.

Theorem 2
i. If "h and 1'2 are smoothly equivalent curves and w is a continuous Ijorm

defined on the trace of the curves, then r w = r w.
• Yl • Y2

II. If L 1 and L 2 are smoothly equivalent surfaces, and w is a continuous

2-form defined on their trace, then ff w = rr w.
"II "I2

For (i), let us consider the I-form w = A(x, y, z) dx. We may assume
that Y2(t) = Ydf(t)), where f is of class C, and maps the interval [IX, /3],
which is the domain of 1'2' onto the interval [a, b], which is the domain
of'Yt- If we have x = </J(t) on 1'1' then x = </J(f(t)) on "'h. Computing the
integral of w along 1'2' we have

. .P dxI w = I A(Y2(t))-- dt
• Y2 • , dt

• P
= I A(ydf(t)))</J'(f(t))f'(t) dt. ,

In this ordinary definite integral, make the substitution s = f(t), and obtain

Jw = (A(Yl (s))</J'(s) ds = JW
Y2 a Y1

Similarly, one can show the same relation for the I-forms B dy and C dz,

and by addition, obtain f w = r w for a general I-form w.
• Y2 • YI

For (ii), we consider first a 2-form w = A(x, y, z) dx dy. Let L be a
surface with domain D1 on which we have x = </J(r, s), y = t/J(r, s),
z = 8(r, s), and let L 2 be a surface with domain D2 which is smoothly
equivalent to L 1 ; we may therefore assume that we have

L 2(U, v) = L1(T(u, v))

where T(u, v) = (r, s) describes a C transformation T mapping D2 onto
Db I-to-I, orientation preserving. Using the result of Theorem 1, we
evaluate w on L 2 :

a(x v)
w = A(L2(U, 1')) dx dy = A(L2(U, v)) '"') du dl'

a(u, v

a(x v)
= A(L1(T(u, r))) ..(--' 0) du dl'

au, r
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.. . . o(x y)
.1.1 w = .1.1 A(L!(T(u, v))) a(U:V) du dv
1:2 D2

In this, let us make the transformation of coordinates (r, s) = T(u, v).
Again applying Theorem 1, we have

fl' w = fl' A(Ldr, s)) ~(x,y) o(u,y) dr ds
.... o(u,v) o(r,s)
1: 2 D,

However, by the chain rule for differentiation,

so that

The expression o(x, y)/o(r, s) dr ds is, again by Theorem 1, equivalent to
dx dy on L!, so that we finally obtain

JJ w = JJ A(x, y, z) dx ely = JJ W

1: 2 1:, 1:,

Again, the theorem may be completed by considering the 2-forms B dy dz
and C dz dx, adding the results to arrive at the general case. I

So far, we have given no motivation for the consideration of integrals of
I-forms and of 2-forms. This will be done in Sec. 9.3, against a background
of classical vector analysis. We shall show that the value which a I-form w
assigns to the curve 'Y can also be obtained by integrating a certain function
f, constructed from both wand 'Y, along the curve 'Y. Similarly, the value which
a 2-form w assigns to the surface L can be obtained by integrating a function
F over the surface L, where again F depends both upon wand L. These integra
tions are carried out as in Sec. 8.6. The functions.f and F which arise are
defined only on the curve and on the surface; however, they arise from
"vector-valued" functions in a manner which is physically significant, and
which leads to important physical interpretations of the integrals involved.

EXERCISES

1 Evaluate r (x dx + xv dy) where
"

(a) y is the line x = t, Y = t, 0 ~ t ~ I.
(b) y is the portion of the parabola y = x 2 from (0,0) to (I, I).
(c) y is the portion of the parabola x = y2 from (0,0) to (I, I).
(d) y is the polygon whose successive vertices are (0,0), (1,0), (0, I), (1, I).
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2 Evaluate f (ydx - x dy) where
'y

(a) y is the closed curve x = t2
- I, .I' = t3

- t, -I 'S t 'S I.
(b) y is the straight line from (0,0) to (2,4).
(c) y is the portion of the parabola .I' = x 2 from (0,0) to (2,4).
(d) y is the polygon whose successive vertices are (0, 0), (- 2, 0), (- 2, 4), (2, 4).

3 Evaluate f (ydx + x dy) for the curves given in Exercise 2.
'y

4 Evaluate f (z dx + x 2 dy + .I' dz) where
'y

(a) y is the straight line from (0,0,0) to (I, I, I).
(b) y is the portion of the twisted cubic x = t, .I' = t2

, Z = t3 from (0,0,0) to (I, I, I).
(c) " is the portion of the helix x = cos t, .I' = sin t, z = t, for °'S t 'S 2n.
(d) y is the closed polygon whose successIve vertices are (0,0,0), (2,0, 0), (2, 3, 0), (0,0, I),

(0,0,0).

5 Evaluate f (2x dx + z dy + .I' dz) for the curves given in Exercise 4.
• y

6 If w = B(y) dy, show that f w = fY
' B(y) dy for any smooth curve " which starts at (xo, Yo)

• y • Yo

and ends at (Xl> .1',).

7 If w = A(x) dx + B(y) dy, show that fw = °for any closed curve y.
'y

8 Verify the following:
(a) (3x dx + 4.1' dy)(3x 2 dx - dy) = - (3x + 12x 2y) dx dy.
(b) (3x 2 dx - dy)(3x dx + 4y dy) = (3x + 12x 2y) dx dy.
(c) (x dy - yz dz)(y dx + xy dy - z dz) = (xy2z - xz) dy dz - y2z dz dx - xy dx dy.
(d) (x 2 dy dz + yz dx dy)(3dx - dz) = (3x 2

- yz) dx dy dz.
(e) (dx dy - dy dz)(dx + dy + dz) = 0.
(f) (dx - x dy + yz dz)(x dx - x 2 dy + xyz dz) = 0.

9 Show that

(A dx + B dy + C dz)(a dx + b dy + c dz)

= I: ~ Idy dz + I~ ;Idz dx + I: ~ Idx ell'

10 Show that

(A dx + B dy + C dz)(a dy dz + b dz dx + c dx dy) = (aA + bB + cC) dx dy dz

II Evaluate df if (a) f(x, .1', z) = x 2 yz; (b) f(x, .1') = log (x 2 + .1'2).

12 Let x = ¢(u, l", w), Y = I/J(u, v, w), z = O(u, v, w). Show that

iJ(x, 1', z)
dx dr dz =. , du dl' dw

- iJ(u, 1', w)

13 Evaluate dw where
(a) w = x2 r dx - yz dz
(b) w = 3x dx + 4xy dy
(c) w = 2xy dx + x 2 dy
(d) w=eXY dx-x 2ydy
(e) w = x 2ydydz - xzdx dy
(f) w = x 2z dy dz + y2 z dz dx - Xl'2 dx dy
(g) w = xz dy dx + xy dz dx + 2yz dy dz
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,
" I
'\ I-+-, I

:P'-' ---
,,/,,/ ,;-- ...,... (' . ,

,,/ )-... J..--'
/ .

/ ,
Figurt" 9-5

14 If '" ~ A(,'. r. :).Ix + B(x.,r. =J </1' + ('(x. .r. =) <1=. ,how lhllt

II","" ICl - BJ)dr./: + (A J - C l ) <1= ./x + IB, - A l ) aX </1'

IS If", _ All'. ,.. =) II,. tI: + Bit. ,.• .=) r/: IIx + C(t. r. =) tI.t dr. show th~ll

If) ["dullle rf (,- <1.,. tI: t .I .Ix '/l'). where.. ,
(,II r is lhe surf;le... lk,;critl<:d by 'I' = II + r. .I' = ll' - 1". Z = Ill'. O:s; r/:S; l. O:s; f :s; 1.
(h) r is the porrion of lhe cylinder .t' + 1" : I with 0 :s;: :s; I. oricl1ll'tl so lhal lhe l1orn131

is oUlw,lrd (IlW;1) from rhe Z <lxis~

(d r is the oo.,likc slirfal'C \<'hich is the union of Ii"c S<jUllfl"S. eHch side of 1e.1gth 1 Isee
""ig.9-5).

17 Verif) lhe roflowing .:alculalions with forms in fOUf \'<lriablcs:

(<I) (d., + ./1' - rI= + d... )(tI.• d,. + 2,/: II...)

_ 2 ,Ix ,1= <i'r + 2,1.1 ,Iz d,,' - '/-' '1.1' ,1= + ,1.'1' '(I' ,I ....

(h) t"-' d.r + .I,r d: - ,1=,/II'){\ d.• .1.1' + .1' 01= d,,') - (.I' - x) ./x '1.1' d= .Ill'.

(t') d(_.\ <I.r tilt' + .l~'" d.r tI= + x.1'='" .Ix ,(I') _ (-'.1'''' - ",1) ,Ix <1f d:

+ (2x.r + x)'z) ,Lt ,If II... + 2\w <Ix ,I: dl\'.

•'(.'1'. '-.:. ",)
(,/) d.• dr ,,: .III' - , ,/1',1.• ,II till

'(I'. '. I. I')

when A' = .p(r. $. I. II~ J' = lJI(r. S. I. II). 1 = 0(1'. $. r. ll). ,,': 1(1'. '.. I. II).

18 EIllluate H(_. I' <11' ,/; + ,.: ,It ,/".). where 1: is the Iwo-dimensi0l1ll1 surface in4-sp,ll'C described
"l

by,' = 1" + _.'. .r = I' - .\. : <: 1'.'. ". = I' + '. ami (I', ,s) obe)'S O:s; I' :<>. 1.0 S .• S I.
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9.3 VECTOR ANALYSIS

Since the purpose of this section is to show how one can translate between the
language and notation of the system of differential forms and that of vector
analysis, we shall not develop the latter in detail. Since the early years of this
century, there have appeared many texts which explain vector analysis in the
form used in engineering and physics; our discussion is therefore abbreviated.

Classical vector analysis is three-dimensional, and the reasons behind its
notation and form are historical, having roots in a desire to introduce more
algebraic structure into geometry. As we have seen, addition of points can be
defined for points of the plane, or of space, or, in general, for points in Rn

• If
P = (Xb X2' ... , xn) and q = (Yb Y2' ... , Yn), then

P + q = (XI + .J!!, X2 + Y2' ... , Xn + Yn)

We also defined the product of a point p by a real number A as the point
given by

AP = (Ax l , Ax2' ... , Axn )

It is natural to ask if there is a useful definition of multiplication for points such
that the product of two points in Rn is again a point in Rn and such that the
customary rules which govern the algebra of real numbers still hold for points.
The inner product (also called scalar or dot product) of two points, which was
defined in Sec. 1.2 by

p' q = XIJ,'I + X2.V2 + ... + xnYn

is not suitable, since the inner product of two points is a number (scalar)
and not a point.

It is well known that suitable multiplications exist when n = 2. For
example, one may define the product of two points in the plane by the
formula

(9-9)

Upon checking the various algebraic rules, it is found that under this definition
for multiplication, and the previous definition of addition, R 2 becomes what is
called a field (see Appendix 2). The motivation for (9-9) may be seen by making
the correspondence (a, b) +--+ a + bi between the plane and the field ofall complex
numbers. If P = (XI' x 2) corresponds to z = XI + iX2 and q = (YI' Y2) corres
ponds to w = YI + iY2' then we see that

zw = (XI + iX2)(,VI + iY2) = (Xl.VI - X2Y2) + i(Xd'2 + x 2yd
which corresponds to the point which is given as the product of P and q.

With this example in mind, one may attempt to find a similar definition
for multiplication of points in 3-space. By algebraic methods, it can be shown
that no such formula exists (still requiring that the ordinary algebraic rules
remain valid). However, going to the next higher dimension, Hamilton (1843)
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z

k

x y Figure 9-6

(9-10)

(9-11 )

discovered that a definition for multiplication of points in R4 could be given
which yields a system obeying all the algebraic rules which apply to real
numbers (i.e., the field axioms) except one; multiplication is no longer com
mutative, so that (pq) and (qp) may be different points. This system is called
the algebra of quaternions. It was soon seen that it could be used to great
advantage in the theory of mechanics. By restricting points to a particular
3-space embedded in R4

, Gibbs and others developed a modification of the
algebra of quaternions which was called vector analysis, and which gained
widespread acceptance and importance, particularly in physics and electro
magnetic theory. (A discussion of the mathematical background of this is found
in the book edited by Albert, and the historical details in the book by Crowe,
both given in the Suggested Reading List.)

Let i = (1,0,0), j = (0, 1,0), k = (0,0, 1). Any point in 3-space can be
expressed in terms of these three. If p = (a, b, c), then

p = ai + bj + ck

We define a multiplication operation x for points in R 3 by first defining it on
the basis elements i, j, k:

ixi=jxj=kxk=O

ixj=-jxi=k

jxk=-kxj=i

kxi=-ixk=j

(Note that the cyclic order i : j : k : i : j, in which the product of any neighbor
ing pair in order is the next, is consistent with the positive orientation of the
axes as shown in Fig. 9-6.)

We may use these equations, together with the distributive law, to obtain
a product for any two points. We have

(xli + x 2 j + X 3 k) x Chi + Y2j + .h k) = (xlyd(i x i) + (X lY2)(i x j)

+ (x lY3)(i x k) + (X 2Yl)(j x i) + (X 2Y2)(j x j) + (X2Y3)(j x k)

+ (x 3yd(k x i) + (x 3Y2)(k x j) + (x3Y3)(k x k)

= (X lY2 - X2Yl)k + (X 3Yl - X l Y3)j + (X2Y3 - X3Y2)i
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466 ADVANCED CALCULUS

We therefore adopt the following definition for the cross product of two points.
(Other names are vector product and outer product.)

Definition 6 If

p = (XI' X 2 ' X 3 ) = xli + x2j + x3k

and q = (VI' Y2, .V3) = .h i + Y2j + Y3 k

then p x q = (X2.V3 - x3Y2)i + (X3.h - XIY3)j + (x lY2 - x 2ydk

It is seen that the coordinates of p x q have simple expressions as
determinants, so that we may also write

p x q = I;: ;: Ii + I;:
or in an even more abbreviated form,

k

(where we expand by the top row).
As indicated, such a multiplication operation defined on R3 cannot obey

all the rules of ordinary algebra. In particular, x is not an associative product;
it is not in general true that p x (q x r) = (p x q) x r. For example,
(i x i) x k = 0 x k = 0, but

i x (i x k) = i x (- j) = - k

(We remark in passing that the algebra of quaternions is better behaved, for
multiplication there is associative. Any point p in 4-space is represented in the
form p = XIi + X2j + X3k + x41, where i, j, k, and I now denote the four basic
unit vectors determining the axes. The rule for multiplying quaternions is
described by giving (9-11), replacing (9-10) by i 2 = j2 = k 2 = -I, and saying
that I acts like a multiplicative unit, so that Ip = pi = p for every p. The
connection between vector analysis and quaternions is the relation

(9-13 ) pq = p x q - (p . q)1

which holds for any choice of p = Xli + x2j + x3k, q = Yli + J'2j + Y3k as
"spacelike" quaternions.)

One reason for the marked usefulness of vector analysis is that all the
operations have intrinsic geometrical interpretations. Thus, the sum of vectors
can be found by taking a set of directed line segments, representing the
vectors, and placing them in juxtaposition, head to tail, and constructing the
segment which connects the initial point of the first and the terminal point of
the last. The scalar product a . b of two vectors is the number Ia II b Icos 0,
where () is the angle between the vectors; thus, if b is a unit vector, a . b is the



projection of a in the direction specified by b. Finally, Ihe cross product of
two \·ectors a ami b is the vcctor c = a x b which is orthogonal to both a and
b. whose length IS la lIb Isin 0. <lnd such that Ihe trihedral a, b, cis right-handed.
To prove lhis stalement, we lirsl observe that two vel:!ors u and \. <Ire orthogonal
if ami (111)' if u' \. = O. Lei a and b be represented by thc points ((II' (12' u3 )

and (hi' h 2 , 1l3 ). Then. their eross product c will be represented, according 10
(9-12), b} tltl' point

(1'" ", I I", ", I Ia, ~: I)", 11 3 • ", hi ' ",
so thaI C' a = I~; a, I la, ", I Ia, a, Ia,h

3
(II + b I tl2 + h ",, >, ,

a, a, a,
~ a, a, a, ~O

b, ", b,

Similarly. c . b = 0, so Ihal a x b is orthogon<ll to a and 10 b. To lind the length
of e, we rc<:all thai

Il'1 2
= 1" 2

1/
3 1' + 11/3

III II' + 1111 112 1'11 2 11 2 h3 hI h] b2

= (oi + (I: + an(h; + hi + hj)- (lIl')1 + (/2b2 + (/)h))2

~ lal' Ibl' - (a· b)'
Using the formula for a' b. we oblain

1'1' ~ lal'lbl' -(lallbl '0' 0)'

~ lal'lbl'l' - <os' (I)
= lal21bl2 sin 2 (}

so thaI lei = la x bl = lallbl sin 0. (We also nOle thallhis number is Ihe area
oflhe parallelogram hil\·ing a and b for consecutive sides, as shown in Fig. 9-7.)
When a and b arc chosen from among the basis vcctors i, j, k, it is clear from

ax.

•
"a"- ~
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Figure 9-8 Velocity vector field.

the table (9-11) that a, b, and a x b form a positively oriented trihedral; for the
general case, see Exercise 3.

The fact that the definitions of sum, inner product, and cross product, given
originally in terms of the coordinates of the points, can also be given solely in
geometrical terms means that these operations have an invariant quality which
lends itself to the statement of physical laws. This invariance is inherent also
in the coordinate definitions. The inner product of two points, p and q, is an
algebraic function of their coordinates whose value is unchanged if the under
lying 3-space is subjected to any orthogonal linear transformation (rotation)
resulting in new coordinates for p and q.

Vectors are used in a variety of ways to represent physical quantities. With
its initial point at the origin, a vector merely describes a position in 3-space.
With its initial point at a point on a curve, the vector may represent the tangent
to the curve, or the center of the circle of curvature there. A vector-valued
function defined in a region D of space can be regarded as associating with
each point p E D a specific vector V(p), whose initial point is placed at p.
The resulting "vector field" or "direction field" in D might be used to model
a variety of different physical situations. As an illustration, suppose that a flow
of liquid is taking place throughout a region D. At each point of D, the liquid
has a particular velocity which may be described by a directed line segment
giving the direction and the speed of the motion. The vector-valued function
so constructed is called the velocity field of the liquid (see Fig. 9-8). More
generally, the directed line segment associated with the point p in the domain
of V may have its initial point not at p, but at some other point determined by p.
As an example of this, let g be a vector-valued function defined on an interval
as; t S; b, and whose endpoint describes a curve. Its derivative, g'(t), is a vector
which we may represent by the directed line segment whose initial point is the
point g(t) lying on the curve; this gives the customary picture of a curve and
its tangent vectors (Fig. 9-9).

All the results dealing with differentiation of functions and transformations,
presented in Chaps. 3 and 7, can be reinterpreted in terms of vectors when
limited to 3-space, but the more general treatment is needed for functions of
more than three variables. If F is a (scalar)-valued function of three variables,
then its differential dF can be regarded as a vector-valued function; it is
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Figure 9-9 Graph of a curve and its associated
tangen t vectors.

(9-14)

then called the gradient of F and is denoted by VF. A vector-valued function T
can be interpreted as a transformation of 3-space into itself. The differential
dT of T is a matrix-valued function. Thus, the" derivative" of a scalar function
is a vector function, and the" derivative" of a vector-valued function or vector
field is a matrix-valued function. We put some of this in traditional vector
form.

Definition 7 Iff is ~f class C, then its gradient is the vector-valued function

grad (.f) = fli +f2j + f3 k

= of i + of j + of k
ox oy oz

= Vf

In explanation of the last symbol, V is to be thought of as the vector
differential operator

V .0 .0 k O
=1 +J-+

ox oy oz

The gradient off at a point p may be represented by a directed line segment
with initial point at p. If we take any unit vector

then

(9-15 )

The differential of f (see Sec. 7.4) was (f1'/2 '/3], so that the expression in
(9-15) is the same as the value of the directional derivative off at p in the
direction (b l , b2 , b3 ). If v is any vector, and b is a unit vector, then v· b =
IvIcos 0 is the component of v in the direction b (see Fig. 9-10). Its greatest
value is IvIand is obtained when b is parallel to v.

Applying this remark to the present case, we see that the gradient off at p
is a vector whose component in a general direction b is the derivative off at p
in the direction b; accordingly, the gradient itself points in the direction of
greatest increase off, its magnitude is the value of this directional derivative,
and it is normal to the level surface off at p (Exercise 11).
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Figure 9-10

(9-16)

With any vector field V of class C, one may associate two other functions.
The first is called the divergence of V and is an ordinary scalar function.

Definition 8 [fV = Ai + Bj + Ck, where A, B, and Care (scalar)functions
of class C defined in a region n, then the divergence of V is

div (V) = Al + B2 + C3

aA aB ac
= -- + + _.-ax ay az
= v·v

We shall later recast this in a form which makes evident the geometrical
invariance of the divergence (Sec. 9.5). At the moment, we give only the
following algebraic justification. We may view V as defining a transformation
from (x, y, z) space into (r, s, t) space by means of the equations

lr=A(x,y,z)
, s = B(x, y, z)
j t = C(x, y, z)

The differential of this transformation is represented by the matrix

aA aA aA
- -- ---

ax ay az
aB aB aB

- --ax ay az
ac ac ac
- -

ax ay az

and the divergence of V is the trace of this matrix, that is, the sum of the
diagonal entries. This is known to be one of the invariants of a matrix, under
the orthogonal group of rotations of 3-space (see Exercise 12).

The second function associated with a vector field V is a vector-valued
function and is called the curl of V.
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Definition 9 if V = Ai + Bj + Ck where A, B, and Care (scalar)functions
of class C defined in a region n, then the curl of V is the vector-valued
function:

(9-17 )

curl (V) = (C 2 - B3 )i + (A 3 - Cdj + (B I - A2 )k

= (OC _ OB)i + (OA _ ~.~)j + (~1! _~~)k
oy oz oz ox ox oy

=VxV

The last expression is to be regarded as a convenient formula for the curl
of V and may be written as

j k

VxV=
0 0 0

.. -

ox oy OZ

A B C

The invariant nature of this will also be shown later on.
Many of the most important postulates of physical theory find their

simplest statements in vector equations. To cite only one example, one form
of the Maxwell equations is:

(9-18)

div (E) = p

div (H) = 0

oH
curl (E) = - ot

curl (H) = 4n(J + ~~)

One of the chief tools in the use of vector analysis in such applications is
a knowledge of certain standard identities. In the list below, we give a number
of these. All can be verified directly by substitution and computation.

If a = ali + a 2j + a3 k, b = bli + b2j + b3 k, and c = cli + C2j + c3k,
then

(9-19)

(9-20)

(a x b) . c = (b xc) . a = (c x a) . b

a l a2 a3

= bl b2 b3

CI C2 C3

a x (b x c) = (a· c)b - (a· b)c

Iff is a scalar function of class en, then

(9-21 )

(9-22)

curl (grad (.f)) = V x Vf = 0

div (grad (f)) = V . Vf= V 2f
o2f o2f o2f

= .... +--+-
ox2 oy2 OZ2
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If V = Ai + Bj + Ck is a vector field with components of class C, then

(9-23 )

(9-24)

div (curl (V)) = V· (V x V) = 0

curl (curl (V)) = V x (V x V)

= V(V" V) - [V 2 Ai + V2Bj + V2Ck]

= grad (div (V)) - V2V

If F and G are both vector-valued functions of class C, then

(9-25) div (F x G) = V . (F x G) = G . (V x F) - F " (V x G)

Let us now compare the system of vector analysis, as sketched above, with
the system of differential forms in three variables. We notice first that there is
a certain formal similarity between the multiplication table for the vector units
i, j, k given in (9-10) and (9-11) and the corresponding table for the basic dif
ferential forms dx, dy, and dz given in (9-6) and (9-7). In the latter, however,
we do not have the identification dx dy = dz which corresponds to the relation
i x j = k. This suggests that we correspond elements in pairs:

dx "
-I

dy dz
dy "

dz dx- J dz -k
dx dy

To complete these, and take into account O-forms and 3-forms, we adjoin one
more correspondence:

1 -1
dx dy dz

With these, we can set up a 2-to-l correspondence between differential forms
and vector- and scalar-valued functions. To any I-form or 2-form will corre
spond a vector function, and to any O-form or 3-form will correspond a scalar
function. The method of correspondence is indicated below:

A dx + B dy + C dz\ _ Ai + B" + Ck
A dy dz + B dz dx + C dx dyl J

f(x, y, z)\ f( )
f(x, .1', z) dx dy dzl- x, y, z

In the opposite direction, we see that a vector-valued function corresponds to
both a I-form and a 2-form, and a scalar function to a O-form and a 3-form.
To see the effect of this relationship, let

V = Ai + Bj + Ck and W = ai + bj + ck

Corresponding to V, we choose the I-form

v = A dx + B dy + C dz



(9-26)
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and corresponding to W, both the I-form and the 2-form

w = a £Ix + b dl' + c dz

w* = a dl' dz + b dz £Ix + c £Ix dl'

As shown in Exercises 9 and 10, Sec. 9.2,

vw = I: ;Idl' dz + I; :Idz £Ix + I: ~ I£Ix dl'

vw* = (aA + bB + cC) £Ix dl' dz

Reversing the direction of correspondence, and comparing these with (9-12),
we see that vw corresponds to V x Wand vw* to V . W. So a single notion of
multiplication among differential forms corresponds both to the inner product
and the cross product among vectors.

What vector operations correspond to differentiation of forms? Let us start
with a scalar function j; go to the corresponding O-form I, and apply d. We
obtain the I-form

elI=II £Ix + I2 dl' + I3 dz

which in turn corresponds to the vector function II i + I2 j + I3 k, the gradient
off Again, let us start from a vector-valued function

V = Ai + Bj + Ck

go to the corresponding I-form w = A £Ix + B dl' + C elz, and again apply d.
We obtain a 2-form which was shown in Exercise 14, Sec. 9.2, to be

dw = (C2 - B3) dl' dz + (A 3 - Cd dz £Ix + (B I - A2) £Ix dy

Upon comparing this with (9-17), we see that this corresponds to the vector
function curl (V). Finally, if we correspond to V the 2-form w* = A dl' dz +
B dz £Ix + C £Ix dy, and apply £I, we obtain the 3-form (A I + B2 + C 3) £Ix ely dz,
which corresponds in turn to the scalar function div (V). Briefly, then, the
single operation ofdifferentiation in the system of differential forms corresponds
in turn to the operations of taking the gradient of a scalar and taking the curl
and the divergence of a vector. This is indicated schematically in Fig. 9-11.

f ) f -. df ) grad (n
Scalar O-form I-form vector

function function

w dw curl (V)
~-form 2-form vector function

V
vector

function ________

dw
.

div (V)w
2-form 3-form scalar function

Figure 9-11
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Some of the identities in the list given earlier correspond to simple state
ments about forms.

Theorem 3 If w is any differential form of class en, then ddw = 0.

This holds in general when w is a k form in n variables. We shall prove
it when w is a I-form in three variables. Let w = A(x, y, z) dx. Then

aA aA aA
dw=d(A)dx=-dxdx+ dydx+ a- dzdx

ax ay z

and

aA aA
. - dy dx +- dz dx
ay az

ddw = d (aA) dy dx + d (aA) dz dx
ay az

a2 A a2 A
= --- dz dy dx + -- dy dz dx = °

az ay ayaz

using the equality of the mixed derivatives and the fact that

dydzdx= -dzdydx

A similar argument holds for B dy and C dz. I (See also Exercise 18.)

Using the relations shown in Fig. 9-11, we see that the statement ddf = 0,
holding for a O-form f, corresponds to the vector identity curl (grad f) = °
[see (9-21)] and the statement ddw = 0, holding for a I-form to the vector
identity div (curl V) = °[see (9-23)].

Our final connections between vector analysis and differential forms will
be made by relating the integral of a form to integrals of certain scalar functions
which are obtained by vector operations.

Theorem 4 Let F = Ai + Bj + Ck define a continuous vector field in a
region n of space, and let w = A dx + B dy + C dz be the corresponding
I-form. Let 'J' be a smooth curve lying in n. Let F T be the scalar junction
defined on the trace of y whose value at a point p is the component of F
in the direction of the tangent to y at p. Then,

r F T ds = r w = r (A dx + B dy + C dz)
• y • y • y

The first integral is the integral of a numerical-valued function along
the curve y, as discussed in Sec. 8.6. It should be noticed that the function
F T is defined only for points on I"~ although F is defined throughout n.
We may assume that " is parametrized by arc length, so that the tangent
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vector to y at p = y(s) is v= y'(s) and Ivl = 1. The component of F along
v is then

FT=F'v

( . k) (dX dy. dz k)= Ai + BJ + C . ds i + J; J + ds

dx dy dz
= A- + B-- + C --

ds ds ds

. .1 (dX dy dZ)
1 F T ds = I A - + B - + C -- ds
• y • 0 ds ds ds

Comparing this with the definition of the integral of a I-form (9-4), we see
that

r FT ds = r w I
• y • y

The situation for integrals of 2-forms is similar.

Theorem 5 Let F = Ai + Bj + Ck define a continuous vector field in a
region n, and let w = A dy dz + B dz dx + C dx dy be the corresponding
2-form. Let L be a smooth surface lying in n. Let FN be the scalar function
defined on the trace of L whose value at a point p is the component of F in
the direction of the normal to L at p. Then

JJ FN dA = IJ w = IJ (A dy dz + B dz dx + C dx dy)
~ ~ ~

Let L have domain D in the (u, v) plane. By (8-47), the normal to L
at the point p = L(U, v) is

n(u v)= (~(~~:l a(z,x) a(x,y))
, a(u, v)' a(u, v)' a(u, v)

so that the normal component of F at p is

A ~(y~) + B ~.~~ + C a(x, y)
F _ ~~!! _ a(u, v) a(u, v) a(u, v)

N - Inl - In(u, v)1

Thus, according to the definition given in (8-58),

JJ FN ciA = JJ FN(L(U, v)) In(u, v)1 du dv
~ D

_ 1'1' ( a(y, z) a(z, x) C a(x, y)) d d- A--+B--+ --- u v
.. a(u, v) a(u, v) a(u, v)
D
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Using Theorem 1, Sec. 9.2, this may be written as

JJ FN dA = JJ A dy dz + B dz dx + C dx dy = JJ w I
I: I: I:

To show how such integrals arise, let V be the vector-valued function
which describes the velocity field of a liquid which is flowing throughout a
region n, and let F = pV, where p is the scalar function which gives the density
distribution of the liquid in n. Let L be a smooth orientable surface (for
example, a portion of the surface of a sphere) lying in n. At any point on L, F N

measures the rate of flow of mass across L in the direction of the normal. The

integral rf F N dA is then the total mass of fluid which passes through L, per
. I:

unit time. Again, let y be a smooth curve lying in n. At a point lying on y,
VT is the component of the velocity of the fluid taken in the direction of the

tangent to y. The integral f VT ds is then a measure of the extent to which the
y

motion of the fluid is a flow along the curve y. If y is a closed curve, then f VT
• y

is called the circulation around y.
Integrals of the same sort also arise in mechanics, especially in connection

with the notion of work, in thermodynamics, and in electromagnetic theory.
(See J. C. Slater and N. H. Frank, "Introduction to Theoretical Physics,"

1974; J. A. Stratton, "Electromagnetic Theory," 1941; and P. M. Morse and
H. Feshbach, "Methods of Theoretical Physics," 1953, all published by
McGraw-Hill Book Company, New York.)

EXERCISES

I Let a = 2i - 3j + k, b = i - j + 3k, e = i - 2j. Compute the vectors (a x b) . e, a x (b x c),
(a x b) x e, a x (a x b), (a + b) x (b T c), (a· b)e - (a· e)b.

2 If a, b, and e are position vectors, show that the vector n = a x b + b x e + e x a is a normal
to the plane through the points a, b, e.

3 Three points Pj = (x j ' Yj' Zj) which do not lie in a plane through the origin determme a trihedral-- -with sides Op" 0P2' Op, which has positive orientation if and only if

Using this, show that the vectors a, b, and a x b form a trihedral having positive orientation,
unless a and b are parallel.

4 Given vectors a and b, and a real number k, when is there a vector v such that a x v = band
a • v = k?
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5 Define a sequence of vectors {P.} by PI = a, P2 = i, P, = a x i, P4 = a x P" and in general,
P.+ I = a x P.· What is the ultimate behavior of the sequence?

6 If f and g are vector-valued functions of a single variable, show that

d (f. g) = (~f) . g+ f. (~g)
dt dt dt

and Ii (f x g) = (d f) x g+ f x (~g)
dr dr dr

7 If f is a vector-valued function of one variable, and If(t)1 = 1 for all r, show that f(r) and
f(r) are always orthogonal. Does this have a simple geometric interpretation?

8 Show that the curvature of a curve y at the point y(c) is

I/(c) x y"(c)1
k = ------

I/(cll'

9 Show that the normal to the surface r can be defined by [see (8-47))

10 Let P = (x, y, z) and r = Ipl. Find the gradient of the functions r 2
, r, l/r, rm

, and log r.

II Show that the gradIent vectors for f are orthogonal to the level surfaces

f(x, y, z) = c

'12 Let A be the square matrix [au] and let B be a nonsingular matrix. Set A* = B- IAB. Show
that the trace of A (the sum of the diagonal entries) is the same as that of A*.

13 Verify identities (9-19) and (9-20).

14 Verify identities (9-21) and (9-23).

15 (a) Verify identity (9-22).
(b) Show that iff and 9 are scalar functions of class C, then

16 Verify (9-24).

17 Verify (9-25).

18 Prove Theorem 3 when w is a O-form, and when w is a 2-form in four variables.

19 Show that div (gradf x grad g) = O.

20 Let a = (aI' a2. a,), b = (b l, b2, b,), and c = (c l , C2• c,) be three vector functions defined in n.
Put Cl = I a; dxi , P= I bi dxi • Y = I Ci dx i , and show that ClPy = {(a x b)' c} dx, dX 2 dx, [see
(9-19)).

9.4 THE THEOREMS OF GREEN, GAUSS, AND STOKES

The important theorems which form the subject of this section deal with
relations among line integrals, surface integrals, and volume integrals. In the
language of general differential forms, they connect an integral of a differential
form w with an integral of its derivative dw. The theorems named in the title
of the section are the special cases in 3-space of what is called the generalized
Stokes' theorem, which takes the following form.
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Theorem 6 Let w be a k form defined in an open region Q of n space, and
let M be a suitably well-behaved k + l~dimensional surface (manifold) in Q.

Then,

(9-27) f ... JJ w = J... JJ dw
M

where the integral on the left is kjold, and that on the right is
k + I-fold.

If n = 2, and k is chosen as 1, Theorem 6 becomes:

Green's Theorem Let D be a suitably well-behaved region in the plane whose
boundary is a curve aD. Let w be a ljorm of class C' defined in D. Then,

(9-28) f'DW= JJ dw
C D

If n = 3 and k IS chosen first as 1 and then as 2, Theorem 6 becomes In

turn:

Stokes' Theorem Let L be a suitably well-behaved orientable surface whose
boundary is a curve aL. Let w be a ljorm of class C' defined on L. Then

Divergence Theorem (Gauss) Let R be a suitably well-behaved region in
space whose boundary aR is a surface. Let w be a 2:form of class C' defined
on R. Then

JJ w = fJJ dw
('1R R

The qualification" suitably well behaved" which occurs in each statement
is inserted to indicate that it is convenient to impose some restrictions upon
the regions, surfaces, and curves on which the integration is carried out. The
exact nature of these restrictions is chiefly dependent upon the tools which are
employed to prove the theorem. In most of the simpler applications of these
theorems, one encounters only the nicest of curves and surfaces; for these, the
proofs which we shall give are sufficient.

Let us begin by proving a special case of Green's theorem.
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I
([' ----I----.-..-~

I
I

({ b
Figure 9-12

(9-29)

Theorem 7 Let D be a closed convex region in the plane, and let w =
A(x, y) dx + B(x, y) dy with A and B of class C in D. Then,

. .. If (aB aA), A dx + B dy = II dw = - - -- dx dy
. 'D ••• ax ay

, D D

The assumption that D is convex allows us to describe D in two ways
(see Fig. 9-12). If the projection of D onto the horizontal axis is the closed
interval [a, b], then D is the set of all poin ts (x, y) such that

a~x~b

f(x) ~ y ~ g(x)

where g andfare the continuous functions whose graphs form the top and
bottom pieces of the boundary of D. Likewise, if[a', b'] is the projection of
D upon the vertical axis, D is the set of points (x, y) such that

(9-30)
a' ~ y ~ b'

F(y) ~ x ~ G(y)

Thus

Since r w = r A dx + r B dy, we may treat each part separately.
. aD • aD • aD

Suppose that w = A(x, y) dx. On )'1' the lower part of aD, y = f(x),
a ~ x ~ b, and w = A(x,f(x)) dx.

I' .b
• W = LA(x,f(x)) dx
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On r2' the upper part of aD, y = g(x) and x goes from b to a. Thus,
w = A(x, g(x)) dx and

• • a • bI w = I A(x, g(x)) dx = -I A(x, g(x)) dx
• Y2 • b • a

On the vertical parts of aD, if any, w = O. Adding, we find

r W= r Adx= ([A(X,f(X))-A(X'9(X))]dX
• rD • iJD • a

On the other hand, dw = d(A(x, y) dx) = A 2 (x, y) dy dx, so that

rr dw = rr A2(x, y) dy dx
". ...
D D

= - JJ A2 (x, y) dx dy
D

b g(x)

= - Jdx J A2(x, y) dy
a f(x)

b

= - r [A(x, g(x)) - A(x,f(x))] dx
• a

Comparing the two results, we have r w = Jr dw. A similar computation,
• iJD • D

using (9-30), shows that the same relation holds if w = B(x, y) dy, and
adding these, we obtain the formula for a general I-form. I

In generalizing this theorem, we first remark that the proof used only the
fact that D could be described both in the form (9-29) and in the form
(9-30). Such regions need not be convex, as is shown by the region given by:
x 2: 0, Y :::; x 2

, y 2: 2x 2
- 1. For such regions, we shall use the term "standard

region." Suppose now that D is itself not standard, but is the union of a finite
number of standard regions such as shown in Fig. 9-13. Green's theorem holds
for each of the regions Dj so that

LD W = JJ dw
J Dj

and adding, we have

r w + r w + ... + r w = JJ dw + JJ dw + ... + JJ dw
• iJD, • iJD2 • rD. D, D

2
D.

= JJ dw
D
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Fillun' 9-13

However, rn adding the line integrals on the left. only the terms which arise
from paris of the boundary of D will remain. A curve ~- which forms a pOri ion
of tDj but not of (~D will also appear as part of the boundary of one of the
other standard regions: moreover. il will appear with the opposite orientation.

so that the sum of the corresponding line integrals will be .1';. ILl + J"tv = O.

This type of argument shows that Grccn's theorem is valid for regions D which
can be expressed as the union of il finite number of standard regions. Finally.
one may extend the theorem still further by considering regions D which arc
the limits. in ,I sui!;lblc sense. of such regions.

One may generalize Theorem 7 in another way_ Lei T be a continuous
transformation from the (11.1") plane into the (x. .r) plane which maps a sel D
onto a set D*. Suppose that Green's theorem is valid for the set D. Docs it
then hold for the set D*-! To obtain an answer for this question. we must
discuss the behavior of differential forms under a general transformation. Let
us assume that Tis I-to-I and of cl<lsS ("" in D. and is given by

Jx = ¢(II. 1')
1.1' = rb(lI. 1")

We usc these equations to transform any differential form in the X Y plane
into a differential form in the (/1' plane. To effect the transformation. we
replace x and y wherever they appear by l' and rb. respectively_ For eX<llllple.
<l O-form f(x. J) is transformed into Ihe O-form

f*(II. I') = .f(¢(II, 1"). rb(l/, 1"))
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a i-form w = A(x, y) dx + B(x, y) dy is transformed into the I-form

w* = A*(u, v) d¢ + B*(u, v) dljJ

= A*(u, v)[¢du, v) du + ¢2(U, v) dv]

+ B*(u, v)[ljJdu, v) du + 1jJ2(U, v) dv]

= [A*(u, V)¢I(U, v) + B*(u, V)ljJl(U, v)] du

+ [A*(u, V)¢2(U, v) + B*(u, V)1jJ2(U, v)] dv

where A* and B* are the O-forms obtained by transforming A and B.
As an illustration, let T be given by x = u2 + v, Y = v, and let

w = xy dx

Then, w* = (u 2 + 1')(1') d(u 2 + v)

= (u 2v + v2 )(2u du + dv)

= 2(u3v + uv2
) du + (u 2v + 1'2) dv

Likewise, a 2-form such as (J = xl dx dy in the (x, y) plane is transformed by
substitution into a 2-form in the (u, v) plane given by

(J* = (u 2 + v)(vf(2u du + dv)(dv)

= (2U 3 V2 + 2uv3
) du dv

In this illustration, we have a relationship between an arbitrary transforma
tion T mapping the (u, v) plane into the (x, y) plane, and another transforma
tion, which we shall call T*, that acts on differential forms in the (x, y) plane
and changes them into differential forms in the (u, v) plane. This is sometimes
indicated as in Fig. 9-14; observe that T* acts in a direction opposite to T,
and that T* is not a point mapping, but is applied to k forms. T* can
be called the substitution mapping on forms induced by the point mapping T,
with T*(w) = w*.

A key property of T* is given in the next result, which shows that T*
and the differentiation operator d commute. We can illustrate it again with the
transformation used above and the I-form w = xy dx. Recall that we had found

T*(w) = w* = 2(u3v + uv 2
) du + (u 2v + 1'2) dv

v
T

u

T*

y

x

Figure 9-14
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Suppose we compare (dw)* and d(w*).

d(w*) = 2(3u2v du + u3 dv + v2 du + 2uv dv) du + (2uv du + u2 dv + 2v dv) dv

= 2(u3 + 2uv) dv du + (2uv) du dv

= (2u3 + 4uv - 2uv) dv du = (2u3 + 2uv) dv du

On the other hand, we have

dw = d(xy dx) = d(xy) dx

= (x dy + y dx)(dx) = x dy dx

and applying T*, we have

T*(dw) = (dw)*

= (u 2 + v)(dv)(2u du + dv)

= 2u(u2 + v) dv du

which agrees with d(w*); (dw)* = d(w*).
The next theorem proves that this is true in general.

Theorem 8 If w is a differential form of class C', then

(9-31 ) T*(dw) = (dw)* = d(w*) = dT*(w)

Let T be a transformation of class C" from (u, v) space into (x, y, z) space,
described by

!x=<p(u,v)
\. y = t/J(u, v)
jz=lJ(u,v)

In the same fashion as before, we may use T to transform differential forms
in the variables x, y, z into forms in u, v, and we shall use w* to denote the
form obtained by transforming w. To begin with, suppose that w is a
O-form /(x, y, z). Its transform w* will then be the O-form

w* = f*(u, v) = /(<p(u, v), t/J(u, v), lJ(u, v))

Differentiating this, we obtain the I-form

If we differentiate w bl!fore transforming, we obtain the I-form

dw = fl dx + f2 dy + /3 dz

and the transform of this is the I-form

(dw)* = fd<pI du + <P2 dv) + f2(t/JI du + t/J2 dv) + /3(lJ I du + lJ2 dV)

= (f1<PI + /2t/JI + f3 lJd du + (f1<P2 + f2t/J2 + /3 lJ2)dv
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This agrees with the expression for d(w*), and we have shown that the
relation d(w*) = (dw)* holds for O-forms.

Let us suppose now that w is the I-form A(x, y, z) dx. Its transform
will be the I-form

w* = A[<PI du + <Pz dl']

= A<PI du + A<P2 dl'

Differentiating this, we obtain the 2-form

d(w*) = fa~ (A<PI) du + :l' (A<Pd dl' ~ du

+ f1u (A<P2) du + :l' (A<P2) dl' ~ dl'

r:u (A<P2) - :l' (A<Pd1du dl'

r 8A 8A I
[A<PlZ + <Pz 8~ - A<P21 - <PI al' J du dl'

= f<PZ ~~ - <PI ~~1du dl'

making use of the fact that T is of class C' and thus <P12 = <P21' We
compute 8Ajau and 8Aj8l' by the chain rule.

8A
au = AI<PI + Az!/JI + A3 81

8A
a; = AI<P2 + Az!/Jz + A3 8z

so that

Thus

If, on the other hand, we differentiate w before transforming, we have

dw = (AI dx + Az dy + A3 dz) dx

= Az dydx + A3 dzdx
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If we transform this, and use Theorem 1, we have

so that

dy dx = aev.~) du dv = /l/J 1
a(u, v) ¢1

dz dx = ~.:~xl du dv = Ie1
a(u, v) ¢1

(dw)*=J A2 !l/Jl l/J2!+ A3 I
e1

e21}dUdV
\ ¢1 ¢2 ¢1 ¢2

Since this agrees with the expression for d(w*), we have shown that
d(w*) = (dw)* holds when w = A(x, y, z) dx. A similar computation shows
that the relation is valid also for the I-forms B dy and C dz, and we have
thus shown that it holds for any I-form.

A comparable direct verification may also be made when w is a 2-form
such as A(x, y, z) dy dz. Rather than carry this out, we shall use an
inductive method which proves the theorem for differential forms in n
variables. We make use of two special formulas. Forms are transformed
by T by replacing x, y, z, ... wherever they occur by ¢, l/J, e, ... , and then
simplifying the result by means of the algebra of forms. Thus, if r:x and f3
are any two forms, then

(9-32) T*(r:xf3) = (r:xf3)* = r:x*f3* = T*(r:x)T*(f3)

The second formula expresses the manner in which the differentiation
operator acts on products of forms.

Lemma 1 If r:x is a k form and f3 any differential form, then

(9-33 ) d(r:xf3) = (dr:x)f3 + (- Itr:x(df3)

We prove this by induction on the dimension of r:x. Suppose that r:x
is a O-form, and thus r:x = A(x, y, .. .), an ordinary function, and suppose
that f3 = Ba, where B is a function and a is a product of pure differentials
(e.g., a = dx dz dw). Then, r:xf3 = ABa, and

d(r:xf3) = d(AB)a = {(Ax B + ABx) dx + (A yB + ABy) dy + .. ·}a

= (AxB dx + AyB dy +. ··)a + (ABx dx + ABydy + ···)a

= (Ax dx + Ay dy + .. ·)Ba + A(Bx dx + By dy + .. ·)a

= (dA)(Ba) + A(dB)a = (dr:x)f3 + r:x(df3)

verifying (9-33) for the case when r:x is a O-form. We now verify (9-33) if
r:x is the I-form dw (or any other single basic differential). As before, take
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fJ = B(J, where (J is a product of basic differentials. Then, afJ = (dw)B((J) =
B(dw)((J), and

d(afJ) = (dB)(dw)((J) = (B x dx + By dy + .. ·)(dw)((J)

= - (dw)(Bx dx + By dy + .. .)((J)

= - (dw)(dB)((J) = - a(dfJ)

But, this verifies (9-33) for this case, since k = 1 and da = d(dw) = o. More
generally, if a = A dw, then afJ = AB(dw)((J),

d(afJ) = d(AB)(dw)((J) = [(dA)B + A(dB)](dw)((J)

= (dA)B(dw)((J) + A(dB)(dw)((J)

= (dA)(dw)B((J) - A(dw)(dB)((J)

Thus,

(9-34) d(afJ) = (da)fJ - a(dfJ)

as required by (9-33).
Knowing that (9-33) holds for k = 0, 1, we use induction to complete

the proof. Assume now that (9-33) has been verified when a is any differential
form of dimension less than k, and let a be a k form. We may suppose
that a = y dw, where y is a form of dimension k - 1, and where dw is one
of the basic differentials present in a. Then, by the inductive assumption,

da = d(y dw) = (dy) dw + (- I t-1y d(dw)

= (dy)(dw) + 0 = (dy)(dw)

Also, for any form fJ, we have, from (9-34),

(9-35) d((dw)fJ) = d(dw)fJ - (dw)(dfJ)

= 0 - (dw)(dfJ) = - (dw)(dfJ)

Finally, afJ = (y dw)fJ = y((dw)fJ), so that, again by the inductive as
sumption and (9-35),

d(afJ) = (dy)(dwfJ) + (_I)k-ly d((dw)fJ)

= (dy)(dw)fJ + (_I)k-l( -1)y(dw)(dfJ)

= (da)fJ + (-lta(dfJ)

which is (9-33). I

With this lemma established, we complete the proof of Theorem 8.
Suppose we know that the relation (9-31) holds if w is either of the dif
ferential forms a and fJ; we will show that it also holds if w = afJ. By (9-32),
w* = a*fJ*. Since (9-31) holds for a and fJ, d(a*) = (da)* and d(fJ*) = (dfJ)*.
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Using these, together with the lemma, we have

d(w*) = d(a*fJ*) = d(a*)fJ* + (-l)ka* d(fJ*)

= (da )*fJ* + (- 1fa*(dfJ)*

= [(da)fJ]* + [(-l)ka(dfJ)]*

= [(da)fJ + (-l)ka(df3)]*

= [d(afJ)] *
This shows that if (9-31) holds for any two differential forms w, it holds
for their product. Since it holds for O-forms and for the basic I-forms dx,
dy, dz, etc., and since any differential form is built from these by multi
plication and addition, (9-31) holds for any choice of w. I

Having shown that differentiation of differential forms commutes with the
substitution operator T*, we at once obtain a useful extension of Green's
theorem, which will be a guide for other extensions of various forms of the
generalized Stokes' theorem.

Theorem 9 Let T be a transformation which is 1-to-1 and of class C in a
closed bounded region D, mapping D onto D*. Then, if Green's theorem holds
for D, it holds for D*.

We take D as a set in the (u, v) plane whose boundary is a curve y.
T carries D into the set D* in the (x, y) plane, and y into the boundary
y* of D*. Let w be any I-form in the (x, y) plane of class C, and let T
transform w into the I-form w*. T will also transform the 2-form dw into
a 2-form (dw)* in u and v. The results in Sec. 8.3 dealing with transforma
tion of integrals give at once the formulas

(9-36)

rw* = f w
• y • y*

JJ (dw)* = JJ dw
D D'

By assumption, Green's theorem holds in D; thus, applying it to the I-form
w*,

(9-37) rw* = rr d(w*)
'y 'n

By the fundamental relation (9-31), d(w*) = (dw)*. Combining this with
(9-36) and (9-37),

fy,w = Jyw* = JJ (dw)* = JJ dw
D D'

and Green's theorem holds for D*. I
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This same technique gives another proof of the formula for change of
variable in double integrals in a more general form.

Theorem 10 Let T be a transformation of class en defined by x = 4>(u, v),
y = t/J(u, v), mapping a compact set D onto D*. We assume that D and D*
are finite unions of standard regions and that T is I-to-I on the boundary
of D and maps it onto the boundary of D*. Let f be continuous in D*. Then,

\
"f r" 8(x y)" f(x, y) dx dy = . .1 I(4)(u, v), t/J(u, v)) 8(u: v) du dv

D' D

As we have seen in Sec. 8-3, the difficult step is to show that this holds
when I(p) is constantly I:

rr dx dy = A(D*) = rr 8((X,Y)) du dv
"" "" 8 u, V
D' D

Consider the special I-form w = x dy. This is chosen because dw = dx dy,
so that by Green's theorem,

A(D*) = rrdw = r w
". "i'D'
D'

Writing this as an ordinary singlefold definite integral, and applying the
formula for change of variable in this case (Sec. 4.3, Theorem 8), we obtain

A(D*) = r w*
" oD

Applying Green's theorem to D, and the fundamental invariance relation
(9-31), we have

A(D*) = JJ d(w*) = JJ (dw)*
D D

Since dw = dx dy,

(dw)* = d4> dt/J = 14> I 4> 2 1du dv = 8(.x-, y) du du. I
t/JI t/J2 8(u, v)

We note that this form of the change-of-variable theorem is in certain
respects more general than that obtained in Sec. 8.3. Here, the Jacobian of T
is not required to have constant sign, provided that the integral for A(D*) is
understood to be an oriented integral. To offset this, the transformation Twas
required to be of class C'.
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Next, we proceed to give a proof of Stokes' theorem by reducing it to an
application of Green's theorem.

Theorem 11 Let l: be a smooth surface of class C' whose domain D is a
standard region, or a finite union of standard regions, in the UV plane. Let

w = A dx + B dy + C dz

where A, B, and C are of class C on l:. Then,

. "1' (OC OB) (OA OA)I A dx + B dy + C dz = - - - dy dz +- - - - dz dx
. f'"f. • • oy oz oz ox

"f.

The line integral on the left is r w, while the surface integral on the
'c"f.

right is r,. dw. It should be noticed that this becomes Green's theorem
•• "f.

if the surface l: is taken as the region D in the X Y plane; C =°and
dz = 0, so that the differential form in the right-hand integral becomes
(oB/ox - oA/oy) dx dy. The proof of the theorem is almost immediate. By
assumption, l: is described by a set of equations x = ¢(u, v), y = t/J(u, v),
z = 8(u, v) for (u, v) E D which define a transformation of class C. More
over, D is a region to which Green's theorem applies. If we use the
transformation l: to transform w, we obtain a I-form w* in u and v. Applying
the method used in Theorem 9, Green's theorem in D, and the fundamental
relation (9-31), we have

r w = r w* = rr d(w*) = rr (dw)* = rr dw
'c"f. • cD Ii ii 'i

which, as we have seen,.. is the conclusion of Stokes' theorem. I

By allowing D to be a union offinite number of standard regions, we admit
surfaces l: which may have a finite number of "holes" (see Fig. 9-15). In

computing r w, we must of course integrate around all the separate curves
• ("lr

which compose the boundary of l:, each in its proper orientation. The theorem
may also be extended to a surface (differentiable manifold) which is obtained
by piecing together simple surface elements; however, it is necessary that it be
orientable. The Mobius strip is a nonorientable manifold M which can be
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\

represcnted as the union of two simple surface clemcnts :[1 and :[2' To cach
of Ihese, Stokes' theorem may be applied. and for a suitable I-form (IJ

I' m= II dw
. ,"1:, i:;

J'I' W = JJ tim
"

Adding these. however. we do not gel lhe integral of (I) around the simple
closed curve r which forms the edge of the Mobius strip (see Fig. 9-16). Sim,;e
/1'1 is nonorientable. no consistent orientations of:[1 and :[2 can be found. and
onc of the .. inside" edges of:[1 will be traced twice in the .Wlllle direction and
the integral of (() along it will not in general drop oul. (Notc also that the edge
of the strip is not traced in a consistent fashion.)

Turning finally to the di\'ergence theorem. we prove it first for the case of
a cube.

Fi~ur.. 9·16 Mi*,lu~ sirip.
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,

0,0,0)

(1,1.1)

'", , ,
I I ~t~f-""
I \]

-------\,,,,,
~;_----_..:\"'(O,1.0)

( 1,l,O)

y Fi.:uu' 9-17

111l.'on'm 12 LeI R he {/ ('/fll(' ill (x . .r. =) "'pact' Idlll fact'''' !/(lrallel to lilt'

('(HIriJiIl(//e plaue",. 1.1'1 f<! he 1/ 2~f;"''''

(1) = A liy d: + B d:: dx + Cd... dy

(9-'X) ,,',,' A dy d: + H d:: IIx + C dx dy = I'I'I'I-?A + f:B + ?C Idx IJy 1/:
... ?x I'r ?:

~R R-

The surface intcgral on thc left is If wand thc volumc intcgral 011

"1'11

lhe right is Iff do!. Let liS suppose that R is thc unit cube having as
••. R

opposite vcnices thc origin and (I, I. 1) (see Fig, 9-17). We may considcr
lhe SCp'lfiltt' lerms in «) Illdi\"idually: suppose that

fr) = A(x. .\'.:) 11.1' d:

Since dm = A, (x. y. =) If...: lIy d:.

fif d,"~ rfl A,(", ",')d' d,.d,, ,
,I ,I .1

= I d.r I d: I /I[(X. .I".:)11.>:
• 0 ' 0 ' 0

,I ,I

~ I .1.1' I d,[A!'", ,j - A(D, ", 'I]
'0 • 0
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On the other hand, we see that O} = 0 on (~K excepl on the frOnl and
back faces. These have opposite orienlations. On the front face, L l . the
orientation is the same as the YZ plane, and (I} = A(I. y. =) (Ir d=. On lhe
back face. lhe oricnlation is reversed. so lh,lt

w=A(O.r.=)(I:dy= -A(O. .\".:)dy(l::

In each casco the parameter (I',::) covers the positively orienled unit square
S in the YZ plane. Thus.

JJ '" ~ .1.1 '" +1.1 '".., ,, ,,

~ r d.d ,I,[AII.\"J-AIO,I,'JI I
• 0 . 0

The line of argument llscd in Theorem <) m<lY now be used again 10

establish the divergencc theorem for a more general class of regions R (sec
also Exercise 5).

111t'Qrt."f1l 13 Tile diruyellCl' tl1eo/"('1II (9-3i'i) !wMs/or 1111.1' r('!lion R wllit-II i.\
tile ill1l1!1e of (I c/ost>d (uhe ullder (I 1-10- t Iral1.~/iml1mio" of" class en.

Again. we can combine regions logelher into more com plica led regions
(e.g.. having ca\'ities) and apply the divergence lheorem to each. The surface
integrals over the interf,I(,:e surf,tI.:es will canccl cach other. sim:c the common
boundary will have opposite orientations. and only the surface integral over
the boundary of the region itself will be lefl (see Fig. 9- 18).

If we make use of the results in $cc. 9.3. especially Theorems 4 and 5.
lhen we can recast these integral theorems in vector form. Let F be a vector
field of class C throughout a region in space.

,
I
I,,,,
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Divergence Theorem Let R be a suitably well-behaved region in space whose
boundary is a surface oR. Then

JfJ div (F) = JJ FN

R f1R

Stated verbally: The integral of div (F) throughout R is equal to the
integral of the normal component of F over the boundary of R.

Stokes' Theorem Let L be a suitably well-behaved orientable surface whose
boundary is a curve OL. Then,

Stated verbally: The integral of the normal component of the curl of F
over a surface is equal to the integral of the tangential component of F
around the boundary of the surface.

These may be used to obtain physical interpretations for div (F) and
curl (F). As in Sec. 9.3, let V be the velocity field of a fluid in motion, and
let p be the density function; both may depend upon time. Let F = pV;
this is the vector function which specifies the mass flow distribution. Let R
be a closed bounded region of space to which the divergence theorem applies,
e.g., a cube or a sphere. At any point p on the boundary of R, FN is the
normal component of F, and therefore measures the rate of flow of mass out

of R at p. The surface integral ff FN is then the total mass per unit time
•• oR

which leaves R through oR. Let us suppose that there is no creation or

destruction of mass within R, i.e., no "sources" or "sinks." Then, fJ FN

oR
must also be exactly the rate of decrease of the total mass within R:

JJ FN = - ~ JJJ P
r'R R

If we apply the divergence theorem to the left side, and assume that op/ot
is continuous so that we can move the time differentiation inside, we obtain

f 'f "fop..I. div (F) = -.1.1. at
R r

Since this relation must hold for all choices of R, we may conclude that the
integrands are everywhere equal. Thus, we arrive at what is called the "equation
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c"-"

Figun' 9-19

of continuity":

div (F) = div (p\') =
or
01

If the fluid is incompressible. then div (V) = O.
To obtain an interprelation for curl (V), let b be a unit veclOr wilh inilial

poinl at a point flo. and choose 1: as a circular disk of radiUS 1". cenler /'0.
having b as its normal (sec Fig. 9-19). If fl is a poinl of the circle C which
forms the boundary of 1:. then V 1 al fl is the component of the velocity field

along C. and r v.,. = r v.,. is a number which measures the extent to which
'C '.1:

the motion of the fluid is a rotation around C. By Stokes' theorelll,

I' V" ~ I'r cud (V)"
'C 'i

By the mean vallie theorem. the right side may be replal-ed by 1[1.111. where
11 is the v;:lllIe of curl (V),\" at some point fl of L Divide both sides by nr l

,

and lei,. --. O. The poinl Jl must approach 1'0' so Ihat 11 approadK'S curl (VI.\·
computed at flo. Thus, we obtain

I '
curl (\'h = lim l I I':,..-0 nr . ,:1:

The right side may be inlerpreted as a number which measures the rotation
of the fluid at the point Po in the plane normal to b. per unit arca.
Since the normal 10 1: remains constantly b,

curl (V).\" = curl (V)· b

Thus, curl (V)· b measures the rotation of the Iluid ahout Ihe direclion h.
It will be greatest when b is chosen parallel 10 curl (V). Thus. curl (V) is a
veClOr field which can be interpreted as srccifying the axis of rolation and
the magnitude (angular velocity) of thaI rotation. at each point in space.
For example. if V is the velocity field for a rigid body rotating at constanl
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angular velocity w about a fixed axis b, then curl (V) = 2wb. The motion of a
fluid is said to be "irrotational" if curl (V) == O.

We may also use the integral theorems to arrive at expressions for
div (F) and curl (F) having a form which is free of the coordinate appearance
of the original definitions for these quantities. By the same line of argument
that has been used above, one may arrive at the formulas

div (F) I = lim _(I) ff FN
Po riO V R .

cR

curl (F) I . b = lim ~~_I- f FT
Po rIPoA(I:) i'r

where v(R) is the volume of Rand A(I:) the area of I:, and R and I: are
thought of as closing down on the point Po in such a fashion that the
normals to I: are always parallel to b, and Stokes' theorem and the divergence
theorem always apply.

Line integrals also arise in another natural way. Let F be a vector-valued
function which describes a force field throughout a region of space. The
work done by the force in moving a particle along a curve y is defined to be
the value of the line integral

In particular, if y is a closed path which forms the boundary of a smooth
orientable surface I:, then we may apply Stokes' theorem, and obtain

w = JJ curl (F)N
r

If F should be such that curl (F) == 0, then W = O. In this case, the work done
by F around any such closed path is O. Such force fields are given the name
conservative; an example is the newtonian gravitational field of a particle.

EXERCISES

I Verify Green's theorem for w = x dx + xy dy with D as the unit square with opposite vertices
at (0,0), (I, I).

2 Apply Green's theorem to evaluate the integral of (x - .1'3) dx + x3 dy around the circle
x 2 + .1'2 = I.

3 Verify Stokes' theorem with w = x dz and with 1: as the surface described by x = UL',

Y = U + L', Z = u2 + ['2 for (u, 1') in the triangle with vertices (0, 0), (1,0), (I, I).

4 Carry out the details needed to show that the special case of Green's theorem stated in Theorem 1
holds for w = B(x, .1') dy.



496 ADVANCED CALCULUS

5 Prove the divergence theorem directly when R is the solid sphere

x 2 + y2 + Z2 S I

6 (a) Show that the area of a region D to which Green's theorem applies may be given by

A(D) = ~ f (x dy - y dx)
• CD

(b) Apply this to find the area bounded by the ellipse x = a cos (J, y = b sin (J, as (J s 2n.

7 Use Exercise 6 to find the area inside the loop of the folium of Descartes, described by
x = 3at/(1 + t3

), Y = 3at2/(1 + t3
).

8 Let D be the region inside the square Ix I + Iy I = 4 and outside the circle x 2 + y2 = 1. Using
the relation in Exercise 6, find the area of D.

9 Find a I-form w for which dw = (x 2 + y2) dx dy, and use this to evaluate

fJ (x 2 + y2) dx dy
D

when D is the region described in Exercise 8.

10 Show that the volume of a suitably well-behaved region R in space is given by the formula

v(R) = 1ff x dy dz + y dz dx + z dx dy
,'R

II (a) Show that the moment of inertia of a solid R about the z axis can be expressed in the
form

1= (i) JJ (x 3 + 3xy2) dy dz + (3x 2y + y3) dz dx

fR

(b) Use this to find the moment of inertia of a sphere about a diameter.

12 Verify the invariance relation (dw)* = d(w*) when w = x dy dz and T is the transformation
x = u + v - w, y = u2

- v2
, Z = V + w2

•

13 Assuming Green's theorem for rectangles, prove it for a region of the type described by
(9-29) with w = A(x, y) dx by means of the transformation x = u, y = j(u)v + g(u)(1 - 1'),
a sus b, a s v s 1.

14 Verify the differentiation formula (9-33) when IX and pare a-forms in x, y, z.

15 Verify (9-33) for IX = A(x, y, z) dz and p= B(x, y, z) dy.

16 Let V be the velocity field of the particles of a rigid body which is rotating about a fixed
axis in the direction of the unit vector b, at an angular velocity of w. Show that div (V) = a
and curl (V) = 2wb.

17 Using n for a general normal vector on a surface and T for a general tangent vector to a
curve, Stokes' theorem and the divergence theorem may be expressed by

ff(VxF)'n=I' F·T
.. . ol

JJJ V . F = JJ F . n
R f~R

When D is a region in the plane, and 'I and T are used for the (outward) normal vector
and the tangent vector for the curve aD, and when F = Ai + Bj is a vector field in the plane,
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show that Green's theorem may be put into either of the forms

I'I'V' F= I' F''l
" 'cD
D

rr (V x F) . k = r F' T
.~ • cD

18 Assuming the truth of the generalized Stokes' theorem, as given in (9-27), show that it results
In the following special formulas dealing with differentlal forms in 4-space:

(a) If M IS a regIOn In 4-space, and aM is Its three-dimensIOnal boundary, then

JJJ {A dy dz dw + B dx dz dw + C dx dy dw + D dx dy dz}

" JaA aB ac aDl
= II rr \ - +- + ~ .. + -- dx dy dz dw

.... lax ay az aw
M

(b) If ~ is a two-dimensional surface in 4-space bounded by a curve a~, then

r {A dx + B dy + C dz + D dw}
• f~I:

~ (
aB aA) (ac aA) (aD aA)= rr - dx dy +-- - - dx dz + - - - - dx dw

~ ~ ~ ~ ~ ~ ~

+ (a~ _ aB) dy dz + (aD _ i3!!) dy dw + (i!!! _ac) dz dwl
ay az ay aw az aw I

19 Use (9-33) to give an inductive proof that ddw = 0 for any k form in n variables,

9.5 EXACT FORMS AND CLOSED FORMS

In this section, we discuss the special properties of certain differential forms
which are important for both their physical and mathematical significance. We
start with I-forms.

Definition 10 We say that a I-form w is exact in an open set n if there
is a function f, at least of class C' there, such that df = w everywhere in n.

For example, w = 3X 2y 2 dx + 2x 3y dy is exact in the entire plane, since it
coincides there with d(x3y2). On the other hand, the following simple result
enables us to decide at once that w = l dx + x 2 dy is not an exact form.

Theorem 14 If w is an exact I-form in n whose coe./jicients are at least of
class C' there, then a necessary (but not sufficient) condition is that dw = 0
in n.
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This follows at once from Theorem 3. For if f is defined in nand
4f = w, then dw = ddf = O. I (The fact that this criterion is not sufficient
will be shown later.)

The condition dw = 0 is often written in an expanded form that depends
on the nature of w. Thus, if we are dealing with I-forms in the plane, and
w = A dx + B dy, then w cannot be exact in a set n unless

(9-39)
oA oB

oy ox
in n

Likewise, in 3-space, if w = A dx + B dy + C dz, then w cannot be exact in n
unless

(9-40)
OC oB

oy oz

oA OC

oz ox

oB oA

ox oy

[These follow at once merely by calculating dw in each case.] Since these
conditions arise frequently and are important to the theory, a special name is
applied.

Definition 11 A Ijorm w of class C is said to be closed in a region n if
dw = 0 everywhere in n.

The meaning of this [and a reason for the choice of the name] will appear
later. Theorem 14 can thus be restated: Any I-form that is exact in n must be
closed in n.

There is also a connection between exactness and integration.

Theorem 15 Let w be exact in n, with w = df, and let y be any smooth curve
in n, starting at PI and ending at P2'

Then

I
P2fW = f df = f = f(P2) - f(pd

Y • Y PI

Suppose we are dealing with I-forms in 3-space, and suppose that y is
given by x = ¢(t), y = t/f(t), z = 8(t), for 0 ~ t ~ 1. Since w = df,

w = fl(x, y, z) dx + f2(X, y, z) dy + f3(X, y, z) dz

so that on y,

w = {fl(y(t))¢'(t) + f2(y(t))t/f'(t) + f3(y(t))8'(t)} dt

But, this can also be written as

d
w = - {f(y(t))} dt

dt
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• .1 d
.I

y

W = .1
0

at {f(y(t))} dt

= f(y(I)) - f(y(O))

= f(P2) - f(pd I

Corollary If w is an exact I-form in a region n, then r w = ° for every
• y

closed I' lying in n.

For, if I' is closed, then P2 = PI' andf(PI) =f(P2)' I

A special name is given to the type of behavior described In the
corollary.

Definition 12 A line integral r w is said to be independent of path in a
• y

region if its value is the same along any other curve lying in n which joins the

same points (in the same order). Equivalently, f w = °for every closed curve
• y

I' lying in n.

The equivalence arises from the fact that if 1'1 and 1'2 are two curves lying
in n which have common endpoints, then the union of 11 and - 1'2 is a closed
curve lying in n. Using this terminology, the corollary above states that any
exact I-form yields line integrals that are independent of path. We may use this
to test a I-form for exactness. For example, w = y dx is not exact in the first
quadrant, since its integral along the straight line from (0,0) to (1, I) is
.1I x dx = 1, while its integral along the parabola y = x 2 which also joins (0,0)

• 0
.1

to (I, I) is I x 2 dx = j-. This would be a difficult test to apply in some cases,
• 0

since it depends upon a comparison between the numerical value of line
integrals.

While the physical interpretation of both "exactness" and" independence
of path "will be discussed in more detail later, we remark at this point that one
illustration arises in the study of fields of force which have the property that
the work done in moving from PI to P2 depends only upon the positions of
the two points, and not upon the path chosen.

The mathematical significance of these concepts focuses on the connection
between being an exact form and being a closed form. We note first that exact
ness is a global property. In order to test if w is exact in n, we must examine
the behavior of w everywhere in n at the same time, for there must exist a single
function f, defined everywhere in n, such that dw = f; alternatively, we must
integrate w over every closed curve 1 in n, both large ones and small ones.
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We can introduce a related notion as follows: Let us say that w is locally
exact in n if w is exact in some neighborhood of any point in n. Near any
point pEn, w will have the form w = df, but the functionfthat is used near one
point p may differ from that used near another. Again, if w is locally exact in

n, then f w = °for every sufficiently small closed path}' lying in n .
• y

In contrast, the notion of" closure" for I-forms is already a local concept,
since differentiation of functions or forms requires knowledge and calculations
that can be restricted to a neighborhood of each point under study.

These remarks set the stage for the proofs of the following assertions.
Exactness and independence of path are equivalent for I-forms; closure and
local exactness are equivalent for I-forms; whether or not every locally exact
I-form in n is globally exact in n depends upon geometrical properties of the
region n-in particular upon whether it is or is not simply connected.

We begin by settling a simple special case.

Theorem 16 If w is a I-form which is of class C and obeys the condition
dw = °in a spherical region n, then w is exact in n.

Let us assume that w = A dx + B dy + C dz, and that Eqs. (9-40) hold
throughout the sphere n in space whose center is at the origin (0,0,0). We
construct a function f by integrating w along a polygon joining (0,0,0)
to (x, y, z) within n (see Fig. 9-20). Let

x y z

f(x, y, z) = J
o

A(t, 0, 0) dt + LB(x, t, 0) dt + J
o

C(x, y, t) dt

z

(x,y,Z)

y

(x, 0, O)~ --,

(X,Y,O)

x Figure 9-20
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We wish to show that w = df Computing the partial derivatives off, and
using Eqs. (9-10), we have

f3(X, y, z) = C(x, y, z)

J2(X, y, z) = B(x, y, 0) + fZC2(X, y, t) dt
·0

= B(x, y, 0) + (B 3 (x, y, t) dt
. 0

= B(x, y, 0) + [B(x, y, z) - B(x, y, 0)]

= B(x, y, z)
• y z

fl(X, y, z) = A(x, 0,0) + I B 1(x,t,0)dt+ f C1(x,y, t) dt
• 0 • 0

~ y ~ z

= A(x, 0, 0) + I A 2(x, t, 0) dt + I A 3 (x, y, t) dt
• 0 • 0

= A(x, 0, 0) + [A(x, y, 0) - A(x, 0, 0)] + [A(x, y, z) - A(x, y, 0)]

= A(x, y, z) I

For a general region, the best that this theorem gives is the following
corollary.

Corollary If dw = °in an open region n, then w is locally exact in n, that
is, about any point p there is a neighborhood in which w has the form
w=df

As the point p moves around in n, the function f may change, and it may
not be possible to find a single function such that w = df throughout all of n.
For example, consider the I-form

(9-41) w = .._x_ dy - Y dx
x2 + y2 x2 + y2

in the open ring D = {all (x, y) with 1 =s; x 2 + y2 =s; 4}. Direct computation
shows that dw = °in D, so that w is locally exact in D. However, w is not exact
in D, for if we compute the integral of w around a circular path, x = r cos 0,
y = r sin 0, lying in D, we obtain

f f2JtJ(rcoso) (rSinO).}
yw = 0 \~-;r-(r cos 0) - --r2 - (-r SIn 0) dO

2"=f (cos 2 0+sin 2 0)dO=2n¥0
• 0

If w were exact in D, then by the corollary to Theorem 15, Jw would have to
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be O. As we shall see later, the clue to this behavior lies in the nature of the
set D.

Theorem 16 shows that the condition dw = 0 in a convex region Q implies
exactness, and therefore independence of path in Q. A similar technique will
prove the converse, for a general region Q.

Theorem 17 If w is independent of path in an open connected set Q, then w
is exact in Q, and therefore obeys dw = O.

Choose any point Po E Q. By assumption, Q is connected so that any
point P E Q can be joined to Po by a smooth curve y lying in Q. Define a

functionfin Q by settingf(p) = rw. Since w yields line integrals that are
• y

independent of path, it does not matter what curve y we choose, so long as
it lies in Q and goes from Po to p. We again wish to show that w = df,
and for this, we need the partial derivatives of.f If PI and PI + lip are
points of Q, and (3 is any curve in Q from PI to PI + lip, then choosing
a curve y from Po to PI' we have

f(PI + lip) = r w + r w
• y • f3

=f(pd+r w
• f3

To computefl(pd, the partial derivative offin the direction of the X axis,
we take lip = (h, 0, 0) and compute

lim f(PI +~fJ) - f(pd = lim 1 f w
h-O h h-O h f3

For {3, we choose the straight line from PI to PI + lip whose equation is
x = XI + ht, Y = Yt> z = Zl; 0::;; t ::;; 1. If w = A dx + B dy + C dz, then on
{3, w = A(x i + ht, YI, zdh dt and

f(PI +Ii:)-f(pd= (A(X I +ht'YI,zddt

Letting h approach 0, and using the fact that A is continuous,

I

fl(pd = lim r A(xi + ht, YI, zd dt
h-O • 0

I

= f A(x l , YI, zd dt = A(xI' YI, zd
o

In a similar fashion, we find f2(pd = B(pd and f3(pd = c(pd, so that
w = dfin Q. I
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We now invoke the generalized Stokes' theorem. in the form of either
Green's theorem (for 2-space) or the original theorem of Stokes (for 3-space).
to observe the following simple property of closed I-forms,

llu:-OI'em IN J,e/ w he II I~form (/i'fi"ed ill n, lI'itll rlw = 0 Orel"{-. I,(,(~. he a
c1mnl ('/(lTe ill n thai i,~ the hOl/llllar)' " = iiI: ofa ,~mootJr oriell/able slIrface
I: 1.1';"1/ ill n. Tht'll.

(9-42) rW~O.,
The proof is immediate. We have

I'w~ rw~ rr"w~ rl'O~O I
. ,'I: .!. .!

In order to have this hold for every closed curve " in n. which would then
imply that 111 is ex(/ct in n, we must have it true thai every closed curve in n
is a boundary for a surface lying in n. This is a special geometrical requirement
imposed on the sel n. (lnd is given a special name.

Definilion 13 An ope/l ('0111/('('/('(1 set n ill /I spat'/! is sai(} TO b(' simply
connl'Clro il' ererr dowd C!/ITe ~' ill n i,~ the nOlmdar,r of WI oriell/able
,~/II:f(/C(' (rilly ill n.

As is suggested in Fig, 8-19. /I space itself is simply connected. as is any
convex subset. However. the planar region shown in Fig, 9-21 is not. nor is the

,
D

Figurt' 9-21 Multiply CQllIll"('lt:d rq!illn in
lhc plane.
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.·;gurl;' 9-22 "OIC rcgion hclwc..:n two spl",rcs 's s'lllply
conn~"Ctcd.

region in space shown in Fig. 8-27. consisting of the open set inside a torus.
However, the region in Fig. 9-22, consisting of the points between two spheres.
is simply connected.

This definition. taken in conjunction with Thcorem I It allows us to obli1ill
the following at oncc.

Theorcm 19 1/1 11 simply connecte(1 reyioll. ('1'('1'.1' lo("ally eX1/1"/ l~f(JfII1 is

('Xl/I"/. 111 par/ielllal". if dw = 0 ill n 1/1/11 n i.~ .~imr/r ("o",,('("led. II't'lI Illert' i.~

ajilllcfioll! tlefiltl,tI ill n slIcll111(1/ W = It{ ('l"el")"I\"Irel"(' ill n.

When a I-form w is known 10 be exact, and thus of the form dl: the
function f may be found by integrating w along any convcnienl path from
some point Po to P = (x. .1'. =); it will be unique. up to an additive constant.
For example. consider the I-form IV = 2xy3 dx + 3.\·2.1'2 dy. Checking for exact
ncss, we find thai tlw = 6xr2 (1.1' d.'( + 6.\)·2 d.'( t/r = O. To find.r. we intcgrate
from (0. 0) to (x. j"). If we choose the solid broken line shown in Fig. 9-2.1, we
obtain

.f{x. y) = (0 tlx + (')x2.\"2 11.1" = X\3
. 0 . 0

We may also use the dolled broken line. and obtain

fIx . .\") = (0 d.r + (2X.\"3 Ilx = x1r\
• 0 • 0
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Finally, if we use the straight line joining (0,0) and (x, y), we have

.1

j(x, y) = I {2(xt)(yt)3 d(xt) + 3(xt)2(yt)2 d(yt)}
• 0

.1

= I {(2 xy3)(X)t4 dt + (3X 2y2)(y)t4 dt]
. 0

.1

= X2y3 I 5t4 dt = X2y3
• 0

When the coefficients in w have special properties, other methods may be used
to find j (see Exercise 5).

The study of differential equations also leads to the consideration of exact
differential forms. One says that a curve')' in the plane is a solution of the
first-order "differential equation"

(9-43) A(x, y) dx + B(x, y) dy = 0

if the I-form w = A dx + B dy is 0 on y. If w is exact, and w = df, then the
level curves ofj'are solutions for (9-43). An integrating factor for Eq. (9-43) is a
function 9 such that gw is an exact I-form. Computing d(gw), and requiring
that this vanish, one is led to a partial differential equation for g. General
existence theorems in the theory of differential equations show that, provided
A and B are sufficiently well behaved, Eq. (9-43) always admits integrating
factors. The situation is somewhat different in the case of forms in three or
more variables. A curve')' in 3-space is said to be a solution of the "total
differential equation" (or Pfaffian equation)

(9-44) A(x, y, z) dx + B(x, y, z) dy + C(x, y, z) dz = 0

if the I-form w = A dx + B dy + C dz is 0 on y. When w is exact, and has
the form w = df, then any curve lying on the level surfaces ofjwill be a solution
of (9-44). Since this is a very special type of possible behavior for the solution
curves of such an equation, it is plausible that only certain Pfaffian equations
admit integrating factors. The analysis supports this. If 9 is an integrating factor
for w, then we may assume that d(gw) = O. Using the formula (9-33) for
differentiating a product, we obtain, since 9 is a 0 form,

(dg)w + g(dw) = 0

It is easily seen that ww = 0; thus, if we multiply this equation on the right
by w, we obtain as a necessary condition

g(dw)w = 0

Dividing by the function g, we obtain the condition (dw)w = O. In terms of the
coefficients of w, this shows that a necessary condition for (9-44) to have an
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integrating factor is that

(~~ _OB)A + (~..t _~~)B + (OB _OA)C = 0
oy oz oz ox ox oy

It may also be shown that if this condition holds, and one imposes reasonable
restrictions on A, B, and C, then an integrating factor for (9-44) exists.

The notions of exactness and of independence of path may also be given
in vector form. Using the" dictionary" (Fig. 9-11) in Sec. 9.3, we may recast
our results in the following form.

Theorem 20 Let F be a vector field which is of class C" and obeys the
condition curl (F) = 0 throughout a simply connected region of space n.
Then, there is a scalar function f, unique up to additive constants, such that
in n

F = grad (f)

Moreover, ify is any smooth curve lying in nand going from Po to PI> then

rFT = f(pd - f(Po)
• y

The function f is called the potential for the vector field F. When the
condition curl (F) = 0 is translated by saying that F specifies an "irrotational"
velocity field, then f is called the velocity potential. If F specifies a force field,
then F is said to be conservative when curl (F) = 0; in this case, it is customary
to set V = - f and call this the potential energy. If y is a curve from Po to PI'
then

rFT = U(Po) - U(pd
• y

This is interpreted as meaning that the work done by the field in moving a
particle from Po to PI is independent of the path chosen, and is equal to the
loss in potential energy.

Before leaving I-forms, we digress to point out that there exists a form of
duality between the analysis and the geometrical notions we have been discus
sing. Consider a curve y that starts at P and ends at q; it is reasonable to define
its boundary to be the set consisting of P and q, taken in some order or
assigned numerical weights to indicate which is the starting point and which
the endpoint. It is then convenient to say that a closed curve (for which P = q)
has no boundary, and thus to write oy = O. Likewise, one may say that a curve
y is bounding in n if there exists a surface L in n with y = OL. Compare the
following statements:
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curves

y is closed if and only if 8y = O.

y is bounding in Q if and only if
y = 8L for some L in Q.

I-forms

w is closed if and only if dw = O.

w is exact in Q if and only if w = df
for some fin Q.

In the light of Theorem 19 and Definition 13, and this table, the following
statement should not seem surprising: An open region Q has the property that
every closed I-form is exact if and only if every closed curve is bounding-i.e.,
if and only if Q is simply connected.

This connection between analytic notions dealing with the local and global
behavior of I-forms and geometric notions dealing with the behavior of curves
is only one piece of a much larger picture, ex tending to general k forms, n space,
and even general n-dimensional manifolds, for which reference should be made
to recent books on modern differential topology. We illustrate this by discussing
2-forms briefly.

Definition 14 A 2jorm (J is exact in Q if there is a I-form w of class C'
in Q such that (J = dw.

There is more freedom in the choice of w in this case. If (J is exact, and w
is a I-form with (J = dw, then any exact I-form may be added to w. For
example, (J is also given as d(w + df), where f is a function of class C.

What corresponds to the notion of independence of path for 2-forms? An
answer is supplied by Stokes' theorem.

Theorem 21 If (J is exact in Q and L j and L 2 are two smooth orientable
surfaces lying in Q and having the same curve y as boundary, then

For, if (J = dw, then, by Stokes' theorem, ff (J = ffdw = f w for both
l: • l: • ill:

choices of L. I

Corollary If (J is exact in Q, then f f (J = 0 for any smooth orientable closed
.l:

surface L in Q.

We can also test a 2-form for exactness by examining its coefficients.

Theorem 22 If (J = A dy dz + B dz dx + C dx dy is exact and of class C
in Q, then d(J = 0 there .. that is,
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This also comes at once from Theorem 3; if a = dw, then

da = ddw = 0 I
We are again able to prove a local converse to this.

Theorem 23 If a is a 2jorm which is of class C' and obeys the condition
da = 0 in a convex region n, then a is exact in n.

If a = A dy dz + B dz dx + C dx dy, then we shall assume that Al +
B z + Cz is identically 0 in a convex region n containing the origin (0,0,0).
We shall find a i-form w such that dw = a. Because of the latitude that
exists in the choice of w, it will turn out to be possible to find a solution
of the form w = a(x, y, z) dx + b(x, y, z) dy. The requirement dw = a
imposes the following three conditions on the coefficients of w:

(9-45)
aa
-=Baz

ab
-= -Aaz

Integrating the first two with respect to z, and supplying an arbitrary
function of (x, y) in the integral of the first, we are led to try the following:

a(x, y, z) = fZ B(x, y, t) dt - fYC(x, s, 0) ds
o . 0

b(x, y, z) = - rA(x, y, t) dt
o

These clearly satisfy the first two equations in (9-45). To see that the third
holds as well, we differentiate with respect to y and x, respectively,
obtaining

aa Z

-a = f Bz(x, y, t) dt - C(x, y, 0)
y . 0

ab Z

a
- = - f A I (x, y, t) dt
x '0

Accordingly,

ab aa rz

a- - a-- = - [AI (x, y, t) + Bz(x, y, t)] dt + C(x, y, 0)
x y . 0

But, Al + B z + C 3 = 0, so that the right side becomes

rZC3(X, y, t) dt + C(x, y, 0) = [C(x, y, z) - C(x, y, 0)] + C(x, y, 0)
• 0

= C(x, y, z)

and all the equations in (9-45) are satisfied. I (We shall also give
another treatment of this in Exercise 2 Sec. 9.6.)
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Corollary If a 2-form a satisfies the condition da = 0 throughout an open
region n, then a is locally exact in n.

This means again that in some neighborhood of any point of n, there is
defined a I-form w such that a is the derivative of w in this neighborhood. The
various I-forms w may not piece together to give a I-form whose derivative
is a everywhere in n. For example, the 2-form

x dy dz + y dz dx + z dx dy
a = ~

(x2 + y2 + Z2)3 /2

is of class C' in all of space except at the origin, and direct calculation shows
that da = 0 in this whole set. Thus, a is locally exact everywhere except at the
origin. However, a is not exact in this set, for if one computes the surface integral

rr a, where L is the unit sphere: x =sin <p cos e, y=sin <p sin e, z =cos <p,
"l:

oS; <p S; TC, 0 S; eS; 2TC, the value does not turn out to be zero! It will be noticed
that the region n involved in this example is simply connected. It is natural
to ask for the corresponding property, which, if possessed by n, will ensure
that any 2-form that is locally exact in n must also be exact. By analogy, we
would expect the condition to be the geometric dual, namely, that every closed
surface in n is bounding. The region shown in Fig. 9-22 fails to have this
property, but the interior of the torus (inner tube) in Fig. 8-27 does; note that
this geometric condition is not the same as being simply connected!

Again, appealing to the Stokes' theorem for 2-forms in 3-space (Gauss'
theorem), we can prove part of the conjectured result.

Theorem 24 Ifevery smooth surface in n is the boundary of a region D lying

in n, and a is a closed 2jorm, then If a = Ofor every closed surface Lin n.
'l:

For, we have

f.f a= JJ a= HI da= HJo=o I
D D

In Exercise 8, we prove that if the region n is "star-shaped," which is slightly
more general than "convex," then one can go further and conclude that a is
necessarily exact in n. (This is far from the best possible result here, but an
adequate discussion would take us in other directions.)

These results on exact 2-forms may also be cast into vector form. Let F
be a vector field described by F = Ai + Bj + Ck. Referring again to Sec. 9.3, we
see that its corresponding2-form is exact if and only if we can write F = curl (V),
where V is another vector field. Since div (curl (V)) = 0, a necessary condition
on F is that div (F) = O. Such a field is said to be solenoidal, or divergence
free. The velocity field of an incompressible fluid is solenoidal.
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Theorem 25 If F is a solenoidal vector field of class C, then in any convex
set, F is of the form F = curl (V).

EXERCISES

For each of the following I-forms w, find if possible a function I such that w = df
(a) w = (3x 2y + 2xy) dx + (x 3 + X

Z + 2y) dy
(b) w = (xy cos xy + sin xy) dx + (X Zcos xy + y2) dy
(e) w = (2 xyz3 + z) dx + X 2Z3 dy + (3x 2yz2 + x) dz
(d) w = x 2 dy + 3xz dz

2 (a) By differentiating tg(xt, yt, zt) with respect to t, show that

I I

g(x, y, z) = r g(xt, yt, zt) dt + r [xgdxt, yt, zt) + ygz(xt, yt, zt) + zg3(xt, yt, zt)]t dt
'0 '0

(b) A region Q in space is said to be star-shaped with respect to the origin if the line
segment OP lies in Q whenever the endpoint P lies in Q. Let Q be star-shaped, and let
w = A dx + B dy + C dz obey dw = 0 in Q. Obtain an alternative proof of Theorem 16 by showing
that w = df, where I is defined in Q by the explicit formula

I

I(x, y, z) = r [xA(xt, yt, zt) + yB(xt, yt, zt) + zC(xt, yt, zt)] dt
• 0

(e) Can this integral be regarded as a line integral of w along a curve joining (0,0,0) to
(x, y, z)?

3 Verify that the differential form given in Eq. 9-41 obeys dw = 0 throughout the ring D.

4 Consider the differential form

x dx + y dy
W=~-·-

x2 + yZ

Show that dw = 0 in the ring D. Is w exact in D?

5 Recall that a function I is said to be homogeneous of degree k if

I(xt, yt, zt) = t"f(x, y, z)

for all t 2: 0 and all (x, y, z) in a sphere about the origin. Let

w = A dx + B dy + C dz

be an exact I-form whose coefficIents are all homogeneous of degree k, k 2: O. Show that w = df,
where

6 If such exist, find integrating factors for the following differential forms:
(a) (x 2 + 2y) dx - x dy
(b) 3yz2 dx + xz2 dy + 2xyz dz
(e) xy dx + xy dy + yz dz

7 (a) Show that the 2-form (J = A dy dz + B dz dx + C dx dy can also be expressed in the form
(J = IX dx + Pdy, where IX = B dz - C dy, P= - Adz.

(b) In the proof of Theorem 23 a I-form w = a dx + b dy was found such that dw = (J. Show
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that the coefficients of ware given by the equatIOns:

a(x, y, z) = I' C(

"

b(x, y, z) = rp
"

where y is the polygonal path from the origin to (x, y, z) that is shown in Fig. 9-20.

8 (a) By differentiating rZg(xr, yr, zr) with respect to t, show that g(x, y, z) may be given by

,I .1

2 I g(xt, yr, zt)t dr + 1 [xgl(xt, yr, zt) + ygz(xt, yt, zt) + Zg3(xt, yt, zt)]tZdr
. 0 . 0

(b) If (J = A dy dz + B dz dx + C dx dy, show that

2(J = (B dz - C dy) dx + (C dx - Adz) dy + (A dy - B dx) dz

(c) Let n be star-shaped with respect to the origin, and let d(J = 0 in n. Obtain an alternative
proof of Theorem 23 by showing that (J = dw, where w = a dx + b dy + c dz, and where

I

a(x, y, z) = r [zB(xt, yt, zr) - yC(xt, yt, zt)]t dt
• 0

I

b(x, y, z) = r [xC(xt, yt, zt) - zA(xt, yt, zr)]t dt
• 0

I

c(x, y, z) = I' [yA(xr, yt, zy) - xB(xt, yt, zt)]r dr
, 0

9 Let (J = A dy dz + B dz dx + C dx dy, where the functions A, B, and C are homogeneous of
degree k in a neighborhood of the ongin. If (J is exact, show that (J = dw, where

(zB - yC) dx + (xC - zA) dy + (yA - xB) dz
w = - ----------------

k+2

10 Show that the following 2-forms are exact by exhibiting each in the form (J = dw:
(a) (3yZz - 3xzZ) dy dz + x 2 y dz dx + (Z3 - XZz) dx dy
(b) (2xz + z) dz dx + y dx dy

II Formulate a necessary condition that a I·form in n variables be exact.

12 Verify the assertions made in connection with the 2-form given in Eq. (9-46).

13 Formulate a definition for "integrating factor" for 2-forms. Obtain a differential equation
which must be satisfied by any integrating factor for the 2-form

(J = A dy dz + B dz dx + C dx dy

Using this, and Euler's differential equation for homogeneous functions (Exercise 11, Sec. 3.4),
obtain the most general integrating factor for

x dy dz + y dz dx + z dx dy

14 Using Theorem 8, Sec. 9.4, show that a transformation of class C" carries exact forms into
exact forms.

15 Let n be a region in space which can be mapped onto a star-shaped set by a I-to-l transforma
tion of class C". Show that any 2-form (J which satisfies the equation d(J = 0 in n is exact in n.
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9.6 APPLICAnONS

Many of the classical applications of differential forms occur in the study of the
vector fields that arise in physics. We illustrate some of the results of the
previous sections in this context, translating them into vector form. We start
with techniques that are derived from the treatment of exact I-forms and exact
2-forms in Sec. 9.5, which permit us to work with vector functions that are
irrotational or are solenoidal (divergence-free), expressing them in special
forms at least locally.

Our first illustration is a standard one, and is based on Maxwell's equations
for electromagnetic radiation, given earlier in (9-18). If we drop the factor 4n
to simplify the discussion, let us suppose that E aud H are vector functions of
(x, y, Z, t), representing the electric and magnetic fields, which obey the four
equations:

(9-47)

(9-48)

(9-49)

(9-50)

V·E=p

V·H=O

aH
V x E + -- = 0at

aE
VxH--=Jat

The scalar function p describes the distribution of charge, and the vector
function J describes the distribution of current. If we regard p and J as known,
we may seek a solution of these equations for E and H. We shall show that
this may be reduced to the solution of a standard partial differential equation,
the inhomogeneous wave equation.

By (9-48) and Theorem 25, H can be represented locally in the form

(9-51) H = V x A

where A, the vector potential, may be altered by adding any vector function
of the form Vg, where g is a suitable scalar function. Putting this into (9-49),
we have

a
0= V x E + at (V x A)

=V x (E+aa~)

By Theorem 20, a scalar function <jJ exists such that, locally at least,

aA
E+-=V(-<jJ)=-V<jJat

(The negative sign is chosen only to improve the final appearance of our
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equations.) We may thus assume that E and H have the representations given
in (9-51) and in

(9-52)
oA

E=-V<jJ-at
Put these i'1to (9-47) and (9-50), obtaining

(9-53) p = V . ( - V<jJ - °o~)

a
= - V2<jJ - at (V . A)

and J=VX(VXA)-~(-V<jJ_OA)at at
0<jJ 02A

= V x (V x A) + Vat + ot 2

Making use of the vector identity (9-24), this can be written as

(9-54)
2 0<jJ 02A

J = V(V . A) - V A + V-~ + .-at ot 2

Turning (9-53) and (9-54) around, we have two equations to be satisfied by
A and <jJ:

2 0)V <jJ = - p - - (V . Aat

V2A _ 02A = -J + v(v. A + 0<jJ)
ot2 at

In the second, V2A is to be interpreted by writing A = ai + bj + ck and
applying V2 to each component, obtaining

V2A = V2(a)i + V2(b)j + V2(c)k

The second equation would assume a much simpler form if A and <jJ could be
chosen so that

(9-55)
0<jJ

V·A+--=Oat

and

In this case, our two equations would become

02<jJ
V2<jJ _.Ji2 = -p

02A
V2A--=-Jot2
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In the choice of A, we have a considerable amount of freedom. Suppose that
Ao and <Po are particular choices which satisfy (9-51) and (9-52); if we add
a vector of the form Vg to A o, (9-51) will still hold, since

V x A = V x (Ao + Vg)

= V x Ao + V x (Vg)

= V x Ao = H

where we have used (9-21). If we modify Ao in this way, we must also modify
<P in order to preserve (9-52). Putting <P = <Po - og/ot, we have

-V<p - oA = -V(<po _ Og) - ~ (Ao + Vg)
at at at

= - V<Po + V(Og) - ~ Ao - ~ (Vg)
at at at

a
= - V<Po - at Ao

=E
We next choose g, which is thus far unrestricted, so that (9-55) holds. This
requires that we have

which implies that g must be chosen to satisfy the equation

2 02g ( o<Po)V g - ot2 = - V· Ao + at

With this line of argument, the solution of Maxwell's equations may be
reduced to the consideration of the special partial differential equation

(9-56)

(9-57)

(9-58)

In coordinate form, this is

02~ 02~ 02~ 02~

ox2 + oi + OZ2 - ot2 + h = 0

and is called the inhomogeneous wave equation.
If ~ is independent of time, then equation (9-57) reduces to an equation

V2~ = -h, or
02~ 02~ 02~

ox2 + oy2 + OZ2 + h = 0

which is called Poisson's equation.
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When h is identically 0, this in turn becomes Laplace's equation

(9-59)

whose solutions in an open region n are called harmonic functions.
Vector methods are used in the solution of each of these equations. Before

we can use them, we need certain relations which may be derived from the
divergence theorem, and which are called Green's identities. To obtain these,
we start from the vector form of the divergence theorem

(9-60) JJJ V . F = JJF . n = JJ F N

00

where the vector n in the second integral is the general unit normal on an.
In our applications, n will be the region lying between two spheres (Fig. 9-22).
Ifwe choose the vector function F to have a particular form, then we can obtain
a number of special cases of this result which are quite useful. To illustrate this,
let us first take F as a gradient field, F = Vg. Since V· (Vg) = V 2g, and
Vg . n is the directional derivative of 9 in the direction n, (9-60) becomes

(9-61 )

where ogjon is understood to mean the scalar function whose value at a point
on the boundary of n is the directional derivative of 9 in the direction normal
to the surface. (Briefly, ogjon is the normal derivative of g.)

Again, if we choose F = fV g, we use the vector identity

V· (IV) = Vf' V + f(V· V)

with V = Vg, then

V·F=Vf·Vg+fV 2g

and (9-60) becomes Green's first identity:

(9-62) JJJ Vf· Vg + JJf fV
2
g = JJ f~:

n Q en

We illustrate the use of these identities by proving certain properties of the
class of harmonic functions. Recall that a function 9 is said to be harmonic in
a region n if it satisfies Laplace's equation, (9-59), in n. In Theorem 20,
Sec. 3.6, we proved by a different method that these functions were conditioned
in a region by their values on the boundary; if g is harmonic in a bounded
closed region n, and g(p) :s; M for all p on the boundary of n, then g(p) :s; M
for all points p in n itself. As a deduction from this, in Exercise 18, Sec. 3.6,
we found that two functions which are harmonic in n and which coincide on
the boundary of n must coincide throughout n. The second of these results
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comes at once from (9-62). If we take f = 9 and assume that 9 is harmonic
in n, and that 9 = 0 on the boundary of n, then we have

JJJ Vg· Vg = JJJ IVgl
2 = 0

fl fl

Since IVgl 2: 0, we must have Vg = 0 (assuming that 9 is of class C), and 9
is constant in n. Since the boundary value of 9 is 0, 9 = 0 in n. If 9 and g*
were two functions, both harmonic in n, with g(p) = g*(p) for all points p
on the boundary of n, then 9 - g* would be harmonic in n, and would have
boundary value 0; by the previous argument, 9 - g* would be identically 0
throughout n, so that 9 = g*. By an analogous argument, it may be shown
that if 9 and g* are harmonic in n, and if their normal derivatives, aglan
and ag*lan, are equal on the boundary of n, then 9 and g* differ at most by a
constant in n (see Exercise 1). These results show that for a suitably
well-behaved region n, the values of a harmonic function in n are determined
completely by its values on an, and up to an additive constant, by the values
of its normal derivative on an.

One may turn this around and ask the following question: Given a
function f, defined on an, is there a function 9 which is harmonic in n
and such that 9 = f on an? This is called the Dirichlet problem for the region n.
Ifn is suitably well behaved and f is continuous, then it has a solution, which,
by the previous discussion, is unique. Correspondingly, given a function f
defined on an, one may ask for a function g, harmonic in n, such that
aglan = f on an. This is called Neumann's problem for n. There may exist
no solutions, even though n is very well behaved and f is continuous; to
see this, we resort again to Green's identities. If we apply (9-61) when 9 is
harmonic in n, then we obtain

Thus, a necessary condition on the boundary-value function f in Neumann's
problem is that its integral over the boundary of n be O. Again, the previous
discussion shows that if Neumann's problem has a solution g, and if n is
sufficiently well behaved, then 9 is unique to within an additive constant.

Let us turn now to Poisson's equation:

where h is assumed to be of class C', and, for convenience, to vanish outside a
bounded region. We shall seek a solution of this equation which obeys two
additional conditions:

(9-63 )

(9-64)

lim Il/J(p) I = 0
Ipl-oo

lim Igrad l/J (p )II pI = 0
Ip!-oo
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The first may be translated as saying that t/J vanishes at infinity, and the
second as saying that the partial derivatives of t/J vanish more rapidly than
l/lpl = (x 2 + i + z2r 1/

2
. If we can obtain such a solution of Poisson's

equation, then any harmonic function can be added to it; conversely, ift/J and t/J*
are two solutions of Poisson's equation, then

V2(t/J - t/J*) = V2 t/J - V2 t/J* = h - h = 0

so that t/J - t/J* is harmonic.
We begin by deriving Green's second identity. Write (9-62) with f and g

interchanged:

JfJ Vg . Vf + fJJ gV
2
f = fJg~

n n m

Subtract this from (9-62); the first integral drops out, leaving

(9-65)

Theorem 26 If t/J is a solution of the equation V 2 t/J + h = 0 which obeys the
boundary conditions (9-63) and (9-64), then t/J is given at the point Po =
(xo,yo,zo)by

4 .1,( ) - fl',' h(p) d - ffl' h(x, y, z) dx dy dzTr'l' Po -- - P
- ... Ip - Pol - .. [(x - XO)2 + (y - YO)2 + (z - ZO)2]1 /2

Let 4>(p) = l/Ip - Po I· By direct computation, it is seen that V2 4> = 0
everywhere, except at the singularity Po. Also,

grad 4>(p) = (p - Po)/Ip - Po 1
3

so that Igrad 4>(p) I = l/lp - poI 2.Thefunction4> thus obeys the conditions
(9-63) and (9-64) "at infinity." Let n be the region between two spheres
with center Po; we suppose that the larger has radius R, and the smaller
has radius r. We apply Green's identity (9-65) with this choice of n, and
with f = 4> and g = t/J. Since t/J is assumed to be a solution of Poisson's
equation, V 2g = - h. Since 4> is harmonic in n, V 2f = O. We therefore have

(9-66) -JJJ 4>h = JJ 4> ~~ - JJ t/J ~~
n an

The boundary of n consists of two spherical surfaces, L Rand L,. On the
outside one, L R , the normal n is directed away from Po. If we employ
spherical coordinates (p, e, 4», with Po as origin, then "derivative in the
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direction of the normal" means %p so that on L R ,

<jJ(p) = p-I = R-1

o<jJ o<jJ 0 -I -2 -2on =ap = ap (p ) = - p = - R

Similarly, on L" the normal is directed toward Po, and %n= -%p;
thus <jJ(p) = p-I = r- I and

o<jJ = _ o<jJ = _ ...~ (p-I) = p-2 = r- 2
on op op

Using these, (9-66) becomes

(9-67)

We examine the behavior of each of these integrals as r approaches °and
R increases. Estimating the first three surface integrals, we have

I~ If ~~ I~ ~ (area of LR)(maximum of Igrad ljJ I on L R )

I:R

~ 4nR (max Igrad ljJl on L R )

1

1 oljJ I 1 .;: If on ~;: (area of Lr)(maxlmum of Igrad ljJ I on L r )

I:,

~ 4nr (maximum of Igrad ljJ I on L r )

I~2 If ljJ I~ ~2 (area ofLR)(maximum of IljJl on L R )

I:R

~ 4n (maximum of IljJ I on L R)

Using (9-63) and (9-64), we see that all three approach 0, as r--+O and
R --+ 00. Applying the mean value theorem to the remaining surface integral,

I:r

= -4nljJ(p*)

where p* is some point lying on L r • As r --+ 0, p* --+ Po, so that
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Accordingly, if we return to (9-67), we have

4m/!(po) = lim fff h¢ = fl'f 1 ~P)-I dp
r-O . , ,. P Po
R-oo n

Having thus obtained the necessary form of a solution of the Poisson
equation, one may proceed to verify directly that this is a solution.

The general wave equation (9-57) may be treated in the same way. The
solution which is obtained has the form

( )
_ fl'fh(x,y,z,t-p)dxdydz

t/J xo , yo, zo , t - ... p

where p = Ip - Po I, assuming that t/J and h are independent of time for t ::s; O.
The form of the integrand has a simple interpretation; at time t, the value of
t/J is not determined by the simultaneous values of h throughout space, but
rather by those values which could be "communicated" to Po by a signal
which travels at speed 1 (i.e., the speed of light), and which therefore left the
point p at time t - I p - Po 1 = t - p.

For details of this, and other applications of Green's identities, the reader
is referred to the treatise by P. M. Morse and H. Feshbach, "Methods of
Theoretical Physics," McGraw-Hill Book Company, New York, 1953.

EXERCISES

I (a) If 9 is harmonic in n and the normal derivative of 9 on the boundary is 0, show that
Vg = 0 in n.

(b) Let 9 and g* be harmonic in n, and let agjan = ag*jan on an. Show that g* = 9 + K,
where K is constant.

2 Let V· F = 0 in a convex region n. Show that F can be expressed there in the form
F = V x V, where V' V = 0 and V2 V = - V x F. (This reduces the problem of finding a I-form
w with dw = (J for a gIven exact 2-form (J, to the solution of Poisson's equation.)

3 Prove the following vector analog for Green's identities.

(a) If (F x [V x G])N = JJJ (V x F)' (V x G) - JJJ F· (V x [V x G])

n n

(b) IfJiG . (V x [V x F]) - F' (V x [V x GJ)} = If {(F x [V x G])N - (G x [V x F])N}

n en



CHAPTER

TEN
NUMERICAL METHODS

10.1 PREVIEW

While many mathematical questions are regarded as solved when a solution
has been proved to exist, there are times when the goal is to find a concrete
numerical answer. We have illustrated this already in Sec. 5.5, where we
discussed finding the sum of a convergent series, and in many of the exercises
in Sees. 3.5 and 4.3, dealing with applications of the mean value theorem and
with numerical integration.

In this chapter, we concentrate on the numerical aspect and point out a
small number of algorithms and techniques, choosing those where results from
earlier chapters of a theoretical nature are used to explain or justify the
algorithm. The first three sections deal mainly with the following two problems:

I. Given a set D, a function T defined on D and taking values in S, and a
point qo E S, how can we find a point p E D such that T(p) = qo? In
particular, given an interval I and a real-valued function f, how do we
solve / (x) = O?

n. Given a set D and a real-valued function / defined on D, how can we
find the minimum (or maximum) value of/(p) for p ED?

For each of these, the approach is often to obtain a sequence {Pn} of points
in D which may be convergent to the desired solution point p. Thus, in

520
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Sec. 10.2 we discuss Newton's method for functions of one variable and for
transformations; the latter depends upon some of the results in Chap. 7
dealing with differentiation of transformations. In Sec. 10.3, we discuss another
very useful iterative procedure that depends on the properties of a contraction
mapping and the notion of an attractive fixed point for a transformation.
Section 10.4 concentrates on problem (ii), discussing iteration methods for
solving extremal problems, and ends with a brief treatment of Lagrange
multipliers.

The last section of the chapter touches upon several topics in numerical
integration and differentiation, again picking some that use mathematical
results obtained in earlier chapters. Thus, we use the mean value theorem to
obtain formulas for approximate differentiation, and we obtain useful estimates
for certain simple numerical integration methods. We have also included a
description of the ingenious iterative procedure used by Gauss to evaluate a
class of elliptic integrals.

This brief chapter is not intended to be a survey of the entire field of
numerical analysis, but rather a sampling only, omitting all mention of some
of the most important topics. For example, there is no mention of the solution
of ordinary or partial differential equations.

We have also omitted any discussion of the computer aspects of these
topics, although these will in fact be an important part of any solution
procedure. For example, if we are attempting to solve the equation f(x) = 0,
it should be observed that there are in fact two possible questions to be
answered. Do we want to find a point x where f(x) is computationally
indistinguishable from 0, or do we want a point x that is computationally
indistinguishable from the true solution x of the equation? Here, we are
recognizing that it is usually impossible to tell if a computed number is the
same as a given number, or even to be sure that it is positive or negative.
Similar remarks apply to problem (ii), for we may be interested only in
finding a point wheref(p) is nearly minimum, or we may want p to be near
the actual minimum point /5, even iff(p) itself is large.

Such questions are important when it comes to actual computational
matters, and we leave them to the growing collection of treatises on the
subject.

10.2 LOCATING ZEROS

The simplest problem of this type is to locate a solution of the equationf(x) = 0
on an interval I = [a, b] wherefis continuous, and where we havef(a)f(b) < O.
By the intermediate value theorem, we know that there must exist at least
one point x E I such that f(x) = O. A harder problem would be to locate all
the zeros of f in I, since part of this problem is knowing that we have
found them all. The curve shown in Fig. 10-1 will also suggest some of the
pitfalls that enter into such problems. Inadequate sampling of the function
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Figure 10-1

values may lead us to miss a zero entirely, as at A; round-off errors may
lead us to confuse a positive minimum point B with a zero; a nearly
horizontal portion near a zero point C may mislead us as to the true location
of the zero. All of these are more the concern of a study of practical numerical
analysis than of one directed toward the theoretical background, and for this
reason we are content with this brief mention.

There always seem to be trade-offs in the choice of a numerical procedure.
Simple procedures often tend to be reliable, while fancier ones may be faster
but likely to go wrong with special classes of problems. The simplest procedure
for solving the problem posed above is the bisection process. We bisect the
interval I and calculate the value off at the midpoint, noting the sign of this
value; we now have a new interval of half the length in whichfmust have a zero,
or we will have observed that the midpoint itself is a solution. Continuing
this, we obtain a nested sequence of intervals which close down on the desired
solution x. In twenty steps we have arrived at an interval of length 2- 20L (I},
which is a reduction by about a million. This method is effective, and we can
predict in advance how many steps are needed to achieve a specified accuracy
in the location of x. Note that computer noise might give us the wrong sign
for some value of f at a bisection point, but since this value would of
necessity be very small, the ultimate point x provided by the algorithm would
not be too far off.

Another simple method is linear interpolation. Rather than choosing the
midpoint each time, one might choose that value of x where simple linear
interpolation between the current values off of opposite sign yields 0 as the
predicted value off Another variant of this is called the secant method, and
provides a sequence {x n} determined by the recursion

(10-1 )

Xo = a

Xl = b

xn - J(xn} - xJ(xn - dx n + l = ~~-~-

f(x n} - f(x n- d

The reason for the name and the theory behind this algorithm are both seen
in Fig. 10-2, and it is clear that in many cases, the sequence {xn} will converge
to one of the zeros off [However, note that it can be catastrophic to have
f(x n - d andf(xn} nearly equal while X n - l and X n are far apart; see Exercise 5.]
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Figure 10-2

(10-2)

Elementary calculus texts often give Newton's method, which can be
regarded as a limiting form of the secant method. This algorithm also produces
a sequence {x n} which (hopefully) converges to x and is defined by the
recursion

Xo = a

f(x n )

xn + 1 = X n - f'(x
n

)

The rationale for this is seen in Fig. 10-3.
It is interesting to compare the effectiveness of these different methods on

the same example. Let us solve x 3
- 5x + 3 = 0 on the interval [1,2]. By the

secant method we obtain

n 0 2 3 4 5 6

x. 2 1.5 1.76 1.8736 1.8312 1.8341

f(x.) -I - 1.125 -0.328 0.2090 -0.0154 -0.00064

and by Newton's method we obtain

n 0 2 3 4

x. 2 1.8571 1.83479 1.8342435 1.8342432

f(x.) 0.1195 0.00277 0.0000016 0.00000" .

x n + 1 Figure 10-3
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The bisection method requires more than 20 steps to achieve this degree of
accuracy. The effectiveness of Newton's method is in striking contrast to the
other two, and it is natural to seek a mathematical explanation for this success.

Theorem 1 Let f be of class C" on an interval I, and let x E I be a simple
zero of f, meaning that .f'(x) -# O. Then, there is an interml 1* c I
containing x and a constant M such that if Xo E 1* and {xnl is defined by
the recursion (10-2), then {xn} converges to x and

(10-3 ) for n = 1,2,3, ...

A converging sequence which obeys a condition such as (10-3) is often
called "superconvergent," meaning that the errors decrease very rapidly,
behaving something like the sequence .1, .01, .0001, .00000001, 10- 16

,

10- 32
, etc. To prove Theorem I, let 10 be an interval about x in which

1.f'(x)1 2 C > O. Then, let X n belong to 10 and expand f about X n by
Taylor's theorem, obtaining

f(x) = f(xn) + .f'(xn)(x - xn) + .f"(r)(~ - xnf

where r lies between x and X n . In this, set x = x where f(x) = 0, and
divide by.f'(xn) to obtain

.f"(r) _ 2 _ f(x n )

21'(;J (x - xn) = X n - X - .f'(x
n
)

The right side of this expression is X n + 1 - x, so that we have (10-3)
with M = B/(2C) where B is the maximum of 1.f"(x)1 on 10 , Clearly, if
Xo is sufficiently close to x, (10-3) will imply that XI' X2' and all later X n

lie in 10 , I

It is also natural to wonder if Newton's method can be applied when x is
not a simple zero off Experimentation suggests that the method again produces
a sequence converging to a zero x off if the starting point is sufficiently close
to X, but that the rate of convergence is far slower. A mathematical justification
of this is given in Exercise 6. (Of course, in order to be able to calculate
Xn+ 1 by (10-2), it is necessary to be sure that .f'(xn) -# 0; a convenient way to
achieve this is to require that.f"(x) -# 0 on a neighborhood of x.)

Suppose we now turn to problems involving functions of several variables.
The task of solvingf(x, y) = 0 for points (x, y) in a region D is really that of
constructing the O-height level curve r for f in D. An obvious approach is to
choose a set of discrete values of y, say Yi for i = 1, 2, ... , N, and for
each to solve the equation f(x, y;) = 0 for x. The result will be a collection of
points on each of the lines Y = Yi' each lying on the desired level curve (which
may have more than one connected component), and the remaining task is to
join these in an appropriate way to obtain an approximation to the complete
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level curve J. Accuracy can be increased by choosing the Yi close together, but
at the expense of increasing the effort considerably. Any adequate discussion of
the methods used to obtain smooth approximations to J from the discrete
point data would take us far afield.

We therefore turn instead to the problem of solving a pair of simultaneous
equations such as

f(x, y) = 0

g(x, y) = 0

We can restate this in terms of the transformation T defined by T(x, y) =
(.f(x, y), g(x, y)) in the simpler form T(p) = O. In either case, we see that a
solution (x, y) = p will be a point that lies on the intersection of the O-level
curves for f and g. If it is possible to obtain sufficient information about
these curves by the methods described in the preceding paragraph, it may be
possible to obtain a nested sequence of rectangles {Dn} known to contain p.
In simple cases, such a discrete search method can succeed. However, analytic
methods based on the study of the mapping T are usually much more efficient.
For example, there is a several-variable form of Newton's method, defined as
follows: Choose a trial solution point Po, which should be not too far from
the actual solution point p, and then use the following recursion to obtain
a sequence {Pn}:

(10-5)

[The analogy between this formula and that for the usual one-variable Newton's
method is more evident if the notation T'(Pn) is used instead of the differential
of T; compare with (10-2).]

With appropriate requirements on T and on the point p, the sequence {Pn}

will again be superconvergent to p if the starting point Po lies in a sufficiently
small neighborhood of p.

Theorem 2 Assume that T is of class en and that the differential of T is
nonsingular at p. Then, there is a neighborhood JV about p and a constant
M such that if Po lies in JV and Pn is defined by (10-5), then

(10-6)

The proof follows the same pattern as that of Theorem 1. Let dT be
the differential of T at Pn • Then, for any P sufficiently close to Pn '

(10-7) T(p) = T(Pn) + (dT)(p - Pn) + R

where the remainder term R obeys IRI ~ Rip - Pn 1
2

, for some suitable
constant B. In (10-7), choose P.= p and multiply through by the inverse
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of dT to obtain

(10-8)

(dT)-I(R) = - (dTr I(T(Pn)) - (15 - Pn)

= Pn - (dTr I T(Pn) - 15

(10-11)

=Pn+l-j5

By the boundedness theorem for linear transformations, and the fact that
the entries in (dTr I are uniformly bounded on a neighborhood of 15, it
follows that there is a constant A such that l(dTrl(R)I::S:AIRI::s:
ABlj5 - Pn 1

2
, so that from (10-8) we obtain (10-6). I

It is clear that the proof of Theorem 2 was not restricted to a pair of
equations in two variables, but instead applied to a nonlinear system of n
equations in n variables.

As a numerical procedure, Newton's method is not an easy one to apply,
especially if the number of equations is even moderately large. To illustrate
its use, consider the pair of equations

Jx 2y - x - 2 = 0
(10-9) 1xi - y - 6 = 0

It is easy to see that this system has exactly one real solution, x = 1, y = 3.
To apply Newton's method, we find

1 [2xy - I
(dTt I = 3~2y2---=-4xy +1 I _y2

and then define the sequence {Pn} by the recursion

(10-10) Po = (xo, Yo) Pn+1 = G(xn, Yn)

where G(x, y) = (u, v) and

x(xy - 1)2 + 6x 2 - 4xy + 2
u = x --- .-- .------

3x 2y2 - 4xy + 1

y(xy - 1)2 + 2y2 - 12xy + 6
v = y --.---..------------ ..-- -----

3X2y2 - 4xy + 1

In practice, the convergence of {Pn} to the desired solution 15 depends on
a "good" choice for the start Po. As Theorem 2 indicates, any point
sufficiently near 15 is good, but others may be also. In our example, the
choice Po = (7, 7) yields the sequence

PI = (4.684, 4.768)

P2 = (3.139, 3.380)

P5 = (1.0488, 2.8288)

P6 = (.99797, 2.99965)

P7 = (1.000004, 2.99994) ~ (1,3)
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On the other hand, with Po = (3, 1) the sequence obtained is

PI = (-.5,2.5)

pz = (-1.058, -1.819)

P3 = (- 1.085, - .907)

P4 = (-2.197, -2.029)

and the sequence does not converge to p. (Of course, one cannot choose a
starting point Po such as (1, 1) where the Jacobian vanishes or is too small.)

We will reexamine Newton's method from a different point of view in the
next section.

EXERCISES

I Verify formula (10-1) for the secant method.

2 Verify formula (10-2) for Newton's method.

3 (a) Determine the number of real roots of the equation

sin x + h = 1

(b) Find each root, accurate to .0001.

4 Discuss the behavior of Newton's method for the function shown in Fig. 10-1, assuming that
the starting point X o is chosen near to but not at the points A, B, and C.

5 Explain why the secant method encounters difficulty if If(x.) - f(x.- 1) I is small in comparison
with Ix. - x._ ,I. (It may help to refer to Fig. 10-2.)

6 (a) Show that if f'(x) = 0 but r(x) # 0, then the behavIOr of the error in Newton's method
is governed by the growth estimate Ix•• I - xl :S Blx. - xl, where B is approximately!.

(b) What effect does this have on the rate of convergence of {x.}?
(c) Apply Newton's method to solve x4

- 6x 2 + 9 = 0, and observe the rate of convergence
of the sequence {x.:.

(d) What happens ifj'(x) = r(x) = 0 but!",(x) # O?

7 Sketch the set of pomts (A, B) for which the equation x 5
- 5x 3 + Ax + B = 0 has (a) exactly

one real root; (b) exactly three real roots; (c) exactly five real roots.

8 Find the number of real solutions of the system of equations

J sin (y) - x = 0

\cos (x) - y = 0

and apply Newton's method (10-5) to find one solution.

10.3 FIXED-POINT METHODS

Let D be a set in n space, and let T be a transformation defined on D and
mapping D into itself, so that T(p) E D for each P ED. A point p is called a
fixed point for T if T(p) = p, and the problem to be discussed in this section
is that of finding such points p for a given T and D.

There is a very close relationship between the topics in the preceding
section and those in the present section. Clearly, if we define another
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transformation S by S(p) = P - T(p), then the fixed points of T are exactly
the zero points for S, and vice versa. Thus, any process which can be used to
find zeros can be converted into a process for finding fixed points. However,
the simple change in viewpoint turns out to be quite helpful in that it suggests
other procedures and also helps to clarify the theory behind some of the
procedures for locating zeros.

We start with a very useful general result for which we need a special
definition.

Definition 1 A transformation T mapping a set D into itself is called a
contraction if there is a number A < 1 such that

(10-12) IT(p) - T(q)1 ~ Je Ip - ql
for all points P and q in D.

Note that a contraction mapping is necessarily continuous, and that T(D) is
usually smaller than D. The following result is usually called the contraction
theorem.

Theorem 3 Let T be a contraction mapping on a closed set D, D eRn. Then,
T has exactly one fixed point p in D, and p = limn_ex: Pn, where {Pn} is the
sequence defined recursively by

(10-13)

where the initial point Po is arbitrarily chosen in D.

The first step is to prove {Pn} a Cauchy sequence. From (10-13), we see
that

Pn+I - Pn= T(Pn) - T(Pn- d
so that since T is a contraction, and (10-12) holds,

IPn+1 - Pnl ~ Je IPn - Pn-II

for all n = 1, 2, .... This yields !P2 - PI I ~ Alpl - Pol and Ip3 - P21 ~
Alp2 - PI I ~ Je21PI - Pol, and in general

(10-14) IPn+l - Pnl ~ Jenl pl - Pol

Take any indices Nand N + k. Then

PN+k - PN = PN+k - PN+k-1 + PN+k-1 - PN+k-2 + ... + PN+I - PN

so that, by (10-14),

IPN+k - PNI ~ IPN+k - PN+k-ll + IPN+k-1 - PN+k- 21 + ... + IPN+ I - PNI
~ {AN+k-l + Je N + k - 2 + ... + AN}lpl - Pol

~ AN(l + A + Je2 + ... + Jek-I)lpl - Pol
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Since A < 1,L: An converges to 1/(1 - A). Thus, we have

Ip - p I< AN IPI - Po I
N+k N - 1 - A

holding for all Nand k. Since limN~OJ AN = 0, we see that {Pn} is a Cauchy
sequence. Since n space is complete, and D closed, {Pn} must converge to
some point 15 ED. Since T is continuous, lim T(Pn) = T(j5). But, by (10-13),
T(Pn) = Pn+ I' which we know converges to 15. Accordingly, T(j5) = p, and
15 is a fixed point for T in D. Suppose now that T were to have another
fixed point, q. Then, because T is a contraction, IT(j5) - T(q) I :s; ..1.115 - q I,
which becomes 115- q I :s; ..1.115 - q I· But, since A< 1, this can only occur if
q = 15, showing that 15 is the only fixed point for T in D. I

The hypothesis that a transformation T is a contraction is therefore a very
powerful one. The definition can be restated in a useful way: T is a contraction
on a region D if T obeys a uniform Lipschitz condition on D, with a constant
that is strictly less than 1. In earlier chapters, we have found that various
versions of the mean value theorem provide ways to find a Lipschitz constant
for sufficiently smooth functions or mappings (see Exercise 13 of Sec. 3.2,
Exercise 18 of Sec. 3.5, and the corollary to Theorem 12 in Sec. 7.4). As a
result, we immediately obtain the following two simple results.

Theorem 4 Let f be a real-valued function of class C' on an interval I, and
suppose that f(1) c I and that 1f'(x)1 :s; A < 1 for all x E I. Then, f is a
contraction mapping on I.

Theorem 5 Let T be a tran~formation ofclass C' on a convex set D in n space,
and suppose that T(D) c D. Supposefurther that T is described in coordinate
form as

\YI = If(x l, x 2 ' ..• , x n )

Y2 = 2f(x l , x2, ... , xn)

I;n' ~';(~'I','~~',':::: ~~).

and that the partial derivatives of the functions If, 2f, ... , "f are bounded
on D:

Then, if
all P E D

(10-15)

T is a contraction on D.

.L (cijf < 1
;'j=1
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The first of these theorems follows from the ordinary one-variable mean
value theorem, and the second from the corresponding n-variable mean value
theorem (Theorem 12, Sec. 7.4). In practice, the following two results are more
often used.

Theorem 6 Let f be of class C' on an open interval I containing a point x
which obeys f(x) = x, and suppose that 1f'(x)1 < 1. Then, there is a sub
interval 10 about x on which f is a contraction.

Theorem 7 Let T be a transformation of class C' defined on an open set
D eRn, mapping D into n space, and suppose that D contains a fixed point p

for T. Suppose also that dT Iii = A = [aij]' where L;. j= 1 (aiY < I. Then,

there is a neighborhood Do c D about p on which T is a contraction.

Both of these arise from the observation that ex pressions involving the
derivatives of the given functions will be continuous, and that the
properties which hold at the point x or p must also hold when all the
variables lie in an appropriately small neighborhood of the point. This
guarantees a uniform Lipschitz condition on such a neighborhood, with a
Lipschitz constant A. smaller than I. The final step is to observe that this
in turn implies that a smaller neighborhood of x (or of p) is mapped into
itself. I

We give several illustrations of these. Suppose we wish to solve the
equation

(10-16) cos x + 3xe- X = 0

A sketch of y = cos x and of y = -3xe- X shows at once that there is one
negative root and an infinite number of positive roots, with all the larger ones
given approx imately by x = (2m + 1)n/2. Equation (10-16) can be converted
into a fixed-point problem in many ways; one obvious way is to restate it in
the form

(10-17)
x = _!ex cos x

=f(x)

If X o is chosen as X o = 0, and the sequence {xn} defined by x n + 1 = f(x n ), we
obtain XI = -!, X2 = - .2257, etc., which converges to one of the desired roots

(10-18) x = -.251 16283···

(given with reasonable accuracy by x 20 ). If a different choice of the starting
point X o is made, in almost all cases the same fixed point will be reached, in
spite of the fact that there are infinitely many other fixed points-as shown by
the graphical analysis of (10-16). For example, the first few are given by
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2.322613"', 4.569887"', 7.863056"', 10.995020"', etc., matching ap
proximately the claimed formula (2m + I )n/2 for large m.

The explanation for this behavior is seen in Theorem 6. It is readily seen
that I.f'(x) I is smaller that I for the fixed point given in (10-18), while this
fails to be true for any of the other fixed points. Thus, - .2511 ... is an attractive
fixed poin t, and is surrounded by a neighborhood loon whichf is a contraction
and in which every starting point Xo leads to x whenfis iterated. On the other
hand, each of the other fixed points off is a repulsive fixed point having the
property that unless the initial choice Xo coincides exactly with the fixed point,
the sequence of iterates generated by it moves away from it, eventually enters
the attractive region 10 , and thus once more converges to - .2511 .... Indeed,
it is immediately evident from (10-17) that a negative fixed point forr must be
attractive, since

I.f'(x) I= !exlcos x - sin xl ~ jex ~ j

We remark that in general, the behavior of sequences generated in this fashion
by a given function.f can be extremely erratic, producing both divergence to
infinity and strange periodicities. (In this connection, we recommend an article
by Li and Yorke in the American Mathematical Monthly, vol. 82, p. 985, 1975.)

There is a simple way to overcome this behavior by introducing a different
functionf We start again from the given equation (10-16), and consider instead
the function

(10-19) g(x) = x - A(cos x + 3xe- X
)

(10-20)

It is evident that the roots of (10-16) will again be fixed points of g. If we choose
A appropriately, so that Ig'(x)1 is small, iteration of g will yield the positive
roots of (10-16). In particular, if A = I, then 4.5698"', and 10.99502'" are
attractive fixed points, and if A = - I, so are 2.3226'" and 7.86305 ... , and
both can be calculated by iterating g from any sufficiently nearby starting
point.

Our second example is the transformation

T' Ju = x - Ax2
- .2y + .6

. 1v = y + .3x - .5y2 + .2

and we seek a fixed point j5 for T. It is easily seen that there are two such points,
(I, I) and (1.435 82 .. " - 1.123 16 ... ). The first is attractive, and if Po is chosen
as (0,0), the resulting sequence {Pn}. defined by Pn+ I = T(Pn), is convergent to
(I, I): PI = (.6, .2), P2 = (1.016, .56), ... , Ps = (1.000015, .999876), etc. The
second fixed point is not attractive. In confirmation of these statements, note
that

dT[ = [I - .8x
(I. I) I .3

-.21 [.2 -.21
I - y (I. I) 1.3 0 J

and that (.2)2 + (- .2)2 + (.3 f < 1. A similar computation at the second fixed
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point yields a number larger than 1. (We remark that the estimate L;. j= 1 (Cij)2

is not the best possible bound for the constant associated with the matrix [cij]
and the boundedness theorem, Theorem 8, Sec. 7.3; this means that the

condition L;. j= 1 (Cij)2 < 1 is sufficient but not necessary, in order for a fixed

point to be attractive.)
The contraction theorem also throws light on the general Newton's method

for solving equations. Suppose that we wish to solve the equationf(x) = 0 on
an interval I. Choose a constant A, and define a function 9 by

(10-21 ) g(x) = x - Af(x)

(10-22)

(10-23)

Then, any root x of f(x) = 0 will be a fixed point for g. If we can choose A
so that Ig'(x) I < 1, then x will be an attractive fixed point and can be found
by iterating g; moreover, smaller values for Ig'(x)llead to faster convergence.
Noting that g'(x) = 1 - Aj'(x), we see that an optimal choice for A is 1/ j'(x).
This analysis leads to the following procedure. To find x, already located within
an interval I, estimate the number j'(x), choose A as 1/ j'(x) (using the estimate),
and then iterate the function 9 given in (10-21).

For example, iff(x) = x 3
- 5, and we know that there is a root x in the

interval [1, 2], thenj'(x) lies between 3 and 12. We estimate the correct value
to be 7, and therefore set g(x) = x - (x 3

- 5)/7. If X o is chosen as any point in
[1,2], then iteration will yield a sequence converging to 51/3. (For example,
x lO = 1.7099763 if Xo = 1.)

The connection between this and Newton's method is now evident. The
recursion just described has the form

x - x _ f(x n)
n+1 - n j'(x)

(where in practice an estimate forj'(x) is used), while the recursion in Newton's
method is

f(x n)

xn + 1 = X n - fTx
n

)

automatically providing better and better estimates for j'(x) as the sequence
{xn} converges to X. In both cases, it is now clear why multiple roots, for which
j'(x) = 0, lead to different behaviors. It is also evident that (10-22) can be a
preferable method, especially ifj'(x) is difficult to evaluate, since in (10-22) this
need be done only once.

A similar treatment can be given for systems of nonlinear equations in
several variables. If we wish to solve

Jf(x, y) = 0
1g(x, y) = 0
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knowing that there is a solution p = (x, y) in a set D, consider the transforma
tion S defined by

(10-24) S(p) = P - AT(p)

where T(p) = (f(p), g(p)) and where A is an arbitrary nonsingular linear
transformation. It is again clear that p is a fixed point for S. Calculating the
derivative of S, we have

dS = I - A dT

If this is to be a matrix which at phas entries cij with L;. j= 1 (cijV < I, in order

that p be an attractive fixed point for the transformation S, one choice for the
constant matrix A is (dT lir 1, since we will then have dS = O. This leads to the
following algorithm for finding p, which is seen to be the direct analog of the
one described above in formula (10-22). Knowing that p lies in D, we estimate
the matrix dTI Ii , then choose A as its inverse. We then define S by (10-24),
choose a starting point Po, and define a sequence Pn by

(10-25) Pn+l = Pn - AT(Pn)

If this is compared with Newton's method, as given in (10-5), we see that A
is replaced by (dT IPot I, which is merely a moving estimate for (dT llit I. The
success of (10-25) depends on how good the estimate is that leads to the matrix
A, and how well Po is chosen. Its advantage over Newton's method lies in the
fact that A is calculated only once and used in this form at each step of the
iteration, while the corresponding matrix must be recalculated at each step in
Newton's method.

We illustrate this with the same problem used as an illustration in the last
section; we seek a solution for the system

Jx 2y-x-2=0
\xy2 - y - 6 = 0

Following the procedure outlined above, we must select a matrix A = [aij] and
then define a mapping S by S(x, y) = (u, v), where

f
uI= fx 1_ fall al2 1fX2~ - x- 61
v J y J a21 a22J xy - Y - 2 J

Suppose that we believe that the desired solution is in a disk centered on (2,2).
[Recall that the solution is actually at (1, 3).] Using this point as an estimate of
p and computing (dT 1(2.2))- I, we are led to choose

A=f .21 -.12/
-.12 .21

If we iterate S, with (2,2) as Po, we obtain a sequence of points that converges
rapidly to the correct point ji = (1, 3); in fact, Ps = (.9220, 3.1911), PIO =
(1.0040, 2.9608), and P30 = (.99993, 3.000 19).
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Specialized methods have been developed for selecting good starting points
Po and for choosing the auxiliary matrix A, including some which modify A
in the light of current values of Pn' Along with many other aspects of numerical
analysis, this is l.eft for texts devoted to this topic.

We close this topic with one final observation. The proof of the contraction
theorem depended essentially only upon the sequence {Pn} being convergent,
and this in turn depended on the fact that in Rn

, any Cauchy sequence
converges. Accordingly, a similar theorem holds for any mapping of a complete
metric space into itself which is a contraction, in the sense of Definition 1. In
Chap. 7, we studied a number of complete metric spaces whose points were
functions. In these spaces, the contraction theorem can therefore be used to
prove the existence of (and indeed to find) the solution of differential or
integral equations, as well as other functional equations. This technique is of
wide usefulness. In addition, there are also other theorems in which it is not
required that the transformation under study be a contraction mapping, but
in which the topological nature of the set D enables one to conclude that T
must have a fixed point in D.

EXERCISES

I Show that the iteration theorem (Theorem 4) fails to hold if f merely satisfies the condition
1f'(x)1 < 1 for all x, by considering the functionf(x) = x + 1/(1 + x) on the mterval 0 S x < oc.

2 Let 0 s A s 1 and define a sequence {xn} by

Xo = 0

(a) Prove lim X n = j A.
(b) Estimate the rate of convergence.

3 Apply Exercise 2 to show that Po(x) = 0, Pn+l(X) = Pn(x) + !(x 2
- Pn(x)) defines a sequence of

polynomials which converge uniformly to Ixl on -I S x s I.

4 Let A > 0 and consider the following two sequences:

Xo = A

Yo = A

(a) Prove that lim X n = lim Yn = ,yA.
(b) Which of these is a better algorithm for calculating ,yA? Explain why.

S Solve the system

Jsin (y) = x
ICOS (x) = Y

by fixed point methods.

6 Define a sequence of functions {In} by fo(x) = any function of class C' on - oc < x < oc,
fn+ dx) = (dldx)fn(x), and suppose thatfn(x) converges uniformly to F(x) on 0 s x s I. What can
you find out about F(x)?
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lOA EXTREMAL PROBLEMS

The general problem to be examined in this section is that of finding a point
pwhich yields the minimum value ofj(p) for p in a given set S. This has already
been examined from several viewpoints in earlier sections, especially Secs. 2.4
and 3.6. In the present section, we will look briefly at certain other aspects of
this problem that are connected with the practical problem of finding p, rather
than the theoretical problem of proving that p exists.

For smooth functions j and regions S, it is evident that our problem can
be reduced to another problem like those studied in Secs. 10.2 and 10.3. For,
if the minimum ofjoccurs at an interior point of S, then p must be one of the
critical points ofjin S, and these are the points p at which Dj = 0, while if the
minimum is on the boundary of S, then we have reduced the original problem
to another similar problem with a different set S, namely bdy (S). If the
boundary of S consists of one or more smooth curves, then substitution will
yield a new function to be minimized on a domain of lower dimension, and the
same process applies here.

However, in many cases this procedure is difficult to carry out, even if one
is dealing with a one-dimensional problem (see Exercise 1). In such cases,
other methods often turn out to be more effective, even some that are
mathematically much more naive. The study of numerical methods for dealing
with such problems has given rise to a new subject, optimization theory. In
Sec. 3.6, we described one of these methods which made use of the gradient of
f, Of, identified as a vector at a point p in the domain of j which points in the
direction of greatest increase in! As explained there, one uses this to generate
a sequence of points {Pn} chosen so that along this sequence, the values of j
constantly decrease-hopefully toward the minimum of! One such formula
was given there as

(10-26) Pn+ 1 = Pn - h Of(Pn)

where h is a preselected constant which helps to determine the step size; each
succeeding point is in the direction of decreasing values off from the previous
point.

It is also possible to take into account the behavior of the second derivative
ofjin choosing the next point after Pn • We illustrate this with a function of one
variable. Suppose that x is a local minimum point for j(x), and that X n is a
trial point near x. In a neighborhood of X n we can write

f(xn+ ).) = j(xn) + ).!'(xn) + ).2f"(xn)l2 + ...
If we drop all the later terms in the Taylor series after the first three, we have
a quadratic approximation to f near x = X n , and we can ask for the choice of
Ie which will minimize this. The solution is seen to be ). = - !'(xn)l f"(x n), and
we are led to the formula

(10-27)
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which generates a sequence {x n} that, with a good choice for the starting point
xo , may converge to the minimum point x. (In Exercise 5, we point out another
approach which also leads to the same formula, thus providing a second
justification. )

There are also versions of this method which apply to extremal problems
for functions of several variables. The role ofj'(x) is replaced by Of, and that
ofJ"(x) by the matrix-valued second derivative off, d2f, discussed in Sec. 8.5
and defined in formula (8-48). Further discussion of this will be found in most
of the recent texts on optimization, such as Kowalik and Osborne, "Methods
for Unconstrained Optimization," American Elsevier Publishing Company,
Inc., New York, 1968; and R. P. Brent, "Algorithms for Minimization without
Derivatives," Prentice-Hall, Inc., Englewood Cliffs, N.J., 1973.

The set S on which a function f is to be minimized is often characterized
by auxiliary equations; thus, S might be the set of all p in a given region n
which also obey the restrictions g(p) = h(p) = O. In such cases, the problem can
be called a constrained minimum problem on n. The remainder of this section
is devoted to two methods for solving such extremal problems.

The first method is one which replaces a constrained problem by a different
unconstrained problem on the same set n. Suppose we wish to minimize f(p)
among those points pEn such that g(p) = O. The key idea is to consider
instead the problem of minimizing on n the function

(10-28) F(p) = f(p) + A Ig(pW

where A is a suitable large constant, with the conjecture that a point PA that is
optimal for F will be one for which g(pA) is small, and for which f (pA) is
therefore nearly equal tof(p), the true minimum off(p) among those points p
where g(p) = O. Then, as A increases, the hope is that PA will converge to p.

For example, suppose we want to minimizef(x, y) = 2x + y among those
(x, y) with x 2 0, Y 2 0 such that xy - 18 = O. It is easily seen that p = (3,6),
and that the minimum off(p) is 12. We set

F(x, y) = 2x + Y + A(xy - 18)2

and look for the minimum of F(p) for x 20, Y 2 O. It is seen that this occurs
approximately at the point PA = (3 - 1/(72A), 6 - 1/(36A)), for large A, and if
A -> X, PA -> (3, 6) = p.

The most direct approach to the solution of a constrained extremal
problem is to make appropriate substitutions which convert it into an un
constrained problem. If we are to minimize f(x, y, z), subject to the condition
g(x, y, z) = 0, where p is confined to a set n and we can solve g(x, y, z) = 0 for
z = ¢(x, y), then we can instead consider the function F(x, y) = f(x, y, ¢(x, y))
and look for the (unconstrained) minimum of the function F. We would first look
for the critical poin ts of F, which would be found by solving F1 = F2 = 0 in n.

For example, let us find (x, y, z) E R3 obeying

(10-29) g(x,y,z)=2x+3y+z-12=0
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for which 4x 2 + .\'2 + Z2 = f(x, y, z) is minimum. Solving (10-29) for z, we arrive
unconstrained extremal problem of minimizing

F(x, y) = 4x 2 + / + (12 - 2x - 3y)2

whose critical points are the solutions of

8x - 4(12 - 2x - 3y) = 0

2.1' - 6(12 - 2x - 3.1') = 0

which have only one solution, x = -A, .I' = it which clearly must be the desired
minimum. Thus, the solution of the original constrained problem is the point
- (6 36 12)P = IT, IT, IT .

There are cases where it may be undesirable to carry out this direct
approach explicitly, in part because it is not immediately obvious which variable
should be the one to eliminate. One would therefore like to have an alternative
way to explore such problems which treats all the variables alike. This can be
done in terms of the critical points for general transformations; recall that p
is a critical point for T if the rank of dT at p is smaller than the integer that is
the lesser of the height and width of the matrix for dT.

Theorem 8 The points p = (x, .1', z) which lie in the set S described by
g(x, .1', z) = 0 and at which f(x, .1', z) is locally a maximum or a minimum
are among the critical points for the transformation

T' Ju =f(x, .1', z)
. \ v = g(x, .1', z)

Since

an equivalent assertion is to say that p is among the simultaneous solutions
of the equations

(10-31)

as well as g(x, .\', z) = o. (It should be noticed that any two of the determinant
equations imply the third; the assertion that dT has rank less than 2
means that (f1J2J3) and (g1> g2' g3) are multiples of one another.) For
example, let us apply this to the last illustrative example. Sincef(x, y, z) =
4x2 + .\'2 + Z2 and g(x, .1', z) = 2x + 3.1' + z - 12

we have dT = r~x ;.1' ~z J

If the top row is a multiple of the bottom row, then .I' = 6x and z = 2x.
Substituting these into g(x, .\', z) = 0, we again obtain the point (-A, it if).
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We sketch two proofs of Theorcm X. For the first. we assume that
g) if: 0 and solvc ~J(x• .1'.:) = 0 for :, obtaining: = c/J(x. 1'). We thell seek
extremal values for F(x. y) = f(x • .1'. c/J{x• .1')). The critical poilllS for Fare
the solutions of

0= Fj(x. r) =.1; +/Jc/Jl
0= F2(x.r)=/i +/Jc/J2

Since y(x. y. c/J(x. r)) = 0 for all x and y. we also IHI\'l,~

O=YI +fhc/JI
0=!12 + ~hc/Jz

Since ~13 does not vanish. we eliminate c/JI and c/Jz and have

If, f, I~ 0 ""d I!'" I~ 0
Ilt Y) Y2 113

so that (f1.f2 ./J) and (Yj. Y2' fh) are proportion-I!. and tiT has rank
or O. I

For the second proof. let us assume that p. is a point on a surface clement
S defined by y(x. y.:) = 0 at which f(fl) takes its maximullI "aille. The
transformation T maps a portion of 3-space contallling S LIlto the (/I. r) plane.
Since,. = g(x..1". :). the points on S map into an interval of the /I axis. Since
/I =f(x. .1'. :).the point f'· at whichfis grcatest must map into the right-hand
endpoint B of this interval (sec Fig. 10-4). If the rank of tiT at fl* were :!. thell
by Theorem 21, Sec. 7.7. T would carry a full neighborhood of JI* into a
neighborhood of B. There would then be points JI on .11 whose images arc on
the II axis and are to the right of B. Sinee this is impossible. the rank of lIT
at fl* must be Icss than 2. I

,

y

,
~

rf'~ '".I> n...'
'I

,
~7'
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The method of this theorem can be given in another form, due to Lagrange.
The key to this is the observation that if one forms the special function

(10-32) H(x, y, ;:, A) = I(x, y, z) + Ag(X, y, z)

then its critical points are the solutions of the equations

0= HI = II + Jeg l
0= H 2 = 12 + Jeg2
o= H 3 = 13 + Jeg3
0= H4 = 9

The first three equations merely assert that (f1,f2 ,/3) is a multiple of (gl' g2' g3)'
so that we again obtain Eqs. (10-31). Thus, the extreme points forf, constrained
to satisfy g(p) = 0, are among the critical points of the function H.

Note that this resembles the procedure in (10-28) by introducing the
constraint function g. However, there we were trying to minimize F on the
original set n, while in (10-32) we are looking for critical points for H on a
space of one higher dimension.

These results may be extended also to the case in which several constraints
are imposed. If we wish to maximize I (x, y, z) for points

p = (x, y, z)

which are required to obey g(p) = h(p) = 0, then the method of Lagrange
multipliers would be to consider the special function

H(x, y, z, Je, p) = I(x, y, z) + Ag(X, y, z) + ph(x, y, z)

The critical points of H are the solutions of the equations

0=11 + A91 + phi

0=12 + Ag2 + ph2
0=13 + Jeg3 + ph3
0= 9

0= h

Alternatively, we may find the critical points for the transformation

I
u =/(x, y, z)

T: v:g(x,y,z)
w - h(x, y, z)

which also satisfy the equations g(p) = h(p) = O.
As an illustration, let us maximize/(x, y, z) = z among the points satisfying

2x + 4y = 5 and x 2 + Z2 = 2y. (In intuitive geometric language, we are asking
for the highest point on the curve of intersection of a certain plane and a
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paraboloid of revolution.) Setting up T and dT, we have

dT =[ ~
2x

o
4

-2 2~]
This has rank less than 3 if its determinant vanishes. Expanding it, we obtain
x = -l If we use the constraints to find y and z, the desired point is
( 1 3 11)-"2", "2", 2 .

Since the method of Lagrange multipliers is intended to provide an
alternative way to determine the critical points of the function whose minimum
(or maximum) is sought, after certain of the variables have been eliminated,
it is also necessary to check points on the appropriate boundaries, in case the
desired extremal point is not interior to the natural domain of this function.
In practice, it will often be found that the numerical and algebraic work involved
is much the same, whether one uses Lagrange multipliers or whether one
proceeds by substitution (see Exercise 4).

EXERCISES

1 A wheel of unit radius is revolving uniformly. Attached to the perimeter is a rod of length 3,
and the other end P of the rod slides along a horizontal track (see Fig. 10-5).

(a) Outline a numerical procedure for finding where the maximum speed and the maximum
acceleration of the point P occur.

(b) Compute these locations.

2 Use the method suggested in Formula (10-28) to find the minimum value of f(x, y) = x 2 + y2
subject to the constraint 3x + 5y = 8.

3 Find the minimum value of F(x, y) = 3(x + 2y - i)2 + 4x 3 + 12y2 on the rectangle Ixl ~ I,
O~y~1.

4 Find the maximum and minimum values of f(x, y, z) = xy + z subject to the constraints
x ~ 0, y ~ 0, xz + Y = 4, and yz + x = 5.

5 (a) Apply Newton's method (as in Sec. 10.2) to locate the zeros of f'(x).
(b) Compare the resulting algorithm with the process given in (10-27) for finding an extreme

value for f(x).

6 What is the maximum value of x - 2y + 2z among the points (x, y, z) with x2 + y2 + Z2 = 9?

7 Find the minimum of xy + yz for points (x, y, z) which obey the relations x2 + y2 = 2, yz = 2.

8 What is the volume of the largest rectangular box with sides parallel to the coordinate planes
which can be inscribed in the ellipsoid (x/ajl + (y/bjl + (Z/C)2 = I?

-~
Figure 10-5
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9 leI ; -f(.~.l) he lhc cqll'llion or" COlwe~ surface r lying abovc the .mil disk x' + r ' s: I.
ant.! leI I' Ix ,m)' poml un r. LeI S be the region "'hich is boundct.! hclow b), E, 011 lhe sides
by lhe qli,a!cr r' + .l" "" I. anti on lOP b) lhc langenl plane 10 r OIl I' (sec Fig. 10--6). For wh:n
posillon of f' will S h,,,'c mininllllll volumc"?

10.5 MISCELLANEOUS APPROXIMATION METHODS

Since it is not possible to cover even superficially the whole field of numerical
methods, we have chosen in this last section to discuss certain specific topics
dealing with integration and differentiation. more as an indication of the use of
other tLi:hniques in analysis than for their own merit.

We start with the problem of finding a numerical estimate for an integral.
Other aspects of this havc been treated in Chap. 4. specifically at the end of
Sec. 4.3. where we described the use of the trapezoidal rule and Simpson"s rule
for integrals in one variable. We did not. however. discuss the estimation of
the error involved.

Suppose that f(x) is defined and continuous for all x. 0 S x s I. choose
an integer II, and set II = 1/11. Wc adopt the special notation h for the value.,
f(kll). Then. the trapezoidal estimate for I f = V is

·0

(l0·.1J)

It is easily Sl"Cn that this is III fact the integral on [0. I] of the piecewise linear
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-- -- --//
/'

--

"'il:urc 10..7

funclion F which matches I at the points X t = kill for k = O. 1.2..... II. as
suggested in Fig.. 10-7..

With no information about the function f. except for the values.f~ at the
data points X t • nothing can he said ahout the size of the error. IT - VI.
However. if a bound is known for F(x). an error estimate is possible..

ThcOf"em9 lflf'(x)1 s: Bfor XE[O. 1]. I/It'll

Ir'f-TI" I BI,~ B
. 0 4 4/1

AI each point (xl ./t ) on the graph off, construct lines with slope B
and - 8. Then. the mean value theorem guarantees that un each interval
[x k • x.+ I ]. the graph off lies in the parallelogram formed by Ihese lines
(see Fig. 10-8). The area of the parallelogram is at most Bil l /:!.. obtained
when It = It ... I' and since Ihc piecewise linear approxinmtion to I is the
diagonal of this parallelogram. the error made in each interval cannot
cx(;eed BI12/4. for a tOlal of 11(8112/4) = 81114.. I

Another simple procedure for numerical inlegralion is the midpoint rule.
For this we need the valuesft+ 1/2 for k = O. I........ II - I. and the estimate for I'
is simply

(10-34)

-,-
---~--'-::-

f.

x.

M = h(fs + I1.5 + ... + J~-.s)

--~-
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Figure 10-9

As suggested in Fig. 10-9, this is equivalent to approximatingf on each interval
by any line through the point (kh + ~,h + l/Z). Of these lines, the tangent is the
most appropriate, and provides the following useful observation: iffn does not
change sign on [0, 1], then the exact value V lies between M and T.

Finally, Simpson's rule can be described very simply in terms of these, by
writing

S=1T+iM

As shown in Exercise 26 of Sec. 4.3, the Simpson value S coincides with the
exact value V iff is a polynomial of degree at most 3.

It is natural to ask for analogous methods for multiple integrals. We deal
only with that corresponding to the trapezoidal method. Suppose thatf(x, y)
is defined and continuous for (x, y) in the unit square D, 0 ~ x ~ 1, 0 ~ y ~ 1,
and that we choose n and subdivide the square into nZ subsquares of side lin.
Suppose that we know the valueshj = f(Xi' Yj) at the (n + I)Z vertices of these

squares, and wish to estimate ff .f We cannot expect to be able to choose on
•• D

each subsquare a linear function F(x, y) of the form Ax + By + C that matches
f on the four vertices, since there are only three coefficients of F to be determined.
However, such a match can be obtained on each of the triangles formed by the
diagonals of the subsquare. If we make such a choice and replace the integral
off on the subsquare by the integral of F, the resulting number depends on
which diagonal we choose.

It is therefore simpler to abandon linear interpolation, and instead match
f by a hyperboloid function of the form

(10-35) F(x, y) = Ao + A1x + Az Y + A3 xy

The answer obtained by integrating this is the average of those obtained from
the two competing linear matches.
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The resulting approximate integration formula is easy to implement in
terms of the data values /ij' If Pij = (x;, Yj), then we assign weights as follows:
If Pij is interior to D, let wij = 1; if Pij lies on an edge of D but is not one of
the corners, set wij = t; if Pij is a corner of D, wij = t then, the desired estimate
for the exact value V of the integral is

T = h2 2, wiJ(Pij)

As an illustration, ifj(x, y) = 1/(x + Y + 10), this method with n = 2 yields

(
1)2{1 ( 1 1 1 1) 1 (1 1 1 1 )

T = 2 4 10 + 11 + 11 + 12 + 2 10.5 + IO.S + ITS + iTS

+ (1) 10 + .IS+ .S}

= .0910979

while the exact value can be shown to be .091 034 7 ....
Turning to triple integrals, the same approach uses the approximating

function

F(x, Y, z) = Ao + A1x + A 2y + A 3 z + A4 xy + Asyz + A6 xz + A7 xyz

and in implementing this, the data points can be weighted in a similar fashion,
interior points having weight 1, interior points on a face having weight !,
interior points on an edge having weight j, and each of the four vertices
of the cube having weight l

At times, much simpler methods can be useful. We have already observed
in some of the exercises for Sec. 4.3 that the Schwarz inequality can provide
useful estimates for one-dimensional integrals. The same is true of multiple
integrals. For example, consider the integral

] = If Jx 2 - y2 dx dy

D

where D is the triangle with vertices at (0,0), (1, 1), (1,0). Schwarz' inequality
gives us

]2 = {If JX- y~x+-y dx dyr

D

~ If (~x-=-yf dx dy If (JX+yf dx dy
D D

~ If (x - y) dx dy If (x + y) dx dy
D D

1 1

= f !x2 dx f ix
2

dx = ~
• 0 0



(10-36)

(10-39)
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Thus, I::; }3/6 = .288675. (Since the exact value turns out to be n/(12) =
.261 799''', we see that this approximation is not too far off.)

We close this brief discussion of integration methods by illustrating one
discovered by Gauss. The period of a simple pendulum, released from rest with
an amplitude of eo is

T= 4J~ (0 Fos-:S~~~
If eo is 900

, we must evaluate the integral

,,/2 dcp
(10-37) C - f

- 0 Jcos cp

If we substitute sin 2 e for cos cp, this becomes

C ,,/2 de
(10-38)- - r

2 - . 0 }COS2 e+ 2 sin2e
Gauss considered the general integral

,,/2 de
G(a,b)=f

o Ja 2 cos 2 e+ b2 sin 2 e
This can be converted easily into an elliptic integral of the first kind or
expressed in terms of the hypergeometric function, 2F 1 (~, t 1; x). By using
what is called a "quadratic transformation" for the functions 2F l' Gauss was
able to show that G satisfied a rather unusual identity:

(10-40) G(a, b) = G(a; b, jab)
This in turn led him to the following numerical method for calculating the
values of G. Define a pair of sequences {an}, {bn} by the recursion

(10-41 )
ao = a

an+ 1 = ~(an + bn)

bo = b

bn + 1 = j(iJJ;,
Then, both sequences will converge to the same limit (Exercise 9), called by
Gauss the arithmetic-geometric mean of a and b. Denote this common limit
by L. Then, from (1O~40), we see that G(a, b) = G(an, bn) for all n, and since G
is continuous, G(a, b) = lim G(an, bn) = G(L, L). However, this can be calcu
lated from (10-39), resulting in the formula given by Gauss:

(10-42)
n

G(a, b) = 2L

where L is the arithmetic-geometric mean of the pair a, b. The number L can
be found very easily by calculating terms in the sequences {an} and {bn}, since
the convergence is very rapid. To evaluate (10-37), we note from (10-38) that



546 ADVANCED CALCULUS

C/2 = G(1, )2), and then obtain

a. 1.2071 1.198 157 1.198 140

b. j2 1.1892 1.198124 1.198140

giving C = 2.622057.
We remark that the methods developed in Sec. 6.5 can also be applied to

(10-37), and yield C =~~ r(±)lr(~).
Numerical differentiation is far less used than numerical integration,

although closely related formulas lie at the heart of the numerical methods
for the solution of jifferential equations. Suppose we have available the values
ofJat a discrete set of points near x = a; can we use these to estimate the values
off'(a) andJ"(a)?

Sketches and analogies suggest the following:

(10-43 )

(10-44)

f'(a) ~ J(a + h) ;J(a - h)

J
"( ) ~ f(a + h) - 2f(a) +f(a - h)

a ~ h2

We wish to know how good these estimates are. The following result supplies
an answer, assuming that we have some a priori information about f(3) near
x = a.

Theorem 10 Let IP3l (X)1 ::s; M on [a - h, a + h]. Then, the error informula
(10-43) is less than h2 M/6, and the error in (10-44) is less than hM/3.

We start from Taylor's formula, with remainder,

f(a + x) =f(a) + f'(a)x +J"(a)x 2/2 +P3l(t)x3/6

Using this with x = h and x = -h, we arrive at

f(a + h) -f(a - h) = 2hf'(a) + {.f(3)(td +P3)(t2 )}h3/6

and then, dividing by 2h,

!f(a + h)2~f(a - h) _ f'(a) I ::s; 1~: Ip3l (t j ) + f(3)(t 2 )1

h2

< --- M- 6

In the same way,

f(a + h) - 2f(a) + f(a - h) = h1'''(a) + {.f(3)(td - f(3)(t 2 )}h3/6
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SO that

If!{l ~hL-2~~a) +!(a -_h) -f"(a) Is ~ 1.[(3)(t1) - f(3)(t 2)1

h
<-M I-3

We note that this can be replaced by h2M*j3, where M* is an upper bound
on P4) (Exercise 11).

If more points are used, better estimates for f'(a) and f"(a) can be found;
several illustrations are found in the exercises. Generalizations for functions of
several variables are also easily obtained.

More detailed and more comprehensive information about numerical
methods in analysis should be sought in the rapidly growing literature in this
area.

EXERCISES

I Fill in the missing details m the proof of Theorem 9.

2 Estimate the values of the following integrals within .05.

1

(a) r e- x2 dx
• 0 r

1 sin x
(b) --- dx

• 0 x

2 dx
(e)r _.--

• 1 I + log x

1

3 Use Simpson's rule to estimate the value of r dx/(I + x), using the values offat the points 0,
• 0

.25, .50, .75, 1.0.

4 Show that

rr
fA.-- - Ji5

V 4x2 - y2 dx dy < .-
.. 6
D

where D is the triangle with vertices at (0,0), (1,0), (I, I).

5 Show that (e-x~;dx < I.
o

6 Suppose thatf(O) = 1,f(I) = 4,f(2) = 4,f(3) = 3, and that f"(x) S °for °s x s 3. What is
3

the best estimate you can give for f f?
o

7 Estimate the value of

r,'r dx dy dz
... 5+x+y+z

D

where D is the unit cube with opposite vertices at (0,0,0) and (I, I, I), using a decomposition of
D into 8 subcubes and the trapezoidal method.

2

8 Estimate f sin (I/x) dx to within .01.
o

9 Prove that the sequences {a.}, {b.} in (10-41) are superconvergent to a common limit.
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10 Use the method of Gauss (10-41) to verify the following computation:

• ,/2 dOI --, .. - =.742 206 24
'0 jS-sin 2 IJ

II Show that hM/3 can be replaced by h2 M*/3 if it is known that IP41(X)1 ~ M*.

12 Given thatf(.S) = 2.0./(.6) = 2.3./(.8) = 2.7, and If"'(x) I~ 4, estimate the value ofl'(.6) and
/,,(.6) with error terms.

13 Obtain an approximate formula for I'(a) and/,,(a), making use of the five values f(a + kh) for
k = 0, ± 1, ±2, and estimate its accuracy in terms of the maximum value of IP51(X) I or IP61(X)1
on the interval [a - 2h, a + 2h).



APPENDIX

ONE

LOGIC AND SET THEORY

There are many excellent books which deal with mathematical logic and its
dual position as an aid to mathematics and a part of mathematics. Historically,
the discovery of paradoxes in set theory led to a renewed study of logic in order
to" lay a firm foundation" for classical mathematics, and this in turn led to an
emphasis upon axiomatic approaches, constructivity, and deduction. More
recently, of course, the growth of interest in recursive functions and in algebraic
logic has made renewed contact with the main body of mathematics, and on an
advanced level, there has been much cross fertilization. The purpose of this
brief section is not to present a survey of the status oflogic, but only to mention
certain simple techniques and concepts which are useful for a person who is
working with elementary analysis; the emphasis is upon informalism. For a
more sophisticated point of view, we recommend the book "Naive Set Theory"
by Halmos.

In the beginning stages of analysis, there seems little reason to insist upon
the adoption of a formal syntax for presentation of statements and arguments.
It seems easier to work with statements such as

(*) each point p is the center of a neighborhood in
which the values qff are less than C

than with its formalized equivalent

(**)

549
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Here, we use the convention that "(x)" means "for all x", that "(X)E" means
"for all x E E", that "(3yt means "there exists a y", that "(3Y)E" means that
"there exists ayE E", and that "A --> B" can be read "if A then B". The sets D
and P are understood to be a set in the plane and the positive real numbers,
respectively.

However, there is one type of problem in which the use of a formalized
language is very helpful. Suppose that we wish to prove a proposition of the
form U --> V. The device of" proof by contradiction" amounts to the statement
that it is equivalent to prove not V --> not U. (The fact that some persons have
doubts about this will be discussed later.) The problem then is, knowing the
statement" V", how can we formulate the statement "not V" in a simple and
useful way?

The simple routine which can be used is based upon the following
semantic rules:

not (X)E = (3x)E not
not (3x)E = (X)E not

not (A --> B) = A & not B
not (A & B) = not A or not B
not (A or B) = not A & not B

not (not A) = A

As a sample, let us apply these to find "not V", when V is the statement (*)
above. Using (**), we first have

not (P)D(3<5)P(q)D: Ip - ql < J --> f(q) < C

Then, we move "not" past each quantifier in turn. The steps appear thus:

(3p)D not (3J)P(q)D: Ip - ql < J --> f(q) < C

(3P)D(J)P not (q)D: Ip - ql < J --> f(q) < C

(3p)D(J)p(3q)D not: Ip - ql < J --> f(q) < C

(3P)D(J)p(3q)D: Ip - ql < J & notf(q) < C

Finally,

which could be translated into the following less formal statement:

there is a point p such that every neighborhood about p
contains at least one point where f has a value as big as C

As mentioned above, some logicians would object to certain of the
equivalences listed above. Without entering into this in depth, this point of
view can be appreciated in part by examining the first; we can translate
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to mean

it is false that every x E E makes A(x) true

The "equivalent" statement,

(3x)£ not A(x)

would translate

there is an x E E for which A(x) is false

But this statement might seem to convey that indeed you know an Xo E E and
know that A(xo) is false, rather than that you merely know it is impossible
for there not to exist such an x. The point here is one of existence vs.
constructibility. In most cases, it is clearly better to have some algorithm for
finding such an xo , rather than a theoretical proof that such an X o exists.

Another topic that is often regarded as part of logic is the use of mathe
matical induction as a mode of proof. Strictly speaking, we are here dealing
with properties of the system of whole numbers and similar systems. If S is a set
of whole numbers which contains 1 and is such that, whenever it contains x,
it must also contain x + 1, then S contains all the whole numbers. A familiar
use of this is the proof that 1 + 2 + ... + n = n(n + 1)/2, for all n = 1, 2, ....
Calling this proposition Pn , we observe that PI is true; then, let S = {all n with
Pn true}, and show that S is inductive,

xES---+x+1ES

and thus contains all whole numbers n. However, this same proposition is also
proved in the following way: Let

L=I+ 2 + 3 +"'+n
L = n + (n - 1) + (n - 2) + ... + 1

and adding, we have

2L = (n + I) + (n + 1) + ... + (n + 1) = n(n + 1)

whence L = n(n + 1)/2. Is this argument less convincing than the appeal to
mathematical induction? Is it logically valid? What is the role of" .. ·"?

Finally, let us examine briefly some of the aspects of set theory. Although
its importance to the foundations of analysis is undeniable, there is much of
the theory of sets that has little relevance to advanced calculus. In particular,
it does not seem to be essential at this level to understand the formal axiomatic
approach. As an example, it does not seem necessary to examine the notion of
ordered pair or triple, or to show that {a, {a, b}} is an adequate model for <a, b).

The notion of infinite cardinal number is useful, however, and should be
part of a student's experience. Excellent treatments can be found in many
places, for example, in the book "A Primer of Real Functions," by R. P. Boas,
Jr., which is No. 13 in the Carus Monographs. Here, we shall mention only
some aspects of countability and noncountability.
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Two scts A and B arc said to have the same number of mcmocrs if there
IS a function p A ..... 8 which Illaps A onto 8, 1-lo~1. Looked at tliffcrcmly.
this is the samc as sayin£ that we havc used the members of 13 to label thc
members of A, A set that has the same number of members as the sCI 1=
{I. 2. 3. ".; of all whole numbers is said to be ('OII1/Iah/e. Any infinite sct that
is not countablc is said to be /lollcolI/llable. 1. of coursc. is countable, as is the
sct of all rational numbers, but the set of all real numhcrs is not countable.
If wc idcntify the latlcr with uncnding dL-'Cimals, then it is easy to provc
noncountability. Iflis a funclion from 1 into the real numbers in the closed
interval [0, 1], thcn we can cxhibit a number Xo which is not in the range off
All we necd do is to takc X o so that it differs at the 11th decimal from the 11th
decimal of thc number f(n), with appropriate care to avoid decimals that
terminate in a string of "9".

More gcncrally, any set can be shown to Imvc more subsets than it lws
members; in particular, the collection of all sels of inlegers is noncounlable.
while the collection of all scts of real numbers has a cardinal number larger
than thai of the set of real numbers itself.

Onc says that a set A has at least as many members as the sel B if 13 am
be paired, I-to-I, with a subset of A. A fundamcntal result about infinite sets
is thc Schroedcr-Bernstein theorcm, asscrting thaI. if A has at least as man}
members as B, and B has at least as many as A, then A and B have the same
number of members. A simple proof of this tTI<lY be constructcd along the
following lines. We are given Iwo functionsfand y.

FA-B
~r B ..... A

each l~to~l. but neithcr onto. We wish tll prcxlucc a function I,: A ..... B which
is onlo and l-to-1. Suppose wc could split each of the sels A anti n, so that
A is the union ofa subset C and the SCi A ~ C and B = 0 v(B - 0). in such
a way that. as indicated in Fig. A I-I, y(O) = A - C and.f(C) = B - O. Then.
the desired mapping 1r has been obtaincd,
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It is easy to show that we need only find the set C and can then determine
D from it and that C must satisfy the identity

C = A - g(B -f(C))

Define a function T on the subsets of A by

T(5) = A - g(B - f(5))

For example, T(</J) = A - g(B), and T(A) = A - g(B - f(A)) c A. We are
searching for a set C c A such that T(C) = C. The following steps complete
the proof that such a set exists and thus prove the Schroeder-Bernstein
theorem:

i. Show that the mapping T has the property that if 51 c 52 C A, then
T(5d c T(5 2 ) c A (T is monotone).

ii. Let ~ be the class of subsets 5 c A such that T(5) c 5. (For example,
A E K.) Show that, if 5 E K, then T(S) E K.

111. Show that any monotone mapping has a fixed set C, with T(C) = C.
(Method: Define C to be the intersection of all sets S in ~.)



APPENDIX

TWO

FOUNDATIONS OF THE
REAL NUMBER SYSTEM

The real-number system underlies all analysis. In the next few pages, we shall
set forth its characteristic properties. We start with a definition: The real
numbers constitute a complete simply ordered field.

We expand this concise statement by explaining the meaning of the terms
involved.

Definition 1 A field is a set K of elements a, b, x, ... ,together with two
functions + and" called" sum" and" product," which satisfy the following
requirements:

(F1) closure If a and b are in K, then their sum {product} is defined and is a
unique element ofK denoted by a + b {a' b}.

(F2) commutative If a and b are in K, then

a+b=b+a

a'b=b'a

(F3) associative If a, b, and c are in K, then

a + (b + c) = (a + b) + c

a'(b'c)=(a'b)'c

554
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(F4) distributive If a, b, and c are in K, then

a' (b + c) = (a' b) + (a' c)

(F5) existence of neutral elements There are two special elements of K,
denoted by °and I, such that for any x E K,

x+o=x and x· I = x

(F6) inverses For any a E K the equation a + x = °has a solution, and for
any a E K except 0, the equation a . x = I has a solution.

In working with a field, it is customary to use certain abbreviations. For
example, according to (F6)' there is an element x such that a + x = 0;
moreover, this element is unique, for if a + x' = 0, then

x = x + °= x + (a + x') = (x + a) + x'

= (a + x) + x' = °+ x' = x' + °= x'

Thus, the element depends solely upon a, and we denote it by - a. The
function "difference" is then defined by a - b = a + (- b). Likewise, if a "# 0,
then the solution of a . x = I is unique and may be denoted by a- 1 or I/a.
We then define" quotient" by alb = a . (lib). On the basis of these postulates
on K, all the familiar algebraic rules follow. To cite a few, one may prove that:

(-a)·(-b)=a·b

a'O = °
(alb )(cld) = (a . c )/(b . d)

(alb) + (cld) = (a' d + b· c)/(b' d)

a' b = ° only if a = °or b = °
The notion of an ordering relation may be introduced most easily by means

of a set of positive elements.

Definition 2 A field K with a simple order is one in which there is a
subset P (called the set of positive elements) such that:

(Od Ifa and b are in P, then so are a + b and a' b.
(0 2 ) The zero element, 0, is not in P.
(0 3 ) fr x is any element not in P, then x = 0, or - x E P.

To convert these postulates into more familiar properties, one defines a
relation> on K by: a> b if and only if (a - b) E P. The conditions (Od,
(02 ), (03 ) imply the usual properties of >. For example, a> °is equivalent
to saying that a belongs to P. Requirement (Od then implies that if a > b
and b > c, then a > C, and if d > 0, then a . d > b . d. The equivalent form of
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(0 3 ) is the statement that if a and b are any elements of K, then either
a = b, a > b, or b > a. An ordering relation > which has this last property
is said to be simple or linear; many important ordering relations are partial
orderings in which this law fails, and two elements a and b may be incomparable.
We note one important consequence of the existence of a simple order in K,
namely, that the sum xi + x~ + ... + x; is always positive (> 0) unless
Xl = x 2 = ... = Xn = O.

Finally, we come to the notion of completeness of an order relation.
As we shall see, this has many equivalent formulations. One of these may be
described in terms of what are called Dedekind cuts. A cut in K is a pair A, B,
where A and Bare nonempty subsets of K whose union is K and such that
a ::;; b whenever a E A and b E B. Any element c of K can be used to
generate a cut by taking A as the set of all x E K with x ::;; c, and B as the
set of all x E K with x 2 c.

Definition 3 A simple ordering on a field K is complete if every cut in K
is generated by an element of K.

Some additional comments are in order. The real field R is not the only
example of a field. One familiar example is the complex field C.

Definition 4 The complex field C is the class of all ordered pairs (a, b) with
a and b real numbers, and with sum and product defined by

(a, b) + (x, 1') = (a + x, h + 1')

(a, b)· (x, y) = (ax - by, ay + bx)

One may verify that C satisfies the field axioms F l' ... , F6' For example,
0= (0,0),1 = (1,0), -(x,y)= (-x, -1'), and

(

X - y )
(x, yr 1 = (;2+-}-;-2)' (x2 .; 1'2)

If we write (0, 1) = i and (a, 0) = a, then (x, 1') = x + iy, where i 2 = - I. The
usual algebraic operations may now be used. The complex field cannot be given
a simple order; as we have seen, in any simply ordered field, it is necessary
that x 2 + l #- 0 except when x = l' = O. This fails in C, since 12 + i 2 = O.

Other examples of fields may be obtained from R. A subset 5 of R is
called a subfield if 5 is a field under the operations of R; one need only
verify that if a and h are any two elements of 5, then a + h, a . h, - a, and
if b #- 0, lib are all members of 5. The smallest subfield of the real field is
called the rational field R o . The elements of the rational field are the rational
numbers; each may be represented in the form alh, where a and b belong to
the special subsystem called the ring of integers Z. Every element in Z is
expressible as /11 or -/11 or 0, where m is in Z+, the system of positive integers
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(whole numbers). As a subfield of R, the rational field Ro is simply ordered.
The class of positive elements of R o can be taken as Po = P n Ro . However,
unlike the real field, Ro is not a completely ordered field. The Dedekind cut
(A, B) in Ro defined by

A = {all x E Ro with x 3 < 2}

B = {all x E Ro with x 3 > 2}

is one which cannot begenerated from an element in Ro . In R, the corresponding

cut is generated by J2, but this number is not present in Ro .
With this preparation, we state without proof the fundamental result

dealing with the real field: any two fields which are completely ordered are
isomorphic. This gives one the right to speak of the real field, and guarantees
that the description we have chosen is adequate. To explain by illustration
the meaning of "isomorphic," we give another construction of the complex
field. Let C* be the collection of all 2-by-2 matrices with real entries and
having the form

For multiplication, use the customary product operations for matrices, and add
matrices by adding corresponding entries. Then, one may again verify that C*
is a field. The correspondence

r a baj-a+bi=(a,b)I-b
is an isomorphism between C* and C. (This class of matrices also appears in
another connection in Theorem 10, Sec. 8.4. Nor is this entirely a coincidence;
conformal transformations are locally expressible as power series with complex
coefficients.)

Having obtained a categorical description of the real numbers, is it sufficient
to proceed by fiat; "let R be a completely ordered field," and then continue
from there? This would leave open the possibility that there might not exist
such a field, due perhaps to some undiscovered inconsistency in the postulates.
To avoid this, we may attempt to construct an example of such a field,
building up from a simpler system whose existence we are willing to accept.
This process has been set forth in great detail in Landau, "Grundlagen der
Analysis," Leipzig, 1930. We sketch such a construction in a sequence of steps.

Step I. Construction of R from R o . Two methods have been used here.
The first method is conceptually simpler. Ro is an ordered field which is not
complete. Some of its Dedekind cuts can be generated by elements of Ro
and some cannot. Define R to be the collection of all cuts. Those that can be
generated from elements of R o are identified with the corresponding element
of Ro and are rational numbers; those that cannot be so generated are the
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irrational real numbers. One then defines sum and product of cuts, and
verifies all the postulates for R.

The second method is easier to carry out. Working only with rational
numbers, we define convergence of sequences of rational numbers, and Cauchy
sequences of rational numbers. It is no longer true in Ro that every Cauchy
sequence converges. Consider the collection K of all Cauchy sequences of
rational numbers, and introduce a notion of equivalence by saying that
{an} :::::; {bn} if and only if limn~oo (an - bn) = O. This splits K into equivalence
classes. Each of these is now called a real number. The product and sum
functions are now defined, and the postulates verified.

Step 2. Construction afRo from Z. Consider the collection ;J/> of all ordered
pairs of integers (Ill, n) with III i= O. Thinking of (m, n) as representing the
rational number n/m, a notion of equivalence is defined in .J/> by (Ill, 11) ~
(m', n') if and only if mn' = m'n. This again divides ;J/> into equivalence cla\\c\
Each of these classes is called a rational number: with appropriate definilillns
for sum. >, and product, Ro is seen to be an ordered field.

Step 3. Construction of Z from Z+, the positil'e whole numhers. Again.
one considers a collection of ordered pairs (m, 11) where m and n are in ['.
With (m, n) being thought of as corresponding to the integer m - n, one
says that (111, n) :::::; (m', n') if and only if

m + n' = n + m'

The resulting equivalence classes are called the integers. The rest goes as
before.

Step 4. Construction of Z + from axiomatic set theory. Within an adequate
system of logic, one may define the notion of cardinal number for finite sets.
From this, one may then obtain Z+.

We conclude this discussion of the real-number system by giving some of
the equivalent ways in which the completeness property, which is so character
istic of R, can be obtained. Most of these involve results which we have
assumed, or which have been proved from others which we have assumed.
In the chart in Fig. A2-1, we have indicated by arrows certain mutual
implications which hold among these. The branched arrows on the right side
of this diagram indicate that the combination of the Archimedean and Cauchy
convergence property jointly implies all the rest (which are seen from this
diagram to all be equivalent to one another). It may seem surprising that the
Cauchy property alone is not enough. This is true because the statement
that a given sequence has the Cauchy property is actually a very strong
statement, and one cannot prove that a bounded monotonic sequence is
Cauchy without using the archimedian property-which is itself equivalent to
the assertion that the sequence {1/11] converges to O. In fact, there exist non
archimedean fields in which the only Cauchy sequences are ultimately constant.
while there are bounded monotonic sequences that diverge.

This discussion should not end without a mention of oc and - ex;. These
are to be regarded as .. ideal" points adjoined to the real field R. The
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neighborhoods of ware defined to be the intervals

{all x with x > b]

and the neighborhoods of - x are the intervals

{all x with x < h)

Using these, we see that the sequence {xn ] with X n = n is convergent to x
and that every sequence of real numbers has a limit point in the extended
system. The new points x and - x do not participate fully in the algebra
of R; in particular, the new system is no longer a field. One may attach
meaning to some of the operations, but not all; for example, we may define
x + c to be x for all c E R, but no meaning within the new system is
attached to ex + (- x ).

The adjunction of 00 and - 00 to R is done with the aim of achieving
compactness. This may also be done in other ways. If c/> is a transformation
which is I-to-I, bicontinuous, and which maps R onto a set A in a compact
set S, then the closure of A in S is a compactification of R. The boundary
points for A which do not lie in R form the ideal points which are to be
adjoined to R. As a simple illustration of this, let S be the circle of radius I,
center C = (0, I), and let c/> be the transformation mapping the point (x, 0) on
the horizontal axis (= R) into the point p on S which lies on the line through
(x, 0) and Q = (0,2). It is easily seen that the image of R is the set A
consisting of all points on S except Q. The closure of A is S itself, and Q is the
only boundary point of A which does not lie in A. Thus, R may be compactified
by adjoining a single point "at infinity" whose neighborhoods are the sets
(all x with Ix I > c). With the same choice of S, we may take c/> as the
transformation mapping (x, 0) into the point of S lying on the line through
(x, 0) and C; the closure of the image set A is a semicircle whose endpoints
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Figure A2-2

correspond to the ideal points 00 and - 00. Other choices of Sand cP may
yield an infinite number of ideal points" at infinity."

Connectedness is a difficult topological property to understand fully. For
open sets in R", it is equivalent to being pathwise connected, which is certainly
a more easily visualized concept. However, there is a standard example of a
connected set in the plane that is not pathwise connected, namely

. j sin (I/x)
E = all (x, y) wIth y = \ 0

if 0 < x < 1

if -I ~ x ~ 0

shown (in part) in Fig. A2-2.
A more dramatic example can be given. Consider a rectangle S with

vertices A, B, C, D, and suppose that we have two connected subsets of S,
rx and {3, such that rx contains the pair A and C and {3 contains Band D.
If each of these connected sets were curves, we would know that there would
have to be a point that belonged to both rx and {3. However, Fig. A2-3
indicates how it is possible for rx and {3 to be connected and still disjoint.

Another nonintuitive consequence of the careful analysis of the meaning
of continuity was the demonstration by Peano that a continuous curve could
pass through every point of a solid square. In Figs. A2-4 and A2-5 we
illustrate several stages in the construction of a "space-filling" curve.

D

A

c

B Figure A2-3
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APPENDIX

THREE

LINEAR ALGEBRA

This is intended to be a brief synopsis or review of those aspects of linear
algebra and matrices which are most needed for the topics in analysis that
are studied in Chaps. 7, 8, and 9. Proofs and complete discussions can be
found in any of the large number of current texts in linear algebra.

The definition of a linear (or vector) space has been given in Sec. 1.2; the
associated field K of scalars is usually either the real numbers R or the complex
numbers C. Standard examples of real linear spaces are Wand C[l]. We use
Kn for the space whose points are n-tuples of scalars (c l , Cz , ... , cn) from K.
If V is a linear space and MeV, and if AU and U - [" belong to M for every
u and [' in M and every scalar A E K, then M is a linear subspace of V. If
U = {Ub Uz , ...J is a collection of points in a linear space V, then the (linear)

span of the set U is the set of all points of the form"" Cj Uj, where c j E K, and
.:........,

all but a finite number of the scalars Cj are O. The span of U is always a linear
subspace of V.

A key concept in linear algebra is independence. A finite set Ul' Uz, ... , Uk

is said to be linearly independent in V if the only way to write 0 = "'. C j U j is
.:........,

by choosing all the cj = O. An infinite set is linearly independent if every finite
subset is independent. If a set is not independent, it is linearly dependent, and
in this case, some point in the set can be written as a linear combination of
other points in the set. A basis for a linear space M is an independent set that
spans M. A space M is finite-dimensional if it can be spanned by a finite set;

562
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it can then be shown that every spanning set contains a basis, and every basis
for M has the same number of points in it. This common number is called the
dimension of M.

Another key concept is that of linear transformation. If V and Ware linear
spaces with the same scalar field K a mapping L from V into W is called
linear if L(lI + 1") = L(u) + L(v) and L(AU) = AL(u) for every u and v in V and
Ie in K. With any L are associated two special linear spaces:

,j '(L) = ker (L) = null space of L = Cj(O)

= {all x E V such that L(x) = O}

1m (L) = image or range of L = L(V)

= [all L(x) for x E V]

The first is a subspace of V, and the second a subspace of W L is a I-to-l
mapping (injective) if and only if ,V(L) = {O}, and L is an onto mapping
(surjective) if and only if 1m (L) = W. A linear transformation that is both
I-to-I and onto is called an isomorphism; two spaces V and Ware called
isomorphic if there is an isomorphism L mapping V onto W. The inverse C j

then exists and is an isomorphism mapping W onto V. Any space M of
dimension n is isomorphic to the space Kn. If {Uj' U2 ' •.. , un} is a basis for M,

then every point x in M can be written uniquely in the form L Ci U i ' Ci E K,

and the required isomorphism L is defined by L(x) = (c j , C2 , •.• , en)' All linear
spaces of the same dimension are isomorphic. Henceforth, all the linear spaces
discussed will be finite-dimensional.

With any linear L mapping V into W, two integers are useful:

r = rank (L) = dimension of 1m (L)

k = nullity of L = dimension of. j '(L)

If V has dimension n. it can be shown that r + k = n. If W also has dimension
n, then the following useful criterion results: L is I-to-l if and only if L is onto.
In particular, if L is a linear map of V into itself, and the only solution of
L(x) = 0 is 0, then L is onto and is therefore an isomorphism of V onto V, and
has an inverse C 1. Such a transformation of V onto itself is also said to be
nonsingular.

Suppose now that L is a linear transformation from V into W where
dim (V) = 11 and dim (W) = Ill. Choose a basis [I"j, 1'2' ... , I"nl for V and a
basis {Wj' W 2 , ... , wm: for W. Then, these define isomorphisms of V onto Kn
and W onto Kill, respectively, and these in turn induce a linear transformation
A between these, as shown in Fig. A3-1, such that L(I") = ljJ-l A¢(I')' Any
linear transformation (such as A) between K" and Kill is described by means
of a matrix [aia, according to the formula A(x) = .\', where x = (x j, x 2 , ... , xn ),
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V .....cL=-- ... W

K" --.-. Km
A

Y = (YI' Yz, ... , Ym), and

Figure A3-1

(A3-1)
n

Yi = L Qijx i

j= I

i = 1,2, ... , m

The matrix A is said to represent the transformation L and to be the representa
tion induced by the particular basis chosen for V and for W. (A different choice
of basis would produce a different numerical matrix A.)

All the properties of the transformation L are mirrored in terms of
properties of the system of linear equations (A3-1) and the numerical matrix
A, and do not depend on the choice of bases. Thus, the rank of L is the
dimension of the subspace spanned by the columns of A, which is the same as
the number of columns of A that are linearly independent; if the rank is m,
then equations (A3-1) have a solution for any choice of y, since T is then onto,
and Theorems 6 and 7 of Sec. 7.3 follow.

When V = W, so that n = m, then the matrix A is square and (A3-1) is a
system of n linear equations in the n unknowns x j . The transformation L is
nonsingular if and only if A is of rank n, which means that its columns are
linearly independent, and which is therefore equivalent to the assertion that
(A3-1) has a unique solution for any choice of Yi; in particular, this must hold
if and only if L is I-to-I, which means that the null space of L is {O}, and
which is equivalent to the assertion that the homogeneous equations 0 =
L~=I Qijxj have only the obvious solution XI = X z = ... = x n ·

If Sand Tare iinear transformations of V into itself, so is the composite
transformation ST. If we choose a basis in V, and use this to obtain matrix
representations for these, with A representing Sand B representing T, then ST
must have a matrix representation C. This is defined to be the product AB of
the matrices A and B, and leads to the standard formula for matrix multiplica
tion.

The least satisfactory aspect of linear algebra is still the theory of deter
minants-even though this is the most ancient portion of the theory, dating
back to Leibniz if not to early China. One standard approach to determinants
is to regard an n-by-n a matrix as an ordered array of vectors (u I, U z , ... , un),
and then its determinant det (A) as a function F(uJ, uz , ... , un) of these n
vectors which obeys certain rules. F is required to be multilinear (i.e., linear in
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each position), so that, for example,

F(AU 1, U2' , un) = AF(u 1, U2' ... , Un)

F(v + W, U2' U3' , Un) = F(v, U2, ... , Un) + F(w, U2' U3, ... , Un)

and alternating, so that

for every k i' 1, and normalized by F(e 1, e2' ... , en) = 1, where e1 =
(1,0,0, ... ,0), e2 = (0, 1,0,0, ... ,0), etc. One is then able to show that there is
exactly one such function, which not surprisingly turns out to coincide with
the college algebra notion of determinant for n = 2 and n = 3.

The determinant of such an array A turns out to be a convenient criterion
for characterizing the nonsingularity of the associated linear transformation,
since det (A) = F(Ul' U2, ... , un) = °if and only if the set of vectors ui are
linearly dependent. There are many other useful and elegant properties of
determinants, most of which will be found in any classical book on linear
algebra. Thus, det (AB) = det (A) det (B), and det (A) = det (At), where At is
the transpose of A, obtained by the formula At = [Q;;], thereby rotating the
array about the main diagonal. If a square matrix A is triangular, meaning
that all its entries above the main diagonal are 0, then det (A) turns out to be
exactly the product of the diagonal entries.

Even though the determinant is calculated from a matrix representation of
a transformation L, it does not depend upon which representation is chosen.
For, if a particular choice of basis for V yields the matrix A, then a different
choice of basis will merely give rise to an isomorphism of V, and replace A by
the matrix B = PAP- 1, where P induces the required isomorphism. However,
det (B) = det (P)det (A)det (P- 1

) = det (A) det (P) det (P- 1
) = det (A). Thus,

one is justified in speaking of the determinant of a transformation L: V --+ V
rather than the determinant of matrices alone.

Another useful concept is that of eigenvalue. A scalar is said to be an
eigenvalue for a transformation T if there is a nonzero vector v with T(v) = AV.
It is then clear that the eigenvalues will be those numbers A E K such that
T - A.I is a singular transformation. Any vector in the null space of T - A.I is
called an eigenvector of T associated with the eigenvalue A, and their span the
eigenspace, El' It is invariant under the action of T, meaning that T carries E l

into itself. The eigenvalues of T are then exactly the set of roots of the
polynomial p(A) = det (T - U). If A is a matrix representing T, then one has
p(A) = det (A - AI), which permits one to find the eigenvalues of T easily if the
dimension of V is not too large, or if the matrix A is simple enough. The
eigenvalues and eigenspaces of T provide a means by which the nature and
structure of the linear transformation T can be examined in detail.

The theory of linear algebra is rich, and cannot be summarized with any
brevity. We conclude this sketch by mentioning two other topics. Given a
linear space V, we can consider the scalar-valued linear function!on V. Denote
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the collection of all these by V*; this is itself a linear space, usually called
the (algebraic) dual of V. If V has dimension n, then V* also has dimension n;
if U i is a basis for V, then a basis for V* consists of the functions;; where
.(;(uj ) = 1>ij, using the special symbol introduced in Sec. 6.6 in connection with
orthogonality. Borrowing another notation from that section, we write <1, v)
for J(v) for any JE V* and v E V.

Suppose now that we have a second linear space Wand its dual space W*,
and suppose that T is a linear transformation from V into W. Given any
9 E W*, we can construct a linear function J on V by writing J(x) = g(T(x)).
We use this to define a transformation T* of W* into v* by T*(g) = f T*
is the adjoint of T, and is linear. The relation between T and T* can also be
given more simply by the equation

<g, Tv) = <T*g, v)

which holds for all 9 E W* and v E V. These relations are especially useful when
V = Wand v* = W*. Every linear mapping of V into itself induces a dual
mapping of v* into itself. It is easily seen, for example, that Tis I-to-l if and
only if T* is onto.

If V = Rn, and if V* is also identified with Rn, then every linear functionalJ
has the form of an inner product J(v) = <u, v) = u· v. Given any symmetric
matrix A (for which A = AI), one may introduce the bilinear function B(u, v) =
<u, Av) and the associated quadratic form Q(x) = <x, Ax) = B(x, x). The
study of the canonical forms of quadratic forms and their corresponding
geometry is an important part of the theory of linear algebra.

In analysis, it is useful to consider the class of positive definite quadratic
forms Q(x) for which Q(x) > 0 for all x#-O in Rn. It is possible to give a
criterion by which one can test a matrix A to see if it yields a positive
definite quadratic form. Let A k denote the matrix obtained from A by deleting
the last n - k rows and columns. Thus, if A = [aij] with i,j running from I to
n, then Ak = [aij] where i and j now run only from 1 to k. Then Q(x) is
positive definite if and only if det (A k ) > 0 for k = 1,2, ... , n.

Proofs of these, and a much more complete discussion of all these topics,
may be found in references [17], [19], [21], and [22] in the Reading List that
follows these appendices.
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APPLICATIONS OF MATHEMATICS

Regardless of their ultimate interests and careers, students of mathematics
ought to understand something about the way in which mathematics is used in
applications and the complicated interaction between mathematics and the
sciences. For many mathematicians engaged in pure research, contact with
other sciences may be infrequent; they are apt to see their subject as one that
is largely self-sufficient, breeding its own subdisciplines and creating its own
research problems, with only occasional stimulus from outside. Others who are
more directly involved in neighboring disciplines may find it difficult to agree
with this position, and indeed may lay great stress upon the role of the
physical sciences as a source for mathematical ideas and techniques.

Both attitudes of course are wrong, because both are incomplete; at the
same time, both are at least partially correct. If there is any basic error of the
applied mathematician, it is in an attitude that segregates certain areas of
mathematics as being those which "are applied" and dismissing the rest as
belonging to the nonuseful arts. Many mathematicians share with us the belief
that any branch of mathematics could become applied overnight in the right
hands.

What is then the role of mathematics in the sciences? Why is it important,
and what part does it play in the development of a subject? We think that
mathematics offers the scientist a vast warehouse full of objects, each available
as a model for various aspects of physical reality. The richness and diversity
of this supply are central reasons for the importance of mathematics; another
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Figure A4-1
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is that, along with the objects, mathematics offers a system for using the models,
to help raise or answer questions about physical reality, and techniques for
exploring the behavior of the models themselves.

Figure A4-1 may help in visualizing this relationship. We start from
physical reality (whatever that may be) and proceed from this to what we have
called a physical approximation. To think of a specific situation, suppose that
the physical reality is a simple pendulum consisting of a spherical weight
mounted at the end of a metal bar and swung from a pivot. In creating the
physical approximation, we may make statements such as the following: "I
think we should assume Newton's laws, disregard air resistance, assume that
the pivot has zero friction and that the mass of the bar is negligible in comparison
with the weight."

At this stage, the next step is to construct (or select) an appropriate
mathematical model. The model could be something as simple as a quadratic
equation, or it could be a complicated differential equation, or it could be a
topological manifold with a group of measure-preserving mappings acting on
it. At the next stage, the scientist or mathematician begins to explore the
properties of the model, using mathematical techniques, and to answer specific
questions that have been translated from questions about the physical reality
or the physical approximation, so that they become meaningful questions
about the mathematical model. The final step, of course, is the comparison of
these answers with what is known about physical reality from observation or
experiment and the evaluation of the success of the model and the correctness
of the scientist's intuition.

It is very important not to confuse the model with reality itself. A model
is most useful when it resembles reality closely, but there will always be aspects
of reality that it does not reproduce, and it will always predict behaviors that
do not in fact occur. The skill of the scientist is in knowing how far, and in
which contexts, to use a particular mathematical model.

One simple illustration may help here. Physicists sometimes speak of light
as a wave, and sometimes as a particle. Which is it? Obviously, neither, for
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these are names for specific mathematical models, and neither one is the
physical reality that is light itself. Both successfully predict (H explain") some
of the observed phenomena of light; each is unsuccessful in predicting others.

The moral is clear: One should never expect to have only one correct
mathematical model for any aspect of reality.

Let us continue with the specific example of the pendulum. We shall raise
two questions about its motion and attempt to obtain answers from appropriate
mathematical models. We move the weight out to form an initial angle (}o and
then release it from rest. (i) What is the speed of the weight as it passes the
lowest point of its swing? (ii) How long will it take to return (approximately?)
to its original position? (See Fig. A4-2.) The various assumptions that underlie
the physical approximation can be listed:

a. We assume that the rod is rigid, of constant length L, and of zero mass.
b. We assume that the weight can be treated as a particle of mass M.
c. We assume that there is no air resistance and no friction at the pivot and

that the only external force present is a constant vertical gravitational
attraction.

d. We assume Newton's laws.

From these, in the usual way, we arrive at a differential equation for the
pendulum motion. We assume that the mathematical description of the motion
will be a function ¢ such that () = ¢(t) will specify its position at time t. Then,
we arrive at

or

. d d ( d(})-Mgsm(}=· (Mv) = ML
dt dt dt

d20 g.

1
2= - sm 0(( L
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We must also translate into its mathematical equivalent the information about
the mode of release of the pendulum. This becomes the set of initial conditions:

dO = 0
dt

Finally, we translate the pair of questions into the following:

1. What is the value of dO/dt when 0 = O?
ii. What is the value of t when 0 = 00 ?

We could now forget completely that we are concerned about a pendulum
and pose the following" pure" mathematics problem:

Find a function ¢ defined for all t ~ 0 such that ¢(O) = 00 , ¢'(O) = 0, and

¢"(t) + (f sin ¢(t) = 0 t ~ 0
L

Specifically, find ¢'(t) at the first value of t for which ¢(t) = 0, and find the first
value of t > 0 for which ¢(t) = 00 ,

This can be treated in this form; for example, we have

2¢'(t)¢"(t) + 2g ¢'(t) sin ¢(t) = 0
L

and, integrating,

(¢'(t))2 - 2g cos ¢(t) = const = C
L

Since we are to have ¢(O) = 00 , ¢'(O) = 0, we have

2g
0- cos 00 = C

L

and finally arrive at

(¢'(t))2 = i {cos ¢(t) - cos eo}

from which we obtain an answer to the first question: putting t = t l' where
¢(t 1) = 0, we find the speed at the bottom of the swing to be

V = Ji JI - cos 00 = 2J~ sin C;)
[Notice that this solution is predicated on several mathematical assumptions:
(i) that indeed there is such a function ¢, (ii) that there is such a value t 1 where
¢(td = O. Both of these can be proved by more detailed mathematical analysis
of the differential equation; both are also implied by the physical reality, if we
could be sure in advance that the model imitates reality.]
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In the same way, an answer can be found for the second question, and we
find the length of the period (the time taken from release to first return) to be

J
L .90 de

T=4 I J ~-
2g . 0 cos e- cos Do

More generally, some of the other predictions which arise from this model
are as follows: The motion is periodic, and never ceases. The period depends
in a simple way upon the length L and in a more complicated way upon the
initial amplitude Do of the swing.

If we were to modify the physical approximation by altering some of the
assumptions (a) to (d), we would arrive at a new mathematical model. We
could, for example, bring in resistance, or we could treat the rod as having
mass, or we could assume the rod slightly flexible or slightly elastic so that it
could change its length, etc. Each change would lead to a new and more
complicated mathematical model. Our intuition tells us that these would be
more likely to reproduce reality better; we would, for example, expect that the
model will not exhibit complete periodicity, and that the amplitude will now
decrease with time.

There is, however, another way in which a mathematical model such as this
can come to be modified. When a model has been constructed, it may be of
such a nature that present mathematical techniques do not suffice to explore
its behavior satisfactorily. In this case, one might wish to replace the model
with another that is similar but easier to work with; moreover, the choice may
be made for purely mathematical reasons, divorced completely from physical
motivations. This is the case with the pendulum problem we have just treated,
and one often finds it stated that the following differential equation is the
equation of motion of a pendulum:

~ t = 0
• D= eo
jdejdt=O

in which we have replaced sin Dbye.
Being a linear equation with constant coefficients, this is more easily solved,

and we find

e= <jJ(t) = Do cos (Jf t)

V = Jfeo

T = 2nfiTg

It should be noted that the predictions from this model are somewhat different.
For example, the length of the period is now independent of the initial
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amplitude 00 , and the values of V are not the same. (For 00 = n/2, the
difference is 10 percent.)

Would it be correct to say that the second model is bad and the first good,
or that only the first deserves to be called the motion law for a pendulum? To
agree with these would be to overlook the moral; both are models, and neither
is the model; both have limited usefulness, and both represent different ap
proximations to various aspects of reality.

The rapid growth in the potential and use of high-speed computers is having
a striking effect upon this whole picture. Already, scientists are able to use them
to explore the behavior of mathematical models of great complexity, and thus
to simulate large-scale systems that were formerly quite unmanageable. At the
same time, mathematicians are able to acquire some intuitive understanding
of the qualitative nature of these systems, which is the first step toward their
complete analysis.

While the main concern of this book has been analysis, in the mathematical
sense, many topics and illustrative examples have been chosen because of their
connection with applicable mathematics. This is evident in Chaps. 7, 8, and 9,
and particularly so in Sec. 9.6 and Chap. 10.

Suppose that we wish to study the interaction of several charged particles.
It is then convenient to think of one particle creating, by its presence, a "field"
throughout space; the second particle is then regarded as interacting with this
field, rather than with the particle itself, directly. From this viewpoint, it is only
a step to the observation that the second particle also creates a field, and that
we are really concerned with the interaction of two fields; the particles may in
fact be regarded as unnecessary fictions. The result can be a theory of physics
based upon fields alone. Some fields are" particle-like" and may have other
attributes associated with them such as "charge," "mass," "momentum," etc.
Other fields may lack these attributes, or have others called" spin," "charm," etc.
The simplest fields will be numerical- or vector-valued functions defined on all
of 4-space (= space-time), but one may also wish to work with fields whose
values are matrices, differential operators, probability distributions, measures,
points in an infinite-dimensional function space, etc.

The boundaries of the realm of applicable mathematics are indeed
flexible, and change with each generation.
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INTRODUCTION TO COMPLEX ANALYSIS

Although it has great importance as an active branch of pure mathematics, the
theory of holomorphic (also called analytic) functions owes its existence and
much of its prestige to the success which it has had in dealing with problems
in the field of differential equations, hydrodynamics, and potential theory. It
came into independent existence late in the nineteenth century, when the
traditional "theory of functions" was separated into "real variable theory"
and "complex variable theory," under the pressure of a more rigorous con
sideration of the concept of set, number, integral, and derivative. To a historian
of mathematics, complex analysis is especially interesting because of its role in
the birth of algebraic topology and because of its surprising connections with
the theory of numbers and with algebra.

In a brief summary such as this, it is impossible to do more than indicate
some of these connections and to describe a few of the main results and
techniques. Most of the details are omitted but may be sought in the references
cited at the end.

In the present book, the central subject of study has been the class of
continuous real-valued functions defined on sets D in n space and, more
generally, the class of continuous transformations T mapping a set D in n space
into a set in m space. What would be the effect on the former if we were to
allow functionsfwhich could take complex values? Such a function might be

F(t) = 3t sin t - 3i cos t

G()
-/. 4st

s, t = 3se + I 2--:2
s + t

573
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More generally, any complex-valued function F defined on a region D in R" has
the form

F(p) = f(p) + ig(p)

where f and 9 are real-valued functions defined on D. In this case, we speak
off and 9 as the real and imaginary parts of F, respectively; the complex
conjugate of F is the function F defined by

F(p) = f(p) - ig(p)

Note thatf = (F + F)/2 and 9 = (F - F)/2i.
A complex-valued function F is continuous if and only if its real and

imaginary parts are continuous. Similarly, we can speak of the differentiability
of F and define partial derivatives of F in terms of the derivatives off and g.
For example, with F(t) as given above,

F'(t) = 3 sin t + 3t cos t + 3i sin t

and ~. G(s t) = 3e- 1 + i ts22 t_
2
)(4t) - (4st)(2s)

as ' (S2 + t2)2

From one point of view, the introduction of complex-valued functions
brings in nothing basically new. If we identify the complex number a + bi with
the point (a, b), then a complex-valued function F defined on a region Dc R"
becomes merely a mapping from D into R2

• Indeed, if F(p) = f(p) + ig(p), then
we can write

F(p) = u + iv = (u, v)

and identify F with the transformation

Ju = f(p)
\v=g(p)

Likewise, the function h(t) = t + it2
, 0 ~ t ~ 1, can be regarded simply as a

curve (parabola) in the plane.
However, if we look at certain functions that are complex-valued and

defined on subsets of the plane (or, more generally, defined on subsets of R2k

for some k), then something new emerges. The reason for this is that the
complex numbers are more than R 2 and in fact have the algebraic structure
of a field. Writing x + iy = z, we can single out a special class of complex
functions defined on R2

. Let Co, c l , cz , ... , C" be complex numbers, and define
a complex-valued function F by F(x, y) = W, where

W = Co + CIZ + czzz + ... + c"z" = P(z)

Here, P is a polynomial with complex coefficients. If we separate into real
and imaginary parts, we arrive at a formula for F of the form

Ju = A(x, y)
\v = B(x, y)
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where A and B are real polynomials in x and y. For example, the equation
w = Z3 - 3iz + (I + i) can be written as

Ju = x3
- 3x/ + 3y + 1

(A5-I) T: lv = 3x2y _ y3 _ 3x + I

In a similar manner, writing ZI = XI + iYI' Z2 = X 2 + iY2' etc., we can
define certain special complex functions on the space R2m of points p =
(XI' .1'1' X 2 , Y2" .. , xm' Ym) by

w = P(ZI' Z2' ... , zm)

where P is a polynomial in m variables over the complex field. This, too, can
be separated into real and imaginary parts, obtaining a transformation from
Rm into R2 of the form

ju : A(x I' >:b x 2 ' >:2' ,xm, ~m) : A(p)
\v - B(x l , >1' X 2 ' h, , X m' >m) - B(p)

Such functions are special examples of the class of functions to which the
name "holomorphic" is given, and the study of complex analysis is very largely
the study of properties of holomorphic functions; the name" analytic" is also
used, even though this is also used in another, closely related sense.

Before defining the general class of holomorphic functions, we could ask
if there is some special property which will enable us to identify one of these
special holomorphic polynomial mappings, within the class of all polynomial
mappings. We shall henceforth consider only functions of one complex variable,
and thus deal with mappings from R 2 (the Z plane or the XY plane) into R2

(the W plane or the U V plane). The answer to this question is given by the
following theorem:

Theorem 1 A mapping F, given by the equations

ju = A(x, y)
\ v = B(x, y)

where A and B are real polynomials, has the form w = P(z) for a complex
polynomial P if and only if the differential of F has the form

at each point z.

Since the differential of F is given by

[

au
ax

dF= av
ax

au]
a>,.
av
8y
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this is equivalent to asserting that the functions u and u obey the system of
differential equations

j
:~ = :~,
au au
- =: - -_.

ay ax
(These equatIOns are called the Cauchy-Riemann equations; they arose in
another connection at the end of Sec. 8.4.)

To check this result, we observe that the differential of the mapping given
in Eq. (A5-1) is

f
3X 2 - 3y2

dT=
6xy - 3

-6xy + 31
3x 2

- 3/ J

The proof of Theorem 1 may be based upon the following observation:
The" remainder theorem" of elementary algebra implies that a polynomial P
has the property that, for any zo,

P(z) - P(zo) = (z - zo)Q(z) = (z - zo)Q(zo) + (z - zo)2R(z)

where Q and R are polynomials. On the other hand, the approximation
property of the differential of F shows that

P(z) - P(zo) = dF I (z - zo) + R(z, zo)
'0

Comparison of these shows that for any ~z = (~x, ~y) one must have

dF I (~z) = Q(zo) ~z
'0

If Q(zo) = a + bi, then this yields

ra
b

-bal
dF 1'0 l J

as asserted in the theorem.
From this point, there are several ways to arrive at the class of general

holomorphic functions. One is based on the behavior of power series with
complex coefficients. Certainly, the most obvious generalization of a polynomial
is the function defined by

j(z) = ao + at(z - c) + a2(z - C)2 + a3(z - C)3 + ...
If this series converges for some value of z other than c, then it is easy to
see that it converges for all z in the neighborhood of c and that the real and
imaginary parts of the resulting function obey the Cauchy-Riemann equations

(A5-2). For example, exp (z) = ')00 zn/n! converges for all z and has real part
""""'0
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u = eX COS y, imaginary part v = eX sin y. It is then possible to adopt the
following characterization: a complex-valued function F, defined on an open
region D, is said to be holomorphic (or analytic) there if F can be represented
locally in D by convergent power series. (It should be noted that this is a direct
extension of the use of the term analytic as it was applied to real-valued
functions of one or more variables; see Sees. 3.4, 3.5, and 6.3.)

Another approach is conceptually even simpler. It is easy to extend
Theorem I to rational functions R(z) = P(z)/Q(z), where P and Q are
polynomials with complex coefficients, provided that we exclude from consider
ation points z, where Q(z) = O. We can then obtain the most general
holomorphic function by taking appropriate limits of these. Specifically, Runge
showed that a function F is holomorphic on a region D if and only if it can be
approximated uniformly on each compact subset of D by rational functions.

A third approach to the holomorphic functions is by means of differentia
tion. Returning to a polynomial P(z), given by

P(z) = Co + clz + C2Z2 + ... + c"z"

we can define its derivative

, . P(z) - P(zo)
P (zo) = hm------

z-zo z - Zo

Not all complex-valued functions have derivatives; if we were to ask for the
same limit for the function f defined by

f(z) = f(x, y) = x 2 + y2 + 2xyi

it would fail to exist. Indeed, the following result is true:

Theorem 2 If F(z) = w = u + iv, where u and v are real polynomials in
x and y, and if

lim ~(z) -=F(z(j)
Z-Zo z - Zo

exists at each point zo, then there is a polynomial P with complex coefficients
such that w = P(z); moreover, u and v satisfy the Cauchy-Riemann equations.

It remained for Cauchy, Riemann, Weierstrass, and others to bring all
these aspects together into a coherent structure of striking beauty. A key
result is the demonstration of the equivalence of the three approaches:
holomorphic functions are those which have derivatives, which can be
represented locally by their Taylor series, and which can be approximated
arbitrarily closely on compact sets by rational functions.
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Most proofs of this rest upon the discovery that holomorphic functions
can also be characterized by integral properties. Let

w = f(z) = u + iv

and write dz = dx + i dy. Then, the complex I-form f(z) dz can also be
written as

f(z) dz = (u + iv)(dx + i dy)

= (u dx - v dy) + i(v dx + u dy)

= a + if3

where a and f3 are real I-forms. Following the techniques of Chap. 9, we
can compute the derivative of each of these forms,

da = d(u dx - v dy)

= du dx - dv dy

= (ux dx + u}. dy) dx - (vx dx + vy dy) dy

= uy dy dx - Vx dx dy

= - (u. + v ) dx dy = - (a!l + av) dx dy
y x oy ax

and, in the same fashion,

df3 = dv dx + du dy

(
au av)= v, dy dx + Ux dx dy =- - dx dy

Y ax ay

Suppose now that the function f is holomorphic, so that u and v satisfy the
Cauchy-Riemann equations. Then, each of the forms da and df3 is O. Thus,
the fact that f is holomorphic in a region D is reflected in the fact that
the complex differential form f(z) dz is closed. Appealing to Green's theorem,
we conclude that

0= r f(z) dz = r a + i r f3
. r . r . r

where r is any closed path in D, bounding a region in whichfis holomorphic.
This important result is known as Cauchy's theorem. From this, one may
derive Cauchy's integral representation formula,

f(z) = ...~ r fJtJ~!
2m' r t - z

which expresses the value off at points inside a simple closed path r, where
f is holomorphic, in terms of the values which f takes on r, as a complex
line integral (also called a contour integral).
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In contrast with the general class of functions mapping the plane into
the plane, holomorphic functions have many striking properties. If F is
holomorphic on an open region D and not constant, then F is open-i.e., carries
open subsets of D into open sets. From this, one can immediately infer the
maximum modulus theorem: The real-valued function 1F(z) I cannot have a
local maximum anywhere in D. Alternatively, if E is a compact subset of D
and IF(z)1 ~ M for all z E oE, then IF(z)1 ~ M at all interior points of E.

Even though such a mapping F is open, it need not be I-to-l in D.
However, if we remove from D all the points (at most countable) where.f'
takes the value 0, then f is locally 1-to-l in the remaining set and is
therefore locally a homeomorphism on this set. Furthermore, examine the set
S of all points z where F(z) = c. This set might be empty; however, if F is
not constant, it cannot be more than countable, and if it is not finite, then all
limit points of S lie on the boundary of D. This in turn implies the surprising
uniqueness theorem for holomorphic functions: If F and G are both
holomorphic in an open region D, and if F(z) = G(z) for all z in a neighborhood,
or an arc, or even on a converging sequence of points in D, then F and G
must agree everywhere in D.

People often judge the significance of a new branch of mathematics, not
by its elegance and unity, but by its ability to solve problems that had been
raised previously. In this direction, one of the early successes of complex
analysis was the ease with which it led to the evaluation of certain real
integrals. We shall illustrate this with one example, representative of a class
of similar definite integrals that can be treated by contour integration.

Let us find the value of the integral

.rr dO

V = .I_ rr (S--+-3cos 0)(5 +-4 sin 0)

Put t = eiO, observing that as 0 goes from - n to n, t moves around the
unit circle 1t 1 = 1, starting and ending at the point - 1; we have cos 0 =
(eiO + e- iO)/2 = (t + t- I )/2 and sin 0 = (t - t- 1 )/2i, while dt = ieiO dO = it dO.
Making these substitutions, we find that

1 r t dt
V = 3. '6 (t-+ j)(t -+- 3)(t -+- ii)(t + 2i)

where c(/ is the circumference of the unit circle, traced counterclockwise. To
this, the Cauchy integral formula can be applied twice by replacing C(/ by two
paths enclosing the points -1 and -i/2 separately; here, we have used the fact
that the integrand is a closed form in regions which exclude the points where
the denominator becomes O. We therefore arrive at the evaluation
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In a very similar way, one may also use contour integration to prove the
fundamental theorem of algebra. The following elegant argument is due to
R. P. Boas. We wish to show that any polynomial of degree n must have at
least one root. The general case can be reduced to polynomials with real
coefficients; so we suppose that P(z) = ao + a1z + ... + anzn, with an "# 0, ak

real. The proof rests on the observation that if P(z) is never 0, for any complex
number z, then the same statement holds for the polynomial Q(z), where
Q(z) = znp(z + Z-l); note that Q(O) = an "# O. Since the coefficients of Pare
assumed real, we know that the value of the following definite integral

7r dev - r ------
- • _ 7r P(2 cos 0)

is real and different from O. Make the same substitution t = e iO
, and obtain

r
dt I f tn- 1 dt

V = . '(j ia)(t + C1 ) = i '(j-Q(t)--

But, as observed above, the function f(t) = tn-1/Q(t) is holomorphic every
where, since Q(t) is never 0, and by the Cauchy theorem the value of this
last integral must be O. This contradiction proves the theorem.

The theory of functions of a complex variable has close connections with
both hydrodynamics and the study of heat conduction. One point of contact
is the class of harmonic functions of two real variables. If f(z) = u(z) + i v(z)
is holomorphic in a region D, then, by differentiating the Cauchy-Riemann
equations (A5-2), one finds that the real functions u and v are both solutions
of the Laplace equation

a2H a2H
V2H =~ + --- = 0

ax 2 a/
Any solution of this equation in a region D is said to be harmonic in D;
so this shows that the real and imaginary parts of a holomorphic function
are always harmonic. The converse is partially true: if D is a simple connected
region and H is harmonic in D, then H is the real part of some function f
that is holomorphic in D. (For more general regions D, this statement is not
always true.)

One model for the stable temperature distribution throughout a plane
region produced by a variable boundary temperature leads to the Laplace
equation and thus to harmonic functions. The same equation arises in diffusion
problems, and in the study of the steady-state flow of a two-dimensional
incompressible irrotational fluid. Here, the velocity vector of the fluid at the
point z = (x, y) can be written as a(x, y) + i b(x, y), and there must exist a
harmonic function u with Ux = a and uy = b. The function u is called the
velocity potential of the flow. If one constructs a holomorphic function f
whose real part is u, then techniques of complex analysis can be applied to f
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to predict the nature of the streamlines past a cross section immersed in the
flow or to compute the theoretical drag or lift of a proposed cross section.

Further information about the theory and application of holomorphic
functions must be sought elsewhere.
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FURTHER TOPICS IN REAL ANALYSIS

In writing a book to be used at the junior or senior level and intended
for students with a wide range of prior mathematical experience, many
compromises must be made. Elegance must at times be outweighed by the
need for clarity, and inviting digressions withheld. It is frustrating for the
teacher, and possibly harmful for the best students, to be forced to pass by so
many instances where one could so easily step aside and make contact with
the frontiers of mathematical research. The purpose of this appendix is to
restore some of this by a reexamination of certain topics in the text. No
effort is made to be complete; for this, one should refer to the books listed
at the end.

The two threads that we wish to emphasize come under the headings of
algebraic analysis and linear analysis. The former deals with the algebraic
aspects of what has been covered, the latter with the vector spaces that are
pandemic to analysis. We assume that readers are familiar with the concepts
of ring, field, homomorphism, ideal, etc., as they might be presented in an
undergraduate algebra course.

The first example we shall use is the class C[D] of all continuous real
valued functions on a compact set D. As a mathematical object, what is its
structure? One observes first that it is a linear space, with the usual notion
of addition of functions. Moreover, with the norm IIfl1 = sUPpeD If(p)l, we
can introduce a (metric) topology into C[D]. A neighborhood of a function
fo E C[D] consists of all functions f E C[D] such that II f - fo II < b, and

582
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convergence of a sequence of functions U;'} means uniform convergence on D.
Theorem I of Sec. 6.2 asserts that the resulting normed linear space is
complete; every Cauchy sequence converges to a "point" in the space. If D
is a compact set in n space, then the class of polynomials with rational
coefficients forms a countable dense subset of C[D].

Whenever one has a topological linear space, a central question is to ask
for the dual space of continuous linear functions. In our case, some are easily
found. If 9 is any continuous function on D, define a function L on C[D] by

L(f) = f fg
• D

Then, one may see that L is continuous; if Un} converges to f, then L(fn)
converges to L(f). This follows at once from the fact that there must exist
a number B such that IL(f)1 < Bllfll for all f E C[D]' These are not all
the linear functions L; the remaining ones are also integrals, but of a more
general variety. This is also closely related to Theorem 2 in Sec. 8.2, and
to formula (6-61) in Sec. 6.6.

But the linear space C[D] is also an algebra. Iff and 9 belong to C[D],
so does fg. As an algebra, it has a more elaborate structure, which suggests
further questions that can be asked. What are the ideals in C[D]? Are there
any interesting subalgebras? What types of homomorphic images can C[D]
have? What are the automorphisms? And what types of algebras can be
represented isomorphically (or homomorphically) in C[D]? A few examples
might be of interest. If a point Po E D is selected, then one may consider the
mapping h from C[D] into the real numbers, defined by h(f) = f(po). This is
easily seen to be a homomorphism of C[D] onto the real field. As such, its
kernelM = {allf E C[D] withf(po) = O} must be a maximal ideal. Furthermore,
all the maximal ideals are obtained in exactly this fashion. This important
fact leads in turn to the observation that if two algebras C[Dd and C[Dz]
of this sort are algebraically isomorphic, then the compact sets D 1 and Dz
must be topologically the same, i.e., must be homeomorphic.

Again, C[D] has an additional type of structure as well. If we introduce
an order relation by sayingf ::5: 9 whenever f(p) ::5: g(p) for all p ED, then we
have an important example of what is called a partially ordered vector space.
[The term "partially" is used because it is no longer true that a function f
must obey either f 2: 0 or f ::5: 0; for example, f(x) = sin x.] The order
properties of C[D] are as interesting as its algebraic properties and are also
closely related to the properties of the integral as a functional. For example,
if 9 2: 0, then the function L defined above has the property that L(f) 2: 0
whenever f 2: 0; for this reason, it is said to be a positive functional.

There are many other attractive roads branching off in other directions;
some of these are suggested by the treatment of function spaces, and especially
Hilbert space, given in Sec. 6.6.

One final topic which we think should be mentioned is that of generalized
differentiation and generalized functions. In elementary calculus, much
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attention is paid to the problem of when a function can or cannot be
differentiated. In particular, we say thatf(x) = Ixl does not have a derivative
at the point x = 0, even though it is continuous there. As a matter of fact,
there is a perfectly good sense in which this function has a derivative, and
indeed in which badly discontinuous functions can have derivatives.

To explain this, we start with the observation that the use of functions in
physical applications is not always (indeed, is hardly ever) as point-to-number
mappings. If we measure the value of some physical variable such as velocity
or charge, we are forced to read instead the time average of something over
a short interval. When one analyzes (a la Bridgeman) the operational
approach to physics, one sees that functions are used in physics, not for their
point-to-point numerical values, but for their effect on other functions. This
brings us back to integration, where we write (with a different notation now)

00

<f, g) = f fg
-00

Suppose that we put no continuity restrictions on f at all but ask that 9 be
a function of class Coo, which in addition vanishes off some compact set G.
It is not difficult to see that we can examine f by means of the values of
<f, g) for all choices of 9 and that, for example, if <f, g) = <h, g) for all g,
and f and h are reasonably well behaved, then f = h.

Now, suppose that f is itself of class C; we can ask how the function f'
acts on sample functions g, in comparison with! Integration by parts gives the
answer immediately.

r

<f', g) = lim r f'(t)g(t) dt
7-00"-r

= !~~ k(t)g(t) I'-r - (r f(t)g'(t) dt}

= - roo f(t)g'(t) dt = - <f, g') = <- f, g')
0.-

00

In words, the "value" off' at 9 is the negative of the "value" offat g'. We
could therefore use this relation to find something aboutf', even if we did not
know f' initially.

Suppose that we examine this for a more general function f Even though
l' does not exist in the usual sense, we can define a "generalized"
derivative f' by saying: f' is the functional L which acts on functions 9 in
the following manner:

L(g) = <- f, g')

00

= - r fg'
"-ex;
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Even though L is not representable in the form <!" g), we can still work with
it as though it were a function, except that we cannot ask for it to have
values at points; we study!' only by the way it affects functions g.

One example will show what this means. Let us take f to be the step
function

f(t) = ~~
when t 2: 0

when t < 0

Then, we wish to find out what!, is. As above,!, is characterized by the
relation

<!" g) = - fxc f(t)g'(t) dt
- oc'

for all g. However, using the definition off, we have

<!" g) = _ (g'(t) = -g(t) I'"
• 0 0

= g(O)

Thus, the derivative!, of the step function f is a generalized function which
acts on functions g, so that <!" g) = g(O). If we set!' = 15, then the integral
notation (if applicable) would have to give

00

g(O) = r 15(t)g(t) dt
'-cc

for all smooth functions g. There is no actual function 15 that has this
property, although there are functions 15" that almost achieve this. If 15"(t) is

positive, even, and has a very tall peak at t = 0, so that f 15"(t) dt = 1 while 15"

is very small away from the origin, then the value of <15", g) is almost g(O).
We have thus been led to the generalized function that is customarily

called the Dirac delta function; it is in fact nothing more than a measure
of mass 1 located at the origin. As above, 15 is the limit, in a suitable sense,
of honest functions 15", explaining the intuitive picture of 15 as a function which
is zero-valued except at t = 0 but which has integral 1.

This process for differentiating functions can also be applied to generalized
functions, and one may find 15'; this turns out to be a generalized function q
such that <q, g) = - g'(O) for all g. It is the limit of the sequence of derivatives
15~ and can be regarded as a dipole at t = O. It is a generalized function (or
distribution) which is not even a measure. It is by introducing such extensions
of the classical concept of function that the formal differentiation of Fourier
series, discussed in Sec. 6.6, can be justified and used.

This example is a good illustration of the way in which research in
mathematics comes about. Clearly, the original step function{ does not have a
derivative; however, it turns out to be profitable to ask what would happen if
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we could differentiate it! One recalls the similar question "what would happen
if -1 did have a square root?" in the light of the productive theory outlined
in the preceding appendix.

In Sec. 6.2, we stated Theorem 6, the bounded convergence theorem,
without a proof, mentioning that this would require an excursion into some
aspects of the theory of Lebesgue measure and integration. We end this appendix
by sketching such a proof, omitting all the complicating details. We begin by
assuming a related result.

Theorem 1 Let {In} be a sequence offunctions that converge pointwise to a
functionf on an interval I, and are such that 0 ::s:: fl ::s:: f2 ::s:: f3 ::s:: .... (That
is, {In} i f on I.) Then

(A6-1 ) lim r fn = r f
. I . I

[Note that if eachfn' as well as f, is continuous and I is compact, then by
Exercise 11 in Sec. 6.2, {In} in fact converges uniformly to f]

We can now weaken this by removing the monotonicity, at the expense
of a weaker conclusion.

Theorem 2 Let 0 ::s:: fn for all n, and let {In} converge pointwise on I to f
Then,

(A6-2) r f ::s:: lim inrf j"
. I . I

To prove this, set gn(x) = inf{j,,(x), fn+I(X), fn+2(X), ...} and observe
that 0 ::s:: gn(x) ::s:: fn(x) for all n and x, and that the sequence {gn} is mono
tonic increasing with limit f Integrating, we have

and thus

lim inf r gn ::s:: lim inf r fn
• I . I

But, by Theorem 1, lim rgn exists and is r f, which therefore gives us (A6-2).
• I • I

We are now ready for the final result.

Theorem 3 Let {In} converge pointwise on I to f, and assume that

Ifn(x)1 ::s:: g(x)for all x and n, where r9 is finite. Then,
. I
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lim r In = r I. [ . [

For, we have 0 ~ 9 + In and 0 ~ 9 - In' and these converge pointwise
to 9 + I and 9 - f, respectively. Accordingly, by Theorem 2, we have

r 9 ± r I ~ lim inf r (g ±In)
• [ 0 [ • [

~ r9 + lim inf r ± In. [ . [

But, r9 is finite, and so it can be cancelled from both sides, and the
. [

result rewritten as

lim sup r .f" ~ r I ~ lim inf r In
o [ 0 [ 0 [

which clearly implies (A6-3).

(It should be obvious that many of the omitted details have to do with
being sure that each of the functions appearing in this proof is integrable on the
set I.)
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HINTS AND ANSWERS

"For emergency use only"

Section 1.2

3 If you make a two-dimensional picture, time vs. one space axis, the resulting diagram
resembles a Z. It might be the history of one particle, if a positron is "really" an electron
moving "backwards through time" (see [47] in Reading List).

7 (b); (-I, -1, -I).

8 Don't use coordinates; instead eliminate P or Q.
10 Any multiple of (4, 5, - 3).

12 This IS easier if you do not use coordinates.

16 The three cases depend on how the vertices are labeled. In one case, the vector AB is equal
and parallel to the vector CD only if B - A = D - C.

19 (b) If x < 0, -x> 0 and (_X)2 > O. But, -x = (-I)x and (_1)2 = 1.

21 Start with (a + b)/(A + B) = a/(A + B) + b/(A + B).

23 Map n to 2n if n > 0, and to - 2n + 1 if n s O.

Section 1.3

2 It helps to read Ip - A I as "the distance from p to A."

3 (a) Write the relation as y - x S x + 2y s x - y.

5 Use Ipl = I(p - q) + ql· 10 Yes.

II One component of the equatIOn is y = 21 + 3.

12 One point is (1, -1,1, -H

591
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13 Express R as a weighted average of each vertex and the opposite midpoint.

15 Two of the vertices are (A + 4B + 2C)/7 and (2A + B + 4C)/7.

17 Pictures will help!

Section 1.4

I (b) A paraboloid opening downward. (d) Hard to sketch; domain omits the lines .I' = x and
.I' = -x, and graph turns abruptly upward or downward as you approach one of these lines,
depending upon which side you are on. (e) Graph is a cliff, with a crevasse at its foot.

2 (a) 6 (b) 13
(c) 6 (d) (x 2 + x)(y + I)
(e) x(x + 1)2 (f) x 2 (y + 1)2 + x(.I' + 1)
(g) x4 + 2x 3 + 2x 2 + x

3 The answers to (a) and (b) are different.

4 (b) f(x) is not defined for any real x.

5 Graph .I' = F(t) by putting t = 1/(x - 1) and solvmg for y.

7 (c) One of the level" curves" contains an entire open disk.

9 Among other observations, one could say that at any time, the temperature becomes
arbitrarily large as one moves away from the origin in any direction, and also that at anyone
spot, the temperature will become arbitrarily large as one waits.

12 There are infinitely many, but only four that are contmuous everywhere.

14 (b) Look for those choices of k and m such that 4k + 14 = 8m + 2.

Section 1.5

2 (a) Closed, bounded, connected, and boundary IS itself. (c) Closed, unbounded, connected,
and is its own boundary. (e) Open, unbounded, disconnected, and the boundary is a pair of
intersecting lines.

3 (a) Open, unbounded, connected, boundary is sphere. (c) Open, unbounded, connected,
boundary is surface.

4 (a) It may help to look at the graph of the polynomial P(x) = x(x - 1)'.

5 (b) The entire plane.

6 Cluster points include those such as (0, lin) for each n and others on the horizontal axis.
Be sure to examine the origin, which is also a cluster point.

II Yes.

12 Is it true in general that bdy (A) n bdy (B) c bdy (A n B)?

13 (b) Because its complement is 0. 17 (a) No; give examples. (b) Yes.

19 It is helpful to ask which values of x are acceptable at each value of r.

Section 1.6

3 Show that IPn+l - ql:s CIPI - ql· 4 Use coordinates.

5 For example, P4n+ I = (1,0) + n(2, - 2).

6 Note that (a) and (b) are subsequences of each other.

S It has Just one limit point, but is divergent.

13 Use c = (1 + an)" = I + nan + ....
15 Use mathematical induction.
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16 (e) Let A = lim mf (x./Il'). Show that A <::: ~ and that X.+ I - x. ?: nJA - I: for all large n,

and mfer that A ?: JA - I: /2 and then that A ?: ~.

17 (h) Put h. = [2' 4·6··· (2n)]/[3· 5·7 ... (2n + I)] and show that (a.)' < a.b. < 1/(2n + 1).

19 Show that a.+ 2 - a.+ 1 = (a.+ 1 - a.)/3, which enables one to calculate lim a•.

21 (c) Put d, = a,+ I - a,. Prove that d.+ 1 = -d./(n + 1), evaluate d" and then show that

Iima.=a l + "'.? d,.
~1

26 (a) Iimsupa.= I. (h) liminfa.= -2. (c) limsupa.=3, lim infa. = -I. (d)limsupa.=
J3/2. What do you suppose would happen in this if a. = sin (n/3)?

27 Construct the sequences so that the large terms of {a.) are m phase with the small terms
of ib.).

28 Another way to say that L = lim sup.~ x a. is that, for any I: > 0, we have a. < L + i: for all
large n, while a. > L - f: for infinitely many indices n. Similarly, if [ = lim inf.~ x a., then, for
any i: > 0, a. > I - I: for all large mdlces n and a. < I + I: for an infinite number of indices n.

29 Given I: > 0, choose N so that la./ < I: when n?: N. Then, write

and from this, get lim sup I(T. lSi:. Since this holds for any i: > 0, lim (T. = 0.

31 (t ~).

33 Obtain the formula p.+ 2 - p.+ I = (P.+ 1 - P.)/4, and conclude that {p.} is convergent to (1, t).
36 (b) No. 37 Work with h, = log a,.

Section 1.7

I For any I: > 0, L - I: < L, so that there must exist an N with L - I: < aN'

3 If b = sup (S) and b ~ S, then it is seen to be true that h E bdy (S) c closure (S).

4 IfpEA,qEB,then Ip-ql sdiam(B).

5 If cE C, then dist (B, C) s Ip - c/ for every pEA.

6 (c) No. 7 Modify Exercise 6.

9 Work with the nested intervals [a., h.] and the nested intervals [c.' d.].
11 Count the number of points from the given set that lie in D. = {all p, Ipl s n), and then
note that the collection of all sets D. IS a countable collection.

Section 1.8

I Cover the given set by the open sets D., where D. = {all p, Ipl < II).
3 If F IS closed and C compact and FcC, then any open covering of F leads to an open

covermg of C if C - F IS adjomed.

6 Let (a., h.) E A x B and choose n, so that lim a., exists, then choose a subsequence of h.,
which converges.

9 (a) Yes. (h) No. (c) If x. E XIS), choose Y. with P. = (x., Y.) E S. Let p be a limit point of [P.),
and show that X({r:) IS a limIt pomt of :x.:.
10 (a) Each pomt m the open diSC D IS the center of a closed square that lies m the disc. (b) The
closed diSC D" of radIUs I - liN can be covered by a finite number of closed squares contamed
m D, and U; D,. = D, so one can succeed with a countable number of squares.
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Section 2.2

x Xo (x - xo)Yo + (Yo - y)xo
2 Observe that

.I' Yo YYo

and estimate this when Iy1> p, IYo I > p, P > O.

4 Put x = r cos e, .I' = r sin 11.

10 Use the fact that the complement of any closed set is open.

12 rl(A n B) =F 1(A) n FI(B)

Section 2.3

I You must prove that there are pairs of points, arbitrarily close together, on which the
variation of F is large, for example, (n, 0) and (n + lin, 0).

5 (a) The key idea is that dist (A, B) > O.

7 Choose a finite number of points P, E D which are I:-dense In D and let M = max If(pdl,
and use this to estimate SUPpED If(p)l.

10. (a) Draw a line through P and P3 to meet the edge connecting P, and P2' (b) Observe that

f(p) = .L rxJ(p) and estimate If(p) - F(p)l·

Section 2.4

2 (b) The function 3 - xly - ylx is not continuous everywhere in the plane.

3 (b) Construct a polynomial of the form f(x, .1') = [A(x, YWB(x, .1') and examine the set where
A(x, .1') = O.

4 Consider
for x> 0

for x = 0

5 Look at h(x) = f(x) - g(x).

6 Show that for sufficiently large c, P(c)P( - c) < O.

7 Sketch the graphs off and g, and then examine h(x) = f(x) - g(x).

8 Iff is constant on two overlapping intervals, It is the same constant on both.

9 Look at the inverse images of neIghborhoods of the values 2 and 3.

14 Arrange the temperatures of the vertIces in increasing order, and then examine theIr
respective positions in the tetrahedron.

17 Pick any value Yo. Then, for any x, min)' F(x, .1') S F(x, Yo)' Hence A S maxx F(x, Yo)'

18 In the complex field, a continuous path can go from I to - I without going through O.

Section 2.5

I (b) No; limx _ o g(f(x)) = 2. 2 Put x = t 6
•

3 H (note that this cannot be found merely by substitution). 4 Yo.
8 Note that jI +;2 = Ixljl-+ I/x 2

.

14 Note that it is not permissible to assume that lim f(x) eXIsts.

15 For any I: > O,j(x) < L + I: on a deleted neIghborhood of b, but.f (xn ) > L - i: for a sequence
approaching b.

18 Prove thatfis "Cauchy" at Po, meaning that lim If(p) - f (q)1 = 0 as p and q simultaneously
approach Po.
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Section 2.6

I (a) Contmuous everywhere. (b) Removable discontinuity at the orlgm. (e) Essential dis
contmUity at the orlgm. (d) Removable dlscontmultIes on the line y = x, except at the origin,

where It is continuous.

2 The functIOn is contmuous nowhere.

3 The function is contmuous at each IrratIOnal point and discontinuous (essentIal) at each
ratIOnal pomt ThIs depends upon the fact that any sequence of rationals that approach an
Irrational must have larger and larger denominators.

4 (b) Removable at x = I, essential at 2 and -1.

5 (b) All removable.

6 (a) Removable at (0,0). (b) EssentIal at (0,0), since It depends upon which parabola is
considered.

7 No. 8 (a) Yes. (b) No.

9 All discontinuities anse as jumps, due to unequal left- and right-hand limits. There cannot
be more than a finite number of discontinuitIes with Jump more than I/n, and thus at most a
countable number in toto.

Section 2.7

2 (a) Graph f (h) Recognize f(x) - 1.

7 Let f(a) = f(h) = 1 with a < b and prove that a = 0, b = 1.

8 The result depends on whether or not IA I < 1.

Section 3.2
4 These are mtultIvely obvious; what is asked for is a proof based on the mean value theorem.

5 First study the zeros of F.

6 Study P'(x) at and between its zeros.

7 Apply the mean value theorem tof(x + I) - f(x).

8 First method: Prove {'(x) eXIsts and evaluate It.

Second method: Estimate If(h) - f(a)1 = /2: ~ (f(x j +.) - f(x)) Iwhere Xo = a, X N = b.

10 What must be shown IS that (b - a)f(x) 2': (b - x)f(a) + (x - a)f(b). Apply the mean value
theorem tOf(x) - f(a) and tof(x) - f(b), and use the result to express (b - a)f(x). Finally, use
the mean value theorem on f' and make use of the hypothesis on fa.

12 (a) The discontmuity off' at x = °IS removable.

14 (a) This IS intuitively clear from a picture, but a rigorous proof is called for. Show by the
mean value theorem that if f'(x o) < 0, then f must be negative somewhere to the right of Xo .

(b) No.

15 (a) Never. (b) Not necessanly. (e) Not necessarily.
2

16 Show that I' (I - P'(t)) dt = 0.
. 0

18 Look at a helix .

19 Set f(O) = 3h/(2H + B) and express b, H, and B in terms of 0; then use the mean value
theorem to estimate {to) - f(O) and then to estimate If (0) - 0 I·
20 Use the mean value theorem onf(x) = arctan (x), and then use 71/2 - f(x) = arctan (I/x).

22 (b) No. 23 (a) l (b) I. (e) - I.

24 It is not legal to cancel the factor cos x, and with thiS, the hypothesIs of Theorem 6 is not

satisfied.
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25 lim f'(x)/g'(x) fails to eXISt, but lim f(x)/g(x) does.

27 (b) No; try f(x) = xeX
•

28 f(O) = 0, and 1'(0), calculated from the onginal definttion of denvatlve, IS O.

29 First case: Iff(a) < f(b), then prove that there must be a point u with f(a) = f(u), and thus
c withf'(c) = O.
Second case: f(a) ~ f(b).

Section 3.3

I (a) fdx, y) = 2x log (x 2 + y2) + 2x3/(X 2 + y2)
f2(X, y) = 2x 2Y/(X 2 + y2),f12(X, y) = 4xy3/(X 2 + y2)2.

2 f2(X, y) = 3X 2y2 - 2,f2(2, 3) = 106,f2(y, x) = 3X 2y2 - 2.

3 (c) [-I, -I, -4].

4 (b) For no direction, except those of the axes; (c) no.

5 Using the mean value theorem, show that If(p) - f(Po)1 ~ M Ip - Po I.
6 Assume f = 0 on the boundary of a bounded open set.

7 Use Exercise 6. 8 O. 13 ¥.
14 "Nonsense. F must have been constant." Show why.

Section 3.4

(
dw aw cw cu aw au dx aw dx

b) = + + + .
dt ct au at au ax dt ax dt

3 At (-1,2, I), ay/cx = i. ay/az =~.

au
4

ax

az
5

ex

(2x 3u + 2xy2v + x 2y - 3y2)

x 4 + 4y 3
and also, au (l2y 5 - 12x2 r4 - 9X4 y 2 + x 6 )')

ex (x 4 + 4y3)2

dx
8

dt

e(F, G)

(1(.1', t)

?(F, G)

e(x, y)'

dr

dt

o(F, G)

a(x, t)

e(F, G)

l1(x, .1')

II Differentiate the equatIOn with respect to t, and set t = I

19 Apply Taylor's theorem to express f(p + !J.p) In the form f (p) + R(!J.p) for any POint PinS.
Then use the fact thatfllJ.2,f22 are continuous (and therefore bounded) on S to estimate R(!J.p).

20 Let p and q belong to S, wIth p = (¢(a), ljJ(a)), q = (¢(b), ljJ(h)). Subdivide [a. h] by pOints (j'
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with to = a, t" = h. Let P j = (</>(t j ), l/f(t j)). Then, If(p) - f(q)1 s L If(Pj+tl- f(Pj)1 s

M~ IPj + I - Pjl '. Show that the latter sum can be made arbitrarily small by proper choice of

the tj . (For a generalization of this, see a paper by Kakutani, Proc. Am. Math. Soc., vol. 3, pp.
532-542, 1952.)

21 </>(1) = I, </>'(1) = a + ab + V

Section 3.5

2 The error does not exceed 1/6! = 1/720 < .0014.

3 By Taylor's theorem, we obtain lerror I <!. The actual error is no more than .07.

5 6, II.

6 Use Taylor's theorem at x = 0 and estlmatef(l) andf( - I), and obtainf(3)(1'tl + f(3)(1' 2) = 6.

7 Use Taylor's theorem at t = x; estimate 1f'(x)1 and then estimate lim sup 1f'(x)1 as x i 00.

Note that many functions obey f(x) ---+ 0 wlthoutf'(x) ---+ 0, as x i 00.

9 We have I/x < 1/2P/x l
+b + l/x l - 6

) for any <5, 0 < <5 < I. Integrate, and obtain
log x < (I/26)(x6

- x- 6
). Then take <5 = t.

10 Yes. eX ~ (e 2 /4)x 2
, and this is best possible.

II IR"(x)1 s B"(x - a)"/n l :-+ O.

12 Writef(x) = f(a) + f'(a)(x - a) + f"(1')(x - a)2/2, set x = 0, x = I, and subtract. One then
obtains 1f'(a)1 s (A/2)[a' + (I - a)'].

I3 lf(a)I=I(f'lsM(lfl.

14 Show that for any xo, there is an m and a neighborhood of Xo on which (dm/dx)(f(x)) == O.

Section 3.6

I 3 and ¥. 2 (a) Examme P'(x).

3 The critical point is (i, 0) and is a saddle pomt. The maximum and minimum occur on the
boundary, and are 4 and -¥C.
4 Maximum = 4; minimum = -i.

5 (a) Saddle; (b) saddle; (c) (O,O)lsamaximum,(±i, ± I)areminima,and (0, ±1)and(±i,O)
are saddle points; (d) all the points on the line y = mx are mmima; (e) (0,0) is a minimum;
(f) (0,0) is a saddle point.

9 Look at the behavior off when y = mx and when y = 3x'/2.

10 The centroid.

II An open set where df = 0 must contain a critical point.

12 One point is (i, i, 0). 13 The maximum is lOti!.

14 There IS an endpoint maXimum, with an interior local extreme.

17 The line L goes through the centroid of the given points. The slope is determined by

IX = E(x') - [E(x)]', P= E(y2) - [E(y)]', and }' = E(xy) - E(x)E(y), where E(u) = L u;/n for any

numbers Uj , UZI ••• , Un'

18 F = f - 9 IS harmonic in D and F ~ 0 (or F S 0) on bdy (D).

21 Let k = [A], the largest integer obeymg k s A. Then, the maximum occurs for the chOice
x I = X2 = ... = x, = I, x, + 1 = p, x, + 2 = ... = x" = 0, where k + P= A. This type of problem
arises in many linear programming situatIOns.
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Section 4.2

3 M - f(p) is positive, so that JJ (M - f) = M A(D) - JJ f ~ 0
D D

5 As in Exercise 3, show that I'r fg lies between M rr 9 and m 1'1' g. Then use the intermediate
"n .. D .. D

value theorem to find the point p with

f(p) = UJ fgl
D

6 There is a neighborhood wheref(p) ~ b.

II Yes, O.

13 Draw an appropriate picture and interpret the two estimates In geometric form.

14 Use the uniform continuity off

15 Subdivide [0, I] and cover the curve by rectangles with a small total area, again using the
uniform continuity off and B as a Lipschitz constant for g.

Section 4.3

Ix 2
- X + I x ~ I

2 (a) F(x) = 1x (b) F(x) = (eX - I) exp (eX)
x < I

3 (c) No. 5 Use the substitutIon v = I/u. 6 Let F' =.t, and evaluate each side.

7 There are infinitely many solutions, of which one IS

f(x)- )0
- 1x/2 - 1/2

1 2 2 2

9 r dy I' f(x, y) dx + I' dy I' f(x, y) dx.
• 0 . 1 • 1 . }'

II The first blank should contain ..frl2f(y).

12 1/20.
• 2 ,2 .2-(1/2)x

13 I dx I dz 1 f(x, y, z) dy
· 0 • x • 1

2 4- 2y 2

r dy r dx r f(x, y, z) dz
• 1 • 0 • x

2 z 2-(1/ljx

I' dz I' dx r f(x, y, z) dy
, 0 • 0 ' I

Osxsl

I<x

2 4 - l}' z 2 2 4 - 2y

r dy r dz r f(x, y, z) dx + I' dy r dz I' f(x, y, z) dx
'1'0'0 'I '4-1y '0

2 ,2-0/2)::: z 2 2 4-2\'

I' dz 1 dy I' f(x, y, z) dx + r dz r til' I' {(x, y, z) dx.
'0 '1'0 '0 '2-(1/2)z '0

14 44/15, 16 (a) (e - 1)/2; (b) ~e4 - e2.
o r3 2 y3

17 The reversed order is r dl' r xy dx + r dy" xy dx.
'-./6 . -6 '0' 7y-6

18 Use the uniform continuity off
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22 Dividing the rectangle In half one finds the estimate .17558, good to .015. A little more
precision gives .17447. The "exact" answer IS

13 log 13 + 10 log 10 - 12 log 12 - II log II

Writing this Instead as 2 log (H) + log (H) - 10 log [I + (rh)], and using power <PrJP,. one gets
.174465, good to the last digit.

• h

23 Consider ,I. (f + ,ig)2, which cannot be negallve.

25 (a) Less than J5/2; (b) less than J27':,

26 Prove the identity for P(x) = I, x, x 2
, and x 3 in turn.

28 (a) (3e X3
- 2eX ')!x; (b) 3 cos (12x) - 2 cos (8x),

I I

31 Calculate I' dx I' Iy - x I dy.
, 0 ' 0

Section 4.5

1 Area =,' e-
X

dx =I.
'0

2 (a) Diverge; (b) diverge; (c) diverge; (d) converge; (e) converge; (f) converge; (g) converge;
(h) diverge.

3 (a) Diverge; (b) converge; (c) converge (not improper); (d) converge; (e) converge; (f) converge;
(g) diverge; (h) converge.

4 Either IX < I and P> I, or IX > I and P< I.

5 All (IX, P) with IX > - I, fJ > - I and IX + fJ < - I.
,R x

6 Yes. Evaluate the first half of I dx" x- 3
/
2er- x dy, and examine the resulting Integral as

, , 0

r 10, R i eX

8 Divergent. 9 Convergent.

II Use the intermediate value theorem.

Section 5.2

12 (b) The order Jdx Jdr is hard,

I (a) DIverges; (b) diverges; (c) converges,

3 (a) an = I/(n + I)(Jn + I + In) '" l/n 3
!2, convergent.

(b) an'" 1/113/4
, divergent.

5 (b) Take bn = I/(n - I) for n::,. 2.
(c) Take bn = I/(n - A - I) for n ::,. A + 2,

7 Bracket the series in blocks of successive length I, 2, 4, 8, etc.

8 Take logs and use Exercise 29, Sec. 1.6,

9 (b) False; (c) true; (d) true, use Schwarz inequality; (f) sum from n + I to 2n,

14 Write a, = (a,/Jk)Jk and use Schwarz inequality,

Section 5.3

I Neither is alternating so use the Dirichlet test.

2 (a) - I .; r < I (b) x = 0 (c) - 3 .; x .; - I
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(d) Ixl s!
(I) s > 0
(h) y > IX + P
(k) x> -lor x S -2

5 (a) 0; (b) e; (c) OCJ if c < I,
9 Consider L (Pn+ I - Pn)·

(e) Ix - II s}3
(g) -e-1sp<e- 1

(i) -I < x s I
(I) x s 0 or x > 2

I if c = I, 0 if c > 1.

(j) -x < x < ex
(m) All x

Section 5.4

2 [2n + 1 + (-1)"]/3.

Section 5.5

7 -2<x<1.

1 Approx. 109566 terms.

2 (b) (log n)2/2 + 0(1), where 0(1) means a bounded term.

3 Allow a radius of rotation of about 2L.

5 (a) S = -.0826, error less than .0005; (b) S = .904412, error less than .005.

9 L'~ k3
= P(N), where P is a polynomial of degree 4.

10 Write the general term as I/(n - a) - I/(n - b).

12 Use Stirling's formula. 16 Examine some "partial products."

Section 6.2

3 Yes; no; yes. 5 lim, I 0 F(x)/x 2
= L l/n 2

•

~ L • r:£

9 Examine the behavior of I In and I In'
• 0 • L

10 Split the interval of integration into [-I, -c], [-c, c], and [c, I], and show that the first and
last lead to contributions that are very small if n is large, while the remaining integral is close
to g(O).

II If q lies in all the sets C n , then a contradiction arises. Thus the intersection of all the sets
(and thus the intersection of finitely many) is empty.

Section 6.3

(b)
x

I
--- = I - (x - I) + (x - l)l - (x - 1)3 + ....

I + (x - I)

(X 2)2 (X 2)3
(c) log (I + Xl) = Xl - --- + .- - ....

2 3

2 (a) x d Jx d _! l= ~+ x~_.
dx I dx I - x (I - X)3 '

I (I + X)(c) -log -
2 I - x

3 (a) No; (b) yes. 5 Apply the corollary to Theorem II.

9 If w = -1 + ii, then w l + w + 1 = O.

10 1/F(x) = I - 2x + 3x 2 - •.. - 96x 7 + ...
II I/F(x) is a polynomial.
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13 If </J = L QPC, then tan </J = 2 sin (0/2)/[1 + 2 cos (0/2)] = 0/3 + 03/72 + "', from which one
may find that </J = 0/3 + 03/648 + ....
15 See Sec. 7.4 of Reference [33] m the Reading List.

Section 6.4

4 o. 5 x.. 6 (n/2)/xl.
7 n/2 (try simple substitution).

8 Differentiate and then mtegrate by parts.

10 Find the smallest value for g(t), notmg that any x ? I is allowed.

16 Evaluate each side. (Nevertheless, IG(x, .1') I s l/x 2 for I s .1', so the inside integrals converge
uniformly.)

Section 6.5

I Put t = s/y. 2 (b) Put A(x) = O.

4 (a) r(~)r(~)/3r(¥). (b) j2r(i) = j2n.
(e) -r(~)r(1). (d) ir(i)r(i).

I
6 r((p + I)/q).

q

7 r(s + I)/(r + I)" l

8 (a) Le-l/t' + jn erf (l/L) - jn.

(e) F(x) has the form A/jx.

Section 6.6

I 13.86 = arccos (.97089).

3 Calculate (11/n - Imll! _1. 1])2 directly.

9 eX - (2/n) sinh (n){~ +~; [( _I)n/(I + /l2)](COS nx - /I sm /Ix)}.

10 (il) p'q="\' a;lin •
L.

II (a) l/j2n; (b) use deMoivre's identity.

13 (b) Use the recursion relation for the polynomials Tn'

Section 7.2

I (a) A translatIOn sending the ongin into (3, - I). (b) A reflection about the line y = x.
(e) A rotation by n/4, followed by a radial expansion which multiplies points by j2.

3 The line u + I" = 0, m the plane w = O.

4 T(p) = T( - pl. If (x, .1') = x + i.r = z, then T(z) = Z2.

10 (e) The XYplane is mapped onto the whole UVplane, except for certain pomts on one of the
axes. The mapping is mostly l-to-1.

(d) The image of the X Yplane is only a curve in the UV plane.
(e) This is, of course, the famIliar polar coordinate mapping; It should be analyzed in detail.

12 This wIll be treated in detail m Chap. 10.

13 (d) T(x, y) = (x', y') where x' = - 3x/5 + 4.1'/5 + t y' = 4x/5 + 3y/5 -~.



7 The ranks are (c) 2; (d) 3.

4 (0, -3),(-5,6),(2, -3),(-1,0).
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Section 7.3

2 [2, -1,3].

[
0 I 2]

6 (a) I 4 3
I 0 I

8 (a) All of XYZ space is mapped onto the plane whose equation is u + l' - W = 0, m a many
to-one fashion.

[-5 -I]
9 (a) I 3'

10 (ST)(x, y) = (2x - 2y, - 2x + 6y), and
(TS)(x, y, z) = (4x - y - 2z, 12x - 2y + 4z, - 2x + Y + 6z).

II (c) Yes.

Section 7.4

1 (b) [-18
12

25 -12]
o -4 (c) n ~]

-6

5 Take I1p = (h, 0) and (0, h) in turn, and compute

lim !(p + I1p) - T(p)
h

12 Estimate the maxima of the absolute values of the derivatives, arriving at the matrix [~ ~ J.

Section 7.5

2 (a) e2x
; (b) 2, if x # O.

3 (a) Locally I-to-I but not I-to-I in the whole plane, even though J is never O. (b) I-to-I m
the right half plane and in the left half plane. (c) Never I-to-I locally, since it maps the (x, y)
plane onto the parabola 1'2 = 4u.

10 (a) Use y = x 3
. II The image set is a curve.

12 Consider separately the case where x 2 > y2 and where x 2 ~ y2

16 This depends on the multiplication property for determmants [see Appendix 3].

Section 7.6

1 Yes; no. At (0, O),oF/ay = I, of/ax = 0; moreover, for Ixy I small, the equatIOn IS approximately
x 2 + y = O.

2 No; yes.

4 No such representation exists. (Examine the graph of each.)

6 (a) Assume f of class C near I, and 1'( I) # O.

7 There is always the solution y = I, identIcally. In some cases, this IS not the only solutIOn;
when f(l) = (I - 1)2, Y = (I - x)/(I + x) is also a solution, but not through (I, I).

10 It IS sufficient if F.(0,0) # -I and F2(0,0) # O.
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Section 7.7

2 Evaluate the Jacobians first.

4 (b) Solve for y in terms of u, 1" and x and substitute this III the second equatIOn.

Section 8.2

1 (a) No; (b) no; (c) yes; (d) no.

2 (b) Look at the seven disjoint sets that compose S1 U S2 U S3' and write F(S I U S2 U S3) III

terms of F(S;), F(Si n Sj)' and F(SI n S2 n S3)'

5 Use Theorem 8 of Sec. 2.4. 7 See also Exercise 10 below.

8 Not necessarily; try j(x, .1') = XI/(X 2 + .1'2).

10 (c) Ifjis of class C'.

Section 8.3
1/2 1 -I'

3 (a) I' dv I' 2(u 2
- [,2) du = l

• 0 . I'

.1 1

(b) I du r (u 2 + uv) dv = j.
. 0 . 1 - 2u

.3 .4

5 Setting u = xy, v = x 2
- .1'2, the integral transforms to (~) I du I dv = 3.

• 1 • I

8 The areas of the faces are J6, J29, JiI, and the volume is 5.

9 The upper half of the X Yplane is mapped onto the portion of the (5, t) plane lying inside the
parabola (s - t)2 - 8(5 + t) + 16 = 0. Lines in the (5, t) plane correspond to conics in the XYplane.
The Jacobian is °only on the boundary .I' = 0.

Section 8.4

1 The double point corresponds to t = 2, t = - 2, and the slopes of the tangents are 2 and - 2.

2 k = 4n(l + n 2 + 4n4 )1 /2(1 + 4n 2 )-3 / 2

3 L = rI (9t 4
- 2t 2

- 4t + 2r /2 dt. 4 k = (76)1/2( 14f 3/2 .
. 0

7 The differential has the requisite form, except at the origin. There, angles are tripled.
2. •

8 L = a r }2 - 2 cos t dt = 4a f Isin 01 dO = 8a.
. 0 • 0

9 The curves are perpendicular.

13 Use the mean value theorem.

17 One chOIce is .I' = 2t/(t 2
- I).

Section 8.5

1 The tangent plane may be given by x = - *- v, y = ~ + u + v, z = 2 + 4v, or by 4x + z - 1 = 0.

4 The curve meets the surface in three points, (0,0,0), (I, 1,2), and (j, i, -17). The angles between
the normal to the surface and the tangent to the curve are n/2, and arccos [6/(Ji7J97))
arccos [-2/(J4IJI7)].
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7 The area of the ellipsoid is

• 2.

f sin ¢ d¢ I' {a 2b2 cos2¢ + c2sin 2¢ [a 2 sin 2(J + b2 cos2(J]}li2 dO
• 0 . 0

8 The area of the Mobius strip is the same as that of l:I' which IS

,2. 1 J(V)2 [ (V)J2l112J0 du J_1 i.2 + 2 - v sin 2 I dv

10 (-¥-)n.

13 The area is (2AB/3)((1 + 13)312 - l)n.

14 nR 2
- 2R 2. 18 4n.

20 If the curve is P = y(t) with y(O) = Po, then F(y(t)) = 0 on a neighborhood of t = O. Apply
the chain rule, and interpret the result.

Section 8.6

(x 2 + y2)R dx dy 8npR 4
.. .

8 1= 2p ff ~~c~~~= = --, where D IS the disk of radius R ... J R 2 - x 2 _ y2 3
D

10 F = 2nkP( 1 - -~--=), which approaches 2nkp as R i. The attraction of an infinite plate
JT2 + R 2

is independent of the distance from it.

II Describe the shell by x = sin ¢ cos 0, y = sin ¢ sin 0, z = cos ¢, 0 s ¢ s n, 0 s 0 s 27t, and let
P = (0,0, a) with 0 ~ a < I. With p = density (mass per unit area), the component of the force
at P in the vertical direction is

F = _j,Z.d(J I" ~o_sj=--a)(p ~njJ)dj
'0 '0 (1+a 2 -2acos¢)312

This may be integrated easily; for example, put u2 = I + a2 - 2a cos ¢. One finds that F = O.

Section 9.2

I (a) i; (b) -t'rr; (d) ~ - j + ~ = j. 3 0,8,8,8.

4 (b) tJ; (c) 2n; (d) 0 + 12 - ~ + 0 =.!.f. 5 2,2,0, O.

II (a) 2xyz dx + x 2 z dy + x 2Y dz; (b) (x 2 + y2r 1(2x dx + 2y dy).

13 (a) x 2 dy dx - z dy dz; (c) 0; (e) (2xy - x) dx dy dz; (g) O.

I I

16 (a) 4 f du f (uv2 + v3
) dv = j; (b) n; (c) 1 - ~ = l

• 0 • 0

1 I

18 r ds J dr (r4 + 2r3s - 4r 2s2 + 2rs 3
- S4) = n.
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Section 9.3

(a x b)' c = 2, a x (b x c) = 8j + 24k, (a x b) x c = 2i + j + 21k,

(a . b)c - (a . c)b = - 8j - 24k

3 With c = a x b, show that

4 !fax v = b, then a x b = (a' v)a - (a' a)v = ka - la 12V. Thus, ifsuch a vector exists, It must be
(ka - (a x b))/Ial' (provided lal # 0). However, a solution does not always exist; a necessary
condition is that a . b = O. This may be seen to be sufficient.

5 The vectors p.lie (for n :2: 3) in a plane normal to a, and rotate about it, each being orthogonal
to its predecessor. !f la 1 < I, lim P. = O.

7 Since f(t)· f(t) = I, f'(t)· f(t) = O. The curve described by p = f(t) lies on the sphere Ipl = 1;
this therefore states that the tangent vector at p is orthogonal to the vector from 0 to p.

13 For the second, let b = b,i + b,j + b3 k, c = cli + c2 j + c3k, and take a = i. By direct com
putation, it is seen that

i x (b x c) = cdb2 j + b3k) - bl(C2 j + C3k) = c,b - blc = (i' c)b - (i' b)c

Similarly, one shows that j x (b x c) = (j' c)b - (j . b)c and k x (b x c) = (k . c)b - (k . b)c.
Putting these together, with coefficients at, a2 , a3 , one arrives at the general formula.

14 Assuming that f and V are of class C", these follow by direct calculation. Formally, they may
also be obtained from the relation V x V = 0; thus,

curl (grad!) = V x Vf = (V x V)f = 0

and div (curl V) = V . (V x V) = (V x V)· V = O. This can be made acceptable by discussing
vector systems whose components are elements from an arbitrary noncommutative ring.

15 For the second, observe that e2(fg)/ex' = ge'f /ex 2 + 2(ef/ex)(eg/ex) + fe'g/ex'.

16 As an alternative to direct computation, one may use the relation

a x (b x c) = b(a . c) - (a' b)c

with a = b = V, and c = V, obtaining V x (V x V) = V(V . V) - (V . V)V. This requires the
additional consideration indicated in Exercise 14.

17 An alternative to direct computation is the following. The analog of the rule for differentiation
of a product is V . (F x G) = V . (F x G) + V . (F x G), where the dot indicates the function to
which the differentiation is applied. Using the relation a' (b x c) = c . (a x b), we have
have

V . (F x G) = G . (V x F) - V . (G x F)

= G . (V x F) - F • (V x G)

18 If w = f(x, y, z), then <lw = f. <Ix + f2 dr + f3 dz and

Assuming that f E C", ddw = O. Likewise, if w = A(x, y, z, w) dx dy, then <lw = A3 dz <Ix dy +
A4 dw dx <lyand d<lw = A34 dw dz dx dy + A43 dz dw dx dy, which is again 0, if A E C.

19 Use Exercises 14and 17.
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Section 9.4

2 dw = 3(x 2 + .1'2) dx dy, so that

• • • .21t 1

Iw = 3 II (X 2 + .1'2) dx dy = 3 I dO I' r2r dr = 3n/2
'}"O . 0 . 0

5 If V is the solid ball, x 2 + .1'2 + Z2 <:; 1, and L is the sphere which is its boundary, we Indicate

the proof of the relation rr A dx dy = 1'1'1' A 3 . Let D be the disk x 2 + .1'2 <:; I. Then,
• -1: ,.•. v

JJJ A3 = JJ {A(x, y, Jl--"-:~2=-y2) - A(x, .1', -J1 - x 2
- .1'2)) dx dy

v D

Using the parametrization z = J1 =-X2-=-:f.2 on the top half of L, and its negative on the
bottom (with reversed orientation), we obtain for the surface integral

JJ A dx dy = JJ A(x, .1', Jl~~2 - .1'2) dx dy + JJ A(x, .1', - Jl - x 2
- .1'2) dy dx

r D D

= JJ {A(x, .1', JI- ~2_ .1'2) - A(x, .1', - J1 - x 2
- .1'2): dx dy

D

verifying the relation.

r
r t 2 dt

7 Area = 9a
2

• 0 (1 +t'fi = 3a
2
/2.

9 With w = xy2 dy - x 2y dx, dw = (x 2 + .1'2) dx dy. Let Do be the portion of D in the first
quadrant bounded by the closed curve " formed of the lines x + .I' = 4, x = 0, .I' = 0, and part

of the circle x 2 + .1'2 = I. Then, 1'1' dw = I' w = 128/3 - n/8. By symmetry, this IS the same as
•. Do . y

the integral of dw over the other three pieces of D, so that the result is 512/3 - n/2.

10 d(x dy dz + .I' dz dx + z dx dy) = 3 dx dy dz.

II (b) Using z = [R 2 - x 2
- .1'2]'/2, we have dz = - (x/z) dx - (y/z) dy, so that

2 . (x 2 + .1'2)2 + 4X 2y2
1= 1'1----- ---dxdr

6 JR 2 2 2 -
'j, - x - .I'

1 .' r5 dr . z. 2' 2 8 5= I -- -cc-'-~~= 1 (1 + 4 cos 0 Sin 0) dO = nR
3.oJ'R2-r2.o 15

12 With w = x dy dz, dw = dx dy dz, and (dw)* = - (4vw + 4uw + 2u) du dv dw. Also,

w* = (2u 2 + 2uv - 2uw) du dv + (4u 2w + 4urw - 4uw2) du dw - (4uI'W + 4r 2w - 41'W
2

) dl' dw

and it is seen that d(w*) = (dw)*.

17 For the first, apply the divergence theorem to the cylindrical region R obtained by erecting
lines of height 1 on the set D. One then sees that

and that JJJ V . F = JJ V . F
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Section 9.5

I (1I) f(x,.I') = X
3 .1' + X

2.1' + .1'2 + C; (c) f(x,.I', z) = X2YZ3 + xz; (d) since dw #- 0, no function f
eXIsts.

,I ,I .1 .1

2 (b) flx,.I" z) = I A + I r(xA I + .I'B I + zCd = I A + I r(xA I + yA 2 + zA3) = A(x,.I', z)
. 0 . 0 . 0 • 0

using part (1I) and the relatIOns B I = A 2, C I = A 3 which come from dw = 0. (c) Along
the straight line from (0, 0, 0) to (x, .1', z).

4 Yes..f (x,.I') = mlog (x 2 + .1'2).

5 Use Exercise 2. The homogeneity of A, B, and C enables one to factor out r\ and carry out
the integration.

6 (a) One possible factor is x- 3. (b) Since w dw = 0, integrating factors exist. One is x 2
• (c) No

mtegratmg factor exists.

8 (c) If rJ = A d.l' dz + B dz dx + C dx dy and rJ = dw where w = a dx + b dy + c dz, then C =
ob/ox - oa/oy. To venfy that the gIven functions have this property, we differentiate a(x, y, z)
and b(x, .1', z), obtaining

ob.1 .1

=1 rC+1 r2(xC I -zAd
ox . 0 . 0

va . I .1

, = -I rC + 1r2 (zB 2 - yC2 )
OJ' • 0 • 0

By assumptIOn, da = 0, so that A, + B 2 + C 3 = 0. Usmg this, replace z(A I + B 2 ) by -zC3,
obtammg

ob oa .1 .1

- =21 rc+1 r2(xC I +yC2 +ZC3)=C(x,y,z)
ox 0.1' . 0 • 0

by part (a).

10 (a) Using Exercise 9, one obtains

w = (!)(2x 2.1'z - Z3 y ) dx + (!)(4xz 3 - 3y2z2
- x3z) dy + (!)(3 y3z - 3xyz2 - x3y) dz

To this, any exact I-form df may be added. With a judicious choice, one obtains the simpler
solution w = X

2.1'Z dx + xz3 dy + lz dz. (b) Exercise 8 yields the solution

w = [(1)xz 2 + (j)(Z2 - .1'2)] dx + (i)xy dy - [(1)x 2z + H)xz] dz

However, by inspection, we see that rJ = [(2xz + z) dz - .I' dy] dx = {3 dx. Moreover, {3 itself is an
exact I-form. Thus, we obtain the simpler solution

w = (xz 2 + 1z2 -h 2
) dx

13 If ¢ is an integrating factor for the 2-form, then

When rJ = x dy dz + .I' dz dx + z dx dy, this differential equation is

X¢, + Y¢2 + Z¢3 = - 3¢

which IS satisfied by any function ¢ which is homogeneou' of degree - 3. For example, we may
take ¢(x. y, z) = X 3 and have ¢a an exact 2-form, which is dw for w = (-!)(yx- 2 dz - zx- 2 dy).
It is interesting to notice that in this example, the form ¢rJ has homogeneous coefficients, but that
the methods of Exercise 9 (and also of Exercise 8) fail.

14 If w is exact, then w = dfJ. Hence w* = (d{3)* = d({3*), and w* is also exact.
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Section 9.6

I (a) In (9-62), takef = g. (b) Since (c/co)(g* - g) = °on cO, V(g* - g) = °throughout O. If 0 IS
a connected set, we may conclude that g* - 9 is constant.

3 (a) Apply the divergence theorem to F x [V x G), and use the relation

V . (F x [V x G)) = (V x G) . (V x F) - F· (V x [V x G])

(b) In (a), interchange F and G, and subtract the two formulas. These relations may be used to
solve the vector analog of Poisson's equation,

V x [V x V] = F

Section 10.2

3 (a) It helps to look at y = sin x and y = I - x/6. (b) The first three are .988567, 2.523600,
6.242721.

6 (a) Use Taylor's theorem about x = x, where f(x) = f'(x) = 0. (e) If Xl = 2, you should have
x, = 1.751 18, and XIO = 1.732655. (d) ~ is replaced by l
7 The diagram is symmetric about the A aXIs and consists of three regions where three roots are
found, the left region being unbounded, and a bounded region where five roots are found. In the
connected set that remains, only one root is found.

Section 10.3

I Sketch y = X and y = f(x) and locate the points (x., x.+ d·
2 (a) Show that ab S; a.+ 1<)A. (b) Show that)A - a. S; 2/(n + I).

3 Note that Ix I = ) x2 (ThIs result is the key to the Weierstrass approximation theorem. See
Reference [4] in the Reading List.)

4 (b) Let A = a3
, and suppose x. = a - E. Then estimate x.+ I according to each algorithm.

S Starting with x = I, y = 1, P, = (.7277, .7216), P20 = (.694967, .768263),
P,o = (.6948196894, .768 1691559).

6 Consider I' xf •.
. 0

Section 10.4

I (a) This is an instance when it may be easier to do a direct search, rather than to attempt to
solve d2x/dt 2 = °or d3 x/dt 3 = 0. (b) The maximum velocity occurs when 0 = 1.277 radIans.

2 The mmimum off + Ag occurs when x = 24/(34 + 1/A), so that for large A. x --; H.
3 (-i, Yo) is one critical point.

4 The Lagrange equations have a solution for which f3 = - I, x = I.

6 9. 7 Minimum I; maximum 3. 8 8abe/3)3.

9 P = (0, 0,f(0, 0)). A nonanalytic treatment is possible. The volume of the region bounded by the
tangent plane, the cylinder, and the XY plane is 7th, where h is the height of the point on the
tangent plane which lies directly above (0,0,0). Thus, one need only minImize h.
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Section 10.5

2 (a) .743; (b) .944; (e) .736. 3 I::::: .693 25.

4 Wnte J 4x 2
- )'2 = J2x - )' J2x + y and use Schwarz' mequality.

6 10.; I .; 12, and these bounds cannot be Improved.

7 15663 ± .0182.

8 Put t = I/x, and then write the interval of integration as [5, 2n], [2n, 3n], etc., and integrate by
parts.

9 Show that an+ I - bn+ [ = (Jan - Jbn)2/2.

12 f'( 6) = 2.66 ± .0133.
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A(S), V(S)
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Ck.C,C'
C
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R, R"
S
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Z
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W, (J
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inC sup
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area, volume, 169
class of sets, 376
differentiable functions, 128
complex field, 556
class of continuous functions, 304. 307
derivative operators, 130
field, 554
lower bounds, 58
metric space, 304
neighborhood, 31
open set, 35
rational field, 6
real field, n space, 2
class of sets, 64
upper bounds, 58
set of in tegers, 6
differential operators, 341, 425
curve, 399
boundary operator, 417
Hilbert space, 305
differential form, 450
surface, 417
greatest lower bound, lub, 58
boundary, 30
partial derivatives, 127
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E,rj;

uUnn
o
o
S
[x]
[a;J
[a, h]
Ipl
Illllf
*Ii.fl *lim, *2:
<{; g)
d(p, q)
d(A, B)
B(po, r)

x
n
Vr

I

set inclusion, 4
set membership, 4
epsilon, 39
set union, 5, 33
set intersection, 5, 33
empty set, 5
origin of R", 3
closure of S, 31
greatest integer in x, 6
matrix, 335
closed interval, 30
length (norm) of p, II
norm of function, 265
operations in *«(" 307, 311
inner product in *«(" 308
metric, 304
distance between sets, 60
ball of radius r at Po, 18
inner (scalar) product, 8
vector product. 465
normal to surface, 422
gradient, 130
approximate equality, 124
basis vectors, 126, 306
Fourier mapping, 311
end of proof. 14
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~ Index
Abel theorem, 279
Absolute convergence:

integrals, 216, 223
series, 236

Absolute value, 12
Accumulation point, 31
Addition:

of forms, 455
of numbers, 5, 554
of points (vectors), 7
of sets, 5

Alternating series, 237, 244 (Ex. 4)
Analogies:

between forms and vectors, 472
between series and integrals, 228, 245,

252
Analytic function, 149, 573
Angle:

between hyperplanes, 19 (Ex. 10)
between poin ts (vectors), 15

Antiderivative, 181
Approximation:

of finite sums, 252
least square, 161
piecewise linear, 87
polynomial, 86, 147, 323, 583
of sum of series, 255
uniform, 86

Approximation theorem for differentials,
128,344

Arc (see Curve)
Archimedean law, 6, 44, 558
Area:

altered by transformation, 382, 386
inner and outer, 172
for unbounded sets, 205
zero, 172, 179 (Ex. 14, 15), 385

Area continuous (a.c.), 379
Arithmetic-geometric mean, 545
Arithmetic means, 56 (Ex. 29)
Atlas, 434
Attractive fixed point, 531

Ball, 18
Basis, 306, 563
Begging the question, (see Circular

argument)
Bessel function, 284 (Ex. 4)
Bessel inequality, 316
Beta function, 302
Bisection process, 97 (Ex. 15), 522
Boas, R. P., 251, 580
Bolzano-Weierstrass theorem, 62, 65
Boundary, 30

oriented, 437, 447, 449

615
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Boundary:
point, 30
of surface, 417

Bounded convergence theorem, 269, 586
Bounded function, 90
Bounded sequence, 38
Bounded set, 5, 31
Bounded variation, 406
Boundedness theorem for transfor-

mations, 338
Bounding Curve, 506
Bounding surface, 419, 509

Calder, A" 258
Cardinal number, 551
Cauchy convergence criterion, 52, 103,

230,265
Cauchy integral theorem, 578
Cauchy principal value, 209
Cauchy-Riemann equations, 413, 576
Cauchy sequence, 52
Chain rules for differentiation, 136, 346
Change of variable:

in differential equations, 142
in multiple integrals, 203, 382, 392, 488
in single integrals, 183, 202

Chart, 434
Circular argument (see Petitio principii)
Closed curve, 400
Closed form, 498, 507
Closed interval, 30
Closed manifold (surface), 437, 509
Closed set, 30
Closure operator, 31, 40
Cluster point, 31
Commutation theorem for d, 483
Compact graph theorem, 92, 333
Compactness, 65, 90, 93, 559
Comparison test:

for improper integrals, 214
for series, 231
for uniform convergence, 266

Complement of a set, 30
Completion, 63, 265, 306, 556
Complex field, 556
Complex-valued function, 26, 574
Component of a set, 37 (Ex, 19)

Composition of functions and transfor-
mations, 78, 331

Computer use, 521
Conformal mapping, 413
Connectedness, 34ff., 95, 560
Continuity:

of functions, 72
of transformations, 75, 332
uniform, 82

Contour integral, 578
Contraction theorem, 528, 534
Convergence:

absolute and conditional, 236
acceleration of, 254
Cauchy, 52
Dirichlet test: for improper integrals,

218
for series, 236

Osgood- Lebesgue theorem on, 269,
586

poin twise, 261
preserving, 73
radius of, 240, 278
of a sequence: of functions, 240. 261

of points, 39
of a series, 229
uniform, 263

Convex, 18
Countability, 6, 552
Covering, open, 64

finite, 65
Critical point, 133, 154,373,426
Cross product, 467
Curl,471
Curvature, 408
Curve, 21, 399

algebraic, 411
analytic, 408
of class Co, 408
closed,400
curvature of, 408
equivalent, 406
length of, 403
linked,2
simple, 400
smooth,400
space filling, 560
trace of, 400
winding number of, 412



Dedekind cuts, 556
Denseness, 6, 37 (Ex. 5), 323
Dependence:

functional, 368
linear, 562

DeRham theorem, 507
Derivative, 116, 130

directional, 126
generalized, 324, 584
of inverses, 123, 358
matrix-valued, 341
mixed, equality of, 190
partial, 126
second,425
of a set function, 378
total, 130
of a transformation, 341
vector-valued, 130, 343

Determinant, 140, 337, 564
Diameter of a set, 60
Dictionary, 473, 506
Differentiable function:

one variable, 116
several variables, 132, 345

Differentiable set function, 378
DifferentIable transformation, 345
Differential, 341
Differential form, 446ff.
Differentiation:

chain rules for, 136, 346
of composite functions, 139, 348
of forms, 456, 485
of functions defined by integrals,

194
numerical, 546
partial, 126
of series, 270, 278, 324
of set functions, 378
term wise, 270

Dimension, 563
Dipole, 585
Dirac delta function, 277 (Ex. 10), 585
Directed system, 169
Direction in space, 125
Dirichlet problem, 516
Dirich let test:

for integrals, 218
for series, 236

Disconnected, 34, 560

INDEX 617

Discontinuity, essential and removable,
107

Disjoint sets, 5
Distance:

between functions, 86, 304, 307
between points, 12
between sets, 60

Distance-decreasing mapping, 334 (Ex.
II)

Distributions (Schwartz), 324, 585
Divergence:

of improper integrals, 209, 223
of sequences, 39
of series, 229
of a vector field, 470

Divergence theorem, 478
Domain, 20
Doughnut, 430, 509
Dual space, 566, 583

e = 2.718 281828459"',48
Eberlein, W. F., 80
Economics, 135
Eigenvalue, 565
Elementary functions, 78, 80

exponential, 282
trigonometric, 249, 283

Elliptic integrals, 545
Empty set, 5
Equation of continuity, 494
Equivalence classes of curves, 411
Euler, L., 257, 283
Euler's constant, 271
Exact differential forms, 497, 507
Expected value, 198
Exponential integral, 224
Extension theorem, 109

Tietze, 110, 274
Exterior point, 30
Extremal problem, 154, 535
Extreme value, 117

Feynman, R., 10 (Ex. 3)
Field:

algebraic, 5, 554
complex, 556
particle-like, 572
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Field:
rational, 556
vector, 468

conservative, 506
divergence of, 470
irrotational, 495
solenoidal, 509

Finite set, 6
Fixed-point theorems, 527, 553
n-Form,450

addition and multiplication of, 455
closed, 498, 507
differentiation of, 456, 485
exact, 497, 507

Fourier:
basis, 311
coefficien ts, 311
polynomials, 315
series, 311

Fresnel integrals, 222
Fubini theorem (weak form), 186
Function, 19

analytic, 149
bounded,90
of bounded variation, 406
of class en, 128
continuous, 72
convex, 25, 28 (Ex. 10)
defined implicitly, 363
differentiable, 116
domain of, 20
gradient of, 130, 343
graph of, 23
holomorphic, 573
homogeneous, 146 (Ex. 11, 12)
hypergeometric, 545
implicit, 26
increasing, 25, 101
in verse, 111 ff.
limits of, 97ff.
linear, 334
matnx-valued, 26, 327
monotonic,96, !OI, 114,377
norm of, 86, 307
nowhere differentiable, 273
orthogonal. 309, 312, 325 (Ex. 13)
periodic, 321
set, 376
space, 265

Function:
vector-valued, 21, 328

Functional. 446, 566, SID
Functional dependence, 368
Fundamental theorem:

of algebra, 580
of calculus, 181, 379

Gamma function, 297
Gauss theorem (divergence), 478, 491

vector form of, 493, 496
Global property, 89
Gradient, 130, 343, 469
Graph,23

reflection of, 112
Greatest lower bound (glb, inf), 6, 58
Green's identities, 515, 517

vector form of, 519 (Ex. 3)
Green's theorem, 478, 487

vector form of, 497
Grid, 168

refinement of, 170

Harmonic function, 163,515
Heine-Borel theorem, 65
Heinlein, Robert, 4
Hessian, 425, 428
Heuristics, 257, 314, 324
Hilbert space, 305
Homeomorphism, 583
Homomorphism, 583
Hyperplane, 15
Hypersphere, 205

Ideal, 583
Image, 76, 328

inverse, 76
Implicit function theorems, 362
Improper integral, 205ff.

comparison test for, 214
Inclusion of sets, 4
Incompressible fluid, 494
Independence:

linear, 368, 562
local, 134
of path, 499



Infinite sets, 6
Infinity, 100, 599
Inner product, 308
Integers, 6, 556
Integral:

absolutely convergent, 216, 223
indefinite, 181
iterated, 184
Lebesgue, 319, 586
oriented, 177
upper and lower, 171

Integral test, 233
Integrating factor, 505
Integration:

numerical, 197,541
by parts, 216
termwise, 268

Interior, 29
Intermediate value theorem, 93, 95
Intersection of sets, 5
Intervals, 18

nested, 61
Intuitionism, 550
Inverse:

local,358
of mapping, 114, 352

Irrotational field, 495
Isolated point, 32
Isomorphism, 16
Iterated integral, 184
Iterated limit, 105

Jacobian, 140, 354
Jordan measurable, 175

Kummer, E. E., 256

Lagrange multiplIers, 539
Landau, E., 557
Laplace equation, 142, 515
Large numbers, 251
Least squares, 161
Least upper bound (lub, sup), 6, 58

property, 57
Lebesgue convergence theorem, 269, 586
Legendre polynomials, 309
Level curves and surfaces, 25, 160
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L'Hospital's rule (Bernoulli), 121
Light, 569
Limit, 38, 97ff.

inf and sup, 44
at infinity, 105
iterated, 105
one-sided, 10 1
sums, products, quotients of, 43, 102

Limit point:
of sequence, 42
of set, 41

Line, 16
Line integral, 450, 478, 489, 499
Linear dependence, 368, 562
Linear functions and transformations,

334, 563
Linear programming, 166 (Ex. 21)
Linearization, 346
Lipschitz condition, 88, 154 (Ex. 18)
Local properties, 89, 117, 131, 134, 354,

358, 500, 509
Lower bound, 6
Lower limit (lim inf), 44

Manifold,433ff.
Mapping (see Transformation)
Mathematical induction, 45, 551
Matrix:

Hessian, 425
identity, 387
inverse of, 337
nonsingular, 337
positive definite, 426
product of, 336, 564
rank of, 337, 564
symmetric, 425
trace of, 470

Matrix-valued function, 26, 327
Maximum minimum:

problems, 154
tests, 157

Maximum modulus theorem, 579
Maxwell's equations, 512ff.
Mean square convergence, 307
Mean value theorem:

for functions, 118, J51
for integrals, 178 (Ex. 5)
for transformations, 350
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Membership, 4
Mesh, 168
Metric space, 63, 265, 304
Midpoint, 9
Minimax (saddle point), 97 (Ex. 16, 17),

154
Minimum in a set, 58
Mobius strip, 436, 490
Monotonic function, 96, 101, 114,377
Monotonic sequence, 47

property, 57
Morals, 569, 572
Mutual separation, 34

Neighborhood, 31
deleted,98

Nested set property, 61, 66
Neuman problem, 516
Newton's method, 523, 525, 532
Noncountability, 6
Norm:

of function, 86, 307
of grid, 168
of point, II

Normal, 15,422
Numerical methods, 520-548

One-sided limit, 10 I
One-to-one mapping, 354
Open interval, 30
Open mapping, 356
Open set, 29
Optimization, 163

constrained, 536
Orientation:

of integrals, 449
of manifolds, 435
preserving, 412
of regions, 447
reversing, 412

Orthogonality, 15, 309
Orthonormal, 309

Paradox, 121, 124 (Ex. 24), 183,222,224,
238,248,261,262,296 (Ex. 16)

Parametric equivalence, 406, 432, 460
Parseval formula, 317

PartIal derivative, 126
Partial sum, 228
Partial summation, 237
Path (see Curve)
Peano, G., 560
Pendulum, 569

penod of. 571
Periodic function, 321
Petitio principii, 80

(See also Begging the question)
Pfaffian, 505
Photon, 10
PhySical interpretations, 476, 494
Piecewise linear, 87

polygonal, 35
Plane, 2, 421
Point, 3

of accumulation, 31
critical, 133, 154, 3n 426
fixed,531
Isolated, 32
limit, 41, 42
multiple, 400
norm of. II
saddle, 154

Poisson equation, 514
solution of, 516

Polar coordinates, 203, 395
Polynomial approximatIOn, 86, 323, 583

Taylor, 147
Potential, 506
Power series, 278ff.
Pre-image, 76
Probability, 198, 376
Product:

Cartesian, 23
cross, 467
dot, 8
of forms, 455
inner, 308
of matrices, 336, 564
of series, 246
of transformations, 331

Proof by contradiction, 35 (Th. 2), 550

Quadratic forms, 566
Quantifiers, 550
Quaternions, 465



Raabe's test, 2,13
RadIUs of convergence, 240, 278
Rank, 337, 564
Ratio test, 231, 232
Rational numbers (field), 6, 556
Reality, 568
Rearrangement of series, 2,19
Rectifiable curve, 404, 406
Recursion, 48, 55 (Ex. 15, 16), 522
Refinement, 170
Repulsive fixed point, 531
Reversal of order:

of integrals, 188, 192
of sums, 248

Riemann sum, 169
Rolle's theorem, 117
Root test, 232
Runge theorem, 577

Saddle point, 154
Schroeder-Bernstein theorem, 552
Schwarz inequality:

for integrals, 200 (Ex. 23), 308
for sums, 13

Secant method, 522
Sequence, 27

Cauchy, 52
monotonic, 47
of sets, 27

Series, 228
absolutely convergent, 236
alternating, 237
double, 245
harmonic, 250
hypergeometric, 242, 244 (Ex. 211)
integration of, 268, 281
partial sum of, 228
power, 240
product of, 246
rearrangement of, 239
summation of, 250
Taylor, 150
telescoping, 230, 255
uniform convergence of, 264

Set function, 376
additive, 376
differentiation of, 378
monotone, 377

INDEX 621

Set theory, 549
Sets, 4

additIon of, 5
area of, 168
boundary of, 30
bounded, 5, 31
closed,30
closure of, 31, 40
compact, 65
connected, 34
countable, 6
diSJoint, 5
intersection of, 5
open, 29

Simple curve, 400
Simple surface, 417
Simply connected, 503
Simpson's rule, 197
Sink,493
Smooth curve, 400
Smooth surface, 418
Space:

complete, 63
function, 265, 307
Hilbert, 305
metric, 63, 265, 304
n-dimensional, 3

Space-time, 4
Spherical coordinates, 205 (Ex. 2), 396
Square root, 50, 120
Steepest ascent, 163, 535
Stirling's approximation to n!, 252, 300
Stokes' theorem, 478, 489

generalized, 477,497 (Ex. 18)
vector form of, 493, 496

Strictly monotone, 47
Subsequence, 42
Superconvergence, 524
Surface, 22,417

analytic, 425
area of, 428
boundary of, 417
bound ing, 509
of class en, 424
equivalent, 432, 460
in 4-space, 439, 463
integral, 478, 493
normal to, 422
orientable, 435
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Surface:
simple, 417
smooth,418
trace of, 417

Syntax, 550

Tangent line, 402
Tangent plane, 424
Taylor polynomial, 147
Taylor remainder, 148
Taylor series, 150
Taylor theorem, 152
Telescoping series, 230, 255
Temperature, 20, 97 (Ex. 10, 14)
Term:

of sequence, 27
of series, 228

Tetrahedron, 97
Texas hat, 164
Tietze extension theorem, 77, 110, 274
Topology, 28, 77
Torus, 430, 509
Trace:

of curve, 400
of matrix, 470
of sequence, 37
of surface, 417

Transformation, 23, 328
area altered by, 382, 386
conformal, 413
continuous, 75
differentiable, 345
differential of, 341
distance decreasing, 334
graph of, 23
inverse, 352, 358
linear, 334

Transformation:
mean value theorem for, 350
orientation preserving, 412
rank of, 563

Trapezoidal formula, 197, 541, 544
Triangle inequality, 12, 14
Trigonometric functions, 249, 283
Trisection, 285

Unbounded set, 31
Uniform approximation, 86
Uniform continuity, 82
Uniform convergence, 260
Union of sets, 5
Unit vector, 126, 306
Upper bound, 6
Upper limit (lim sup), 44

Vector, 7
analysis, 464
field, 468
identities, 465, 471, 472
normal,422
space, 8, 77, 562

Vector-valued derivative, 130, 343
Vector-valued function, 21, 328

Wallis, J., 304 (Ex. 13-)
Wave equation, 514
Weierstrass approximation theorem, 86,

323,583
Weierstrass comparison test, 266, 287

Zero area (volume), 172, 385
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