Roll No.

(12/24)

5161

B.A.-B.Ed./B.Sc.-B.Ed. (4 Years) (For Batch 2011 & Onwards)/B.A./ B.A.(Hons.)/B.Sc. (First Semester) (For Batch 2011 to 2023 Only) EXAMINATION

MATHEMATICS

BM-113

Solid Geometry

Time: Three Hours Maximum Marks: B.Sc.: 40 B.A.: 27

Note: Attempt Five questions in all, selecting one question from each Unit and the compulsory question. Marks are indicated alongwith questions.

Compulsory Question

- 1. (a) Define Confocal Parabolas. 11/2(1)
 - (b) To find the equation of the sphere, passing through four given points (x_1, y_1, z_1) , (x_2, y_2, z_2) , (x_3, y_3, z_3) and (x_4, y_4, z_4) .
 - (c) Explain Enveloping Cylinder. 11/2,(1)
 - (d) To find the equation of the normal at the point (x_1, y_1, z_1) of the ellipsoid : $1\frac{1}{2}$, (1)

$$\frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} = .1$$

(e) To prove that one conicoid confocal with a given conicoid, touches a plane. 2,(1)

Unit I

2. (a) Find the latus rectum, equation of axis, tangent at the vertex and vertex of the parabola:

4(3)

$$25x^2 - 120xy + 144y^2 - 2x - 29y - 1 = 0$$

(b) Prove that the conics $x^2 + 3y^2 - 1 = 0$ and $2x^2 + 12xy + 39y^2 - 2x - 12y = 0$. 4(2½)

3. Trace the conic:

$$2x^2 + 3xy - 2y^2 - 7x + y - 2 = 0$$

and calculate the eccentricity of conic. 8(51/2)

Unit II

- 4. (a) Find the equations of the sphere which pass though the circle $x^2+z^2-2x+2z=2$, y=0 and touch the plane y-z=7.
 - (b) Two spheres of radii r_1 and r_2 cut orthogonally. Prove that the radius of the

common circle is
$$\frac{r_1 r_2}{\sqrt{r_1^2 + r_2^2}}$$
. 4(2½)

5. (a) Prove that:

$$ax^2 + by^2 + cz^2 + 2ux + 2vy + 2wz + d = 0$$

represents a cone if
$$\frac{u^2}{a} + \frac{v^2}{b} + \frac{w^2}{c} = d$$
.

4(3)

(b) Find the equation of the right circular cylinder of radius 3 and axis as the line $\frac{x-1}{2} = \frac{y}{2} = \frac{z-3}{1}.$ 4(2½)

Unit III

- 6. (a) Prove that six normals can be drawn from a given point to the ellipsoid. 4(3)
 - (b) Prove that the central section of an ellipsoid whose area is constant touches a cone of second degree. 4(2½)
- 7. The normal at any point P of the ellipsoid $\frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} = 1$ meets the principal planes in G_1 , G_2 , G_3 . Show that :
 - (i) $PG_1 : PG_2 : PG_3 = a^2 : b^2 : c^2$
 - (ii) $PG_1^2 + PG_3^2 + PG_3^2 = k^2$

find the locus of P.

8(51/2)

Unit IV

- 8. Find the equations to the generating lines of the hyperboloid $\frac{x^2}{4} + \frac{y^2}{9} \frac{z^2}{16} = 1$, which pass through the point (2, 3, -4) and $(2, -1, \frac{4}{3})$.
- 9. Reduce the equation $11x^2 + 10y^2 + 6z^2 8yz + 4zx 12xy + 72x 72y + 36z + 150 = 0$ to the standard form and show that it represents an ellipsoid and find the equations of the axes.

8(51/2)