Roll No.

(12/24)

5240

B.A./B.Sc. EXAMINATION

(For Batch 2011 & Onwards)

(Fifth Semester)

MATHEMATICS

BM-352

Groups of Rings

Time: Three Hours $Max. Marks: \begin{cases} B.A. : 26 \\ B.Sc. : 40 \end{cases}$

Note: Attempt *Five* questions in all, selecting *one* question from each Unit. Q. No. 1 is compulsory. All questions carry equal marks.

(Compulsory Question)

1. (a) Show that a group upto order 2 is abelian.

(b)	Define a cyclic group.	5
(c)	THE RESERVE	.5
(d)	Let $S = \{1, 2, 3, 4, 5, 6\}$. Represent the	ie
	permutation (2 3 1 4 5) as a product of	of
	transpositions.	2
(e)	Define principal ideal domain. 1	.5
Unit I		
' (a)	A necessary and sufficient condition for	or .
	a non-empty subset H of a group (G,	.)
	to be a subgroup is that H must be close	ed
	with respect to multiplication.	4
(b)	Prove that $G = \{1, 2, 3, 4\}$ is a ground	ıp
	under multiplication modulo 5.	4
(a)	State and prove Lagrange's Theorem.	4
(b)	Prove that every quotient group of	a
	cyclic group is cyclic.	4
5240	2	

maniconamenta basa Unit II 🐭 🗷 💉 mati 🦰 (m)

4. (a) The necessary and sufficient condition for a homomorphism f to be one-one is that kernel $f = \{e\}$, where e is identity of domain.

(b) If f is an automorphism of a group G and $a \in G$ be an element, then show that f(N(a)) = N(f(a)).

5. (a) Let Z (G) be the centre of group G. If G/Z is cyclic, then prove that G is abelian.

(b) Find the centre of permutation group S_3 .

Unit III

6. (a) Every finite non-zero integral domain is a field. Prove.

(b) Every field is a principal ideal ring.

Prove.

4

(3-45/10)B-5240

P.T.O.

- 7. (a) Let f: R → R' be a ring homomorphism.
 Let S be an ideal of R. The f(S) is a ideal of f(R).
 - (b) Prove that the quotient field F of an integral domain is the smallest field of R.

Unit IV

- 8. (a) The ring of Gaussian integers is a Euclidean domain (ring).
 - (b) Show that every non-zero prime ideal of a principal ideal domain is maximal. 4
- 9. (a) If R is an integral domain, then R[x] is also an integral domain.
 - (b) Prove that Every Euclidean ring is a unique factorization domain. 4